
Preface 

Several computational analytic tools have matured in the last 10 to 15 years that 
facilitate solving problems that were previously difficult or impossible to solve. These 
new analytical tools, known collectively as computational intelligence tools, include 
artificial neural networks, fuzzy systems, and evolutionary computation. They have 
recently been combined among themselves as well as with more traditional approa- 
ches, such as statistical analysis, to solve extremely challenging problems. Diagnos- 
tic systems, for example, are being developed that include Bayesian, neural network, 
and rule-based diagnostic modules, evolutionary algorithm-based explanation facil- 
ities, and expert system shells. All of these components work together in a "seamless" 
way that is transparent to the user, and they deliver results that significantly exceed 
what is available with any single approach. 

At a system prototype level, computational intelligence (CI) tools are capable 
of yielding results in a relatively short time. For instance, the implementation of a 
conventional expert system often takes one to three years and requires the active 
participation of a "knowledge engineer" to build the knowledge and rule bases. 
In contrast, computational intelligence system solutions can often be prototyped 
in a few weeks to a few months and are implemented using available engineering 
and computational resources. Indeed, computational intelligence tools are capable 
of being applied in many instances by "domain experts" rather than solely by 
"computer gurus." 

This means that biomedical engineers, for example, can solve problems in 
biomedical engineering without relying on outside computer science expertise such 
as that required to build knowledge bases for classical expert systems. Furthermore, 
innovative ways to combine CI tools are cropping up every day. For example, tools 
have been developed that incorporate knowledge elements with neural networks, 
fuzzy logic, and evolutionary computing theory. Such tools are able to solve quickly 
classification and clustering problems that would be extremely time consuming 
using other techniques. 

The concepts, paradigms, algorithms, and implementation of computational 
intelligence and its constituent methodologies~evolutionary computation, neural 
networks, and fuzzy logic~are the focus of this book. In addition, we emphasize 
practical applications throughout, that is, how to apply the concepts, paradigms, 
algorithms, and implementations discussed to practical problems in engi- 
neering and computer science. This emphasis culminates in the real-world case 
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studies in a final chapter, which are available on this book's web site at 
hap://www.computelligence.org/issue/CICI/CICI, html. 

Computational intelligence is closely related to the field called "soft computing." 
There is, in fact, a significant overlap. According to Lotfi Zadeh (1998), the inventor 
of fuzzy logic and one of the leading proponents of soft computing: 

Soft computing is not a single methodology. Rather, it is a consortium of computing 
methodologies which collectively provide a foundation for the conception, design 
and deployment of intelligent systems. At this juncture, the principal members of soft 
computing are fuzzy logic (FL), neurocomputing (NC), genetic computing (GC), 
and probabilistic computing (PC), with the last subsuming evidential reasoning, 
belief networks, chaotic systems, and parts of machine learning theory. In contrast to 
traditional hard computing, soft computing is tolerant of imprecision, uncertainty 
and partial truth. The guiding principle of soft computing is: "exploit the tolerance 
for imprecision, uncertainty and partial truth to achieve tractability, robustness, low 
solution cost and better rapport with reality." 

Zadeh also believes that soft computing is serving as the foundation for the emerg- 
ing field of computational intelligence, and that "In this perspective, the difference 
between traditional AI [artificial intelligence] and computational intelligence is that 
AI is based on hard computing whereas CI is based on soft computing" (Zadeh 
1994). We believe that soft computing is a large subset of computational intelligence. 
We heartily agree with him when he says, "Hybrid intelligent systems are definitely 
the wave of the future" (Zadeh 1994). 

Some of the material in this book is adapted from Computational Intelligence 
PC Tools by Eberhart, Dobbins, and Simpson (Academic Press 1996). The extensive 
rewrite and reorganization of that material reflect the change in our perception of 
computational intelligence that has occurred over the years. That change is reflected 
in an increased emphasis on evolutionary computation as providing a foundation 
for CI. It also features significant recent developments in particle swarm optimiza- 
tion and other evolutionary computation tools. 

The primary intended audience for Computational Intelligence: Concepts to 
Implementations comprises researchers and graduate students with engineering or 
computer science backgrounds and those with a special interest in computational 
intelligence and/or system adaptation. One ofthe authors [RE] has taught a CI intro- 
ductory course for several years; the material in this book was developed to support 
that course. Other audiences include researchers in fields such as cognitive science 
and the physical sciences and those who are motivated to learn about computational 
intelligence via self-study. We assume this book's users understand the basic con- 
cepts of classical (two-valued) logic, classical set theory, and elementary probability 
theory. We also assume that readers have a familiarity with computers and a very 
basic familiarity with calculus. Knowledge of a computer language such as Java, C, 
or Visual BASIC is very helpful but not required. 
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The implementation chapters frequently refer to and list portions of computer 
code. In Chapters 4 and 6 we use the most common general-purpose, procedural 
programming language, C, to implement the evolutionary algorithms and the arti- 
ficial neural networks. Data structures, routines, and finite state machines are used 
extensively in the C programming. In Chapters 8 and 9, reflecting programming lan- 
guage evolution trends, we use an object-oriented programming language instead of 
the procedural programming language C to implement the fuzzy systems and evolu- 
tionary fuzzy systems. There are a variety of object-oriented languages, such as C++, 
Java, and C#. We use C++ here primarily because it can be looked at as an extension 
of the C language. 

Organization of the Book 

This book is divided into twelve chapters. Chapters 1 and 2 lay the groundwork for 
the topic, introducing computational intelligence and its foundations. The next por- 
tion of the book includes the "backbone" chapters on the three main constituents of 
CI: evolutionary computation, neural networks, and fuzzy logic, in that order. This 
order provides an initial focus on evolutionary computation, which is presented as 
providing a foundation for development of computational intelligence tools involv- 
ing neural networks and fuzzy logic. For instance, when we discuss neural networks, 
we see how evolutionary computation can be used to evolve the weights and struc- 
ture of feedforward neural networks, and with fuzzy logic, we examine evolutionary 
computation applications to tools built using fuzzy logic. In other words, the evo- 
lutionary computation theme pervades this book. Within each backbone chapter, 
we discuss the histories of computational intelligence, evolutionary computation, 
neural networks, and fuzzy logic. 

We follow each backbone chapter with a chapter discussing implementation and 
examples. Each one contains a section on implementation considerations that 
addresses features frequently incorporated into these implementations, which fea- 
tures we chose and why we chose them, and the guidelines to using them, as well 
as interactions among them. The implementation chapters are intended to provide 
readers with the insight to clearly understand "canned," commercially packaged 
software applications and to enable a more thorough understanding of software and 
hardware implementation issues for CI paradigms. 

Each chapter ends with exercises. 

Chapters" Contents 
Chapter 1, Foundations, defines terms used throughout the book and briefly reviews 
biological and behavioral motivations for the constituent methodologies of compu- 
tational intelligence. This is followed by a brief review of the major application areas 
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for each methodology, as well as of CI. The chapter concludes with a review of major 
computational intelligence application areas. 

Chapter 2, Computational Intelligence, launches directly into the core subject 
of this book. We first review the concepts of adaptation and self-organization, key 
to our view of computational intelligence. Then we summarize the brief history of 
the CI field, viewing it from the perspectives of other researchers. This leads us into 
a discussion of the relationships among the three major components and how they 
cooperate and/or are integrated into a computational intelligence system. We present 
our definition of computational intelligence, supported by diagrams that place it 
into context. 

Chapter 3, Evolutionary Computation: Concepts and Paradigms, has been 
adapted from the Evolutionary Computation Theory and Paradigms chapter in 
Swarm Intelligence (Kennedy, Eberhart, and Shi 2001) with updates and augmen- 
tations, including recent developments in particle swarm optimization and other 
evolutionary computation approaches. After reviewing the history of evolutionary 
computation and giving an overview of the field, we discuss its main paradigms: 
genetic algorithms, evolutionary programming, evolution strategies, genetic pro- 
gramming, and particle swarm optimization. 

Chapter 4, Evolutionary Computation Implementations, discusses factors to con- 
sider when implementing evolutionary computation paradigms and presents two 
implementation examples: a canonical genetic algorithm and a real-valued particle 
swarm that can be run in single-swarm or multiswarm configurations. 

Chapter 5, Neural Network Concepts and Paradigms, first briefly presents an 
overview of the history of neural networks, then examines what they are and why 
they are useful. A discussion of neural network components and terminology fol- 
lows, with a review of neural network topologies. A more detailed look at neural 
network learning and recall comes next, focusing on three of the most common neu- 
ral network paradigms: back-propagation, learning vector quantization, and self- 
organizing feature map networks. These networks represent the two basic learning 
types: supervised learning (back-propagation) and unsupervised learning (learning 
vector quantization and self-organizing feature maps). We also briefly discuss hybrid 
networks and recurrent networks. Finally, considerations ofpreprocessing and post- 
processing are evaluated. 

Chapter 6, Neural Network Implementations, discusses factors to consider when 
implementing artificial neural networks and presents four implementation exam- 
ples: back-propagation, learning vector quantization, self-organizing feature maps, 
and evolutionary neural networks. 

Chapter 7, Fuzzy Systems Concepts and Paradigms, leads off with a brief review 
of the history of the field, followed by an examination of fuzzy sets and fuzzy logic, 
the concepts of fuzzy sets, and approximate reasoning. We stress the differences 
between fuzzy logic and probability, and we present both Mamdani and Takagi- 
Sugeno-Kang approaches to the design and analysis of fuzzy systems. The chapter 
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concludes with a look at some design considerations and special topics related to 
fuzzy systems. 

Chapter 8, Fuzzy System Implementations, discusses factors to consider when 
implementing fuzzy systems and presents two implementation examples: a tradi- 
tional fuzzy rule system and an evolutionary fuzzy rule system. The evolutionary 
fuzzy rule system provides a transition into computational intelligence systems. 

Chapter 9, Computational Intelligence Implementations, reflects recent devel- 
opments in the field, including evolutionary fuzzy systems and approaches to sys- 
tem adaptation using computational intelligence. We expand the discussion of the 
interaction and cooperation among the three basic components of CI and include a 
section on adaptive evolutionary computation using fuzzy systems. 

Chapter 10, Performance Metrics, includes a number of system performance 
measures not generally used in other disciplines. Included are percent correct, sum- 
squared error, absolute error, normalized error, receiver operating characteristic 
curves, recall and precision, confusion matrices, and the chi-squared test. 

Chapter 11, Analysis and Explanation, presents several tools that are helpful in 
assessing and explaining how well a computational intelligence tool is doing its job. 
Included are sensitivity analyses, Hinton diagrams for neural networks, and the use 
of evolutionary computing tools for analysis. An example of using particle swarm to 
develop an explanation facility is included in this chapter. 

The book concludes with Chapter 12, Case Study Summaries, which provides 
examples of practical applications. This "virtual" chapter is located on the book's 
web site. Having it there makes it a "living" chapter that can be updated periodi- 
cally. We will add new case studies from time to time and delete older ones as they 
become obsolete. We invite you, the reader, to submit case studies you would like to 
have considered for inclusion. (Please see the web site for more information about 
this.) Among the initial case studies posted are two based on recent work by us, 
the authors, including one on human EEG analysis and another on optimization of 
logistics operations. Other case studies discussed in detail are schedule optimization 
and control system design. Several other case study examples are briefly reviewed. 

A bibliography concludes the book. The glossary is a "virtual" one that is located, 
with Chapter 12, on this book's web site http://www.computelligence.org/issue/CICI/ 
CICI.html. 

Our Approach" What This Book is, and Is Not, About 

This book asserts that computational intelligence rests on a foundation of evolution- 
ary computation. This is certainly not the only way to view computational intelli- 
gence, but so far in the authors' experience, it has proved useful and effective. 

It is about computational tools that you can use in practical applications. Although 
the authors have backgrounds in engineering and computer science, CI tools are just 
as applicable to problems in other fields such as cognitive science and business. 
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This book is about self-organization, which is closely related to emergent 
computation. Self-organization involves simple processes that lead to complex 
results, and the whole being greater than the sum of its parts. As Stephen Wolfram 
(1994) said, "It is possible to make things of great complexity out of things that 
are very simple. There is no conservation of simplicity." 

It is about complex adaptive systems, a term that describes nonlinear systems com- 
prising the interaction of numerous adaptive elements, or entities. The concepts of 
self-organization and complexity are related, as we discuss later. 

This book is not an exhaustive treatise on all permutations and variations of com- 
putational intelligence and its constituent methodologies. If you want an exhaustive 
discussion of artificial neural network paradigms, for instance, you'll need to turn to 
another book. We present only those paradigms we believe provide the most useful 
tools for someone solving practical problems. 

It is not a compendium of mathematical derivations and proofs. We present only 
those few we believe are essential to gaining a working-level understanding of how 
and why the computational tools work. 

This book is not about agents. Most of our computational intelligence tools do 
not qualify as "agents" because they lack the required autonomy and specialization. 
They can, however, be incorporated into intelligent agents and agent systems. 

It is not about life. We nip around the edges of artificial life in a few places, but 
we don't address the question "What is alive?" (We do, however, share some pre- 
liminary thoughts on that subject.) We also do not address the search for artificial 
intelligence (whatever that is) or even for a computational intelligence tool from 
which intelligent behavior will emerge. Our focus is on solving problems. 

Throughout the text, additional aspects of our approach and philosophy should 
become evident, perhaps a little bit at a time. First, when considering computa- 
tional intelligence tools and systems, traditional distinctions between hardware and 
software get a bit blurred; distinctions between data and program are often almost 
nonexistent. Second, our emphasis is on problem solving and applications rather 
than physiological, biological, or behavioral plausibility. We do not pay too much 
attention to whether the CI tools reflect what actually goes on in the brain or any 
other part of a biological organism. Third, we believe that the activities of a com- 
putational intelligence application developer and user are often somewhat different 
from those in other technical areas. 

Developing computational intelligence applications requires the developer to 
play two roles. The first is the hands-on active design, develop, test, and debug role 
that is fairly common in other technical areas. The second, as important as the first, 
is a more passive observation and analytical thinking role. Results from a compu- 
tational intelligence tool are often not what was expected. Most of the time, if the 
developer takes the time to observe and think, rather than "bash to fit and paint to 
match," something very useful can be learned. 
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Web Site Details 

The authors' web site for this book is http://www.computelligence.org/issue/CICI/ 
CICI.html. (There is a link to this site from the publisher's web site.) Software imple- 
mentations are written for the Windows and/or lava environment, and executable 
versions of software described in the implementation chapters are located and main- 
tained on the web site. Included as part of each implementation are the ancillary 
files~a run file and a data file~needed to run the implementation. In addition, out- 
put (results) files, obtained by the authors using the executable and ancillary files, 
are provided. You may want to rename these output files, or move them to another 
directory, so that you can compare your results with those of the authors. 

We'd like to emphasize that the software is not just for demonstration; you can 
use it for many real-world applications. The C and C++ source code has been written 
using the Borland C++ 4.5 development environment. The lava code will run on any 
computer that supports the lava Virtual Machine; this includes machines running 
Windows, Unix, and Macintosh operating systems. 

Of special note are the recent variations of particle swarm optimization that have 
been integrated into the EC theory and paradigms chapter and the EC implementa- 
tions chapter. Source code is provided on the web site for some of the implementa- 
tions so that you can modify the software for specific applications. 

Some of our software can be run using a web browser. Other software, including 
source code, is useful only after downloading it from the book's web site. Approx- 
imately 600 slides that cover the material in this book are available to instructors 
(or anyone else) at no cost. These slides, configured as Word files, are downloadable 
from the web site. The site also contains hyperlinks to other resource information 
on the Internet related to subjects in this book. 

A significant amount of source code is also on the web site. A total of eight 
software modules are available, both as executables and as source code: 

m Genetic algorithm 

m Particle swarm optimization (including multiple swarms) 

m Back-propagation neural network 

m Learning vector quantization neural network 

[] Self-organizing feature map neural network 

[] Evolutionary back-propagation neural network 

[] Fuzzy rule system 

. Evolutionary fuzzy rule system 

We ask that you send the authors a payment of US $25 per software module of source 
code ($150 for all of the source code) if you find it useful. We are relying on your 
honesty. (The address is on the web site with the software.) 
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Finally, as described previously, Chapter 12, Case Studies, is available on the 
web site. 
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Foundations 

This chapter introduces general terms 
used to discuss computational intelligence 
as well as component methodologies~ 
computational intelligence (Cl), including 
artificial neural networks, fuzzy logic, and 
evolutionarycomputation~as they are used 
in this text. We review the biological bases 
for artificial neural network and evolution- 
ary computation analysis tools, including 

the differences between biological struc- 
tures and these analysis tools, and we 
discuss the behavioral motivations for fuzzy 
systems. The chapter ends with a review of 
myths related to implementations and appli- 
cations of Cl and its component technolo- 
gies, and a review of major application areas 
for each of the three main computational 
intelligence methodologies, m 



Chapter One--Foundations 

Definitions 

This section defines some of the most important terms used in this book. These 
definitions set the stage for more detailed analyses; more comprehensive definitions 
appear in subsequent chapters. Often, the first time a term is used in the book, it is 
in italics. In addition, whenever a term is italicized, you can find its definition in the 
glossary. 

We begin with a general definition of intelligence and then focus on the issues 
relevant to computational intelligence. A standard dictionary (Webster's New Colle- 
giate Dictionary, 1975) definition of intelligence is: "1 a (1): The ability to learn or 
understand or to deal with new or trying situations : REASON; also : the skilled use 
of reason (2): the ability to apply knowledge to manipulate one's environment or to 
think abstractly as measured by objective criteria (as tests)." 

"Intelligence is the capability of a system to adapt its behavior to meet its goals in a 
range of environments. It is a property of all purpose-driven decision-makers." This 
definition, perhaps more relevant to the subject matter of this book, was published 
by David Fogel (1995). 

An artificial neural network (ANN) is an analysis paradigm that is roughly mod- 
eled after the massively parallel structure of the brain. It simulates a highly inter- 
connected, parallel computational structure with many relatively simple individual 
processing elements (PEs). Henceforth in this text the terms artificial neural network 
and neural network are used interchangeably. 

As used in this text, fuzziness refers to nonstatistical imprecision and vagueness 
in information and data. Most concepts dealt with or described in the "real world" 
are fuzzy. For example, "It is kind of foggy outside now, but it should be fairly sunny 
before too long" is an example of a statement that incorporates three fuzzy concepts: 
"kind of," "fairly," and "before too long." (It could even be argued that the word 
"now" is imprecise and vague enough to be fuzzy.) 

Fuzzy sets model the properties of imprecision, approximation, or vagueness. In 
conventional logic, known as crisp logic, an element either is or is not a member ofthe 
set. It can be said, therefore, that each element has a membership value of either 1 or 
0 in the set. In a fuzzy set, fuzzy membership values reflect the membership extents 
(or grades) of the elements in the set. It will be shown that a membership function 
is the basic idea in fuzzy set theory; a fuzzy membership function is identical to a 
fuzzy set. 

Fuzzy logic is the logic of "approximate reasoning." It comprises operations on 
fuzzy sets including equality, containment, complementation, intersection, and 
union; it is a generalization of conventional (two-valued, or crisp) logic. 

Evolutionary computation comprises machine learning optimization and clas- 
sification paradigms roughly based on mechanisms of evolution such as biolog- 
ical genetics and natural selection. The evolutionary computation field includes 
genetic algorithms, evolutionary programming, genetic programming, evolution 
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strategies, and particle swarm optimization. All of these paradigms use populations 
of individuals (potential solutions), rather than single data points or vectors. 

Genetic algorithms are search algorithms that incorporate natural evolution 
mechanisms, including crossover, mutation, and survival of the fittest. They are 
more often used for optimization, but also are used for classification. Evolutionary 
programming algorithms are similar to genetic algorithms, but do not incorporate 
crossover. Rather, they rely on survival of the fittest and mutation. Evolution strate- 
gies are similar to genetic algorithms but use recombination to exchange information 
between population members instead of crossover, and often use a different type of 
mutation as well. Genetic programming is a methodology used to evolve computer 
programs. The structures being manipulated are usually hierarchical tree structures. 
Particle swarm optimization flies potential solutions, called particles, through the 
problem space. The particles are accelerated toward selected points in the problem 
space where previous fitness values have been high. 

Computational intelligence is a methodology involving computing that provides 
a system with an ability to learn and/or to deal with new situations, such that the 
system is perceived to possess one or more attributes of reason, such as general- 
ization, discovery, association, and abstraction. Computational intelligence systems 
usually incorporate hybrids of paradigms such as artificial neural networks, fuzzy 
systems, and evolutionary computation systems, augmented with knowledge ele- 
ments. They are often designed to mimic one or more aspects ofbiologiacal intelli- 
gence. Computational intelligence is also closely related to adaptation. In fact, 
another definition of CI is that it comprises practical adaptation concepts, 
paradigms, algorithms, and implementations that enable or facilitate appropriate 
actions (intelligent behavior) by systems in complex and changing environments. 
We discuss adaptation in more detail in the next chapter. 

A paradigm is a particular example of computational intelligence attributes--in 
the case of a neural network, the architecture, activation and learning rules, update 
procedure, and so on--that  exhibits a certain type of behavior. Put another way, it 
is a clear and specific example of a concept. Back-propagation is one example of a 
neural network paradigm because it implies a certain set of attributes, for example, 
the architecture and the learning rule. A paradigm is a particular set of choices for all 
attributes. Development of a new paradigm involves assembling a set of attributes 
that define the intended behavior of the CI tool. 

An implementation is a computer program written and compiled for a specific 
computer or class of computers that implements a paradigm. The back-propagation 
neural network application on the book's web site (described in Chapter 4) is an 
implementation of the back-propagation paradigm. 

The discussion in this book deals with semantics, as well as with concepts. To an 
extent, we are the prisoners of our terminology. For example, consider the term arti- 
ficial intelligence. It is the authors' opinion that labeling some subset of intelligence 
artificial is somewhat analogous to calling what an airplane does "artificial flight." 
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There are also terms that require careful usage. One example is neural networks, for 
which it is necessary to specify whether we are referring to biological wetware or 
artificial neural network analytical tools. We must also be aware of what Bezdek 
(1994) calls "seductive semantics," which are words and phrases that are often inter- 
preted tOO literally, resulting in meanings being inferred that are more profound 
and important than are warranted. Examples are cognitive and genetic. With that 
caveat, and having presented the basic definitions we use, let us now review the 
theory and technology foundations of computational intelligence tools and com- 
ponent methodologies. 

Biological Basis for Neural Networks 

Every day of our lives, each of us carries out thousands of tasks that require us to keep 
track of many things at once and to process and act on these things. Relatively simple 
actions, such as picking up a glass of water or dialing a telephone number, involve 
many individual components requiring memory, learning, and physical coordina- 
tion. The complexity of such "simple" tasks, which most of us do all the time with- 
out consciously "thinking" about them, is underscored by the difficulty involved in 
teaching robots to perform them. Performance of these tasks is facilitated by our 
complex adaptive biological structure. 

Neurons 

Studies in fields such as biology and biophysics over the past few decades have shed 
some light on the construction and operation of our brains and nervous systems, 
which helps us understand how these tasks are performed. Living organisms are 
made up of cells, and the basic building blocks of the nervous system are nerve 
cells called neurons. The major components of a neuron include a central cell body, 
dendrites, and an axon. 

Figure 1.1 is a conceptual diagram of a neuron. 1 The signal flow goes from left 
to right, from the dendrites, through the cell body, and out through the axon. The 
signal from one neuron is passed on to others by means of connections between the 
axon of the first and dendrites of the others. These connections are called synapses. 
Axons often synapse onto the trunk of a dendrite, but they can also synapse directly 
onto the cell body. 

The human brain has a large number of neurons, or processing elements (PEs). 
Typical estimates ofthe total number are on the order of 10 to 500 billion (Rumelhart 
and McClelland 1986). According to one estimate by Stubbs (1988), neurons a r e  

1 There are many kinds of neuron; for detailed information on their configuration and functioning, 
refer to a book on neuroanatomy or neurology, such as Kandel, Schwartz, and ]essell (2000). 
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arranged into about 1,000 main modules, each with about 500 neural networks. Each 
network has on the order of 100,000 neurons. The axon of each neuron connects to 
anywhere from hundreds to thousands of other neurons; the value varies greatly 
from neuron to neuron and from neuron type to neuron type. According to a rule 
called Eccles's law, each neuron either excites or inhibits all neurons to which it is 
connected. 

Biological versus Artificial Neural Networks 

While the processing element in an artificial neural network (ANN) is generally con- 
sidered to be very roughly analogous to a biological neuron, there are significant dif- 
ferences between a neural biological structure (as it is currently understood) and the 
implementation or representation of this structure in artificial neural networks. We 
summarize the most important differences here, recognizing there are many others. 

Eccles's Law 
In a typical implementation of an ANN, connections among PEs can have either 
positive or negative weights. These weights correspond to excitatory and inhibitory 
neural connections, so Eccles' law is not usually implemented in ANNs. 

AC versus DC 
Information about the state of activation, or excitation, of a PE generally is passed 
to other PEs to which it is connected as a value that roughly corresponds to a direct 
current (DC) level. In biological neural networks (BNNs), a train of pulses across 
a synapse carries the information, and higher absolute values of activation result 
in higher pulse rates, so that something analogous to alternating current (AC) fre- 
quency, or pulse repetition rate, generally corresponds to activation level. There are 
exceptions to the pulse rate carrying information in biological networks, but they 
are relatively unimportant for our discussion. 
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PE Types 
While there are many kinds of neuron in biological systems, an artificial neural 
network is typically implemented with only one type of PE. Occasionally, two 
or three types of PE are used, and as the technology of ANNs develops, more 
sophisticated tools may make use of several PE types in each implementation. On 
the other hand, some studies indicate that any required implementation can be 
carried out with as few as two types of PE (Rumelhart and McClelland 1986). 

Speed 
It is reported widely in the literature that neurons in BNNs typically operate on 
individual cycle times of about 10 to 100 milliseconds. The basic clock frequency 
in a personal computer is a few gigahertz, which results in a basic cycle time for 
the computer of less than a nanosecond. Even taking into account the number of 
multiply-accumulate operations needed to calculate and propagate a new value for 
a PE (typically 10-100), the basic cycle time for an individual PE is still only about 
10 to 100 nanoseconds. In some ways, however, speed is deceptive. Despite its slower 
cycle, the brain is still able to perform some tasks orders of magnitude faster than 
today's fastest digital computer. This, most likely, is because of the brain's massively 
parallel architecture. (Recent research related to neural processing in echo-locating 
bats, however, indicates that these creatures are physiologically processing signals in 
a time span of a few hundred nanoseconds, so it seems obvious that we still have 
much to learn about how the brain functions.) 

Quantity of PEs 
There is a significant difference between the number of PEs in the typical ANN and 
the number of biological neurons involved in any task in a BNN. Typical ANNs are 
implemented with something like a few dozen to several hundred PEs. Each of the 
1,000 main modules in the human brain described by Stubbs (1988) contains about 
500 million neurons, and it is almost certain that several (perhaps many) of these 
main modules are involved in any simple task. Of course, for any practical appli- 
cation, most engineers and computer scientists might be hard pressed to figure out 
how to effectively use a neural network tool (NNT) with 500 million PEs! 

Some biologically oriented scientists have criticized artificial neural networks 
because they don't model all the activities of the brain sufficiently well. Our primary 
goal as engineers and computer scientists, however, is to solve complex problems, 
not to model the brain. Our interest, then, is in adapting relevant concepts to solve 
difficult problems. As an oft-quoted saying (oft-quoted in engineering circles, any- 
way) puts it, "Scientists study what is. Engineers create what has never been." This 
statement is not meant to be antagonistic toward scientists. What scientists do is just 
as noble and worthwhile as what engineers do; they just have a different mission and 
a different perspective. 
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Biological Basis for Evolutionary Computation 
Whereas individuals adapt and learn over their lifetimes using their neural networks 
to accomplish tasks, species survive by reproducing and evolving over time by pass- 
ing on new information through their genes. In a manner somewhat analogous to 
neural networks' ties with biology, the field of evolutionary computation has roots 
in biological genetics. The concept of chromosomes is central to both genetics and 
evolutionary computation. 2 

Chromosomes 
All living organisms are made up of cells such as neurons, as described earlier. Chro- 
mosomes are structures in cell nuclei (cell bodies) that transmit genetic information. 
Each representative of a given species has a characteristic number of chromosomes. 
Humans normally have 46, occurring as 23 homologous (corresponding) pairs in 
the female and 22 homologous pairs and one nonidentical pair in the male. One of 
each pair is derived from the father, one from the mother. A sketch of three pairs of 
human chromosomes appears in Figure 1.2. 

Individual patterns, or strings, in evolutionary computation systems are basi- 
cally analogous to chromosomes in biological systems. In fact, the term chromo- 
some is commonly used in most genetic algorithm and evolutionary programming 
systems. In genetics, the collection of chromosomes required to completely specify 

Figure 1.2 Sketch of three pairs of human chromosomes. The patterns of bands along the 
chromosomes are the result of a staining technique and allow identification of 
the individuals of chromosome pairs. Source: :Drawing by Mark C. Eberhart. 

2 In this text, the term genetics refers to biological genetics, which is "a branch of biology that deals 
with the heredity and variation of organisms" (Webster's New Collegiate Dictionary, 1975). 
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an organism is called the genotype. In evolutionary computation, the collection of 
patterns or strings needed to completely specify a system is known as a structure. 
Most of the systems considered in this text are specified by one pattern, or string, or 
state vector; the terms chromosome and structure are thus generally interchangeable. 

In the biological world, chromosomes are made up of genes, each of which is 
identified by its location (locus) and its function, such as a person's hair color gene. 
In other words, genes are specific segments of chromosomes associated with specific 
functions. Individual values a gene may assume are called alleles; a hair color allele 
value may be "brown hair." In the artificial chromosomes of evolutionary compu- 
tation systems, the chromosome patterns or strings are made up of parameters, or 
features, that can vary over a specified range of values. A given parameter or feature 
occupies a fixed location in the artificial chromosome. The chromosome therefore 
is encoded to represent a set of parameters. 

Biological versus Artificial Chromosomes 
Just as artificial neural networks are only roughly analogous to collections of bio- 
logical neurons, so artificial chromosomes are only approximately modeled after 
biological ones. 

Composition 
Biological chromosomes contain linear threads of DNA, nucleic acids that make up 
an extremely complex double helix structure. Artificial chromosomes are typically 
strings of binary and/or real values. Each occurrence of the string typically represents 
a system state vector. 

Length 
The biological chromosomes that define an organism vary in length, although a spe- 
cific chromosome is generally the same length from one organism to another. Each 
artificial chromosome in a population is the same length, that is, contains the same 
number of bits. 

Reproduction 
Biological chromosomes duplicate themselves during cell division, which occurs 
during a normal cell's lifetime. Many cell divisions (duplications) occur within an 
organism for every event of sexual reproduction. During reproduction, the egg and 
the sperm each contribute one chromosome for each homologous pair. In evolu- 
tionary computation, the duplication of chromosomes analogous to what occurs 
during biological cell division is generally called "reproduction." Also, the synthe- 
sis of new chromosomes from two "parents" is called crossover, or recombination, 
in evolutionary computation. Furthermore, during crossover (or recombination), 
any number of bits or real values can be exchanged between two parent artificial 
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chromosomes, as compared with the fixed 50 percent contribution of chromosomes 
by each parent in human reproduction. 3 

This section has primarily discussed the biological basis of evolutionary compu- 
tation from a genetics point of view. Concepts such as survival of the fittest, associ- 
ated with Darwinian evolution, also play an important role in CI and are 
discussed in Chapter 3. 

Behavioral Motivations for Fuzzy Logic 

The biological motivation or basis for fuzzy logic does not originate at the cellular 
and subcellular level, as is the case with neural networks and evolutionary compu- 
tation, respectively. It is reflected at the behavioral level of the organism, that is, 
in the ways the organism interacts with its environment. While the previous two 
methods are deeply rooted in biology, fuzzy logic deals mainly with uncertainty 
and vagueness. We do not live in a world of ones and zeros, black and white, true 
and false, or other absolutes. Our observations, communications, and experiences 
almost always include a large measure of uncertainty. For example, a statement 
such as "Next year I will visit Hawaii" cannot be categorized in terms of truth and 
falsehood. It is uncertain. 

Two main types of uncertainty exist. One is statistical, based on the laws of prob- 
ability. An example of statistical uncertainty is the outcome of the toss of a coin. 
Observations or measurements can be used to resolve statistical uncertainty. For 
example, once the coin is tossed, no statistical uncertainty remains. The other type 
of uncertainty is nonstatistical and is based on vagueness, imprecision, and/or ambi- 
guity. Nonstatistical uncertainty is illustrated by statements such as "Go to bed pretty 
soon" and "Jim is very tall" and "That car is going around 75 kilometers per hour." 
The concept of fuzziness is associated with nonstatistical uncertainty. 

Those of you who are experts in the English language may have noticed that, 
particularly in the first statement, the imperative state does not mesh very well with 
the vague qualifier "pretty soon." This, however, is exactly the kind of vague, messy 
English we often use for communication. One of the primary attributes of fuzzy 
logic is its ability to efficiently capture and manipulate these vague, messy concepts. 

Fuzziness is an inherent property of a system. It is not resolved or altered by 
observation or measurement. Allowing uncertainty in the description of a complex 
system makes it more tractable to analysis. Fuzzy logic thus provides a framework 
within which nonstatistical uncertainty can be defined, described, and analyzed. 
A similar perspective on fuzzy logic is articulated by George Klir (Klir and Folger 
1988), who refers to fuzziness as arising from what he calls "linguistic imprecision." 

3 For more information on natural genetics, refer to a genetics text. A good choice is one written by 
Mange and Mange (1998). 
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Myths about Computational Intelligence 

There are a number of myths regarding computational intelligence. First, it is a myth 
that the only way to achieve results with CI tools is with a vast sum of money, a 
supercomputer, and an interdisciplinary team of Nobel laureates, as some commer- 
cial vendors imply. Having a supercomputer or a parallel processing machine isn't 
required to do something useful with CI tools. It's not even necessary to have a 
Sun workstation. A personal computer is a perfectly adequate hardware base for 
most implementation and application projects. So, with relatively simple hardware 
and software tools, it is possible to solve problems that are otherwise impossible or 
impractical. Computational intelligence tools do offer solutions to some problems 
that aren't feasible to solve in any other way known to the authors. That isn't a myth! 

What is a myth is that some combination of CI tools can solve all difficult engi- 
neering or computer science problems faster and cheaper than anything previously 
available. It is also a myth that CI tools can solve most problems single-handedly. 
They are often inappropriate for problems requiring precise calculations. For exam- 
ple, it is unlikely that anyone will ever successfully balance a checkbook with a neural 
network. 

Another statement that qualifies as mostly myth is that no programming is 
needed to use artificial neural networks. This is at best misleading. It is true that 
a neural network trains (adapts) and runs on input data and according to a set of 
rules that update the weights that connect the processing elements, or nodes, and 
that the learning of the network is not, strictly speaking, programmed. It is also 
true that computer-aided software engineering (CASE) tools are becoming more 
available and that little or no programming expertise may be required to use these 
tools to generate executable neural network code. 

It is also true, however, that in the real world of neural network applications, 
some programming is required to get from the specification of the problem to 
a solution. Neural network applications significantly reduce the requirement for 
reprogramming. Once the problem is specified, it is not unusual to reuse the net- 
work code repeatedly, making changes in data preprocessing and network runtime 
parameters. 

Furthermore, although it is accurate to say that computational intelligence tools 
such as neural networks can play a key role in the solution of several classes of 
problems that are difficult if not impossible to solve any other way currently known, 
it is almost always true that the CI portion of the solution is only a relatively 
small part of the overall system. For example, in terms of the total amount of 
computer code in a neural network-based solution, the network often accounts 
for only about 10 percent of the total solution. It is an absolutely indispensable 
10 percent, and success would not be possible without it, but it is important to 
keep it in perspective. Preprocessing and further manipulation of the data to form 
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pattern files for presentation to the network typically involve much of the code 
(although we'll show you a way to develop a neural network that eliminates much 
of the preprocessing). Interpreting and displaying the results often account for 
another large portion. 4 

Another myth about neural network and evolutionary computation applications 
is that it is necessary to know something about neural biology or biological genetics, 
respectively, to understand them. Nothing could be further from the truth. In fact, 
for most engineers and computer scientists, neural network and evolutionary com- 
putation tools can be considered just another (powerful) set of resources in the CI 
analysis toolkit. Furthermore, a good case can be made for the argument that neural 
networks are technical descendants of analog computing just as much as they are 
descended from biology or neurology. 

A myth about fuzzy logic is that it is really fuzzy, or imprecise. It is not. The inputs 
to a fuzzy system are precise values for input parameters. Likewise, outputs from a 
fuzzy system are "crisp" (exact) values, capable, for instance, of being used as precise 
inputs to control systems. 

Another myth about fuzzy logic is that it is just another version of probability. It 
isn't. Probability deals with statistical uncertainty, whereas fuzzy logic is related to 
nonstatistical uncertainty, as we discussed previously. 

Finally, it is a myth that optimization exists. This is being said somewhat with 
tongue in cheek, but it is important to realize that very seldom does a real-world CI 
implementation find the absolute optimum of anything. It is almost always sufficient 
to get within a specified region of the optimum, if it is known. Often, in fact, the 
optimum value is not even known. Note that we use the term optimization in its 
pure "dictionary definition" sense: Optimization is the identification of the very best 
solution, or, in the case in which multiple optima exist, the identification of all of 
the multiple optima. 

Computational Intelligence Application Areas 

Each component methodology of computational intelligence has application areas 
for which it is particularly well suited. We briefly review these areas in this section. 
Keep in mind that application areas may overlap; that is, a given problem may be 
solvable by either a neural network or a fuzzy system, albeit with different levels of 
performance. In later chapters we examine combinations of the methodologies that 
can produce different results. This compilation of application areas is not meant 

4 The 10 percent of the code typically represented by the neural network often takes a dispropor- 
tionately large percentage of the development effort, perhaps 20 percent, but that effort associated 
directly with neural network application development is usually still a relatively small portion of 
the total project. 
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to be complete. It is not necessarily even representative of all of the major areas of 
applications. It is meant to convey some sense of the range of problems to which CI's 
component methodologies have been applied. 

Neural Networks 

There are five application areas for which neural networks are generally considered 
to be best suited. The first three are related. 

Classification 
This area analyzes which of several predefined classes best reflects an input pattern. 
The number of classes is typically small compared with the number of inputs. One 
example is a decision whether or not a given segment of EEG data represents an 
epileptiform spike waveform. Neural networks' ability to construct nonlinear map- 
pings between high-dimensional spaces is another type of classification analysis. 
Some types of video image processing by neural networks (such as diagnoses of 
tumors) are examples of this application area. 

Content Addressable Memory or Associative Memory 
A typical example is obtaining the complete version of a pattern at the output of the 
network by providing a partial version at the input. (The input and output nodes of 
the network may sometimes be the same nodes.) This process is sometimes described 
as obtaining an exemplar pattern from a noisy and/or incomplete one. 

Clustering or Compression 
This area involves classification but can also be considered a form of encoding. An 
example is the significant reduction of the dimensionality of an input, as in the case 
of speech recognition. Another is the reduction of the number of bits that must 
be stored or transmitted to represent, within some allowed error margin, a block 
of data; in other words, the original block of data can be reconstructed within the 
allowed error with fewer bits than were in the original data. 

Generation of Sequences or Patterns 
This fourth area is somewhat different from the first three in that no classification 
is involved. This generation of patterns is done by a network trained to examples. 
For instance, if a network is trained to reproduce a certain style of musical sequence, 
then it is possible for the network to compose "original" versions of that type of 
music. Or a neural network may be trained to model, or simulate, something. Grow- 
ing numbers of applications in the financial world, becoming known as "financial 
engineering" applications, are being reported. Because of inherent randomness in 
the process being simulated, there may be no "right" answers, but the system can 
perhaps be described statistically. The network simulation may then be designed 
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to reproduce these statistical qualities. This area can be extended to many areas of 
application and represents the ability of a neural network system to be "creative." 

Control Systems 
The use of neural networks in control systems is one of the fastest-growing appli- 
cation areas. It is enjoying widespread implementation for several reasons. First, 
a neural network-based control system can deal with all of the nonlinearities of a 
system. (The system doesn't have to be approximated as linear.) Second, a network 
can be used to model the nonlinear system in the process of designing the con- 
trol system. Third, the development time for a neural network control system is 
typically much shorter than it is for other more traditional techniques. 

The number of specific neural network applications for each of the five areas 
grows, it seems, daily. Some applications are specific to a discipline. For exam- 
ple, applications in medicine include EEG waveform classification and appendicitis 
diagnosis. In business and finance, neural networks are part of systems for trading 
options on commodity futures contracts and finance company credit application 
processing. Military-related applications include target tracking and recognition, 
fault diagnoses in aircraft, and the detection of trace amounts of explosives. In 
the automotive industry, neural networks can determine the battery pack state-of- 
charge in an electric vehicle, help determine the proper distance a car should follow 
another, and, in fact, simultaneously control the positions of a number of cars on 
an expressway. Artistic endeavors are supported as well, with neural networks that 
can compose music. Other applications cut across disciplines, such as networks for 
speech recognition, text-to-speech conversion, and image processing. 

Evolutionary Computation 
The two main areas of application for evolutionary algorithms are optimization and 
classification. Most of the discussion in this text focuses on optimization, since most 
engineering applications of evolutionary computation are related to optimization. 

Optimization 
One of the early applications that popularized genetic algorithms was the control 
of gas pipeline transmission (Goldberg 1989). Evolutionary algorithms have also 
been applied to multiple-fault diagnosis, robot track determination, schedule opti- 
mization, conformal analysis of DNA, load distribution by an electric utility, neural 
network explanation facilities, and product ingredient mix optimization. (In some 
of these cases, other CI paradigms have been used, too.) 

Classification 
A use of evolutionary computation that has applications across many fields, 
including both classification and optimization, is the evolution of neural networks. 
This computational intelligence-based methodology is discussed in detail in 
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Chapter 6. Other classification applications include rule-based machine learning 
systems, such as that used to learn control of pipeline operations by Goldberg (1989) 
(which also had an optimization element) and classifier systems for high-level 
semantic networks. 

Fuzzy Logic 
Fuzzy logic is being applied in a wide range of applications in engineering areas 
ranging from robotics and control to architecture and environmental engineering. 
Other areas of application include medicine, management, decision analysis, and 
computer science. As with neural networks, new applications appear almost daily. 
Two of the major application areas are fuzzy control and fuzzy expert systems. 

Control Systems 
Fuzzy control systems have been applied to subway systems, cement kilns, traffic 
signal systems, home appliances, video cameras, and various subsystems of auto- 
mobiles including the transmission and brake systems. One application familiar to 
many is the circuitry inside a video camera that stabilizes the image in spite of the 
unsteady holding of the camera. 

Expert Systems 
Fuzzy expert systems have been applied in the areas of medical diagnostics, for- 
eign exchange trading, robot navigation, scheduling, automobile diagnostics, and 
the selection of business strategies, just to name a few. We present an example of the 
role of fuzzy logic in a scheduling system in Chapter 12. 

S u m m a r y  

This chapter provides background information from which to learn about CI and 
its implementation. We introduce the definitions and component methodologies of 
CI, and we debunk some of the myths you may have heard. Having understood the 
biological basis for the component methodologies, you will be able to better con- 
ceptualize how these systems work. Briefly reviewing some application areas offers 
an idea of the types of problem that computational intelligence tools can be used 
to solve. 

Exercises .............. 

1. What are some alternative terms for processing element? Discuss the choices, 
listing advantages and disadvantages for each. 
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2. State a myth relative to neural networks, fuzzy systems, or evolutionary 
computation, in addition to those discussed in this chapter. Why is it a myth? 

3. How do you think adaptation and self-organization are interrelated? 

4. Survey recent technical publications and the Internet for these additional areas 
to which one of the component technologies of CI has been successfully applied: 
face recognition, health screening, creating art. 

a. What motivated the use of the technology in these applications? 
b. What technical tools, in addition to CI, were required to solve the problems? 
c. What was the role of the CI component technology in each case? 

5. What is the difference between fuzziness and probability? Provide an example to 
illustrate the difference. 

6. What is the definition of artificial intelligence? List some differences between 
computational intelligence and artificial intelligence. 
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Computational Intelligence 

This chapter covers the key elements of 
computational intelligence and how com- 
putational intelligence fits into the larger 
picture comprising machine intelligence 
and biological intelligence. We examine 
adaptation and learning, how they differ, 
and what that means for computational 
intelligence (el). We build from the bot- 
tom up, identifying each element in turn. 
First we discuss three main types of 
adaptation that are incorporated into a 
variety of computational models: super- 
vised, unsupervised, and reinforcement 
adaptation. Next we briefly examine the 
concept of self-organization, which we 
believe plays an important role in evo- 
lution. We then look at how computa- 
tional intelligence has been perceived and 
defined by various researchers. Finally, we 
discuss our view of computational intel- 
ligence and how it fits into a model of 
intelligent systems. 

Despite the relatively widespread use of 
the term computational intelligence, there 
is no commonly accepted definition of the 
term. The definitions offered in Chapter 1 
include assumptions about the nature of 
what are called the "constituent method- 
ologies" of computational intelligence. As 
will be seen, other researchers make dif- 
ferent assumptions and arrive at different 
perspectives. 

As is true for researchers in any develop- 
ing, maturing field, we are standing on the 
shoulders of those who have preceded us. 
Of particular influence has been work pub- 
lished by Marks (1993) and Bezdek (1981, 
1992, 1994, 1998). An extension of their 
work presented in this chapter is a new 
model of biological and machine intelli- 
gence that defines the context for compu- 
tational intelligence. 

This chapter is not meant to be the 
final word on any aspect of computational 
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intelligence. It is intended only to be a snapshot in time, and a relatively subjective 
snapshot at that. If it stimulates discussion and further development, it will 
accomplish our objective. 

With those caveats, the chapter is initiated by discussing adaptation and pre- 
senting several definitions. None of these definitions is meant to be particularly 
controversial. Rather, they are intended to provide the framework for the remain- 
der of the book. • 

Adaptation 

We discuss adaptation and, later, self-organization because they play an important 
role in our view of computational intelligence. The concept of adaptation is central 
to computational intelligence. One definition stated in Chapter 1 is that computa- 
tional intelligence comprises practical adaptation concepts, paradigms, algorithms, 
and implementations that enable or facilitate appropriate actions (intelligent behav- 
ior) in complex and changing environments. 

Webster's New Collegiate Dictionary's (1991) definition of adaptation provides a 
useful beginning to our discussion: 

1: the act or process of adapting: the state of being adapted 2: adjustment to envi- 
ronmental conditions: as a: adjustment of a sense organ to the intensity or quality 
of stimulation b: modification of an organism or its parts that makes it more fit for 
existence under the conditions of its environment. 

The same source defines the word adapt as follows: "to make fit (as for a spe- 
cific or new use or situation) often by modification." To be fit is to be suitable, 
that is, adapted so as to be capable of surviving and acceptable from a particular 
viewpoint. 

Thus, we define adaptation as the ability of a system to change, or evolve, its 
parameters in order to better meet its goal. Dynamic adaptation is the ability of a 
system to adapt "online," that is, in essentially real time, in a changing environment. 
In dynamic adaptation, the system adapts while it is running (online), rather than 
being taken offline to be retrained. For a system to exhibit adaptation, its trajectory 
through the problem space must depend on the state of its environment. 

Accordingly, a number of factors can make adaptation difficult (Holland 1992): 

1. A large problem space (the hyperspace comprising the dynamic ranges of 
all problem variables), which contains many alternative (candidate) 
solutions, called structures. 

2. A large number of variables in each structure, making difficult the deter- 
mination of which variables, and which combinations of variables, 
contribute to good solutions. 
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3. The function used to measure the performance of the system (which we 
call the fitness function) is very complex and nonlinear, having many local 
optima and/or discontinuities. 

4. The fitness function landscape of global and local optima varies with time 
and over the problem space. 

5. A complex and changing environment in which the system exists. 

We are making certain assumptions when we say that a system is adaptive. First, 
we assume that the system is converging to a sufficiently good solution. Second, we 
assume that adaptive processes drastically shorten the time required to arrive at a 
solution when compared with enumerative methods that must explore significant 
portions of the problem space (Kennedy, Eberhart, and Shi 2001). 

We believe that most engineering and computer science applications are driven 
by what we call the law of sufficiency: If a solution is good enough, fast enough, and 
cheap enough, it is sufficient. (Being good enough simply means it meets specifica- 
tions.) We believe that for most "optimization" applications, it is more appropriate 
to use the term "adaptation" because we generally do not actually find the optimum 
solution and often do not even know where it is. 

In the remainder of this section, we look at adaptation from three perspectives. 
First, we examine and compare the concepts of adaptation and learning. Next, we 
review the three main types of adaptation paradigm: supervised adaptation, unsu- 
pervised adaptation, and reinforcement adaptation. Finally, we consider the three 
spaces with which we must deal when working with adaptive systems: problem space, 
function space, and fitness space. 

Adaptation versus Learning 
The preceding definitions of adaptation describe and apply to computational intel- 
ligence systems extremely well. Too often, the process of altering structures such as 
neural networks, evolutionary computation tools, and fuzzy systems is described 
as learning. The word learning, in fact, appears throughout this book. This usage 
is in accordance with that of many researchers. 

Learning, however, is defined as "knowledge or skill acquired by instruction or 
study," and the synonym listed for learning is knowledge. Likewise, to learn is defined 
as "to gain knowledge or understanding of or skill in by study, instruction or 
experience" (Mish 2001). 

Instead, learning is what an entire intelligent system does. All of the main com- 
ponents of an intelligent system participate in the learning process; all exchange 
information with the component of the system that is the repository of the system 
knowledge. Learning thus applies to the entire intelligent system, while adaptation 
mainly applies to the portion of the system we address in this book~the portion 
where computational intelligence exists. 
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Adaptation must overcome numerous barriers, including local optima and 
nonlinearities. The problem hyperspace landscape (topography, environment) is 
constantly changing. The adaptive systems with which we are dealing are complex, 
and the fitness or performance measure is often complicated and varying over time. 

Adaptive systems answer this challenge by progressively modifying population 
structures, using a set of operators that themselves evolve (adapt) over time. These 
adaptive processes drastically shorten the time required to arrive at a solution when 
compared with enumerative methods that must explore significant portions of the 
problem space. 

As you continue through this chapter, you will see that we assert that adaptation 
is arguably the most appropriate term for what computational intelligence systems 
do. In fact, it is not too much of a stretch to say that computational intelligence and 
adaptation (with self-organization) are synonymous. Adaptation, thus, is the leitmotif 
of this book. 

Three Types of Adaptation 
There are various ways to categorize adaptation, l Each of the following sections dis- 
cusses one of three categories pertinent to computational intelligence: supervised 
adaptation, reinforcement adaptation, and unsupervised adaptation. 2 

Note that in all three cases we separate the adaptation algorithm from the adap- 
tive system. Usually, the algorithm is used to adapt (tune) the system and is then 
removed. The adaptive system (with its parameters frozen) then responds to input 
vectors from the environment. This is traditionally called offiine adaptation. Some- 
times the adaptation algorithm, or a portion of it, remains active as the system is 
used. This is traditionally called online adaptation. Unlike offline adaptation, there 
are various degrees of online adaptation. 

Supervised Adaptation 
Compared to the other two categories of adaptation, supervised adaptation is well 
defined. A "teacher" that provides relevant input/output (I/O) examples is always 
present. In addition, it has a number of characteristics, including: 

[] Adaptation is often carried out one step (iteration) at a time. The system 
adapts so that it emulates the training I/O examples while acquiring the 
ability to generalize. 

1 In many textbooks, the title of this section would be "Three Types of Learning." Based, however, 
on the reasoning earlier in this section, we generally use the term adaptation in this book to describe 
what computational intelligence systems do. We realize that this is somewhat unconventional, but we 
believe that the reasoning is sound, and that "adaptation," more accurately than "learning," describes 
what is going on in a computationally intelligent system. 
2 Other authors might call these supervised learning, reinforcement learning, and unsupervised 
learning. 
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The system's performance metric is often inversely proportional to some 
function of the sum of errors over the I/O examples. Examples include 
sum-squared error, mean-squared error, and sum of absolute error. The 
supervised adaptation algorithm often uses information about the gradient 
of the error with respect to an error surface that is averaged over all I/O 
examples to adapt the current point. 

An example of supervised adaptation appears in Figure 2.1. In Figures 2.1 
through 2.3, an arrow going through the adaptive system box indicates the ability 
to adjust the parameters of the system. Supervised adaptation often results in an 
adaptive system that is used for what is, or amounts to, function approximation. 
The system is good at mapping input vectors to output vectors over its domain. 

One example of supervised adaptation that we examine in this book is a neural 
network adapted by the back-propagation algorithm. Input patterns for which the 
output patterns are known are presented to the network. The difference between 
what was expected at each output and what was actually there (defined as the error) 
is calculated for each output and each pattern. Some function of the error at each 
output is then used to adjust system parameters. In the case of a neural network, the 
weights of the network are adjusted in an attempt to minimize the error. 

Environment 

"" Teacher "" 
(dataset with I/0 

examples) 

Desired Outputs 
(responses) 

Input 
(state) 
Vector 

/ 
Ada ~tive 
System 

Supervised 
Adaptation 
Algorithm 

System : 0  Outputs 

Error Values 

Figure 2.1 Supervised adaptation example. An arrow going through the adaptive system 
box indicates the ability to adjust the parameters of the system. 
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Reinforcement Adaptation 
Reinforcement adaptation of a system is achieved through its interaction with a 
"critic" that provides heuristic reinforcement information. An illustration of 
reinforcement adaptation appears in Figure 2.2. The input variable information 
often includes the dynamic range of each variable and perhaps other variable infor- 
mation such as the precision required. Some sort of goal or fitness metric is also nec- 
essary. For example, in a multiple-city delivery-scheduling problem (e.g., the trav- 
eling salesman problem), the goal may be to minimize the total distance traveled to 
visit all of the cities. The critic provides some fitness measure based on the goal~  
for example, a scaled number inversely proportional to the total distance traveled. 
So, although some kind of goal or fitness metric is required, the fitness cannot be 
obtained directly, but only a suggestion on how good the solution is relative to other 
solutions. (A direct fitness metric is possible only with supervised adaptation.) 

Of the three types of adaptation, reinforcement adaptation is most closely 
related to biological systems. One very simple illustration is that animals (including 
humans) tend to avoid behavior that causes us discomfort and tend to seek or repeat 
behavior that brings us comfort. Reinforcement adaptation has roots in the opti- 
mal control theory area called dynamic programming (Bellman 1957). Sequential 
decision making obtains much of its mathematical foundation from dynamic 
programming. 
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Figure 2.2 Reinforcement adaptation example. An arrow going through the adaptive 
system box indicates the ability to adjust the parameters of the system. 
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Characteristics of reinforcement adaptation often (but not always) include 

m The system often deals with a time series of input (state) vectors, waiting 
until the sequence is complete to judge the fitness of the system. 

[] The critic looks at only the outcomes (the results), not at some error 
measure due to each input. 

An example of a paradigm using reinforcement adaptation is particle swarm 
optimization, which is introduced in Chapter 3. A particle swarm explores the 
problem space, keeping track of the fitness of its particles and also remembering 
where in the problem space the best solutions have so far been found. We probably 
do not know where the optimal solution is. We may not even know whether a single 
optimal solution exists (there may be multiple optima). There may be a number 
of constraints, making the problem very complex. All we can tell the system is 
whether one solution is better than another; sometimes, as in the case of particle 
swarm optimization, we can calculate how much better it is. But that's about the 
extent of it. 

Unsupervised Adaptation 
In the case of unsupervised adaptation, no external teacher or critic is involved 
in system adaptation. Instead, a dataset comprising example vectors of the sys- 
tem's variable parameters is provided. That is operated on by the unsuper- 
vised learning algorithm. A representation of unsupervised adaptation appears in 
Figure 2.3. Characteristics of unsupervised adaptation algorithms include: 

m There is no indication of fitness whatsoever incorporated into the 
unsupervised adaptation algorithm. It just plods along with blinders on, 
executing its job, which may involve clustering or "competitive learning." 

m The interpretation of what the unsupervised algorithm did, and how well it 
did it, and whether it is even appropriate and/or usable, is done after the 
algorithm stops running. This offline evaluation is typically done by a 
human or other intelligent system. 

Clustering aggregates similar input patterns into distinct, mutually exclusive 
subsets referred to as clusters. As stated by Anderberg (1973), "the objective is to 
group either the data units or the variables into clusters such that elements within 
a cluster have a high degree of 'natural association' among themselves while the 
clusters are 'relatively distinct' from one another." Clustering is generally consid- 
ered a two-phase process. In the first phase, the number of clusters in the data is 
determined or assumed. The second phase assigns each data point (pattern) to a 
single cluster. 
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Figure 2.3 Unsupervised adaptation example. An arrow going through the adaptive 
system box indicates the ability to adjust the parameters of the system. 

Examples of unsupervised adaptation are two types of neural network we 
discuss in this book, self-organizing feature maps and learning vector quantization 
neural networks, which we examine in Chapter 6, Neural Network Implementa- 
tions. When a set of patterns is presented to either of these types of network, the 
adaptation algorithm clusters patterns that are similar, perhaps subject to some 
constraints. With the proper algorithm and constraints, the output distribution 
will accurately represent the probability distribution of the input patterns, but 
there is no hint of a "teacher" telling the network what the answer is pattern by 
pattern, or even a "critic" giving the network qualitative fitness hints. 

Summary 
In summary, what are the differences, and the implications of these differences, 
among the three types of adaptation? Our thoughts on this comprise a thread that 
runs through the book. For now, we confine our comments to a few relatively 
straightforward observations. 

What does it mean to use a "teacher," a "critic," or a "dataset"? A teacher has 
detailed input/output information, which consists of a number of specific exam- 
ples. Typically, the more of these examples that are available, the better a system will 
be able to adapt to emulate the structure underlying them. This is not always true, 
of course. For instance, it is impossible to build a multiclass classifier if all of your 
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examples are from one class. (A multiclass classifier specifies which of several output 
classes represents an input pattern best. For example, a medical diagnostic classifier 
decides which disease in its inventory best represents a given a set of medical symp- 
toms comprising an input pattern.) So the distribution of the input/output patterns 
over the problem space is important. 

A critic has some notion that one solution is qualitatively better than another, but 
can't calculate a fitness metric specific to the problem. Furthermore, a critic doesn't 
inherently know where an optimum is, or even if there is one; a teacher may know 
the optimum location of a solution in the problem space. 

The dataset is just that: a dataset. There is no fitness information, qualitative or 
quantitative, within it. 

Does that make one kind of adaptation, say supervised, better than another, say  
unsupervised? We believe that one kind can be better than another only when con- 
sidered from the perspective of a specific application. If all we have is a dataset with 
no fitness information, then we will use unsupervised adaptation to find features, 
or clusters, in the data. We can then apply other analytic techniques to these clus- 
ters or features. Even if we have output information with our input vectors, we may 
use unsupervised adaptation to find new ways to look at the data or as a sort of 
preprocessing step to reduce the problem's dimensionality to facilitate a supervised 
adaptation application. 

Now that we've looked at the three main types of adaptation, we look at the spaces 
in which these adaptation methods operate. 

Three Spaces of Adaptation 
No matter which type of adaptation is implemented, we typically refer to three kinds 
of space when we work with adaptive systems. We call them input parameter space, 
system output space, and fitness space. As there is no standard terminology, however, 
other authors call our input parameter space problem space, and our system output 
space function space. 

The inputparameter space is defined bythe dynamic ranges ofthe input variables. 
In general, these dynamic ranges are specified. However, sometimes all we have to 
work with are example patterns, and we may not have a valid basis for constraining 
the input parameters to the ranges represented by the example vectors. 

The system output space is defined by the dynamic range(s) of the output vari- 
able(s). It is not unusual for the output dynamic ranges to be specified as either 
a hard or a soft constraint. (A hard constraint is one that cannot be violated; 
a soft constraint can be violated, but a penalty is applied to the system perfor- 
mance measure.) We prefer to name this space system "output" rather than "func- 
tion" since it is common not to know what function, if any, is represented by the 
data. Often, we aren't interested in finding the function, at least not as our first 
objective. 
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The fitness space is the space we use to define the "goodness" of the solutions 
(in the output space) generated by the adaptive system. It is common practice 
to scale the fitness to values between 0 and 1, with the optimal value being 0 or 
1 depending on whether the goal is to minimize or maximize the fitness value. 
Sometimes the fitness space and the system output space are the same. A sim- 
ple example of this is maximizing the function sin(~rx/256) for integer values of 
x between 0 and 255 (the input parameter space). This is the example we use in 
Chapter 3 to illustrate the step-by-step process of a genetic algorithm. In this case, 
the output values vary between 0 and 1, and the maximum fitness value of I occurs 
at an input value of 128. 

In general, however, the system output and fitness values do not coincide. Con- 
3 

sider another simple example of minimizing ~ ~ given a dynamic range for xi 
i=1  

of [-10, 10]. In this case, the system output space is [0, 300]. We often trans- 
form the output space to a better representation for the purposes of calculating 
fitness, frequently in the range of [0, 1]. One possible simple fitness function is 
just 1/(abs(output)), which ranges from 1/300 (fairly close to 0) to 1.0 for a perfect 
answer. 

Always keep these three spaces of adaptation in mind. And always know which 
one you are dealing with! 

Now that you have some understanding of the concept of adaptation, with its 
three main types and three spaces, we'll discuss another concept central to compu- 
tational intelligence: self-organization. 

Self-organization and Evolution 

Although self-organization's inclusion as a key concept in computational intelli- 
gence is, for the authors, relatively recent, the term self-organization was apparently 
used for the first time in the literature relevant to computational intelligence by 
W. Ross Ashby (Ashby 1945, 1947). He first used the term "self-organization" in his 
1947 paper, but he was writing about the same concept in 1945. He cited the ner- 
vous system as an example of self-organization. He wrote that the nervous system, 
when in contact with a new environment, tends to develop an internal organization 
that leads to behavior that is adapted to that environment. (Note the reference to 
adaptation!) 

Ashby maintained that self-organization has two methods of implementation 
(Dyson 1997). The first is illustrated by a system that starts with its parts separate 
(so that the behavior of each is independent of the others' states) and whose parts 
then act so that they change in order to form connections. An example of the sec- 
ond is where a system's interconnected components become organized in a produc- 
tive or meaningful way. An example is an infant's brain, where self-organization is 
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achieved less by the growth of new connections and more by allowing meaningless 
connections to die out. 

Farley was an early contributor to the investigation of self-organizing systems. 
In Farley and Clark (1954), the subject is the simulation of self-organizing systems 
by digital computer. In Farley (1960), he said that self-organizing systems "auto- 
matically organize themselves to classify environmental inputs into recognizable 
percepts or 'patterns,"' and that "this self-organizing ability is called 'learned per- 
ception."' Kleyn (1963), another early contributor, wrote: "A system is said to be 
self-organizing if, after observing the input and output of an unknown phenomenon 
(transfer relation), the system organizes itself into a simulation of the unknown 
phenomenon." 

Today, there are almost as many ways to define self-organization as there are writ- 
ers on the subject, but summaries of attributes and descriptions of self-organization 
often include the following points (Kennedy, Eberhart, and Shi 2001): 

Self-organizing systems usually exhibit what appears to be spontaneous 
order. 

m Self-organization can be viewed as a system's incessant attempts to organize 
itself into ever more complex structures, even in the face of the incessant 
forces of dissolution described by the second law of thermodynamics. 

m The overall system state of a self-organizing system is an emergent property 
of the system. 

m Interconnected system components become organized in a productive or 
meaningful way based on local information; global dynamics emerge from 
local rules. 

m Complex systems can self-organize. 

m The self-organization process works near the "edge of chaos." 

Bonabeau et al. (1999) define self-organization as "a set of dynamical mecha- 
nisms whereby structures appear at the global level of a system from interactions 
among its lower-level components. The rules specifying the interactions among the 
system's constituent units are executed on the basis of purely local information, 
without reference to the global pattern, which is an emergent property of the system 
rather than a property imposed on the system by an external ordering influence." 
This definition illustrates the close ties between self-organization and the emergent 
property of a system. 

Examples of self-organization are all around us. A simple example is the for- 
mation of ice crystals on the surface of water as it begins to freeze. Another simple 
example happens in a salt solution when the water is dried and crystals are observed 
forming. Yet another example is the often complex and beautiful patterns generated 
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by cellular automata (CAs), which are specified by very simple mathematical 
functions. These CAs are not programmed to produce these patterns; rather, the 
patterns are an emergent feature of the system. 

As a more complex example, the evolution of the human brain has been 
described as a self-organizing process (McKee 2000). McKee uses the term auto- 
catalysis to describe how the design of an organism's features at one point in time 
affects or even determines the kinds of designs it can change into later. Thus the 
evolution of the organism is determined not only by selection pressures but by 
the constraints and opportunities offered by the structures that have evolved so 
far (Kennedy, Eberhart, and Shi 2001). 

The concept of self-organization has had a profound effect on how the authors 
view evolution, and the way evolution is viewed has had a profound effect on how 
we perceive computational intelligence. The following section reviews this new per- 
spective of evolution and illustrates why we believe that evolutionary computation 
provides the foundation of computational intelligence. 

Evolution beyond Darwin 
What is usually described as the Darwinian view of evolution is perhaps bet- 
ter described as the neo-Darwinian view. For example, chromosomes weren't 
even known in Darwin's time, so the prevailing view is a sort of amalgam of 
Darwinian and Mendelian ideas. (In 1865 Gregor Johann Mendel, an Augustinian 
priest in the Brno Monastery in the Czech Republic, described to the Brno Nat- 
ural Science Society the transfer of genetic material in pea plants. Unfortunately, 
the fundamental importance of Mendel's finding was not understood by the Soci- 
ety. Until about 1900 it was not recognized that Mendel had discovered the "law 
of heredity.") 

The neo-Darwinian view of evolution reflects three main observations. First is 
that chromosome composition is determined by the parents (at least in animals and 
humans). Second is that random mutation expands the search space of the species, 
providing the desirable attribute of diversity. Third is that fitter individuals have a 
higher probability of surviving to the next generation. 

According to modern researchers, including Kauffman (1993, 1995), there are 
two fundamental shortcomings of the existing theory. The first is that the ori- 
gin of life by "chance" or mutation is highly improbable in the time frame 
of earth's history. The second is that evolution of complex life forms solely 
through mutation is also highly improbable. A detailed discussion of these points 
is beyond the scope of this book, but Kauffman (1993, 1995) offers compelling 
arguments. 

This leads to a new view of evolution, in which, due primarily to self-organization, 
complex systems can "appear" over a relatively short time frame compared with 
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Darwinian evolution. In this new perception of evolution, it appears that natural 
selection and self-organization work hand-in-hand. That is, 

evolution = natural selection + self-organization 

It is the authors' opinion that the neo-Darwinian view of evolution tends to con- 
strain evolutionary computation to a supporting role in computational intelligence, 
while the incorporation of self-organization facilitates the viewpoint that evolution- 
ary computation is computational intelligence's foundation. 

Self-organization remains an active area of inquiry. See, for example, the works 
of Stuart Kauffman (1993, 1995). 

It should be evident to you by now that adaptation and self-organization are 
intertwined, an idea that we return to at various points in this book. It should also 
be evident that we consider adaptation and self-organization to play important 
roles in computational intelligence. With our discussions of adaptation and self- 
organization complete, it is time to look at computational intelligence, starting 
with early work in the field. 

Historical Views of Computational Intelligence 

As is the case with adaptation and self-organization, there is no universally accepted 
definition of computational intelligence. In this section, we present views of com- 
putational intelligence by other researchers. As you will see, these views are not the 
same. In the next section, we present our view of computational intelligence. It is 
somewhat different from the views presented in this section. 

In an editorial in IEEE Transactions on Neural Networks, then editor-in-chief 
Robert Marks wrote, "Neural networks, genetic algorithms, fuzzy systems, evolu- 
tionary programming, and artificial life are the building blocks of CI." He further 
stated, "Although seeking similar goals, CI has emerged as a sovereign field whose 
research community is virtually distinct from AI" (Marks 1993). 

David Fogel said in 1995 that CI generally describes "methods of computation 
that can be used to adapt solutions to new problems and do not rely on explicit 
human knowledge." 

Walter Karplus of the University of California at Los Angeles, who was then pres- 
ident of the IEEE Neural Networks Council (NNC), offered the following comment 
at the June 2, 1996, meeting of the ADCOM of the NNC: "CI substitutes inten- 
sive computation for insight into how the system works. NNs, FSs, and EC were all 
shunned by classical system and control theorists. CI umbrellas and unifies these 
and other revolutionary methods." 

Bezdek (1998), who has probably thought about computational intelligence 
more than most other researchers, asserts that computational intelligence is a 
proper subset of artificial intelligence but that artificial intelligence is not a subset of 



Chapter Two--Computational Intelligence 

the much more complex biological intelligence. Rather, he believes that biological 
intelligence is used to guide artificial intelligence (and thus computational intel- 
ligence) models of it. He also views computational pattern recognition as one of 
many subsets of computational intelligence. In Bezdek's scheme, biological intelli- 
gence is organic (carbon-based), while computational intelligence (and its subsets) 
and artificial intelligence are examples of machine intelligence and are thus silicon- 
based. He believes that some computational models lack biological equivalents. 

Now that we've briefly toured the historical views of computational intelligence, 
let's see how the concepts we discussed previously, adaptation and self-organization, 
fit into it. 

Computational Intelligence as Adaptation 
and Self-organization 

This section discusses the authors' view of computational intelligence, in which 
adaptation and self-organization play key roles. The authors have a different view 
with respect to several aspects of computational intelligence presented above. 

We assert that intelligence is manifested both in carbon-based and silicon-based 
systems, and sometimes in hybrids of the two. In fact, intelligence need not be lim- 
ited to systems based on carbon and silicon: Other substances are the active subjects 
of inquiry in fields such as molecular computing. It does not matter what kind of 
system produces the intelligence for it to exist. 

It follows that the statement that some computational models do not have bio- 
logical equivalents is irrelevant to this discussion. (It could be argued that compu- 
tational models implemented by humans have biological analogies since humans 
conceived of, designed, developed, and tested them. The validity of this statement, 
however, is also irrelevant.) What is relevant is that no distinction should be made 
between biological and nonbiological intelligence. Thus, we assert that statements 
arguing biological equivalency, one way or the other, are not relevant to the discus- 
sion of intelligence or computational intelligence. 

In this book, computational intelligence is defined as a methodology involving 
computing that provides a system with an ability to learn and/or to deal with new 
situations, such that the system is perceived to possess one or more attributes of 
reason, such as generalization, discovery, association, and abstraction. The output 
of a computationally intelligent system often includes predictions and/or decisions. 
Put another way, CI comprises practical adaptation and self-organization concepts, 
paradigms, algorithms, and implementations that enable or facilitate appropriate 
actions (intelligent behavior) in complex and changing environments. 

Computational intelligence systems in silicon often comprise hybrids of para- 
digms such as artificial neural networks, fuzzy systems, and evolutionary compu- 
tation systems, augmented with knowledge elements. Silicon-based computational 
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Figure 2.4 Relationships among components of intel l igent systems. Thick arrows represent 
the main pathway through the system. 

intelligence systems are often designed to mimic one or more aspects of carbon- 
based biological intelligence. 

The relationships among the components of intelligent systems are repre- 
sented very approximately by Figure 2.4. To make the figure easier to understand, 
we have emphasized pattern recognition, a common computational function. 
Many additional functions would be needed to make the figure more com- 
plete. Examples include function approximation, pattern association, filtering, 
and control. 

The inputs to the intelligent system from the environment can be sensory in the 
case of biological systems or they can be via a computer keyboard, in the case of a 
silicon-based system. The output of an intelligent system via the output generation 
node is intelligent behavior. (The main pathway through the system is represented 
by the thick arrows.) 

What is intelligent behavior? In the movie named after him, Forest Gump says, 
"Stupid is as stupid does." We believe that intelligence is as intelligence does. Intelli- 
gent behavior has an effect on the system's environment, perhaps via communica- 
tion or action. If there is no action or communication that affects the environment, 
then there is no intelligent behavior. In Figure 2.4, one arrow goes directly from 
sensing to output generation; another goes from preprocessing and algorithms to 
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output generation. These represent processes that include actions related to safety 
and survival. For example, the arrow from sensing to output generation could 
represent a person's reflex actions when touching a hot stove. The arrow from 
preprocessing and algorithms to output generation could represent reactions of 
someone who happens upon a rattlesnake while hiking. Each of the arrows passes 
through the outer shell of the world model (embedded knowledge). 

In addition to reactions, outputs of the preprocessing and algorithms node 
include processed data and clustering, which may be used as inputs for the adap- 
tation and self-organization node. Products of adaptation and self-organization 
include reason, as described previously, as well as prediction and decision. Note 
that it is quite possible to reason, predict something, or decide to do something 
without actually taking action. Only when the reason, prediction, or decision is 
implemented, resulting in an action on or communication with the environment, 
is intelligent behavior said to have occurred. 

Complexity is often described as an attribute of intelligence (see, for example, 
Fogel 1995 and Bezdek 1994); for a discussion of complex adaptive systems that 
is applicable to intelligent systems, see Holland (1992). In Figure 2.4, complexity 
may generally be considered to increase as we move from sensing through prepro- 
cessing and algorithms, and through adaptation and self-organization to output 
generation. A note of caution is appropriate here. Without a complete definition 
and characterization of complexity, and subsequent application to intelligent sys- 
tems, which is beyond the scope of this book, it may be premature to characterize 
systems that effect intelligent behavior as more complex than, say, sensing systems 
such as human sight. 

Stochasticity, or randomness, is also sometimes listed as an attribute of intelli- 
gent systems. It is somewhat uncertain whether the attribute should be represented 
as randomness, pseudorandomness, or chaos. (Note that computer systems cannot 
generate randomness, just pseudorandomness.) However it is represented, it seems 
to permeate many aspects of carbon-based intelligent systems, from basic biology 
to behavioral intelligence, as well as most silicon-based intelligent processes and 
systems. 

In the representation in Figure 2.4, nodes at the tails of arrows need not be 
subsets of those at the heads, and any node can provide input to the output 
generation node. For example, sensing is not necessarily a subset of preprocessing 
and algorithms. Furthermore, sensing can provide an input to output generation 
via reflex. 

The world model at the top center of the diagram (which includes data and 
knowledge) and the arrows going to and from it require additional explanation. 
For each of the four nodes (sensing, preprocessing and algorithms, adaptation 
and self-organization, and output generation) arrows run both to and from the 
world model, signifying a flow of "information" in both directions. 
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Figure 2.5 An expanded view of the world model. 

The sizes of the arrowheads are meant to very roughly reflect the relative 
quantities of the flows. For example, the flow from sensing to the world model 
is much greater than the flow to sensing from the world model. And, as we move 
from the sensing node through preprocessing and algorithms, and then through 
adaptation and self-organization to output generation, a greater proportion of the 
flow comes from the world model to the node. 

Figure 2.5 is an expanded view of the world model, within which some of the 
categories of "information" are stored. Note that the world model is dynamic, con- 
stantly being revised and updated. In Figure 2.5, the knowledge complexity generally 
increases moving from left to right (keeping in mind the previous note of caution 
about complexity). Only a few components of the model are given. 

The diagrams in Figures 2.4 and 2.5 are simplistic, but they are meant to convey 
the authors' belief that there should be no distinction between carbon- and silicon- 
based intelligence. A system simply possesses one or more of the attributes shown in 
the figures, and the actions on and communications to the environment are intelli- 
gent to some degree, depending on the system attributes. 

So, where's the computational intelligence? In accordance with our earlier def- 
initions, it resides primarily in the adaptation and self-organization node. We also 
believe that elements of computational intelligence can be found in the preprocess- 
ing and algorithm node and in the output generation node. As represented, com- 
putational intelligence is buried deeply in the core of the system, be it biological or 
machine, perhaps the furthest from the interface with the environment. It is an area 
in which developments are occurring that will lead to exciting new analytical tools. 

At the risk of oversimplifying the concept of computational intelligence as illus- 
trated in Figure 2.4, we extract the portion of the figure most closely associated 
with computational intelligence and depict it with Figure 2.6. This prompts another 
definition, as follows: Computational intelligence comprises adaptation and self- 
organization using processed data and embedded knowledge as input and produc- 
ing predictions, decisions, generalizations, and reason as output. The embedded 
knowledge resides within the system, while the processed data originates outside the 
system. 
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We have presented our view of computational intelligence in this section. We 
hope you now understand something about our model of CI and the important 
roles played by adaptation and self-organization. We discuss one capability of a 
CI system, the ability to generalize, in more detail in the next section. 

The Ability to Generalize 

One key capability of a computational intelligence system is the ability to generalize. 
This ability is one of the aspects of computational intelligence that distinguishes it 
from hard computing. This section briefly reviews what is meant by the term gener- 
alization and some of its implications. 

Often, when developing a computational intelligence implementation, we are 
provided with, or obtain ourselves, a dataset comprising a number of input/output 
patterns. Usually, these pattern pairs comprise only a very small portion of all pos- 
sible pattern pairs in the problem space. For the sake of this discussion, assume that 
there is only one input and one output in each pattern pair; more inputs and/or 
outputs do not change what we are discussing, and the single input/output version 
makes the representation easier. 

We generally assume that there is some (probably nonlinear) function f(x) that 
maps each input to an output in the problem space: y = f(x) for the input space 
X and the output space Y. We can represent our dataset as S = { (xi, yi) e X x Y}, 
i = 1, K, n, where n is the number of pattern pairs. 

The goal of the computational intelligence system, then, is to build a model f* 
that will map other values of x into Y such that f* (x) ~ f(x) for x* ~ S. This is 
usually what we mean by generalization. It is the ability to correctly map examples 
in the problem space to which the system was not exposedduring training. 

What the generalization metric is, however, can vary from problem to problem. 
Most of the time it is assumed that, for a "perfect" system, y = f(x) V x e S and 
f* (x) = f(x) V x e S. The first assumption may not be valid because of errors and/or 
noise that almost inevitably appear in even the most "gold-plated" datasets. 

The second assumption can be troublesome if we split our dataset S into training 
and test datasets, as is usually done. The dataset is usually split because we don't have 
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any values of x* ~ S for which we know the correct f(x*). So we use some of the 
dataset for training and some for testing. 

We usually assume that the ability of a model to generalize is best measured by 
the system performance on the test set. It is quite possible that the best test set per- 
formance does not coincide with the best performance on the training set. A neural 
network, for example, can be overtrained on the training set (it is said to "memorize" 
it) so that it performs relatively poorly on the test set. 

In summary, it is important to define what you mean when you use the term 
generalization and what metric you will use to measure it. Remember that the size 
n of the dataset S has to be large enough to have sufficient input/output patterns 
for both training and testing. It is impossible to say anything about generalization 
if you can't train the system (build the model) in the first place; it is difficult to 
say much about generalization with insufficient testing patterns. 

With definitions of computational intelligence under our belts and having dis- 
cussed a key concept of computational intelligence, generalization, we now consider 
where computational intelligence fits in the overall picture, which includes artificial 
intelligence and hard computing. 

Computational Intelligence and Soft Computing versus 
Artificial Intelligence and Hard Computing 

This section summarizes where computational intelligence belongs in the overall 
scheme of computing and its relationship to artificial intelligence (AI). We concur 
with Lotfi Zadeh's assertion (1998) that soft computing is the basis of computa- 
tional intelligence and that hard computing is the basis of artificial intelligence. 
(We discuss Zadeh's considerable contributions to computational intelligence in 
Chapter 7, Fuzzy Systems Concepts and Paradigms.) 

Where, then, does "traditional AI" fit? The authors' perception is that some 
of it is at the outer level, or near the interface surface, of the adaptation and self- 
organization node in Figure 2.4, where arrows depart for the output generation 
node and the world model. Some of it resides in the world model. At the heart of 
the adaptation and self-organization node are (in silicon-based systems) such com- 
putational intelligence tools as the hybrid neural network/genetic algorithm/fuzzy 
logic tools described in the definition of computational intelligence near the begin- 
ning of this chapter. These tools have access to, and use, embedded knowledge. 
There is, therefore, a difference between artificial intelligence and computational 
intelligence, albeit a somewhat "fuzzy" one. 

And what about hard computing? If truth be told, the authors don't consider 
very much of what is defined as hard computing to be eligible for inclusion in an 
intelligent system, and Figure 2.4 is our concept of an intelligent system. 
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So what is the bottom line with respect to hard computing versus soft computing, 
traditional AI versus computational intelligence? Which attributes of a CI system do 
not hold for traditional AI and hard computing? We believe that four important ones 
are 

[] The ability to generalize, as discussed previously 

m The ability to deal successfully with partial truths and uncertainty 

[] Tolerance for errors and noise, which results in graceful degradation of 
system performance 

m The ability to perform well in changing and complex environments 

Which attributes of a hard computing system do not hold for a computational intel- 
ligence (soft computing) system? We believe that two important ones are 

[] Precision 

m Certainty 

It is unlikely that any of us will ever use a computational intelligence system to 
balance our checkbook or calculate our taxes. So there is definitely a place for hard 
computing. 

On the other hand, real life and real systems are replete with impreci- 
sion, uncertainty, partial truths, and nonlinearity. We are finding that many 
very difficult jobs, such as developing optimization and diagnostics systems in 
complex and changing environments, can be accomplished with computational 
intelligence implementations. Hard computing doesn't stand a chance in these 
arenas. 

Summary 

This chapter presents basic information on computational intelligence. It discusses 
adaptation and self-organization and examines their roles in computational intelli- 
gence. 

We look at adaptation from three perspectives. We first examine and compare 
the concepts of adaptation and learning. As defined in this book, learning applies to 
the entire intelligent system, while adaptation mainly applies to the portion of the 
system where computational intelligence is relevant. 
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Next we review the three main types of adaptation paradigms: supervised 

adaptation, reinforcement adaptation, and unsupervised adaptation. The three 
types of adaptation use a "teacher," a "critic," or an algorithm operating on the 
dataset with no feedback, respectively. 

A teacher has detailed input/output information comprising a number of 
specific examples. Typically, the more of these examples that are available, the better 
a system will be able to adapt to emulate the structure underlying them. This is not 
always true, of course. For instance, it is impossible to build a multiclass classifier 
if all of your examples are from one class. So the distribution of the input/output 
patterns over the problem space is important. 

A critic has some notion that one solution is qualitatively better than another but 
can't calculate a fitness metric specific to the problem. Furthermore, a critic doesn't 
inherently know where an optimum is or even if there is one; a teacher may know 
the location of an optimum solution in the problem space. 

The algorithm operating on a dataset with no fitness feedback is just that. There 
is no fitness information, qualitative or quantitative, that results from running the 
unsupervised algorithm. 

How, then, do we decide which type of adaptation to use? We believe that the 
choice should be made from the perspective of a specific application. If all we have 
is a dataset with no fitness information, then we will use unsupervised adaptation to 
find features, or clusters, in the data. We can then apply other analytic techniques to 
these clusters or features. Even if we have output information with our input vectors, 
we may use unsupervised adaptation to find new ways to look at the data or as a 
preprocessing step to reduce the problem's dimensionality to facilitate a supervised 
adaptation application. 

Additionally in this chapter, we consider the three spaces with which we must 
deal when working with adaptive systems: problem space, function space, and fitness 
space. Always be aware which space you're in at any given time. 

There is no universally accepted definition of computational intelligence (CI). 
Several views of computational intelligence are presented, followed by the authors' 
view of computational intelligence. That is, computational intelligence comprises 
practical adaptation and self-organization concepts, paradigms, algorithms, and 
implementations that enable or facilitate appropriate actions (intelligent behavior) 
in complex and changing environments. The inclusion of self-organization in our 
definition of computational intelligence is a relatively recent development; inspi- 
ration and insight came from the current views of evolution as natural selection 
plus self-organization by researchers such as Kaufmann. 

In the next chapter, we look at the methodology we believe provides the foun- 
dation of computational intelligence: evolutionary computation. We explore genetic 
algorithms, evolutionary programming, evolution strategies, genetic programming, 
and particle swarm optimization. 
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E x e r c i s e s  .......................................................................................... 

1. What other elements might be appropriate for inclusion in the world model of 
Figure 2.5? 

2. Read other discussions of computational intelligence, including Bezdek (1998). 
Develop your own one-paragraph definition of computational intelligence. 

3. Find an article or a chapter in another book on emergent computing. Compare 
the concept of emergent computing as presented there with the concept of 
self-organization presented in this chapter. 

4. Find another source of information on cellular automata. Discuss the relationship 
between cellular automata and self-organization. 

5. Randomness is sometimes listed as an attribute of intelligent systems. Why? 

6. Give a real-world example of each type of adaptation: supervised, reinforcement, 
and unsupervised. 



chapter 
IZ F e e  

Evolutionary Computation 
Concepts and Paradigms 

One of the component methodologies of This chapter also provides basic infor- 
computational intelligence, and the one mation needed to use evolutionary compu- 
we believe provides its foundation, is evo- tation tools to solve practical problems. 
lutionary computation. This chapter goes The terminology and key concepts are 
into some detail in reviewing the field presented, followed by paradigms that 
of evolutionary computation, which con- are developed from and illustrate the 
sists of machine learning optimization and key concepts. The chapter is written 
classification paradigms that are roughly largely from the perspective of an engi- 
based on evolution mechanisms such as neer or computer scientist, emphasizing 
biological genetics, natural selection, and the application potential of evolutionary 
emergent adaptive behavior. Evolution- computation tools and drawing compar- 
ary computation paradigms provide tools isons with other applied problem-solving 
to build intelligent systems that model techniques, m 
intelligent behavior. 

39 
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History of Evolutionary Computation 

There are a number of ways to address the history of almost any subject, evolu- 
tionary computation included. We choose to focus on people rather than theory 
or technology for two main reasons. First, it seems a more interesting way to look 
at history. History is, after all, just a record of people doing things. Second, the 
evolutionary computation field, particularly in the early days, revolved arOund 
a few key individuals. These individuals and their followers seem to us to have 
sometimes resembled minicultures. 

Having said that, the selection of individuals is somewhat arbitrary because the 
intent is to provide a broad sample ofpeople, rather than an exhaustive list, who con- 
tributed to current technology. Some well-known researchers are mentioned only 
briefly, and others are omitted. The fact that someone is discussed only briefly, or 
even omitted altogether, is not meant to reflect the authors' opinion of that person's 
contribution. The selected people and their contributions are discussed roughly in 
chronological order. We organize our history according to the main evolutionary 
computation areas. 

The evolutionary computation field considered in this book includes the 
following five areas 1" 

[] Genetic algorithms 

m Evolutionary programming 

m Evolution strategies 

[] Genetic programming 

[] Particle swarm optimization 

Of the five methodologies, more work has been done in genetic algorithms than 
in any other area, and so we focus on that field. (We realize that the emphasis on 
genetic algorithms is fading somewhat. In fact, hybrids of the five methodologies 
are becoming increasingly popular.) Contributors to the other four areas are also 
discussed but in somewhat less detail. Although it might be argued that work in 
the early twentieth century on Darwinian synthesis by Haldane (1990) and others is 
the place to start, what is now known as evolutionary computation really began to 
take shape about 50 years later. We begin our journey looking at the roots of genetic 
algorithms in the 1950s. 

Genetic Algorithms 
The development of genetic algorithms (GA) has its origins in work done in the 
1950s by biologists using computers to simulate natural genetic systems. One of 

1 There are other ways to look at the field, such as considering genetic programming as a branch of 
genetic algorithlns, but we choose this approach. 
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those doing work most closely related to our current concepts of genetic algorithms 
was A. S. Fraser, an Australian who began publishing in the field in the late 1950s 
(Fraser 1957). Our history of evolutionary computation thus (arbitrarily) begins 
with him. 

Fraser was working in the area of epistasis (suppression of the effect of a gene) 
and represented each of three parameters of an epistatic function as 5 bits in a 15-bit 
string. He then based his selection of"parents" by choosing those strings whose vari- 
able values produced function values between -1 and + 1. Fraser was working with 
natural systems, and although his work somewhat resembles function optimization 
as currently done by genetic algorithms, he apparently did not consider the possi- 
bilities of applying his methodology to artificial systems (Fraser 1960, 1962). 

Also beginning to publish in the early 1960s was the man who, together with his 
students, has probably had more influence on the field of genetic algorithms than 
any others: John H. Holland of The University of Michigan. Holland attended MIT 
as an undergraduate, where he was influenced by such luminaries as Norbert Weiner 
and John McCarthy. He was part of a team that programmed the prototype of the 
IBM 701 to "learn" something about running a maze, prompting Holland to regard 
the computer as a sort of"simulated lab rat." After working at IBM, Holland went to 
the University of Michigan, where, under Arthur Burks, he obtained the first Ph.D. 
in the United States in computer science (Levy 1992). 

Davis ( 1991) stated: 

John Holland...  created the genetic algorithm field. The field would not exist if 
he had not decided to harness the power inherent in genetic processes in the early 
1970s and functioned as the technical and political leader of the genetic algorithm 
field from its inception to the present time. Our understanding ofthe unique features 
of genetic algorithms has been shaped by the careful and insightful work of Holland 
and his students from the field's critical first years to the present time. (p. vi) 

Holland's interest is in machine intelligence, and he and his students developed 
and applied the capabilities of genetic algorithms to artificial systems. He taught 
courses in adaptive systems in the early 1960s while laying the groundwork for 
applications to artificial systems with his publications on adaptive systems theory 
(Holland 1962). Holland's systems were adaptive because of their robustness in spite 
of changes and uncertainty in the environment. Further, they were self-adaptive in 
that they could make adjustments based on their interaction with the environment 
over time. 

The GA metaphor is genetic inheritance at the level of the individual. A problem 
solution is considered as an individual's chromosome, or pattern of genetic alleles, 
and low-level operations such as those in the nuclei of cells are proposed for devel- 
oping new solutions. 

One of Holland's many contributions was his use of a population of individ- 
uals, conceptualized as chromosomes, in the search process, rather than single 



Chapter ThreemEvolutionary Computation Concepts and Paradigms 

individuals, as was common at the time. (Fraser used populations but, as stated 
previously, didn't apply his methodology to artificial systems.) He also derived 
the schema theorem, which shows that schema (fundamental building blocks of 
individual chromosomes) that are more "fit" with respect to a defined fitness func- 
tion are more likely to reproduce in successive generations of the population of 
chromosomes. We go into more detail about the schema theorem later in this 
chapter. 

Chromosomes in nature are formed of twisted strands of DNA, composed 
of the four proteins adenine, cytosine, guanine, and thymine. These strands are 
presently understood as a kind of computer program that gives instructions to the 
cells that comprise the organism; the DNA sequence contains instructions about 
how to develop and what to do. While our digital computers use the base-2, or 
binary, number system to encode program instructions and data, chromosomes use 
a base-4 method, encoded in the ordering of the four proteins. Genetic algorithms 
usually use base-2 chromosomes, though the methods developed by Holland and 
his followers can be applied to any base number system, including floating-point 
decimals. 

Beginning in the 1960s Holland's students routinely used selection, crossover, 
and mutation in their applications. Several of Holland's students made significant 
contributions to the genetic algorithm field, often starting with their Ph.D. disserta- 
tions. We mention only a few. 

The term genetic algorithm was used first by Bagley (1967) in his dissertation, 
which utilized genetic algorithms to find parameter sets in evaluation functions for 
playing the game of Hexapawn, which is played on a 3 x 3 chessboard on which 
each player starts with three pawns. Bagley's genetic algorithm resembled many used 
today, with selection, crossover, and mutation. 

In 1975, Holland published one of the field's most important books, entitled 
Adaptation in Natural and Artificial Systems. In the first five years after it was 
published, the book sold 100 to 200 copies per year and seemed to be fading 
into oblivion. Instead, between 1985 and 1990, the number of people working 
on genetic algorithms~and interest in Holland's book~increased sufficiently to 
persuade Holland to update and reissue it (Holland 1992). 

Also in 1975, K. A. De ]ong, one of Holland's students, published his Ph.D. 
dissertation entitled, "An Analysis of the Behavior of a Class of Genetic Adaptive Sys- 
tems." As part of his work, De ]ong put forward a set of five test functions designed 
to measure the performance of any genetic algorithm. Two metrics were devised, 
one to measure the convergence of the algorithm, the other to measure the ongoing 
performance. De ]ong examined the effects of varying four parameters (population 
size, crossover probability, mutation probability, and generation gap) on the perfor- 
mance of six main kinds of genetic algorithm paradigm (De ]ong 1975). Although 
a number of other benchmark functions have emerged, De ]ong's five-function test 
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bed and two performance metrics are still among frequently referenced criteria for 
genetic algorithm performance. 

From Michigan De Jong went to the University of Pittsburgh, where he taught 
genetic algorithms to a number of students, among them Steve Smith and John 
Grefenstette. Smith published a significant dissertation on machine learning involv- 
ing a classifier system that became known as "Smith's Poker Player" (Smith 1980). 
After graduation, Grefenstette began teaching yet another generation of students at 
Vanderbilt University, including J. David Schaffer, who was the first to develop 
a multiobjective algorithm (Schaffer 1984), work that has enjoyed a revival in 
popularity. 

Grefenstette developed a genetic algorithm implementation called GENESIS 
that, in its various incarnations and reincarnations, became perhaps the most 
widely used genetic algorithm implementation in the late 1980s (Grefenstette 
1984a, 1984b). He also was instrumental in founding and editing the proceedings 
of the first International Conference on Genetic Algorithms, a premier conference 
in the field (Grefenstette 1985). 

David E. Goldberg, another of Holland's students, has concentrated on engi- 
neering applications of genetic algorithms. He is a former gas pipeline worker 
whose Ph.D. dissertation considered a 10-compressor, 10-pipe, steady-state, serial 
gas pipeline problem (Goldberg 1983). The goal was to provide a strategy that 
minimizes the power consumed in the pumping stations, subject to pressure- 
related constraints. He summarized the power the genetic algorithm brought to 
the pipeline problem when he wrote, "If we were, for example, to search for the 
best person among the world's 4.5 billion people as rapidly as the GA, we would 
only need to talk to four or five people before making our near optimal selection" 
(Goldberg 1987). Goldberg's 1989 volume is one of the most influential books 
on genetic algorithms: Genetic Algorithms in Search, Optimization and Machine 
Learning (Goldberg 1989). He continues to be an important contributor to the 
field. 

The author of another significant genetic algorithm book is self-taught in genetic 
algorithms. Lawrence (Dave) Davis got interested in them while working at Texas 
Instruments, where he obtained support to evaluate genetic algorithms for 2D 
bin packing in a chip layout application. He published the Handbook of Genetic 
Algorithms after moving to the Boston area, where he worked for BBN. His book 
comprises two main parts. The first is a tutorial on genetic algorithms; the second 
is a collection of case studies contributed by a number of researchers (Davis 1991). 
In the mid-1990s, two of the most widely read books by people wanting to learn 
about genetic algorithms were those by Goldberg and Davis. 

At approximately the same time that Holland and his students were developing 
genetic algorithms, two groups were working on opposite sides of the Atlantic on 
different approaches that do not use crossover, a main feature of genetic algorithm 
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implementations. These approaches are evolutionary programming and evolution 
strategies. We begin with evolutionary programming. 

Evolutionary Programming 
In the United States, Larry ]. Fogel and his colleagues developed what they named 
evolutionary programming. Evolutionary programming uses the selection of the 
fittest, but the only structure-modifying operation allowed is mutation~there is 
no crossover. Fogel and his colleagues mainly worked with finite state machines 
and were interested in machine intelligence; they were able to solve some problems 
that were quite difficult for genetic algorithms. 

Fogel (1994) described evolutionary programming as taking a fundamentally 
different approach from that of genetic algorithms: 

The procedure abstracts evolution as a top-down process of adaptive behavior, rather 
than a bottom-up process of adaptive genetics. It is argued that this approach is more 
appropriate because natural selection does not act on individual components in iso- 
lation, but rather on the complete set of expressed behaviors of an organism in light 
of its interaction with its environment. 

Philosophically, then, evolutionary programming researchers consider each point in 
the population to represent an entire species, with species competing to fill environ- 
mental niches. 

Fogel summarizes evolutionary programming as implementing "survival of the 
more skillful" rather than the "survival of the fittest" emphasized by genetic algo- 
rithm developers. In the mid-1960s a book documenting this approach proved to 
be quite controversial (Fogel et al. 1966). Misunderstandings and misinterpretations 
related to the book have been identified as a contributing factor to problems expe- 
rienced by researchers in obtaining funding for evolutionary computation in the 
late 1960s and 1970s (Goldberg 1989). It is probable, however, that another signifi- 
cant factor was the well-known symbolics versus numerics controversy (temporarily 
won by Minsky and the symbolics researchers). One of the leading evolutionary pro- 
gramming researchers during the 1970s was at New Mexico State University. Don 
Dearholt and his students were responsible for a significant number of publications 
on evolutionary programming during this decade. 

Evolution Strategies 
At the same time that Fogel and his group were working on evolutionary pro- 
gramming, across the Atlantic Ocean Ingo Rechenberg and Hans-Paul Schwefel 
were experimenting with mutation in their attempts to find optimal physical con- 
figurations for a series of hinged plates in a wind tunnel and a tube that delivered 
liquid~the usual gradient-descent techniques were unable to solve the sets of 



History of Evolutionary Computation 

equations for reducing wind resistance. They began experimenting with mutation, 
slightly perturbing their best problem solutions to search randomly in the nearby 
regions of the problem space. 

Rechenberg and Schwefel used the first computer available at the Technical 
University of Berlin to simulate various versions of the approach that became 
known as evolution strategies (Rechenberg 1965; Schwefel 1965). In the early 1970s, 
Rechenberg published a book that is considered the foundation for this approach 
(Rechenberg 1973), and evolution strategies continue to experience significant 
activity, especially in Europe. Research developments in Germany and the United 
States continued in parallel, with each group unaware of the other's findings until 
the 1980s (although they may have known about each other [Fogel 2000]). 

Genetic Programming 
The fourth major area of evolutionary computation is genetic programming. 
Some of the earliest related work (Friedberg 1958; Friedberg et al. 1959) dealt with 
fixed-length computer programs that were coded by another program designed to 
optimize their performance. Their programs, dubbed "Herman" and "Ramsey," 
each comprised a set of 64 instructions, with each instruction being 14 bits 
long. The programs were defined such that every arrangement of the 14 bits 
was a valid instruction, and each set of 64 instructions was a valid program. 
Unfortunately, the results of the efforts did not live up to expectations; and, in 
retrospect, there were probably three main reasons for this. First, the programs 
were limited in length to 64 instructions: A "failure" was tallied if the program 
did not terminate successfully by the end of the 64th instruction (even if there 
was a loop). Second, there was only one program; thus, there was a population 
of just one that evolved. Third, it is not clear that the fitness function used was 
appropriate. 

These limitations were successfully dealt with by Stanford's John Koza (yet 
another former student of Holland), who developed genetic programming in its 
current form in the late 1980s. Whereas the other three evolutionary computation 
approaches use string-shaped chromosomes, Koza evolved computer programs in 
a population of tree-shaped ones. The units used for crossover were LISP sym- 
bolic expressions that are essentially subroutines. Koza has been a prolific pro- 
ducer of documentation, including books (Koza 1992) and videotapes related to 
genetic programming, which is one of the fastest-growing and most fascinating 
areas of evolutionary computation. The idea of evolving computer programs has 
been around for decades; it is now becoming a reality. 

Particle Swarm Optimization 
The fifth major area of evolutionary computation is the "new kid on the block," 
particle swarm optimization, which has roots in three main component areas. 
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Perhaps most obvious are its ties to artificial life (A-life) in general and to bird 
flocking, fish schooling, and swarming theory in particular. It is also related to evo- 
lutionary computation, with ties to both genetic algorithms and evolution strategies 
(B/ick 1995). The third component area is social psychology. This brief history 
focuses on three of the main contributing paradigms from social psychology. The 
A-life and evolutionary computation roots are reviewed in the introduction to the 
section on particle swarm optimization later in this chapter. 2 

The first social psychology paradigm is Latan6's dynamic social impact theory 
(Latan6 1981). Summarized, this theory states that the behaviors of individuals 
can be explained in terms of the self-organizing properties of their social system, 
that clusters of individuals develop similar beliefs, and that subpopulations diverge 
from one another (polarize). There are four major characteristics of social impact 
theory: consolidation, clustering, correlation, and continuing diversity. Consolida- 
tion means that opinion diversity is reduced as individuals are exposed to majority 
arguments. Clustering means that individuals become more like their neighbors 
in social space. Correlation means that attitudes that were originally independent 
tend to become associated. Finally, continuing diversity means that clustering 
prevents minority views from complete consolidation. In summary, individuals 
influence one another and, in doing so, become more similar, and patterns of 
belief held by individuals tend to correlate within regions of a population. This 
theory is consistent with findings in the fields of social psychology, economics, 
and anthropology. 

The second paradigm is Axelrod's culture model (Axelrod 1984). In this model, 
populations of individuals are represented as strings of symbols, or "features." The 
probability of interaction between two individuals is a function of their similarity, 
and individuals become more similar as a result of their interactions. The observed 
dynamic is polarization, that is, homogeneous subpopulations that differ from one 
another. 

The third paradigm is Kennedy's adaptive culture model (Kennedy 1998). In this 
model, there is no effect of similarity of individuals on the probability of their inter- 
action. In fact, the effect of similarity is negative in that it is dissimilarity that creates 
boundaries between cultural regions. Interactions between individuals occur if their 
fitnesses are different. Kennedy's work in culture and cognition can be summarized 
as follows: 

[] Individuals searching for solutions learn from the experiences of others 
(individuals learn from their neighbors). 

m An observer of the population perceives phenomena of which the 
individuals are the parts (individuals that interact frequently become 
similar). 

2 For a more detailed account of all three component areas, see Kennedy, Eberhart, and Shi (2001). 



Evolutionary Computation Overview 

Culture affects the performance of individuals that comprise it (individuals 
gain benefit by imitating their neighbors). 

Jim Kennedy and Russ Eberhart both worked at Research Triangle Institute 
in North Carolina in the early 1990s. Kennedy was interested in exploring the 
possibility that an evolutionary computation paradigm might play a role in his 
modeling of social systems. The two continued to collaborate even after Kennedy 
moved to Washington, D.C., and Eberhart moved to Indianapolis (both moved in 
1994). The first two papers were published in 1995 (Kennedy and Eberhart 1995, 
Eberhart and Kennedy 1995). One was delivered in Nagoya, Japan; the other, in 
Perth, Australia. The international flavor of the work in the field continues. As 
of the writing of this book, the authors are aware of work being done in over 30 
countries on particle swarm optimization. 

Toward Unification 
As the 1980s came to a close, the first four areas of evolutionary computation con- 
tinued to develop relatively independently, with little cooperation or communica- 
tion among them. In 1994, however, an important meeting was held that brought 
together researchers from all four evolutionary computation areas: the IEEE World 
Congress on Computational Intelligence, held at Walt Disney World, Florida. The 
World Congress comprised a mini-symposium on computational intelligence and 
three conferences: The International Conference on Neural Networks; the fuzzy 
logic conference (FUZZ/IEEE 1994); and the First IEEE Conference on Evolution- 
ary Computation (ICEC), chaired by Zbigniew Michalewicz of the University of 
North Carolina at Charlotte. A total of 96 papers were presented orally in ICEC 
and 63 in poster sessions, representing authors from 23 countries worldwide. The 
two volumes of proceedings from this evolutionary computation conference are a 
landmark in the field (Michalewicz et al. 1994). 

At the second World Congress, held in Anchorage, Alaska, in 1998, parti- 
cle swarm optimization joined the program. The third World Congress, held in 
Honolulu, Hawaii, featured a significant number of papers from each of the five 
main areas, as well as interesting and promising hybrids. Researchers in the five 
areas of evolutionary computation are now communicating and working signifi- 
cantly more with each other. 

Now that we've looked at the history of evolutionary computation, let's look at 
what it is and how to use it. 

Evolutionary Computation Overview 

The five areas of evolutionary computation (EC) share attributes and implemen- 
tation procedures, which we now discuss before moving on to separate overviews 
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of each area. EC paradigms generally differ from traditional search and optimiza- 
tion paradigms in three main ways: 

1. EC paradigms utilize a population of points (potential solutions) in their 
search. 

2. EC paradigms use direct "fitness" information instead of function 
derivatives or other related knowledge. 

3. EC paradigms use stochastic, rather than deterministic, transition rules. 

In addition, EC implementations sometimes encode the parameters in binary or 
other symbols, rather than working with the parameters themselves. We now exam- 
ine these differences in more detail, beginning with the attributes of EC paradigms. 

EC Paradigm Attributes 
How do traditional optimization methods differ from EC paradigms? Most tradi- 
tional optimization paradigms move from one point in the decision hyperspace to 
another, using some deterministic rule. One of the drawbacks of this approach is 
the likelihood of getting stuck at a local optimum. For example, if the fitness land- 
scape resembles some hills surrounding a mountain that represents the optimum, 
it is likely that a traditional paradigm will get stuck at the top of a hill and never 
find the mountain (global optimum). EC paradigms, on the other hand, start with 
a population of points (hyperspace vectors). They typically generate a new popu- 
lation with the same number of members each epoch, or generation. Thus, many 
maxima or minima can be explored simultaneously, lowering the probability of get- 
ting stuck. Operators such as crossover and mutation effectively enhance this parallel 
search capability, allowing the search to directly "tunnel through" from one promis- 
ing hyperspace region to another. (An operator is a rule for changing a proposed 
problem solution.) 

Evolutionary computation paradigms do not require information that is aux- 
iliary to the problem, such as function derivatives. Many hill-climbing search 
paradigms, for example, require the calculation of derivatives in order to explore 
the local maximum. In EC optimization paradigms the fitness of each member of 
the population is calculated from the value of the function being optimized, and it 
is common to use the function output as the measure of fitness. Fitness is a direct 
metric of the individual population member's performance on the function being 
optimized. 

The fact that EC paradigms use probabilistic transition rules certainly does 
not mean that a strictly random search is being carried out. Rather, stochastic 
operators are applied to operations that direct the search toward regions of the 
hyperspace that are likely to have higher values of fitness. Thus, for example, 
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reproduction (selection) is often carried out with a probability that is proportional 
to the individual's fitness value. 

Some EC paradigms, particularly genetic algorithms, use special encodings for 
the parameters of the problem being solved. In genetic algorithms, the parameters 
are often encoded as binary strings, but any finite alphabet can be used. These 
strings are almost always of fixed length, with a fixed total number of ls and 0s, 
in the case of a binary string, being assigned to each parameter. By "fixed length" 
it is meant that the string length does not vary during the running of the EC 
paradigm. The string length (number of bits for a binary string) assigned to each 
parameter depends on its maximum range for the problem being solved and on 
the precision required. 

Now that we've discussed the attributes of the paradigms, let's see how to 
implement them. 

Implementation 
Regardless of the paradigm implemented, evolutionary computation applications 
often follow a similar procedure: 

1. Initialize the population. 

2. Calculate the fitness for each individual in the population. 

3. Reproduce selected individuals to form a new population. 

4. Perform evolutionary operations, such as crossover and mutation, on the 
population. 

5. Loop to step 2 until some condition is met. 

Initialization is commonly done by seeding the population with random values. 
When the parameters are represented by binary strings, this simply means gener- 
ating random strings of ls and 0s (with a uniform probability for each value) of 
the fixed length described earlier. It is sometimes feasible to seed the population 
with "promising" values that are known to be in the hyperspace region relatively 
close to the optimum. (Based on our experience, however, we caution you against 
using this approach. Randomly generated populations tend to be more reliable.) 
The number of individuals chosen to make up the population is both problem and 
paradigm dependent, but it is often in the range of a few dozen to a few hundred. 

The fitness value is often proportional to the output value of the function being 
optimized, though it may also be derived from some combination of a number 
of function outputs. The fitness function takes as its inputs the outputs of one or 
more functions, and then it outputs some probability of reproduction. Sometimes 
it is necessary to transform the function outputs to produce an appropriate fitness 
metric; sometimes it is not. 
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Selection of individuals for reproduction to constitute a new population (often 
called a new generation) is usually based on fitness values. The higher the fitness, 
the more likely it is that the individual will be selected for the new generation. 
Some paradigms that are considered evolutionary, however, such as particle swarm 
optimization, can retain all population members from epoch to epoch. 

Now that we've discussed the step-by-step process, let's consider the process as 
a whole. In many, if not most, cases, a global optimum exists at one point in the 
decision hyperspace. (Sometimes multiple optima exist.) Furthermore, stochastic or 
chaotic noise might be present. Occasionally the global optimum changes dynam- 
ically because of external influences; frequently there are very good local optima as 
well. For these and other reasons, the bottom line is that it is often unreasonable to 
expect any optimization method to find a global optimum (even if it exists) within 
a finite time. The best that can be hoped for is to find near-optimum solutions 
and that the time it takes to find them increases less than exponentially with the 
number of variables. We agree with one leading EC researcher who suggests that 
the focus should be on "meliorization" (improvement) rather than on optimization 
(Schwefel 1994). 

Put another way, evolutionary computation is often the second-best way to 
solve a problem. Classical methods such as linear programming should often be 
tried first, as should customized approaches that take full advantage of knowl- 
edge about the problem. (It is also possible that a hybrid approach that uses ele- 
ments from classical methods with elements of evolutionary computation will 
work well.) 

Why should we be satisfied with second best? For one thing, classical and cus- 
tomized approaches are frequently not feasible, while EC paradigms are feasible 
in a vast number of situations. Also, a real strength of EC paradigms is that they 
are generally quite robust. In this field, robustness means that an algorithm can 
be used to solve many problems, and even many kinds of problems, with a mini- 
mum amount of special adjustments to account for special qualities of a particular 
problem. Typically an evolutionary algorithm requires specification of the length 
of the problem solution vectors, some details of their encoding, and an evaluation 
function; the rest of the program does not need to be changed. Finally, robust 
methodologies are generally fast and easy to implement. This is especially true of 
EC paradigms, which are often one or more orders of magnitude faster than other 
approaches (if other approaches exist). 

We've completed our overview of evolutionary computation. The next sections 
review five areas of evolutionary computation: genetic algorithms, evolutionary 
programming, evolution strategies, genetic programming, and particle swarm opti- 
mization. Genetic algorithms, discussed in the next section, receive a majority of 
the attention, as they currently account for most of the successful applications in 
the literature (although this is changing). 



Genetic Algorithms 

Genetic Algorithms 

It seems that every technology has its jargon, and genetic algorithms are no excep- 
tion. Therefore, we begin by reviewing some of the basic terminology that is needed 
to understand the genetic algorithm (GA) literature. A sample problem is then 
presented to illustrate how GAs work; a step-by-step analysis illustrates a GA appli- 
cation, with options discussed for some of the individual operations. The section 
concludes with a more detailed look at the fundamental Schema theorem and at 
approaches for improving GA performance in some situations. 

In this book, unless otherwise specified, we deal with canonical genetic algo- 
rithms, a basic version of GAs that feature binary parameter encoding, one- or 
two-point crossover, and bit-by-bit mutation. (We discuss these attributes later in 
this section.) 

Details of implementing GAs are discussed in Chapter 4, where a specific 
GA implementation is summarized. We begin here by looking at the general 
features of GAs. 

Overview of Genetic Algorithms 
One perspective of genetic algorithms is that they are search algorithms that reflect 
in a very primitive way some of the processes of natural evolution. (As such, they 
are analogous to artificial neural networks' status as primitive approximations of 
biological neural processing.) Engineers and computer scientists do not care as 
much about the biological foundations of GAs as about their utility as analysis 
tools (another parallel with neural networks). GAs often provide very effective 
search mechanisms that can be used in optimization or classification applications. 

EC paradigms work with a population of points rather than a single point; each 
"point" is actually a vector in hyperspace representing one potential, or candidate, 
solution to the optimization problem. A population is thus just an ensemble, or 
set, of hyperspace vectors. Each vector is called an individual in the population; 
sometimes an individual in a GA is referred to as a chromosome because of the 
analogy to genetic evolution of organisms. 

Because real numbers are often encoded in GAs using binary numbers, the 
dimensionality of the problem vector might be different from the dimensionality 
of the bitstring chromosome. The number of elements in each vector (individ- 
ual) equals the number of real parameters in the optimization problem. A vector 
"element" generally corresponds to one parameter, or dimension, of the numeric 
vector. Each element can be encoded in any number of bits, depending on the 
representation of each parameter. The total number of bits defines the dimension 
of hyperspace being searched. If a GA is being used to find "optimum" weights for 
a neural network, for example, the number of vector elements equals the number 
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of weights in the network. If there are w weights, and it is desired to calculate each 
weight to a precision of b bits, then each individual will consist of w. b bits, and 
the dimension of the binary hyperspace being searched is 2 wb. Thus we can see 
that even for a fairly modest problem involving the optimization of three vari- 
ables to a resolution of three decimal places each (10 bits), the search space is 2 3°. 
The variables being optimized comprise what is called the phenotype space, and 
the behavior of the system given certain values of the variables is the phenotype. 
The binary strings on which operators such as crossover and mutation work 
comprise what is called the genotype space, and the strings themselves are the 
genotypes. 

The series of operations carried out when implementing a canonical (basic) 
GA paradigm is: 

1. Initialize the population. 

2. Calculate fitness for each individual in the population. 

3. Reproduce selected individuals to form a new population. 

4. Perform crossover and mutation on the population. 

5. Loop to step 2 until some condition is met. 

In some GA implementations, operations other than crossover and mutation are 
carried out in step 4. We will further explore GAs by applying a basic GA to a 
simple problem. 

A Sample GA Problem 
Because implementing a canonical (basic) GA paradigm is so simple, a sample 
problem (also simple) seems to be the best way to introduce most of the basic GA 
concepts and methods. As will be seen, implementing a basic GA involves only 
copying strings, exchanging portions of strings, and flipping bits in strings. 

Our sample problem is to find the value of x that maximizes the function 
f(x) = sin(xx/256) over the range 0 _< x _< 255, where values of x are restricted 
to integers. This is just the sine function from zero to x radians, as illustrated in 
Figure 3.1. Its maximum value of 1 occurs at x/2,  or x = 128. The function value 
and the fitness value are thus defined to be identical for the sample problem. 

There is only one variable in our sample problem: x. We assume for the sample 
problem that the GA paradigm uses a binary alphabet. The first decision to be made 
is how to represent the variable. It is easy in this case because the variable can only 
take on integer values between 0 and 255. It is therefore logical to represent each 
individual in our population with an 8-bit binary string. Using standard binary 
encoding, the binary string 00000000 will evaluate to 0; 11111111, to 255. 
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128 255 

Function to be optimized in example problem. 

The determination of the number of bits needed is usually more complex than 
this case. There is generally more than one variable, and the number of bits for 
each variable must be chosen to yield the desired precision. For example, a real 
variable that varies between 0 and 1 and has a precision of three decimal places 
(one part in a thousand) can be represented by a string of 10 bits (one part in 
1,024). 

We must decide next how many individuals will make up the population. 
In an actual application, it is common to have between a few dozen and a few 
hundred individuals. For the purposes of this illustrative example, however, the 
population consists of eight individuals. 

The next step is to initialize the population, which is usually done randomly. 
A random number generator is thus used to assign a 1 or 0 to each of the eight 
positions in each of the eight individuals, resulting in the initial population in 
Figure 3.2. Also shown in the figure are the values of x and f(x) for each binary 
string. 

After fitness calculation, the next step is reproduction. Reproduction consists 
of forming a new population with the same number of individuals by selecting 
from members of the current population with a stochastic process that is weighted 
by each of their fitness values. In the sample problem, the sum of all fitness values 
for the initial population is 5.083. Dividing each fitness value by 5.083, then, yields 
a normalized fitness value fnorm for each individual. The sum of the normalized 
values is, of course, 1. The normalized values are shown in an accumulated fashion 
in the cumulative fnorm column in Figure 3.2. 
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Individuals x f (x) fnorm cumulative fnorm 
1 0 1 1 1 1 0 1 189 0.733 0.144 0.144 

1 1 0 1 1 0 0 0 216 0.471 0.093 0.237 

0 1 1 0 0 0 1 1 99 0.937 0.184 0.421 

1 1 1 0 1 1 0 0 236 0.243 0.048 0.469 

1 0 1 0 1 1 1 0 174 0.845 0.166 0.635 

0 1 0 0 1 0 1 0 74 0.788 0.155 0.790 

0 0 1 0 0 0 1 1 35 0.416 0.082 0.872 

0 0 1 1 0 1 0 1 53 0.650 0.128 1.000 

Z,f(x) = 5 . 0 8 3  

Figure 3.2 Initial population and f(x) values for GA example. 

These normalized fitness values are used in a process called "roulette wheel" 
selection, where the size of the roulette wheel wedge for each population member, 
which reflects the probability of the individual being selected, is proportional to 
its normalized fitness value. 

The roulette wheel is "spun" by generating eight random numbers between 
0 and 1. If a random number is between 0 and 0.144, the first individual in the 
existing population is selected for the next population. If it is between 0.144 and 
(0.144 + 0.093) = 0.237, the second individual is selected, and so on. Finally, if 
the random number is between (1 -0 .128)  = 0.872 and 1.0, the last individual 
is selected. The probability that an individual is selected is thus proportional to 
that individual's fitness value. It is possible, though highly improbable, that the 
individual with the lowest fitness value could be selected eight times in a row 
and make up the entire next population. It is more likely that individuals with 
high fitness values are picked more than once for the new population. (Note that 
roulette wheel selection works as described here only when all fitness values are 
positive. Modifications must be made to accommodate negative fitness values.) 

The eight random numbers generated (presented in random order) are 0.293, 
0.971, 0.160, 0.469, 0.664, 0.568, 0.371, and 0.109. As shown in Figure 3.3, this 
results in initial population member numbers 3, 8, 2, 5, 6, 5, 3, and 1 being chosen 
to make up the population after reproduction. 

The next operation is crossover. To many evolutionary computation practi- 
tioners, crossover of binary encoded substrings is what makes a genetic algorithm 
a genetic algorithm. Crossover is the process of exchanging portions of the strings 
of two "parent" individuals. An overall probability is assigned to the crossover 
process, which is the probability that, given two parents, the crossover process will 
occur. This crossover  ra te  is often in the range of 0.65 to 0.80; a value of 0.75 is 
selected for the sample problem. 

First, the population is divided randomly into pairs of parents. Because the 
order of the population after reproduction in Figure 3.3 is already randomized, 
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0 1 1 0 0 0 1 1  

0 0 1 1 0 1 0 1  

i i 0 1 1 0 0 0  

I 0 1 0 1 1 1 0  

0 1 0 0 1 0 1 0  

I 0 1 0 1 1 1 0  

0 1 1 0 0 0 1 1  

i 0 1 1 1 1 0 1  

Figure 3.3 Populat ion af ter reproduct ion. 

1 2 Individuals x f(x) 

0 1 ii0 0 011 1 0 1 1 1 0 1 1 1 119 0.994 

0 0 IIi 0 110 1 0 0 1 0 0 0 0 1 33 0.394 

1 2 
111 o ~ 11o 0 0 1 0 1 0 1 0 0 0 168 0 . 8 8 2  

ii0 i 0 111 1 0 1 1 0 1 1 1 1 0 222 0.405 

2 1 
0 110 0 1 0 11o 1 0 0 0 1 0 1 0 138 0 . 9 9 2  

i o11 o 1 1 11o 0 1 1 0 1 1 1 0 i i 0  0 . 9 7 6  

0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 99 0.937 

(a) (b) (c) (d) 

Figure 3.4 Populat ion before crossover showing crossover points (a); af ter crossover (b); 
and values of  x (c) and f(x) (d) af ter crossover. 

parents will be paired as they appear there. For each pair, a random number is 
generated to determine whether crossover will occur. It is thus determined that 
three of the four pairs will undergo crossover. 

Next, for the pairs undergoing crossover, two crossover points are selected 
at random. (Other crossover techniques are discussed later in this chapter.) The 
portions of the strings between the first and second crossover points (moving from 
left to right in the string) will be exchanged. The paired population, with the first 
and second crossover points labeled for the three pairs of individuals undergoing 
crossover, is illustrated in Figure 3.4(a) before the crossover operation. The portions 
of the strings to be exchanged are in bold. Figure 3.4(b) illustrates the population 
after crossover is performed. 

Note that, for the third pair from the top, the first crossover point is to the 
right of the second. The crossover operation thus "wraps around" the end of the 
string, exchanging the portion between the first and the second, moving from 
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left to right. For two-point crossover, then, it is as if the head (left end) of each 
individual string is joined to the tail (right end), thus forming a ring structure. The 
section exchanged starts at the first crossover point, moving to the right along the 
binary ring, and ends at the second crossover point. The values of x and f(x) for 
the population following crossover appear in Figure 3.4(c) and (d), respectively. 

The final operation in this plain vanilla genetic algorithm is mutation. Mutation 
consists of flipping bits at random, generally with a constant probability for each 
bit in the population. As is the case with the probability of crossover, the probability 
of mutation can vary widely according to the application and the preference of 
the researcher. Values between 0.001 and 0.01 are not unusual for the mutation 
probability. This means that the bit at each site on the bitstring is flipped, on 
average, between 0.1 and 1.0 percent of the time. One fixed value is used for each 
generation and is often maintained for an entire run. 

As there are 64 bits in the sample problem's population (8 bits x 8 individuals), 
it is quite possible that none will be altered as a result of mutation, so the population 
of Figure 3.4(b) will be taken as the "final" population after one iteration of the 
GA procedure. Going through the entire GA procedure one time is said to produce 
a new generation. The population of Figure 3.4(b) therefore represents the first 
generation of the initial randomized population. 

Note that the fitness values now total 6.313, up from 5.083 in the initial random 
population, and that there are now two members of the population with fitness 
values higher than 0.99. The average and maximum fitness values have thus both 
increased. It is important to note that in most GA applications the fitnesses don't 
monotonically increase. There are times when the children have lower fitnesses 
than their parents. If this situation continues, however, the individuals with lower 
fitness will probably be eliminated through the selection process. 

The population of Figure 3.4(b) and the corresponding fitness values in Figure 
3.4(d) are now ready for another round of reproduction, crossover, and muta- 
tion, producing yet another generation. More generations are produced until some 
stopping condition is met. The researcher may simply set a maximum number of 
generations for the algorithm to search, may let it run until a performance cri- 
terion has been met, or may stop it after some number of generations with no 
improvement. 

This completes our simple application of the basic GA. It's time to back up 
and review the GA's operations. 

Review of GA Operations in the Simple Example 
Now that one iteration of the GA operations (one generation) for the sample 
problem has been completed, each operation is reviewed in more detail. Various 
approaches, and reasons for each, are examined. 
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The representation of the values for the variable x was made (perhaps 
unrealistically) straightforward by choosing a dynamic range of 256; an 8-bit 
binary number was thus an obvious approach. Standard binary coding, however, 
is only one approach; others may be more appropriate. 

In this example, the nature of the sine function places the optimal value of x at 
128, where f(x) is 1. The binary representation of 128 is 10000000; the represen- 
tation of 127 is 01111111. Thus, the smallest change in fitness value can require 
a change of every bit in the representation. This situation is an artifact of the 
encoding scheme and is not desirable~it only makes the GA's search more diffi- 
cult. Often, a better representation is one in which adjacent integer values have a 
Hamming distance of 1; in other words, adjacent values differ by only a single bit. 

Gray coding overcomes this impediment while retaining the advantages of binary 
operations (Gray 1953). The challenge is to devise a scheme, using 0s and ls, to 
encode integers where the Hamming distance between adjacent numbers equals 1; 
this is called the "adjacency property." There are many ways to accomplish this for 
any length bitstring; the most commonly used version is called "binary-reflected 
Gray code." As shown Table 3.1, Gray coded integers that are one unit different in 
value are also one unit distant in Hamming distance. 

Table 3.1 Gray Codes and Binary Codes for Integers 0-15 

0 0000 0000 

1 0001 0001 

2 0010 0011 

3 0011 0010 

4 0100 O110 

5 0101 0111 

6 0110 0101 

7 0111 0100 

8 1000 11 O0 

9 1001 1101 

10 1010 1111 

11 1011 1110 

12 1100 1010 

13 1101 1011 

14 1110 1001 

15 1111 1000 
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The algorithm for generating Gray code from binary is quite simple. The length 
of the Gray bitstring will be the same length as the binary version. Further, the 
leftmost bit will be the same. Starting at the second position from the left, then, 
the formula is 

Gi = XOR(Bi, Bi-1 ) 

where Gi is the bit in the ith position of the Gray code (G1 is the leftmost bit); 
Bi is the bit in the ith position of the binary code; and the function XOR() returns 
1 if the adjacent bits are different from one another, 0 if they are the same. In 
other words, set the most significant bit on the Gray bitstring equal to the same bit 
on the binary bitstring, and move to the right. Where a bit matches the bit to the 
left of it on the binary bitstring, place a 0 in the Gray bitstring; otherwise, place a 
1. Go down the line doing this at each position. With Gray coding, a movement 
of one unit on the number line is performed by flipping a single bit, allowing an 
optimizer to climb more gracefully toward optima. 

Some GA software allows the user to specify the dynamic range and resolution 
for each variable. The program then assigns the correct number of bits and the 
coding. For example, if a variable has a range from 2.5 to 6.5 (a dynamic range 
of 4) and it is desired to have a resolution of three decimal places, the product 
of the dynamic range and the resolution requires a string 12 bits long, where the 
string of 0s represents the value 2.5. A major advantage of being able to represent 
variables in this way is that the user can think of the population individuals as 
real-valued vectors rather than as bit strings, thus simplifying the development of 
GA applications. 

This kind of representation can present some challenges. If, for instance, the 
dynamic range is 5 and resolution is 3 decimal places, we need 13 bits (same 
as for dynamic range of 8) and some of the bitstrings resulting from crossover 
and mutation will not be within the dynamic range. Provisions have to be made 
to take care of such situations. One approach is to define "repair" functions that 
move population members that are outside of the dynamic range back in. Another 
approach is to assign particularly high penalties to locations outside the dynamic 
range. 

The "alphabet" used in the representation can, in theory, be any finite alphabet. 
Thus, rather than use the binary alphabet of 1 and 0, we could use an alphabet 
containing more characters or numbers. Engineers frequently represent variables 
with real numbers. Many GA implementations, however, use the binary alphabet. 

Turning our attention to the size of the population, De ]ong's dissertation 
(1975) offers guidelines that are still usually observed: Start with a relatively high 
crossover rate, a relatively low mutation rate, and a moderately sized population 
(though just what constitutes a moderately sized population is unclear). The main 
trade-off is obvious: A large population will search the space more thoroughly 
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but at a higher computational cost. The authors have generally used populations 
of between 20 and 200 individuals, depending primarily, it seems, on the string 
length of the individuals. It also seems (in the authors' experience) that the sizes of 
populations tend to increase approximately linearly with individual string length 
rather than exponentially, but "optimal" population size (if an optimal size exists) 
depends on the problem as well. 

The initialization of the population is usually done stochastically, though it 
is sometimes appropriate to start with one or more individuals that are selected 
heuristically. The GA is thereby initially aimed in promising directions, or given 
hints. It is not uncommon to seed the population with a few members selected 
heuristically and to complete it with randomly chosen members. Regardless of the 
process used, the population should represent a wide assortment of individuals. 
The urge to skew the population significantly should generally be avoided if the 
limited experience of the authors is generalizable. 

The calculation of fitness values is conceptually simple, though it can be quite 
complex to implement in a way that optimizes the efficiency of the GA's search 
of the problem space. In the sample problem, the value off(x) varies (quite con- 
veniently) from 0 to 1. Lurking within the problem, however, are two drawbacks 
to using the "raw" function output as a fitness function: one that is common to 
many implementations, the other arising from the nature of the sample problem. 

The first drawback common to many implementations is that after the GA has 
been run for a number of generations it is not unusual for most (if not all) of the 
individuals' fitness values, after, say, a few dozen generations, to be quite high. In 
cases where the fitness value can range from 0 to 1, for example (as in the sample 
problem), most or all of the fitness values may be 0.9 or higher. This lowers the 
fitness differences among individuals that provide the impetus for effective roulette 
wheel selection; relatively higher fitness values should have a higher probability of 
reproduction. 

One way around this problem is to space the fitness values equally. For example, 
in the sample problem the fitness values used for reproduction could be equally 
spaced from 0 to 1, assigning a fitness value of 1 to the most fit population member, 
0.875 to the second, and 0.125 to the least fit ofthe eight. In this case the population 
members are ranked on the basis of fitness and then their ranks are divided by the 
number of individuals to provide a probability threshold for selection. Note that the 
value of 0 is often not assigned, since that would result in one population member 
being made ineligible for reproduction. Also note that f(x), the function result, is 
now not equal to the fitness and that, in order to evaluate actual performance of 
the GA, the function value should be monitored as well as the spaced fitness. 

Another way around the problem is to use what is called scaling. Scaling takes 
into account the recent history of the population and assigns fitness values on 
the basis of comparison of individuals' performance to the population's recent 
average performance. When the GA optimization is maximizing some function, 
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scaling involves keeping a record of the minimum fitness value obtained in the last 
w generations, where w is the size of the scaling window. If, for example, w = 5, 
the minimum fitness value in the last five generations is kept and used, instead 
of 0, as the "floor" of fitness values. Fitness values can be assigned a value based 
on their actual distance from the floor value, or they can be equally spaced, as 
described earlier. 

The second drawback is that the sample problem exacerbates the compression 
of fitness values situation described earlier because near the global optimum fitness 
value of 1,f(x) (which is also the fitness) is relatively flat. There is thus relatively little 
selection advantage for population members near the optimum value x = 128. If 
this situation is known to exist, a different representation scheme might be selected, 
such as defining a new fitness function, which is the function output raised to some 
power. 

What we have been talking about with respect to both drawbacks is selection 
pressure, or how much reproduction advantage is given to population members 
with higher fitness values. Too much pressure (advantage) can result in premature 
convergence, and not enough may allow the population to wander aimlessly. 

Note that the shape of some functions "assists" discrimination near the opti- 
mum value. For example, consider maximizing the function f(x) = x 2 over the 
range 0 to 10; there is a higher differential in values off(x) between adjacent val- 
ues of x near 10 than near 0. Thus a slight change in the independent variable 
results in great improvement or deterioration of performance~which is equally 
informative~near the optimum. 

In the discussion thus far, we have assumed that optimization implies finding a 
maximum value. Sometimes, of course, optimization requires finding a minimum 
value. Many versions of GA implementations allow for this possibility. Often, it 
is required that the user specify the maximum value fmax of the function being 

• optimized, f(x), over the range of the search. The GA can then be programmed to 
maximize the fitness function fmax-f(x). In this case, scaling, described previously, 
keeps track of f max over the past w generations and uses it as a "roof" value from 
which to calculate fitness. 

We now consider roulette wheel selection. In genetic algorithms, the expected 
number of times each individual in the current population is selected for the new 
population is proportional to the fitness of that individual relative to the average 
fitness ofthe entire population. Thus, in the initial population ofthe sample problem, 
where the average fitness was 5.083/8 - 0.635, the third population member had a 
fitness value of 0.937, so it could be expected to appear about 1.5 times in the next 
population; it appeared twice. 

The conceptualization is that of a wheel whose surface is divided into wedges 
representing the probabilities for each individual (see Figure 3.5). For instance, one 
point on the edge is determined to be the zero point and each arc around the circle 
corresponds to an area on the number line between 0 and 1. A random number 
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Figure 3.5 Roulette wheel selection, in which the probability of an individual being 
selected is proportional to its fitness. 

is generated, between 0.0 and 1.0, and the individual whose wedge contains that 
number is chosen. In this way, individuals with greater fitness are more likely to 
be chosen. The selection algorithm can be repeated until the desired number of 
individuals has been selected. There are a number of variations to the roulette 
wheel procedure. A few of them are reviewed next. 

One variation on the basic roulette wheel procedure is a process developed by 
Baker (1987) in which the portion of the roulette wheel is assigned based on each 
unique string's relative fitness. One spin of the roulette wheel then determines the 
number of times each string will appear in the next generation. To illustrate how 
this is done, assume that the fitness values are normalized (sum of all equals 1). 
Each string is assigned a portion of the roulette wheel proportional to its normalized 
fitness. Instead of one "pointer" on the roulette wheel spun n times, there are n 
pointers spaced 1/n apart; the n-pointer assembly is spun only once. Each of the n 
pointers now points to a string; each place one of the n pointers points determines 
one population member in the next generation. If a string has a normalized fitness 
greater than 1/n (corresponding to an expected value greater than 1), it is guaranteed 
at least one occurrence in the next generation. 

In the discussion thus far, we have assumed that all of the population mem- 
bers are replaced each generation. Although this is usually the case, sometimes 
it is desirable to replace only a portion of the population~for example, the 80 
percent with the worst fitness values. The percentage of the population replaced 
each generation is sometimes called the generation gap. 
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Unless some provision is made, with standard roulette wheel selection it is 
possible that the individual with the highest fitness value in a given generation 
may not survive reproduction, crossover, and mutation to appear unaltered in the 
new generation. It is frequently helpful to use what is called the elitist strategy, 
which ensures that the individual with the highest fitness is always copied into 
the next generation. Most GA applications with which the authors are familiar 
implement elitist strategy. 

The most important operator in GAs is crossover, based on the metaphor of 
sexual combination. Its purpose is to pass on information from population member 
to population member. If a solution is encoded as a bitstring, then mutation may 
be implemented by setting a probability threshold and flipping bits when a random 
number is less than the threshold. As a matter of fact, mutation is not considered 
by most GA practitioners to be an especially important operator in GA; it is usually 
set at a very low rate and sometimes omitted. Crossover is generally considered 
more important because it is considered to play a more important role in guiding 
the population toward an acceptable solution. 

Crossover is a term for the recombination of genetic information during sexual 
reproduction. In GAs, offspring have equal probabilities of receiving any gene 
from either parent because the parents' chromosomes are combined randomly. 
In nature, chromosomal combination leaves sections intact~that is, contiguous 
sections of chromosomes from one parent are combined with sections from the 
other, rather than simply shuffling randomly. In GAs there are many ways to 
implement crossover. 

The two main attributes of crossover that can be varied are the type of crossover 
that is implemented and the probability that it occurs. The following paragraphs 
examine variations of each. 

A crossover probability of 0.75 was used in the sample problem, and two-point 
crossover was implemented. Two-point crossover with a probability of 0.60 to 0.80 
is a relatively common choice, especially when Gray coding is used. 

The most basic crossover type is one-point crossover, as described by Holland 
(1992) and others, for example, Goldberg (1989), and Davis (1991). It is inspired 
by natural evolution processes. One-point crossover involves selecting a single 
crossover point at random and exchanging the portions of the individual strings to 
the right of the crossover point. Figure 3.6 illustrates one-point crossover; portions 
to be exchanged are in bold in Figure 3.6(a). 

Figure 3.6 

1 o 1 1 o l o  z o 1 o 1 1 o 1 o o 

0 i 0 0 l l Z  0 0 0 1 0 0 1 0 1 0 

(a) (b) 

O n e - p o i n t  crossover be fo re  (a) and a f te r  (b) crossover. 
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Another type of crossover that has been found useful is uniform crossover, 
described by Syswerda (1989). A random decision is made at each bit position in 
the string as to whether or not to exchange (cross over) bits between the parent 
strings. If a 0.50 probability at each bit position is implemented, an average of about 
50 percent of the bits in the parent strings are exchanged. Note that a 50 percent 
rate will result in the maximum disruption due to uniform crossover. Higher rates 
just mirror rates lower than 50 percent. For example, a 0.60 probability uniform 
crossover rate produces results identical to a 0.40 probability rate. If the rate were 
100 percent, the two strings would simply switch places, and if it were 0 percent 
neither would change. 

Values for the probability of crossover vary with the problem. In general, 
values between 60 and 80 percent are common for one-point and two-point 
crossover. Uniform crossover sometimes works better with slightly lower crossover 
probability. It is also common to start out running the GA with a relatively higher 
value for crossover, then taper off the value linearly to the end of the run, ending 
with a value of, say, one-half the initial value. 

Inversion is a GA operation that is not generally used today. It is function- 
ally related to crossover, but involves a single parent producing a single child. 
Figure 3.7 illustrates the process, which consists of switching end for end a por- 
tion of the parent structure, shown between the cut points in bold in Figure 3.7(a), 
in the child. One reason it is not in general use is that it is perceived to destroy the 
basic building blocks, or schemata, by inverting them. The term schemata usually 
refers to substrings of an individual population member string; a more detailed 
description appears in the next section, Schemata and the schema theorem. 

In GAs, mutation is the stochastic flipping of bits that occurs in each generation. 
Its purpose is to introduce diversity into the population and is generally done bit 
by bit on the entire population. It is often done with a probability of something 
like 0.001, but higher probabilities are not unusual. For example, Liepins and 
Potter (1991) used a mutation probability of 0.033 in a multiple-fault diagnosis 
application. 

If the population comprises real-valued parameters, mutation can be imple- 
mented in different ways. For instance, in an image classification application, 
Montana (1991) used strings of real-valued parameters that represented thresh- 
olds of event detection rules as the individuals. Each parameter in the string was 
range-limited and quantized (i.e., could take on only a certain finite number of 
values). If chosen for mutation, a parameter was randomly assigned any allowed 
value in the range of values valid for that parameter. 

Figure 3.7 

1 olo 1 1 o 11o 1 o 1 o 1 1 o o 

(a) (b) 

Example of string before (a) and after (b) inversion operation. 
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The probability of mutation is often held constant for the entire run of the GA, 
although this approach does not produce optimal results in many cases. It can be 
varied during the run and, if varied, usually is increased. For example, mutation 
rate may start at 0.001 and end at approximately 0.01 when the specified number 
of generations has been completed. In the software implementation described on 
this book's web site, a flag in the run file can be set that increases the mutation 
rate significantly when the variability in fitness values becomes low, as is often the 
case late in the run. 

Selecting the number of generations for which the GA is run is often a trial-and- 
error process. In general, given enough computing time, the number of generations 
is adjusted until the desired response is obtained. Other factors, such as population 
diversity and fitness improvement of the best population member, can enter into 
the decision to end the GA run. For example, if the best fitness has not changed 
for, say, 100 generations, we may choose to terminate the run. 

The optimum number of generations is often a function of the problem. For 
instance, if the GA is being used to train a neural network, the same caveats apply 
as would apply if any neural network paradigm such as back-propagation were 
being used. What is desired is optimum results with a test set, so conditions such 
as overtraining must be avoided. 

Whatever the application, given the stochastic nature of a GA, multiple runs 
will probably be desirable. Then the best-performing individuals from each run 
can be tested. 

This completes our review of basic GA operations. In the next section, we 
consider a theorem that provides some insight into how GAs work. 

Schemata and the Schema Theorem 

Exactly how do GAs do what they do? How is it possible to develop new population 
members that, on average, are fitter than the previous generation while searching 
new regions of the problem space? Since all that GAs have to work with are (often 
binary) strings, there must be features related to the fitness inherent in the strings 
that are used. 

The string features that are relevant to the optimization process are called 
schemata (singular: schema). The schema theorem describes why the canonical GA 
paradigm is able to efficiently direct an optimization process. (This theorem also 
applies to other proportional selection methodologies.) 

First described for the GA field by Holland (1975, 1992), schemata are similarity 
templates for strings. Each schema defines a subset of strings with identical values at 
specified string locations. As used here, the word string usually refers to substrings 
of an individual population member string, but it can refer to the entire string. 
Schemata provide a means by which relevant similarities among the individual 
population members can be described and exploited. 
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To define schemata, the alphabet of the strings is used to define values at 
specified locations, and an additional character is used as a "don't care" symbol in 
locations where the value doesn't matter. As is common in the GA literature, the 
pound symbol (#) is used in this book as the "don't care" symbol. Schemata can 
thus generally be thought of as comprising an alphabet of ao + 1 characters, where 
ao is the number of characters in the GA representation. In most cases, as in the 
example, the GA strings have a binary representation, so the schemata comprise 
the characters {0, 1, #}. 

As an example, consider the schemata of length 4 that may appear in, say, the 
leftmost four positions of the population strings of the sample problem. One such 
schema is #000, which has two member strings. That is, two strings match the 
schema: 1000 and 0000. The schema 1##0 has four matching strings: 1000, 1010, 
1100, and 1110. 

Holland argues that adaptation can be thought of in terms of schemata. Genetic 
optimization increases the likelihood that the schemata that most improve the 
species' fitness will persist to the next generation. He also argues that crossover 
among the fittest members of a population will result in the discovery and survival 
of better schemata. 

It should be noted that some researchers have recently found errors in Holland's 
argument, and the issue is currently controversial. Even if the proof is shaky, it can 
be observed empirically, simply by running GA programs, that crossover is quite 
effective, if not always fast, for finding good solutions to highly complex problems. 

How many schemata are possible for a string length of l and an alphabet of ao 

characters? In the previous example, for ao = 2, there can be a 0, 1, or # at each string 
position, resulting in a total possible number of schemata of 3 x 3 x 3 x 3 - 81. 
Generalizing, there are (ao+ 1)l total possible schemata for any representation of 
length l. 

Another informative measure is the total number of unique schemata possible 
in a population. Consider a specific string of length 8, taken from the example 
problem: 01110111. Since each string position can assume the value it has or the 
wild-card value, the string belongs to 28 = 256 schemata. Any binary string of 
length l thus belongs to 2 l schemata. In a population of n individuals, then, there 
are between 2 l (if all members are identical) and n2 l (if no two individuals are 
the same) schemata. Populations with higher diversity have a greater number of 
schemata. 

Schemata that are part of an individual with high fitness have a higher than 
average probability of reproducing. Therefore, highly fit schemata benefit from 
differential reproduction relative to fitness. If selection were the only operator used, 
though, no new regions of the search hyperspace would ever be explored. Crossover 
and mutation provide new schemata to guide the search into new regions. 

Crossover is a slightly more complicated matter than reproduction. Consider 
two schemata: ##1####0 and ###10###. If both are part of strings of equal 
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fitness, which is more likely to be passed on to the new population? Either one- or 
two-point crossover is more likely to disrupt the first, since it is quite likely that a 
crossover point will occur between the two string endpoints. The second is more 
compact and less likely to be disrupted by a one- or two-point crossover operation. 

Mutation is not likely to disrupt either schema, since it typically occurs at a 
very low rate. And since it is considered on a bit-by-bit basis, if it does occur it is 
just as likely to disrupt one as the other. 

Although crossover and mutation are potentially disruptive, they facilitate an 
efficient search by introducing innovations. Furthermore, compact (short) sche- 
mata that are part of highly fit individuals will, with high probability, appear in 
ever-increasing numbers in future generations. The schemata are the elements from 
which future generations are built; Holland (1992) named them "building blocks." 
The schema theorem sums up all of this and provides a quantitative estimation of 
one aspect of GA performance. 

The schema theorem predicts the number of times a specific schema will appear 
in the next generation of a GA, given the fitness of the population member(s) con- 
taining the schema, the average fitness of the population, and other parameters. The 
GA can be thought of as effectively working with a large number of schemata simul- 
taneously, ranging from very short schemata to schemata as long as the individual 
population members. This has been named "intrinsic parallelism" by Holland. The 
schema theorem provides a quantitative prediction for all schemata, regardless of 
length. It should be noted that the theorem applies only to "plain vanilla" GAs. As 
soon as you do anything special, including something as simple as implementing 
elitism, where the fittest population member is automatically copied into the next 
generation, the schema theorem no longer applies. 

The schema theorem appears as equation 3.1. 3 

8(s) 
r/t+ l(S) > rlt(S)~ S) 1 - Pc 

- Javg l -  1 
- o(S)pm] ( 3 . 1 )  

In equation 3.1, n is the total number of examples of a particular schema S. The 
subscripts t + 1 and t refer to time steps, or generations. The parameter f(S) is 
the average fitness of the individual population members that contain the schema 
S, while favg is the average fitness of the entire population. The probabilities of 
crossover and mutation are pc and Pm, respectively. 

The parameter 8(S) is called the "defining length" of the schema; it is the 
distance between the first and last specific string positions. For example, for the 
schema #01#11#, the defining length is 4. The total length of the string is l, while 
o(S) is the "order" of the schema, or the number of fixed positions (ls and 0s) in 

3 The derivation of the theorem is beyond the scope of this book. The reader is referred to the 
derivation in Goldberg (1989). 
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the schema. In the preceding example, the order of the schema is 4. The defining 
length of a schema is just the number of potential "cut" points within the schema 
that could be affected by crossover. 

Summarized, equation 3.1 states that the expected number of occurrences of 
schema S in generation t + 1 is the number in the current generation multiplied 
by the average schema fitness divided by the average population fitness, less the 
disruptive effects caused by crossover and mutation. Schemata with above-average 
fitness values will be represented an increasing number of times as generations 
proceed. Those with below-average values will be represented less and less; they 
will "die out," just as happens in nature. 

The schemata with small values for defining length are disrupted least by 
crossover, so the most rapidly increasing representation in any population will 
be of highly fit, short schemata, called building blocks, which will experience 
exponential growth. Building blocks illustrate that it is often beneficial to keep 
some parts of a solution intact. This is the most important consequence of the 
schema theorem. 

Note that the schema theorem, by itself, does not specify how well a GA will 
solve a particular problem. It should also be noted that there is controversy in 
the EC community with respect to the usefulness and validity of the theorem. We 
include it, as have other recent books dealing with GAs such as (Mitchell 1996), 
(Pedrycz 1998), and (Haupt and Haupt 1998), because we believe it provides useful 
insights into GA processes. 

We've now told you what we think you need to know about GAs, how they 
work, and how to apply them to practical problems. All that is left are a few final 
observations. 

Comments on Genetic Algorithms 

In sum, a genetic algorithm operates by evaluating a population of bitstrings 
(there are real-numbered GAs, but binary implementations are more common) 
and selecting survivors stochastically based on their fitness; thus, fitter members 
of the population are more likely to survive. Survivors are paired for crossover, 
and often some mutation is performed on chromosomes. Other operations might 
be performed as well, but crossover and mutation are the most important ones. 
Sexual recombination of genetic material is a powerful method for adaptation. 

In Chapter 2, we discussed three spaces of adaptation: the parameter space, 
the function space, and the fitness space. Much of the literature in evolutionary 
computation treats the function space as if it were identical to the fitness space; that 
is, the function output provides a number that indicates how close to the global 
optimum the search algorithm is. There are, however, dangerous ambiguities in 
the confusion of these two quantities. The fitness landscape can be very different 
depending on the fitness function utilized. The fitness measure should probably 
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be scaled between 0 and 1 when possible, making it easy to understand as well as 
an indication of the probability of a population member's survival. 

The material on genetic algorithms in this chapter provides only an introduction 
to the subject. We suggest that you explore GAs further by sampling the references 
cited in this section. With further study and application, it will become apparent 
why GAs have such a devoted following. In the words of Davis (1991): 

[T]here is something profoundly moving about linking a genetic algorithm to 
a difficult problem and returning later to find that the algorithm has evolved a 
solution that is better than the one a human found. With genetic algorithms we 
are not optimizing; we are creating conditions in which optimization occurs, as 
it may have occurred in the natural world. One feels a kind of resonance at such 
times that is uncommon and profound. 

This feeling, of course, is not unique to experiences with GAs; using other evo- 
lutionary algorithms can result in similar feelings. An implementation of a genetic 
algorithm is presented in Chapter 4. The software for the GA implementation is 
on the book's web site. 

That's it for genetic algorithms. Let's now turn our attention to an evolutionary 
computation paradigm that eschews crossover~evolutionary programming. 

Evolutionary Programming 

Evolutionary programming (EP) is similar to genetic algorithms in its use of a pop- 
ulation of candidate solutions to evolve an answer to a specific problem; it differs 
in its concentration on top-down processes of adaptive behavior. The emphasis 
in evolutionary programming is on developing behavioral models, that is, models 
of observable system interactions with the environment. Theories of natural evo- 
lution heavily influence the development of evolutionary programming concepts 
and paradigms. 

Evolutionary programming is derived from the simulation of adaptive behavior 
in evolution: GAs are derived from the simulation of genetics. The difference is 
perhaps subtle but important. Genetic algorithms work in the genotype space of 
the information codings, while evolutionary programming (EP) emphasizes the 
phenotype space of observable behaviors (Fogel 1990). EP is therefore directed 
at evolving "behavior" that solves the problem at hand; it mimics "phenotypic 
evolution. 

Evolutionary programming is a more flexible approach to evolution than some 
of the other paradigms. Operators are freely adapted to fit the problem at hand. 
Generally, the paradigm relies on mutat ion~not  sexual recombination~to pro- 
duce offspring. Whereas evolution strategies systems usually generate many more 
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offspring than parents (a ratio of seven to one is common, as we will see in the 
next section), EP usually generates the same number of children as parents. Parents 
are selected to reproduce using a tournament method; their features are mutated 
to produce children who are added to the population. When the population has 
doubled, the members~parents and offspring together~are ranked, and the best 
half are kept for the next generation. 

Now that we have a rough idea of what EP entails, let's see how to implement 
it in an application. After that, we'll look at examples of specific application areas. 

Evolutionary Programming Procedure 
The process for implementing EP will look familiar to you; the process itself is 
similar to the one we used for GAs. The procedure generally followed when imple- 
menting EP appears in the following list: 

1. Initialize the population. 

2. Expose the population to the environment. 

3. Calculate fitness for each member. 

4. Randomly mutate each "parent" population member. 

5. Evaluate parents and children. 

6. Select members of the new population. 

7. Go to step 2 until some condition is met. 

The population is randomly initialized. For problems in real (computable) space, 
each component variable of each individual's vector is generally a real value that 
is constrained to some dynamic range. In the two EP examples that follow, the 
variables (vector elements) represent finite state machine parameters and function 
variables, respectively. The number of population members is problem dependent, 
but is often a few dozen to a few hundred, as in to GA populations. 

To better understand the remaining steps in the EP procedure, two examples 
are examined. These two examples are representative of two main types of problem 
to which EP paradigms are often applied. The first involves time series prediction 
using a finite state machine. The second is the optimization of a mathematical 
function. 

Finite State Machine Evolution for Prediction 
Remember that prediction is one of the attributes of computational intelligence sys- 
tems we discussed in Chapter 2. Evolutionary programming paradigms are some- 
times used for problems involving prediction. One way to represent prediction of 
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the environment is with a sequence of symbols. As with GAs, the symbols must 
be members of a finite alphabet. A system comprising a finite state machine, for 
example, can be used to analyze a symbol sequence and to generate an output that 
optimizes a fitness function, which often involves predicting the next symbol in 
the sequence. In other words, a prediction is used to calculate a system response 
that seeks to achieve some specified goal. 

Afinite state machine is defined as "a transducer that can be stimulated by a finite 
alphabet of input symbols, can respond in a finite alphabet of output signals, and 
possesses some finite number of different internal states" (Fogel 1991). The input 
and output symbol alphabets need not be identical. The initial state of the machine 
must be specified. It is also necessary to specify, for each state and input symbol 
combination, the output symbol and next state. Table 3.2 specifies a three-state 
finite state machine with an input alphabet of two characters and three possible 
output symbols. 

Finite state machines are essentially a subset of Turing machines, developed 
by the English mathematician and computer science pioneer Alan Turing (1937). 
Turing machines are capable, in principle, of solving all mathematical problems 
(of a defined general class) in sequence. Finite state machines, as used in EP, can 
model, or represent, an organism or system. 

Unlike GAs, where crossover is an important component of producing a new 
generation, mutation is the only operator used in EP systems. Each member of 
the current population typically undergoes mutation to produce a "child." Given 
the specification of the finite state machine, and its operation, five main types of 
mutation can occur: As long as more than one state exists, the initial state can 
be changed and/or a state can be deleted. A state can be added. A state transition 
can be changed. Finally, an output symbol for a given state-input symbol can be 
changed. 

Although the number of children produced by each parent is a system param- 
eter, each "parent" typically produces one "child," and the population becomes 
twice its original size after mutation. After measuring the fitness of each structure, 
the best half are kept, maintaining the population size at a constant value from 

Table 3.2 Specification Table for a Three- 
State Finite State Machine 

Existing state A A B B C C 

Input symbol 1 0 1 0 1 0 

Output symbol Y Y X Z Z Y 

Next state A B C B A B 

Source: Fogel (1991). 
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generation to generation. At some point in some applications, it is necessary to 
predict the next symbol in a sequence. The structure with the highest fitness is 
chosen to generate this new symbol, which is then added to the sequence. (It is 
also possible to specify the problem so that the symbol predicted is farther in the 
future than one time step.) 

Unlike other evolutionary paradigms, in EP systems mutation can change the 
size of structures (states can be added and deleted). This fact and the potential for 
changing state transitions lead to another consideration: The specification table 
for a finite state machine can have unfilled blanks. There can be mutations that 
add states that are never utilized in a given problem; Fogel (1991) calls these 
"neutral mutations." It is also possible to create the situation via mutation where 
a specified state transition is not possible because the new state has been deleted. 
These mutations and others, such as changing output symbols, tend to have less 
effect the more states the machine has, but can still cause fatal errors in the finite 
state machine if they are not handled properly. 

Although Fogel (1995) usually allows a variable-length structure, it is also 
possible to evolve a finite state machine with EP using a fixed structure. First, 
the maximum number of states must be determined. For purposes of illustration, 
using the three-state machine defined earlier as an example, we will assume that 
no more than four states are allowed. 

Each state can then be represented by a fixed 5-bit binary element as follows. 
The first bit could represent the "activation" of the state: if it is 1, the state is 
active; if 0, the state is inactive (that is, it does not exist). The next two bits can 
represent the output symbol (X, Y, or Z) for an input of 0, and the final two bits 
can represent the output symbol for an input of 1. (Note that our example above 
has only three output symbols. With binary representation, we have to allow for 
four and handle a nonexistent symbol the way nonexistent states are handled.) We 
thus require a total element length of (1 + ni * bo) bits, where ni is the number 
of possible inputs and bo is the number of bits needed to represent the output 
symbols. 

The population in our example is thus initialized with individuals 20 bits long. 
For the example it may be a good idea to specify that only individuals with at least 
two active states can be allowed in the initial population. 

A child is now generated for each parent. Given the five possible kinds of 
mutation outlined earlier, one possible mutation procedure is: 

1. For each individual, generate a random number from 0 to 1. 

2. If the number is between 0.0 and 0.2, change the initial state; if between 
0.2 and 0.4, delete a state, etc. 

3. The mutation selected in step 2 is done with a fiat probability across all 
possibilities. For example, if the initial state is to be changed and there 
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are a active states, then one active state is selected to be the initial state; 
each active state has the probability of 1/a of being selected. 

4. Infeasible state transitions are modified to be feasible. If a state transition 
to an inactive state has been specified, one of the active states is selected 
to be the object of the transition. As above, each active state has t h e  
probability of 1/a of being selected. 

5. Evaluate fitnesses and keep the best 50 percent, resulting in a new 
population of the same size. 

This scenario is only one of many possibilities. For example, it might be desirable 
to lower the probability ranges (the ranges between 0 and 1 in step 2) for adding 
and deleting states and correspondingly increase the mutation probability ranges 
for changing input symbols and/or output symbols. It is also possible to evolve the 
ranges, number of states, and so on. 

One example of finite state machines is the development by Fogel (1995) using 
evolutionary programming of finite state machines that do very well at playing 
Axelrod's prisoner's dilemma game. As described in Kennedy, Eberhart, and Shi 
(2001): 

The prisoner's dilemma is a situation where two interacting players have opposite, 
symmetrical motives. Each player has the choice to cooperate or compete with the 
opponent: if both cooperate, their payoffs are high, and if both compete payoffs are 
low. If one competes (the technical term is defecting) while the other cooperates, 
the defector receives a very high reward while the cooperator's payoff is very low-- 
the lowest in the game, called the "sucker's payoff." When the game is played just 
one time, the most reasonable thing to do is to defect, as there is no basis for 
trusting the other player, and there is nothing to gain by being a sucker. 

Usually though, the game is iterated, a series of games is played. A player would 
score the highest if he always defected while his partner always cooperated--but 
of course no sensible player would continue to cooperate while being hammered 
repeatedly by a competitive opponent. Repeated trials require some consideration 
of strategy, for instance, a player might end up with the highest score if he lulled his 
opponent into cooperating, then struck with a defection, then lulled and defected, 
and so on. It might be that the best approach would be just to cooperate from the 
startmexcept that nothing then prevents the opponent from taking advantage. The 
simple game then produces opportunities for many kinds of strategies. Axelrod 
roughly grouped these into two kinds: "nice" strategies, which rely on cooperation 
to keep the level of payoffs high for both parties, and strategies he refers to 
as "mean" (specifically that includes only the all-defect strategy) or "not nice." 
Strategies that are not nice include ones that might try to use cooperation as a 
way to make the opponent vulnerable, then defect for the higher payoff. 

The payoff function is that used by Axelrod (1980): If both cooperate, each 
player gets 3 points; if both defect, each player gets 1 point; if one defects and one 
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cooperates, the cooperating player gets no points while the defecting player gets 
5 points. 

Fogel allowed the finite state machines to have up to eight states. This doesn't 
represent all possible behaviors h la Axelrod, but it does allow a dependence on 
sequences of greater than third-order. Fogel was able to evolve finite state machines 
that had average scores slightly greater than 3.0, which is the score that is achieved 
through mutual cooperation alone. 

Figure 3.8 is the diagram for a seven-state finite state machine (one of many 
evolved by Fogel) to play prisoner's dilemma. The start state is state 6, and play is 
begun by cooperating. In the table, "C" denotes cooperate and "D" denotes defect. 

C,C/C 
D,C/C 
D,D/D 

C,D/D 
D,D/C 

u" 

D,C/C 

D,D/C 

~:~ = Start state 
C =Cooperate 
D = Defect D,C/C C,D/D 

C,C/C 

Figure 3.8 A seven-state finite state machine to play prisoner's dilemma. Source: Fogel 1995; 
(~) IEEE. Used with permission. 
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The input alphabet comprises [(C,C), (C,D), (D,C), (D,D)], where the first letter 
represents the finite state machine's previous move and the second the opponent's. 
So, for example, a label of C,D/C on the arrow leading from state X to state Y 
means that if the system is in state X and on the previous move the finite state 
machine cooperated and the opponent defected, then cooperate and transition to 
state Y. Sometimes, more than one situation can result in the same state transition. 
For example, in Figure 3.8, assume the machine is in state 6, in which case if the 
machine and opponent both defected on the previous move, the machine defects 
(D,D/D) and transitions to state 2. Likewise, a transition from state 6 to state 
2 occurs if the machine cooperated and the opponent defected on the previous 
move; the machine cooperates in this case (C,D/C) as it moves into state 2. 

Now that we've seen how to apply evolutionary programming to finite state 
machines used for prediction, let's look at another main area of application, func- 
tion optimization. 

Function Optimization 
The second example of a type of problem to which EP paradigms are applied is 
function optimization. (Remember what we said previously about optimization: 
Usually we really don't find the optimum and often we don't know much about 
where it is or if it even exists. What we usually find is sufficiently good solutions to 
problems.) The following example features the modification of each component 
of the evolving individual structures with a Gaussian random function. 

Consider, for the example, optimizing a function with two variables such as 
F(x, y) - x 2 + y2. The extremum in this case is a minimum at x - y = 0. The first 
step is to establish a random initial population and then to specify the dynamic 
range of the two variables. One plausible approach might be to start with an initial 
population of 50 individuals, each variable of which is initialized randomly over the 
range [-5,  5]. The fitness value of each individual is then calculated. The inverse 
of the Euclidean distance from the origin is one reasonable fitness measure. 

Each "parent" individual is mutated to create one "child." The mutation method 
used by Fogel (1991) is to add a Gaussian random variable with zero mean and 
variance equal to the parent's error value (the Euclidean distance from the origin 
in this example) to each parent vector component. The fitness of each child is then 
evaluated the same way as the parents'. 

The process of mutation is illustrated in equation 3.2: 

Pi + k, j = Pi + N(O, fljfl~pi + zj), 'V'j = 1..., n, (3.2) 

where 
Pi, j is the j~h element of the i ~h organism 

N(~, ~ )  is a Gaussian random variable with mean ~ and variance 
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~bpi is the fitness score for Pi 
pj is a constant of proportinality to scale q~p~ 
zj represents an offset 

For the function used in the example, it has been shown that the optimum rate of 

1.224 f ~  where n is the number of dimensions convergence is represented by a = n ' 
(B~ick and Schwefel 1993). 

Another way to perform mutation involves a process known as self-adaptation. 
In this variation, the standard deviations (and rotation angles, if used) are modified 
based on their current values. As a result, the search adapts to the error surface 
contours (Fogel 1995). 

Fitness, however, is sometimes not used directly by itself to decide which half 
of the augmented population will survive to the next generation. Tournament 
selection is used, with each individual competing with a number, say 10, of other 
individuals in the following way. 

For each of the 10 competitions with other individuals, a probability of"scoring 
a point" is set equal to the error score of the opponent divided by the sum of the 
individual and opponent errors. For instance, if the error of the individual is 2 
and that of the opponent (one of 10 opponents) is 3, the probability of scoring a 
point is 3/5, or 60 percent. The total score is tallied over the 10 competitions for 
each individual, and the one-half of the population with the highest total scores 
is selected for the next generation. 

This concludes our discussion of using evolutionary programming for opti- 
mization. (Keep in mind that, as we discussed previously, we believe that it really 
isn't optimization most of the time.) 

Comments on Evolutionary Programming 
The implementation of evolutionary programming concepts seems to vary more 
from application to application than GA implementations. A number of factors 
contribute to the differences in approach, but the most important factor seems to 
be the top-down emphasis of EP. Another is the fact that selection is a probabilistic 
function of fitness rather than being tied directly to it. One developer of EP (Fogel 
1991) stated that EP is at its best when it is used to optimize overall system behavior. 

Evolution Strategies 

We begin our look at evolution strategies (ES) with the concept of the evolution 
of evolution. As a biological analogy, evolution strategies model problem solutions 
as species rather as they have been described earlier, as populations of normally 
distributed multivariate points scattered around a fitness landscape. The aspect of 
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these populations that permits them to adapt to their environment (in research 
this is often simulated by a test function or hard optimization problem) is their 
ability to evolve their own evolvability. 

If evolutionary programming is based on evolution, then, reasons Rechenberg 
(1994), the field of evolution strategies is based on the evolution of evolution. Since 
biological processes have been optimized by evolution, and evolution is a biological 
process, then evolution must have optimized itself. Evolution strategies, although 
utilizing forms of both mutation and crossover (usually called "recombination" in 
the evolution strategies literature), have a slightly different view of both operations 
than either evolutionary programming or genetic algorithms. 

There are many similarities between evolution strategies and evolutionary pro- 
gramming, and in fact the two paradigms are moving closer together as researchers 
exchange techniques across the Atlantic. Evolution strategies, like evolutionary pro- 
gramming, take a top-down view. They also stress the phenotypic behavior as 
opposed to the genotypic. This means, for example, that the phenotypic behavior 
ramifications of recombination are of importance, rather than what happens to 
the genotypes. ES paradigms also usually use real values for the variables rather 
than the binary coding favored in genetic algorithm implementations. 

In evolution strategies the goal is to move the mass of the population toward 
the best region of the landscape. Through application of the simple rule, "survival 
of the fittest," the best individuals in any generation are allowed to reproduce; their 
offspring resemble them but with some differences introduced through mutation. 
An individual is a potential problem solution characterized by a vector of numbers 
representing phenotypic features. Mutation is performed by adding normally dis- 
tributed random numbers to the parents' phenotypic coordinates, their position 
in the search space, so that the next generation of children explores around the 
area in the landscape that has proven good for their parents. 

The amount of mutation~the evolvability of the population~is controlled 
in an interesting way in ES. An individual is typified by a set of features and 
by a corresponding set of strategy parameters. These are usually variances or 
standard deviations (the square root of the variance), though other statistics are 
sometimes used. The strategy parameters are used to mutate the feature vectors 
for the individual's offspring; for instance, standard deviations can be used to 
define the variability of the normal distribution used to perturb the parent's fea- 
tures. Random numbers can be generated from a probability distribution with 
a mean of zero and a standard deviation defined by the strategy parameters; 
adding these random numbers to the values in the parent's feature vector simu- 
lates mutation in the offspring. They resemble the parents but differ from them 
to some controlled extent. Since the evolutionary process is applied to the strategy 
parameters themselves, the range of mutation, or the variability of the changes 
introduced in the next generation, evolves along with the features that are being 
optimized. 
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Intuitively it can be seen that increasing the variance is like increasing the 
step-size taken by population members on the landscape. High variance equals 
exploration and wide-ranging search for good regions of the landscape, and it 
corresponds to a high rate of mutation; low variance is exploitation, focused search 
within regions. The strategy parameters stochastically determine the size of the 
steps taken when generating offspring of the individual; a large variance means 
that large steps are likely to be taken, that the children are likely to differ greatly from 
their parents. As the children are randomly generated from a normal distribution, 
though, a large variance can produce a small step size, and vice versa. It is known 
that 68.26 percent of random normal numbers generated fall within one standard 
deviation, 95 percent will fall within 1.96 standard deviations of the mean, and 
so on. So widening the standard deviation widens the dispersion of randomly 
generated points. 

Evolution strategies' unique view of mutation includes the concept of an evo- 
lution window. The theory behind the concept is that mutation operations result 
in fitness improvement only if they land within a defined step-size band, or win- 
dow (Rechenberg 1994). Crossover and mutation operations that land outside the 
evolution window are not helpful. A theoretical derivation of Rechenberg states that 
if mutations are carried out with an optimal standard deviation, the probability of 
a "successful" (helpful) mutation is about one-fifth. Evolution strategies carry the 
idea of the evolution window still further. They assert that dynamic adjustment 
of the mutation size to a dynamic evolution window can provide benefits called 
"meta-evolution," or evolution of the second kind (Rechenberg 1994). 

Like evolutionary programming, ES employs Gaussian noise functions with 
zero mean to determine mutation magnitudes for the variables. For the strategic 
parameters, log normal distributions are sometimes used as mutation standard 
deviations. 

Evolution strategies theory states that mutation rates should be inversely pro- 
portional to the number of variables in the individual population member and 
should be proportional to the distance from the function optimum. In real-world 
applications, of course, the exact value of the optimum is usually unknown. How- 
ever, some knowledge often exists about the optimum. It is often known within 
an order of magnitude, sometimes to within a factor of two or three. Even limited 
knowledge such as this can be helpful in guiding the evolution strategy search. 

In ES, recombination manipulates entire variable values. This is usually done 
using one of two methods. The first and more common method (the local method) 
involves forming one new individual using components (variables) from two ran- 
domly selected parents. The second method, the global method, uses the entire 
population of individuals as potential sources from which individual components 
for the new individual can be obtained. 

Each of the two methods, local and global, is generally implemented in one of 
two ways. The first is called discrete recombination, which consists of selecting the 
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parameter value from either parent. In other words, the parameter value in the child 
equals the value of one parent. The second way, called intermediate recombination, 
involves setting each parameter value for a child at a point between the values 
for the two parents; typically, the value is set midway between those values. If the 
parents are denoted byA and/3, and the ith parameter is being determined, then the 
value established using intermediate recombination is X new i -- XA, i+C(XB ,  i - 'XA,  i), 
where C is a constant, usually set to 0.5 to yield the midpoint between the two 
parent values. 

Thus we see that evolution strategies contain a component representing sexual 
combination of features. In intermediate recombination, for instance, the children's 
features are computed as a kind of average of the two parents' features; in discrete 
recombination, individual features may come intact or mutated from one parent 
or the other. 

In the experience of ES practitioners, the best results often seem to be obtained 
by using the local version of discrete recombination for the parameter values and 
the local version of intermediate recombination for the strategy parameter(s). In 
fact, B/ick and Schwefel (1993) report that implementation of strategy parameter 
recombination is mandatory for the success of any ES paradigm. 

All of this is well and good; we know now how to transform individual popu- 
lation members using recombination and mutation. How, then, do we select the 
members of the next generation? How do we accomplish selection? 

Selection 

In evolution strategies, as in all Darwinian models, an individual's fitness deter- 
mines the probability that it will reproduce in the next generation. There can be 
many ways to decide this; for instance, we could rank all the individuals from best 
to worst, chop off the bottom of the list, and save only the proportion that we 
want to survive. This proportion depends on how many offspring they will have, 
assuming the population size remains constant from one generation to the next. 

In nature, of course, there is no ranking of individuals; the survival of each 
depends on the environment and that individual's chance encounters. Imagine a 
snowshoe hare that has a mutation that makes its fur turn black in the winter. 
In the snow this hare is more visible than its camouflaged cousins. It might just 
happen, though, that no predators come into the area where this hare lives, so 
they don't see it and it subsequently reproduces, passing on the mutation. It can 
happen; it is just that the likelihood is reduced relative to the alternative, which is 
that a predator that comes into the area immediately notices this contrastive morsel 
and eats him rather than his harder-to-see littermates. In nature, the measure of 
fitness has a great amount of error in it; possible improvements are commonly 
lost. 

This suggests that selection needs to be probabilistic~you can't just propa- 
gate the best so-many individuals to the next generation. A lesson learned from 



Evolution Strategies 

simulated annealing is that sometimes a step backward is productive in the long 
run. In the same way, natural evolution lets some less-fit individuals reproduce, 
and it is quite likely that eventual improvement is transmitted through the less 
obvious route. Evolutionary computation researchers have come up with a num- 
ber of techniques for stochastically selecting survivors for the next generation. In 
order to better model the stochastic aspect of natural selection~what could be 
called survival of the luckiest~several computational methods of selection have 
been devised. Common methods include ranking, roulette wheel selection, and 
tournament selection. 

Ranking is the simplest procedure, though it does not have the advantage of 
allowing selection of less-fit individuals. The population is sorted from best to 
worst, and individuals above the cutoff in the list are chosen. One salient objection 
to this method is that it requires global information. Knowledge of all fitness values 
is needed in order to determine the rank of any individual. Obviously, nature does 
not work this way; only local information is used in natural selection, and errors in 
ranking~occasions where more-fit members fail to reproduce or less-fit members 
succeed~contribute to the adaptation of the population. This might be a weaker 
argument than it seems, though; there are plenty of times when a computer needs 
to use global information in order to accomplish things that nature does without 
it. For instance, to detect collisions in virtual worlds requires computation of the 
relative positions of all objects in the world, but in the physical world things behave 
appropriately without any such computations. Running into a brick wall stops you, 
period. So evolution in a computer program might be acceptable even if it required 
global information as a way to accomplish an end. 

Roulette wheel selection was discussed in the section on genetic algorithms. 
Recall that, in roulette wheel selection, each individual is given a probability of 
selection proportional to its fitness. Tournament selection was discussed in the 
section on evolutionary programming. 

Tournament selection uses local competitions to determine survivors. In its 
simplest form, individuals are paired at random and the better member of each 
pair is selected to reproduce. This can be repeated until the next generation is 
sufficiently populated. Other tournament methods pair up individuals in some 
number of competitions, adding a point to their score each time they win, and 
then keep individuals with more than a critical number of points; other methods 
select subgroups at random from the population and allow the one with the highest 
fitness to survive to the next generation. 

The results of tournament selection correlate with the results of ranking~that 
is, fitter individuals survive in general. One-on-one, winner-take-all tournaments 
allow the most error in terms of less-fit individuals being selected; while the very 
best individual is guaranteed to survive and the very worst is guaranteed not to, it 
is entirely possible that the next-to-worse individual is paired with the worst one 
and thus is selected. Repetitive and subgroup tournaments decrease the amount of 
error while increasing the correlation with ranking results, until an algorithm where 
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each individual engages in n-1 unique tournaments, where n is the population size, 
is exactly equiValent to ranking. 

Differences exist between evolution strategies and other paradigms of evolu- 
tionary computation with respect to selection. ESs generally operate with a surplus 
of descendants. Schwefel (1994) describes the most common versions of ES selec- 
tion, known as the (u, ~) and (u + 2) ES. In both versions, the number of children 
generated from u parents is ~ > u. Commonly used is a 2/u ratio of 7. In the 
original (1 + 1) ES, one parent produces one offspring, with only the fitter of the 
two surviving. This version is seldom used now. 

The difference between the "plus" and "comma" versions comes in the next 
step. In the (u, ;t) version, the u individuals with the highest fitness values out of the 
Jt children are selected. Note that the u parents are not eligible for selection in this 
scheme, only the children. In the (u + ;t) version, the best u individuals are selected 
from a pool of candidates that includes both the u parents and the 2 children~that  
is, the union of the two groups of individuals. Whichever method is used, the 
individuals that are left have thus been selected completely deterministically and 
have equal probabilities to mate and have descendants in the next generation. 

The discussion of genetic algorithms mentioned the elitist strategy, in which 
the individual in each generation with the highest fitness is guaranteed to survive 
to the next generation. This individual may be carried over from the previous 
generation or may appear as a result of operations in the current one. As can 
be seen from the preceding discussion, the (~ + ;t) version implements elitism, 
as the most-fit parent will be retained, while the (u, ,l) version does not. Elitism 
is generally considered helpful in GA applications. With evolution strategies, 
however, the (u, ;t) version is generally observed to yield better performance (B~ick 
and Schwefel 1993). 

The following list summarizes the procedure used in most evolution strategies. 

1. Initialize population. 

2. Perform recombination using the u parents to form ~ children. 

3. Perform mutation on all children. 

4. Evaluate ;t or u + ;t population members. 

5. Select u individuals for the new population. 

6. If the termination criterion is not met, go to step 2; otherwise, terminate. 

Key Issues in Evolution Strategies 
In sum, in evolution strategies mutation is applied to the parent's features to 
generate children that resemble the parent but differ stochastically from it. Each 
survivor's positional coordinates are entered as the mean of a normal distribution, 
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and the corresponding strategy parameter is entered as the variance or standard 
deviation, and a child vector of numbers is generated for both positions and strategy 
parameters. These are evaluated, selection is applied, and the cycle repeats. The 
evolution of strategy parameters suggests the evolution of evolvability, adaptation 
of the mutability of a species as it searches for, then settles into, a niche. 

This completes our review of evolution strategies. Recall that evolutionary pro- 
gramming, the area we discussed just prior to evolution strategies, does not use 
crossover, only mutation. The area we discuss next, genetic programming, empha- 
sizes crossover, relegating mutation to a minor supporting role. Genetic program- 
ming also uses a somewhat different structure than we've seen up to now. 

Genetic Programming 

The three areas of evolutionary computation discussed thus far have involved indi- 
vidual structures that are defined as strings. Some are strings of binary values and 
some include real-valued variables, but all are strings, or vectors. The genetic pro- 
gramming (GP) paradigm deals with evolving hierarchical computer programs that 
are generally represented as tree structures. Furthermore, while individual struc- 
tures used up to this point have generally been of fixed length, programs being 
evolved by genetic programming generally vary in size, shape, and complexity. 

One perspective is that GPs are a subset of GAs that evolve executable programs. 
Differences between GPs and generic GAs include: 

m Population members are executable structures (generally computer 
programs) rather than strings of bits and/or variables. 

m The fitness of an individual population member in a GP is measured by 
executing it. (Generic GAs' measure of fitness depends on the problem 
being solved.) 

The goal of a genetic programming implementation is to "discover" a computer 
program within the space of potential computer programs being searched that 
gives a desired output for a given set of inputs. In other words, a computer is 
figuring out how to write its own code. 

Each program is represented as a parse tree, where the functions defined for 
the problem appear at the internal tree points and the variables and constants 
are located at the external points (leaves). The nature of the computer programs 
generated makes genetic programming inherently hierarchical. 

In preparation for running a genetic programming implementation, five steps 
are carried out. 
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1. Specify the terminal set. 

2. Specify the function set. 

3. Specify the fitness measure. 

4. Select the system control parameters. 

5. Specify termination conditions. 

The terminal set comprises the variables (the system state variables) and constants 
associated with the problem being solved. For example, consider a "cart center- 
ing" problem, where the goal is to center a cart in the least amount of time on a 
one-dimensional frictionless track by imparting fixed-magnitude forces that accel- 
erate the cart left or right. The variables are the cart's position x and velocity v. 
A constant such as -1  is also an appropriate terminal for this problem (see Koza 
1992, Chapter 6). 

The functions selected for the function set are limited only by the program- 
ming language implementation used to run the programs evolved by the GP 
implementation. They can thus include mathematical functions (cos, exp, etc.), 
arithmetic operations (+, *, etc.), Boolean operators (AND, NOT; etc.), conditional 
operators such as if-then-else, and iterative and recursive functions. Each function 
in the function set requires a certain (fixed) number of arguments, known as the 
function's arity. (Terminals are functions with arity 0.) One task of specifying the 
function set is to select a minimal set that is capable of accomplishing the task. 

This leads to two properties that are desirable in any GP application: closure 
and sufficiency. For the closure property to be satisfied, each function must be able 
to successfully operate on any function in the function set and on any value of 
any data type assumable by a member of the terminal set. 

This occasionally requires definition of special cases for functions. For example, 
in arithmetic functions division by 0 can be defined for the purposes of a problem 
as being equal to some constant value such as 1. If Boolean values returned by 
conditional operators are not acceptable, the conditional operator can be redefined 
in one of two ways: (1) Numerical values (such as 0 and 1) can be returned rather 
than Boolean values (such as F and T), or (2) conditional branching and conditional 
comparative operators can be defined to execute one of their arguments depending 
on the evaluation of the test involving an external state or condition or on the 
comparison test outcome. Functions that are redefined so as to return acceptable 
values are called protected functions. If the closure property is not satisfied, some 
method must be specified for dealing with infeasible population members and 
with members whose fitness is not acceptable. 

For the sufficiency property to be satisfied, the set of functions and set of 
terminals must be sufficiently extensive to allow a solution to be evolved. In other 
words, some combination of functions and terminals must be capable of producing 
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a solution. Some knowledge of the problem is generally required to be able to 
judge when the sufficiency property is met. In some problem domains, sufficiency 
is relatively easy to determine. For example, if Boolean functions are being used, it 
is well known that the function set comprising AND, OR, NOT is sufficient for any 
problem. For other problems, it can be relatively difficult to establish sufficiency. 

Having more than the minimally sufficient number of functions has been found 
to degrade performance somewhat in some cases and to significantly improve it in 
others. Having too many terminals, however, usually degrades performance (Koza 
1992). 

The fitness measure often is selected to be inversely proportional to the error 
produced by program output. Other fitness measures are also common, such as 
the score a program achieves in the game. 

The two main control parameters are the population size and the maximum 
number of generations that will be run. Other parameters used include reproduc- 
tion probability, crossover probability, and the maximum size allowed (as measured 
by the depth, or number of hierarchical levels) in the initial and final program 
populations. 

The termination condition is usually determined by the maximum number of 
generations specified. The winning program is usually the best program (in terms 
of the fitness measure) created thus far in any generation. 

After the five preparatory steps for running a GP are completed, the GP process 
can be implemented as follows: 

1. Initialize the population of computer programs. 

2. Determine the fitness of each individual program. 

3. Carry out reproduction according to fitness values and reproduction 
probability. 

4. Perform crossover of subexpressions. 

5. Go to step 2 unless termination condition is met. 

The population is initialized with randomly generated computer programs com- 
prising functions and terminals from the selected sets. In other words, each pro- 
gram in the initial population is created by building a rooted tree structure with 
randomly selected functions and terminals from the defined sets. No restrictions 
are placed on the size or shape (configuration) of acceptable programs, other than 
the maximum depth, or number of hierarchical levels, allowed. Each structure 
created is a hierarchically structured executable program. A population of 500 has 
been reported to be sufficient for most problems solved with GP implementations 
(Koza 1992). 
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Figure 3.9 Example of root of randomly created program in initial population. Other 
functions continue down from the two branches. 

The root of each program tree is a function randomly selected from the function 
set. The root of a randomly created program appears at the top of Figure 3.9. The 
number of lines, or branches, emanating from the function is equal to its arity. In 
the figure, the multiplication function "*" takes two arguments. 

Once the root function is selected, program population can be created in a 
number of ways. Following is a description of what Koza (1992) calls the ramped 
half-and-half method. It makes use of two approaches to building program trees: 
the "grow" method and the "full" method. 

In the grow approach, a random selection is made from the combined set of 
functions and terminals for placement at the end of each line emanating from 
the root function. If a function is selected, program creation continues recursively 
with selections from the combined set. Whenever a terminal is selected, a leaf, 
or endpoint, of the tree is established. Program creation alongthat line is thus 
terminated. Except for the root function, therefore, all functions are at internal tree 
locations. The leaves of the tree are all terminals. Any time the maximum depth 
(number of hierarchical levels) is reached, the random selection is limited to the 
terminal set. When the grow method is used, the program tree configuration is 
guided by the ratio of the number of functions to the number of terminals. When 
the ratio is higher, the average depth of each limb is higher. 

In the full approach, each limb of the program tree extends for the full depth. 
Only functions are selected for placement at the end of each line until the maximum 
depth is reached, at which time only terminals are selected. All programs created 
using the full approach thus have identical fully developed structures. 

The ramped half-and-half approach produces a population of diverse sizes 
and shapes. Koza (1992) reports using this method for almost all problems except 
those involving Boolean functions. The method consists of creating programs with 
evenly distributed depth parameters ranging from 2 to the maximum depth. For 
example, if the maximum depth is 5, 25 percent of the population will have depth 
2; 25 percent, depth 3, and so on. Within each subpopulation of a given depth, 
one-half of the programs are created using the grow approach, one-half using the 
full approach. 

The fitness of each program is generally calculated for a number of cases, with 
the average fitness value over the cases being defined as a program's fitness. For 
example, if a program were being evolved to calculate y as some function of x, 
each program might be tested over 50 or 100 cases, each representing a value of x 
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in the domain. It is important to use a sufficient number of cases to represent this 
domain. Although it is possible to use different cases in different generations, the 
same fitness cases are usually used across all generations. 

Fitness can be calculated in a number of ways. Koza (1992) defines four fitness 
metrics: raw, standardized, adjusted, and normalized. Raw fitness can be calculated 
in one of several ways, according to the problem being solved. For example, if the 
objective is to maximize the score of a game, or a profit margin, the raw fitness 
can be the score or the profit margin, respectively. Likewise, if the objective is to 
minimize costs or miles traveled, raw fitness could be the cost or number of miles, 
respectively. Another, more common, raw fitness metric is the sum over all cases 
of the absolute value of error. The error can be calculated as the sum of the linear 
differences between the correct values and the program values, or as the sum of the 
squares of the differences. For programs that output Boolean or symbolic values, 
the error can be calculated as the number of incorrect outputs for the test cases. 
Note that desirable raw fitness values can be either larger or smaller, depending 
on how the fitness calculation is formulated. 

Standardized fitness is configured so that lower values are more desirable. In 
fact, the fitness value is often mathematically adjusted such that the optimum 
standardized fitness value is 0. In some problems, such as when cost or error 
values are being minimized, raw fitness and standardized fitness are identical. If 
raw fitness is calculated such that better values are greater, then standardized fitness 
is calculated by subtracting the raw fitness from the maximum possible value of 
raw fitness. 

Adjusted fitness is calculated using standardized fitness: adjusted fitness fa = 
1/(1 -f~),  where f~ is standardized fitness. Values of adjusted fitness thus range 
between 0 and 1, where 1 is the optimum value. Koza prefers adjusted fitness for 
most of his applications (Koza 1992). One reason for this is its behavior as its 
value approaches 1. Near the optimum, small changes in standardized fitnesses 
have relatively more effect on adjusted fitness than similar changes that are distant 
from the optimum. For example, consider a problem where standardized fitness 
values can vary between 0 (optimum) and 20. A change in standardized fitness from 
20 to 19 only moves the adjusted fitness from 0.0476 to 0.0500, while changing 
standardized fitness from 3 to 2 results in an adjusted fitness increment from 0.25 
to 0.33. The calculation of adjusted fitness is somewhat analogous to spacing and 
scaling, discussed in the Genetic Algorithm subsection on fitness calculation. 

Normalized fitness is the same as the normalized fitness used in GA applications. 
It is the adjusted fitness value (for an individual program) divided by the sum of 
adjusted fitness values for all programs that make up the population. As in GAs, 
normalized fitness is used in roulette wheel selection. 

Steps 3 and 4 of the GP process are often carried out in parallel. A probability 
is assigned to reproduction, and another to crossover, so that the two sum to 1. 
If, for example, the probability of reproduction is 10 percent (a typical value in 
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Koza's problems), then the probability of crossover is 90 percent. This means that 
once fitness calculations have been made, and it is time to build the new program 
population, a decision is made based on these probabilities whether to perform 

reproduction or crossover. 
If reproduction is selected, it is often carried out in a similar fashion to the 

roulette wheel selection used in GAs. A candidate program is selected for repro- 
duction with a probability proportional to its fitness divided by the sum of all of 
the programs' fitnesses (its normalized fitness). For very large populations of 1,000 
or more, highly fit individuals are sometimes given an even greater probability of 
selection than their normalized fitness. This is called overselection. 

If crossover is selected, it is accomplished by first selecting two parents using a 
method based on normalized fitness similar to that used for reproduction. Then, 
one point is randomly selected in each parent as the crossover point. The point 
can be anywhere in each program, including the root and internal functions, or 
the terminals. The entire substructure consisting of the crossover point root and 
everything below it is exchanged between the two programs. 

Note that the parent programs, as well as the exchanged substructures, are 
usually of different sizes and configurations. Note also that the results of some 
operations may not be what is usually expected of crossover. An example is when 
the roots of the two programs are selected as crossover points, in which case the 
results are identical to the two programs being selected for reproduction into the 
new population. 

When a crossover operation results in a program that exceeds the maximum 
defined depth, the program that would exceed the depth limit as a result of 
crossover is copied unaltered into the new population, while the crossover opera- 
tion is carried out for the other program. In other words, the subtree at and below 
the crossover point in the unaltered program replaces the program portion at and 
below the crossover point in the other program. 

Preprocessing and postprocessing as typically done when working with other 
computational intelligence tools, such as artificial neural networks and genetic 
algorithms, play a relatively minor role in GP implementations. The selection of the 
function and terminal sets significantly depends on the problem domain, however, 
so this selection could be thought of as preprocessing. 

Formulating the approach to solving a problem with a GP implementation can 
be difficult. Discovering what other people have done in similar circumstances 
is often helpful. Chapter 26 of Koza's 1992 book presents tables to guide a user 
in selection of terminal sets, function sets, population size, and so on. Koza's 
videotapes are also useful sources of information. 

Now that we've explored genetic programming, we turn to the youngest of the 
evolutionary computation areas, particle swarm optimization. It has a number of 
attributes in common with the areas discussed previously but is also different in 
several ways. 
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Particle Swarm Optimization 

Particle swarm optimization (PSO) is an evolutionary computation technique 
developed by Kennedy and Eberhart in 1995 (Kennedy and Eberhart 1995; 
Eberhart and Kennedy, 1995; Eberhart, Simpson, and Dobbins 1996). Thus, at 
the time of the writing of this book PSO has been around for just over 10 years. 
Already, it is being researched and used in more than 30 countries. This section 
reviews developments related to PSO since its origin in 1995, along with resources 
available to help you learn more about it. It is written from an engineering and 
computer science perspective, and it is not meant to be comprehensive in areas 
such as the social sciences. 

Following the introduction, major developments in the particle swarm algo- 
rithm since its origin in 1995 are reviewed. The original algorithm is presented first. 
Following are brief discussions of constriction factors, inertia weights, and track- 
ing dynamic systems. (Applications, both those already developed and promising 
future application areas, are presented in Chapter 12. Those already developed 
include human tremor analysis, power system load stabilization, and product mix 
optimization.) Finally, particle swarm optimization resources are listed. Most of 
them can be accessed via the book's web site. 

Developments 
The story of particle swarm optimization is still unfolding. We can report on only 
the developments that have occurred as of the publication of this book. For now, 
let's start at the beginning. The particle swarm concept originated as a simulation 
of a simplified social system. The original intent was to graphically simulate the 
graceful but unpredictable choreography of a bird flock. Initial simulations were 
modified to incorporate nearest-neighbor velocity matching, eliminate ancillary 
variables, and incorporate multidimensional search and acceleration by distance 
(Eberhart and Kennedy 1995; Kennedy and Eberhart 1995). At some point in 
the evolution of the algorithm, it was realized that the conceptual model was, in 
fact, an optimizer. Through a process of trial and error, a number of parameters 
extraneous to optimization were eliminated from the algorithm, resulting in the 
very simple original implementation (Eberhart, Simpson, and Dobbins 1996). 

Partical swarm optimization is similar to a genetic algorithm in that the system 
is initialized with a population of random solutions. It is unlike a GA, however, in 
that each potential solution is also assigned a randomized velocity and the potential 
solutions, called particles, are then "flown" through the problem space. 

Each particle keeps track of its coordinates in the problem space that are asso- 
ciated with the best solution (fitness) it has achieved so far. (The fitness value is 
also stored.) This value is called "pbest." Another "best" value that is tracked by 
the global version of the particle swarm optimizer is the overall best value, and its 
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location, obtained so far by any particle in the population. This location is called 
"gbest." 

The PSO concept consists of, at each time step, changing the velocity (acceler- 
ating) each particle toward its pbest and gbest locations (in the global version of 
PSO). Acceleration is weighted by a random term, with separate random numbers 
being generated for acceleration toward pbest and gbest locations. 

There is also a local version of PSO in which, in addition to pbest, each particle 
keeps track of the best solution, called "lbest," attained within a local topological 
neighborhood of particles. 

The (original) process for implementing the global version of PSO is as follows: 

1. Initialize a population (array) of particles with random positions and 
velocities on d dimensions in the problem space. 

2. For each particle, evaluate the desired optimization fitness function in d 
variables. 

3. Compare each particle's fitness evaluation with its pbest. If current value 
is better than pbest, set the pbest value equal to the current value and the 
pbest location equal to the current location in d-dimensional space. 

4. Compare fitness evaluation with the population's overall previous best. If 
the current value is better than gbest, reset gbest to the current particle's 
array index and value. 

5. Change the velocity and position of the particle according to equations 
3.3 and 3.4, respectively: 

via = via + Cl * rand() * (Pia - x ia)  

+ c2 * Rand() * (Pea - xi,~) 
(3.3) 

xia = xia + via (3.4) 

6. Loop to step 2 until a criterion is met, usually a sufficiently good fitness 
or a maximum number of iteration generations. 

Note that in equation 3.4 we appear to be adding a velocity to a position. However, 
we are really adding a velocity occurring over a single time increment (iteration), 
so the equation is valid. 

Particles' velocities on each dimension are clamped to a maximum velocity 
Vmax. If the sum of accelerations causes the velocity on that dimension to exceed 
Vmax, which is a parameter specified by the user, then the velocity on that dimen- 
sion is limited to Vmax. 

Vmax is therefore an important parameter. It determines the resolution, or fine- 
ness, with which regions between the present position and the target (best so far) 
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position are searched. IfVmax is too high, particles might fly past good solutions. If 
Vmax is too small, on the other hand, particles may not explore sufficiently beyond 
locally good regions. In fact, they could become trapped in local optima, unable to 
move far enough to reach a better position in the problem space. 

The acceleration constants cl and c2 in equation 3.3 represent the weighting 
of the stochastic acceleration terms that pull each particle toward pbest and gbest 
positions. Thus, adjustment of these constants changes the amount of "tension" 
in the system. Low values allow particles to roam far from target regions before 
being tugged back, while high values result in abrupt movement toward, or past, 
target regions. 

Early experience with particle swarm optimization (trial and error mostly) 
led us to set each the acceleration constant Cl and c2 equal to 2.0 for almost all 
applications. Vmax was thus the only parameter we routinely adjusted, and we 
often set it at about 10 to 20 percent of the dynamic range of the variable on each 
dimension. 

Based on, among other things, findings from social simulations, it was decided 
to design a "local" version of the particle swarm. In this version, particles have 
information only of their own and their neighbors' bests, rather than that of the 
entire group. Instead of moving toward a kind of stochastic average of pbest and 
gbest (the best location of the entire group), particles move toward points defined 
by pbest and lbest, which is the index of the particle with the best evaluation in 
the particle's neighborhood. 

If the neighborhood size is defined as two, for instance, particle(i) compares 
its fitness value with part icle(/-  1) and particle(/+ 1). Neighbors are defined as 
topological neighbors; neighbors and neighborhoods do not change during a run. 
For the neighborhood version, the only change to the process defined in the six 
steps given earlier is the substitution of Pla, the location of the neighborhood best, 
for Pga, the global best, in equation 3.4. Early experience (again, mainly trial and 
error) led to neighborhood sizes of about 15 percent of the population being used 
for many applications. So, for a population of 40 particles, a neighborhood of six, 
or three topological neighbors on each side, was not unusual. 

The population size selected is problem-dependent. Population sizes of 20 to 50 
are probably most common. It was learned early on that smaller populations than 
were common for other evolutionary algorithms (such as GAs and evolutionary 
programming) were optimal for PSO in terms of minimizing the total number of 
evaluations (population size times the number of generations) needed to obtain a 
sufficient solution. 

We now look at the development of the inertia weight. The maximum velocity, 
Vmax, serves as a constraint to control the global exploration ability of a parti- 
cle swarm. As stated earlier, a larger Vmax facilitates global exploration, while a 
smaller Vmax encourages local exploitation. The concept of an inertia weight was 
developed to better control exploration and exploitation. The motivation was to 
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be able to eliminate the need for Vmax. The inclusion of an inertia weight in the 
particle swarm optimization algorithm was first reported in the literature in 1998 
(Shi and Eberhart 1998a, 1998b). 

Equations 3.5 and 3.6 describe the velocity and position update equations with 
an inertia weight included. It can be seen that these equations are identical to 
equations 3.3 and 3.4 with the addition of the inertia weight w as a multiplying 
factor of Vicl in equation 3.3. 

rid W * - viol 4- cl  * r a n d ( )  * (Picl - xicl) 

+ c2 *Rand( ) * ( P s i  - Xid) 
(3.s) 

Xid = Xid + rid (3.6) 

The use of the inertia weight w has provided improved performance in a number 
of applications. As originally developed, w often is decreased linearly from about 
0.9 to 0.4 during a run. Suitable selection of the inertia weight provides a balance 
between global and local exploration and exploitation and results in fewer iterations 
on average to find a sufficiently optimal solution. (A different form of w, explained 
later, is currently being used by one of the authors, RE.) 

After some experience with the inertia weight, it was found that although the 
maximum velocity factor, Vmax, couldn't always be eliminated, the particle swarm 
algorithm works well if Vmax is set to the value of the dynamic range of each 
variable (on each dimension). Thus, you don't need to think about how to set 
Vmax each time the particle swarm algorithm is used. 

Another approach to using an inertia weight is to adapt it using a fuzzy system. 
The first paper published reporting this approach used the Rosenbrock function 
with asymmetric initialization as the benchmark function (Shi and Eberhart 2000). 
The fuzzy system comprised nine rules, with two inputs and one output. Each input 
and the output had three fuzzy sets defined. One input was the global best fitness 
for the current generation; the other was the current inertia weight. The output 
was the change in intertia weight. The results reported show that by using a fuzzy 
adaptive inertia weight, the performance of particle swarm optimization can be 
significantly improved in terms of the mean best fitness achieved in a given number 
of iterations. We discuss fuzzy systems in Chapter 7. 

The next major development we consider is the constriction factor. Because 
particle swarm optimization originated from efforts to model social systems, a 
thorough mathematical foundation for the methodology was not developed at the 
same time as the algorithm. Within the last few years, a few attempts have been 
made to begin to build this foundation. 

Recent work done by Clerc (1999) indicates that use of a constriction 
factor may be necessary to ensure convergence of the particle swarm algorithm. 
A detailed discussion of the constriction factor is beyond the scope of this book, 
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but a simplified method of incorporating it appears in equation 3.7, where K is a 
function of Cl and c2 as reflected in equation 3.8. 

via = K*  [rid + Cl * rand( ) * (Pid -- Xid) 

+ C2 *Rand( ) *(Pga - xia)] 
(3.7) 

2 
K = , where cp = Cl + c2, cp > 4 (3.8) 

] 2 - c# - V/~o2 - 4cp [ 

Typically, when Clerc's constriction method is used, cp is set to 4.1 and the 
constant multiplier K is thus 0.729. This results in the previous velocity being 
multiplied by 0.729 and each of the two ( p -  x) terms being multiplied by 
0.729 * 2.05 - 1.49445 (times a random number between 0 and 1). 

In initial experiments and applications, Vmax was set to 100,000, because it 
was believed that Vmax isn't necessary when Clerc's constriction approach is used. 
However, from subsequent experiments and applications (Eberhart and Shi 2000), 
it has been concluded that a better approach is to limit Vmax to Xmax, the dynamic 
range of each variable on each dimension, while selecting w, Cl, and c2 according 
to equations 3.7 and 3.8. 

What we've discussed so far is fine as long as we're dealing with static systems. 
Most applications of evolutionary algorithms are to the solution of static prob- 
lems. Many real-world systems, however, change state frequently (or continuously). 
These system state changes result in a requirement for frequent, sometimes almost 
continuous, reoptimization. 

It has been demonstrated that particle swarm optimization can be successfully 
applied to tracking and optimizing dynamic systems (Eberhart and Shi 2001). 
A slight adjustment was made to the inertia weight for this purpose. The inertia 
weight w in equation 3.5 was set equal to [0.5 + (Rand()/2.0)]. This produces a 
number randomly varying between 0.5 and 1.0, with a mean of 0.75. This was 
selected in the spirit of Clerc's constriction factor described above, which sets w 
to 0.729. Constants Cl and c2 in equation 3.5 were set to 1.494, also according to 
Clerc's constriction factor. 

The random component of the inertia weight is important because when track- 
ing a dynamic system, it cannot be predicted whether exploration (a larger inertia 
weight) or exploitation (a smaller inertia weight) will be better at any given time. 
An inertia weight that varies roughly within our previous range addresses this. 

For the limited testing done (Eberhart and Shi 2001) using the parabolic func- 
tion, the performance of particle swarm optimization was shown to compare 
favorably (faster to converge, higher fitness) with other evolutionary algorithms 
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for all conditions tested. The ability to track a 10-dimensional function was 
demonstrated. 

Now that we've seen how particle swarm optimization works and some of the 
exciting developments that have occurred recently, let's look at how to get more 
information about it. 

Resources 

Three main categories of resources are available with respect to particle swarm 
optimization: books, web sites, and technical papers. The first book to include a sec- 
tion on particle swarm optimization was Eberhart, Simpson and Dobbins (1996). 
See Kennedy and Eberhart (1999) for a book chapter on PSO. An entire book is 
now available, however, on the subject of swarms: Swarm Intelligence (Kennedy, 
Eberhart, and Shi 2001) discusses both the social and psychological as well as 
the engineering and computer science aspects of swarm intelligence. The web site 
for the book, www.Computelligence.org, is a guide to a variety of resources related 
to particle swarm optimization. Included are Java applets that can be run online 
illustrating the optimization of a variety of benchmark functions. The user can 
select a variety of parameters. Also on the web site is PSO software written in 
C++, Visual BASIC, and Java that can be downloaded. A variety of links to other 
web sites are also provided. The web site for this book is, obviously, another major 
source of PSO information and pointers to other sites. With respect to conferences, 
those related to evolutionary computation (such as the Congress on Evolutionary 
Computation) sponsored or cosponsored by the IEEE provide the richest source 
of publications on PSO. A special issue of the IEEE Transactions on Evolutionary 
Computation devoted to particle swarm optimization was published in June 2004. 

Summary 

In this chapter, we first present a brief history of evolutionary computation, fol- 
lowed by an overview of the evolutionary computation field. Five main evolu- 
tionary algorithms are then discussed in detail in their own sections, respectively. 
The five areas are genetic algorithms, evolutionary programming, evolution strate- 
gies, genetic programming, and particle swarm optimization. Among the five, the 
genetic algorithm is emphasized, with more detailed discussion on subjects such 
as schemata and the schema theorem. 

The five evolutionary algorithms share many features. First, all are 
population-based search algorithms. The cooperation and/or competition among 
the population move the potential solutions toward the better search areas. Second, 
all are motivated by nature. Particle swarm optimization is motivated by social 
behavior, and the other four main evolutionary algorithms are motivated by the 
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survival of the fittest and/or evolution. Third, the five evolutionary algorithms 
employ direct "fitness" information instead of function derivatives or other related 
knowledge. Therefore, evolutionary algorithms can solve problems that are not 
continuous, not differentiable, and multimodal. Fourth, randomness plays roles 
in all of the algorithms. The search process is not deterministic. It is this random- 
ness and the "fitness" information that gives evolutionary algorithms the ability 
to enable individuals to move to anywhere and escape from local 
optima. 

Finally, they all generate the next generation from the previous generation. In 
particle swarm optimization, the individuals (particles) "fly" through the search 
space with dynamically changing velocities. That is, the individuals "fly" to the 
next generation from the current generation. In the other four evolutionary algo- 
rithms, the next generation is obtained by applying so-called evolution operators 
to the current generation: In genetic algorithms and evolution strategies, the selec- 
tion, mutation, and crossover (recombination) operators are applied; in genetic 
programming, selection and crossover operators are used; and in evolutionary 
programming, selection and mutation operators are utilized. 

Comparisons of evolutionary computation tools (in these five areas) and other 
processing methods are also discussed in each section, respectively. Evolutionary 
algorithms are recommended to solve nonlinear problems for which the traditional 
approaches are hard, if not impossible, to apply. It is usual and reasonable to expect 
evolutionary algorithms to find near optimal solutions within a limited period of 
t ime~a  solution that is good enough to be acceptable. 

E x e r c i s e s  . . . . . . . . . . . .  

1. Convert the following binary coded strings to Gray coding: 10101010, 
10011100, 01100110. 

2. How many schemata are possible for a 6-bit binary string? 

3. According to the schema theorem, what happens to highly fit schemata in 
successive generations? What are the effects of crossover and mutation 
according to the theorem? Why use crossover and mutation? 

4. Assume standard binary encoding of parameters is used for a genetic algorithm 
implementation. Briefly discuss how the effects of uniform crossover and 
two-point crossover change as the number of bits representing a parameter is 
increased. 

5. After running a genetic algorithm for a fairly long time, the fitness values 
tend to cluster at the high end of the scale. For example, on a scale 
of 0 to 1, they might cluster from 0.90 to 0.98. What is the main problem 
with this? How can it be alleviated? 
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10. 

11. 

6. Assume that the average fitness of strings containing a particular schema S is 
20 percent less than the average fitness of all schemata, and the schema appears 
in 50 percent of the initial population. Assume that the probability of disrup- 
tion of this schema by crossover or mutation is negligible. Calculate when S 
will disappear from a population with 50 members. Repeat for a 100-member 
population. 

7. Assume each population member in a GA consists of 8 binary coded bits (as in 
the GA example in the chapter), representing the integers 0 to 255. Briefly 
describe or sketch the portion of the problem space covered by the following 
schemata: 0"******, ******* 1, 10"*****, ****** 10, *** 11"**. 

8. What is the main difference between evolutionary programming and evolution 
strategies? 

9. Assume you are going to use genetic programming to evolve a program to 
classify the Iris dataset (pp. 197-198). Specify a function set and a terminal set 
that are appropriate to solve the problem. 

Sketch out a genetic programming representation of the best possible approxi- 
mate solution to v - ~r2h, (v is the volume of a right cylinder, r is its radius, 
and h is its height) given that the maximum depth of the program is five layers 
and you may only use the constant values 0, 1, and 10. If you were going to 
evolve programs to do this calculation using genetic programming, what would 
you propose to use as a function set? 

How is a particle swarm optimizer similar to a genetic algorithm? How is 
it different? How does it resemble an evolution strategies implementation? 



chapter 
u r  

Evolutionary Computation 
Implementations 

In the last chapter, we reviewed the concept 
of evolutionary computation, seeing how it 
can provide a foundation for computational 
intelligence. We examined five main areas 
of evolutionary computation: genetic algo- 
rithms, evolutionary programming, evolu- 
tion strategies, genetic programming, and 
particle swarm optimization. 

In this chapter, we discuss the com- 
mon issues related to the implementation 
of evolutionary algorithms. We present two 
implementations of evolutionary computa- 
tion: a genetic algorithm implementation 
and a particle swarm optimization imple- 
mentation. 

The genetic algorithm (GA)implemen- 
tation is basically a "plain vanilla" GA, but 
with a few interesting options. It imple- 
ments one-point, two-point, or uniform 
crossover, and roulette wheel, tournament, 
or ranking selection. It has an interesting 

set of options for mutation, one of which is 
reminiscent of evolution strategies. 

Five benchmark functions are included 
with the GA implementation: the parabolic 
function (sometimes referred to as the 
spherical function), the Rosenbrock func- 
tion, the Rastrigrin function, the Griewank 
function, and Schaffer's F6 function. 

The function equations appear in 
Table 4.1. All have optimal function (output) 
values of 0 (f*(x) = O) except for Schaffer's 
F6 function, for which the function value 
at the optimum is 1.0. The parameter val- 
ues (x*) at the optimum are all (0, 0,..., O) T 
except for the Rosenbrock function, for 
which x* = (1,1,..., 1)r. 

Table 4.2 lists the dynamic range and 
error criterion for each function. The 
dynamic range is the range within which 
the variables are initialized. Each dynamic 
range is symmetrical; that is, for the 

95 
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Table 4.1 Functions Used in GA and PSO Implementations 

Parabolic fo(x) = ~_ 
i=1 

Rosenbrock f l(x ) : ~ (100(x/÷ 1 _ ~)2 + (x i _ 1)2) 
/--1 

n 

Rastrigrin f2(x) = ~'(x ~ - 10 cos(2~xi) + 10) 
i=1 

Griewank 
, ,  

Shifter's F6 f6 (x) = 0:5 - 

(sin ~/x 2 + y2) 2 - 0:5 

(1:0 + 0:001 (x 2 + y2)) 2 

T a b l e  4 ,2 .  Functions, with Their Typical Initialization Ranges 
and Error Criteria 

Parabolic 10 0.01 

Rosenbrock 100 100 

Rastrigrin 5.12 100 

Griewank 600 0.05 

Shifter's F6 10 0.00001 

parabolic function the dynamic range is [-10, 10]. The error criterion is the 
maximum error value generally acceptable (in the literature) as a stopping crite- 
rion, if error value is used as a stopping criterion. The error value column gives you 
a metric for how well the algorithm performed. 

The particle swarm optimizer (PSO)is implemented to run multi-PSOs simul- 
taneously. By doing so, it can be used both for the optimization of nonlinear 
functions and for optimization problems that require multi-PSOs running simul- 
taneously. An implementation of a co-evolutionary PSO is described that solves 
rain-max problems. 

The PSO implementation includes the same five benchmark functions, listed in 
Table 4.1, as the GA implementation. In addition, for the multiple-swarm version 
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of the PSO implementation, functions have been added that require simultaneous 
minimize~maximize operations (constraint satisfaction). These functions are listed 
and described in the section on multi-PSOs near the end of the chapter, m 

Implementation Issues 

Before we get into specific evolutionary computation implementations, it is impor- 
tant to understand some of the issues common to the implementations of all evo- 
lutionary algorithms. These issues include chromosome representation methods, 
learning strategies, programming strategies, and memory handling. 

In this section, when the term "learning" is used, it is in accordance with what 
is commonly found in the literature. However, our perspective is that "adaptation" 
often describes what a computational intelligence system does better than "learning" 
(see Chapter 2), so please consider mentally inserting the word "adaptation" when 
you see "learning." 

Homogeneous versus Heterogeneous Representation 
Let's first look at homogeneous versus heterogeneous representation. Represen- 
tation is an important factor that requires careful consideration. Traditionally, 
homogeneous representations have been adopted; that is, all individuals are strings 
of binary bits, integers, or real values. One advantage of homogeneous represen- 
tations is that they are simple, and existing evolutionary operators can therefore 
be employed (under the assumption that the same dynamic integer ranges are 
used for each element when integer representation is utilized). But they may 
result in inaccuracy and even difficulties in mapping from genotypes to phe- 
notypes. For example, using binary representation to represent the optimization 
functions' real-valued parameters can result in inaccuracy, and using real-valued 
representation to represent discrete parameters can result in difficulties. (If you are 
trying to build a rule-based system, it is difficult to decode the real valued-based 
chromosomes into rules.) One way to overcome the inaccuracies and difficulties 
is by using heterogeneous representations~for example, using real values to rep- 
resent real value parameters and using integers or binary bits to represent discrete 
parameters. The principal feature of the heterogeneous representations is that 
they are intuitive and natural. But representation-specific evolutionary operators 
have to be designed for each different representation, and the complexity of the 
algorithm is increased. 

Genetic algorithms originally used binary representations, on which the theo- 
retical foundation of genetic algorithms is based. Binary representations are still 
popular. It is natural and intuitive to represent everything using binary strings 
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because computer computation is based on 0s and l s. A disadvantage of this kind 
of representation is that the length of the chromosome will be extremely long when 
the numbers or precision of variables is large. Also, inaccuracy is introduced when 
binary strings are used to represent real-valued parameters. The advantage of the 
binary representation is its simplicity and generality. 

For the representation of multivalue discrete parameters, a more natural and 
intuitive way is to use integer representation. Also, binary representation can be 
easily transformed into integer representation. The advantage of integer representa- 
tion is that the length of the chromosome is reduced compared with that of binary 
representation. The disadvantage is that special evolutionary operators have to be 
designed. Special care has to be taken in designing evolutionary operators, especially 
when a different dynamic integer range is used for each element. 

To overcome the inaccuracy problems introduced by using binary representations 
for encoding real values, a more natural and intuitive way is to use real-valued rep- 
resentations to encode real value parameters. The use of real-valued representations 
makes it possible to use large domains (even unknown domains) for the variables, 
which is difficult to achieve with binary and integer representations. The disadvan- 
tage of this representation is that discrete parameters can't be represented easily. 

Even though every parameter can be represented by binary strings, integer 
strings, or real-valued strings, it is hard to say, generally, which representation is the 
best. It depends on the problem to be solved and your objectives. The advantage 
to using uniform representation is that it is simple, and existing evolutionary 
operators can be employed directly except in the case of integer representation. 
For integer representation, each element may have a different dynamic integer 
range since different variables may have different multivalue discrete parameters. 
In this case, the mutation operator should be position dependent and specially 
designed. 

Generally speaking, it will be more natural to represent the problem to be solved 
in a chromosome in the way it appears in the system implementation. In this way, 
the problem can be more finely adjusted. Certainly this may increase the complex- 
ity of the evolutionary operators. There is a trade-off between representation and 
complexity of the evolutionary operators. Now that we've considered the subject of 
representation, let's look at adaptation. 

Population Adaptation versus Individual Adaptation 
One of the main questions with respect to adaptation is whether to use individual 
or population adaptation. Evolutionary algorithms have been commonly imple- 
mented as population adaptation algorithms, as in the Pittsburgh approach (Smith 
1980), where a set of samples is available to be used as training examples. This 
is the scenario for most function optimization and classification system designs 
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where the training examples can be obtained before training. For other cases, 
individual adaptation approaches may have to be adopted. The best-known indi- 
vidual adaptation approach is the so-called Michigan approach (Holland 1978). 

In the Pittsburgh approach, each chromosome represents the problem to be 
solved, and a set of samples is available to be used as training examples. Since the 
training is often offline, some complicated and large systems can be evolutionarily 
designed by using fast computers, or even a group of computers, where each one 
evaluates only a small portion of the chromosomes and all of them communicate. 
The most important feature of the Pittsburgh approach is that the performance of 
each candidate solution is directly proportional to the fitness of its chromosome rep- 
resentation, which makes evolutionary search more effective and efficient since the 
search is guided by fitness. 

In nature, not all components in a system behave in the same way; some may have 
a "good" contribution while others have a "bad" contribution to the performance 
of the system. All the components both cooperate and compete among themselves, 
and, in theory, the "good" components should have more chance to survive than 
the "bad" ones. In the Pittsburgh approach, all the components of a system are rep- 
resented in a chromosome and treated the same regardless of their contributions. 
This may bring difficulties into the search since the search process only reflects the 
competition among chromosomes. 

These are situations where the Michigan approach may be appropriate. In the 
Michigan approach, each chromosome represents only a single component of the 
system and the whole population represents the complete system. So there is both 
cooperation and competition among all the components of the system, and there- 
fore the strongest potential components have more of a chance to appear and sur- 
vive. Since the whole population represents only one system, only that single system 
needs to be evaluated in each generation, which makes it possible to evaluate the 
chromosomes online. Since in the Michigan approach only one system is evaluated 
for each generation, only a single fitness from the environment is obtained. There- 
fore, special techniques have to be used to distribute the payback among all the 
chromosomes. 

The evolutionary computation implementations described in this chapter all use 
the Pittsburgh approach. 

Static versus Dynamic Adaptation 
In addition to the population versus individual adaptation question, the choice of 
static versus dynamic adaptation exists. The most common evolutionary algorithms 
take a static adaptation approach; that is, the algorithms have fixed parameters 
through the course of the running of the algorithm. For example, the probabilities 
of the crossover and mutation operators, the population size, and so on, are kept 
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constant through the run. But even though evolutionary algorithms with static 
adaptation approaches have been applied to successfully solve problems, when 
solving complicated and large problems, in order for evolutionary algorithms to 
have sufficiently good performance to successfully evolve the systems, the relation- 
ship between exploration and exploitation abilities should be kept balanced during 
the run. 

One way to maintain the balance is through the dynamic adaptation of the 
algorithm parameters. Different levels of adaptation can be implemented, such as 
environment-level adaptation, population-level adaptation, individual-level adap- 
tation, and component-level adaptation. Which level of adaptation to use depends 
on the problem and your objective, but population-level adaptation is the most 
commonly used among the four. For instance, if an operator such as the mutation 
operator is adapted during a run, the adapted mutation rate is most often applied 
to the entire population. 

Flowcharts versus Finite State Machines 
Two of the primary ways to represent evolutionary computation (and other compu- 
tational intelligence) systems are as flowcharts and finite state machines. Flowcharts 
are straightforward and easy to understand. They have been used frequently in 
programming systems, especially simple systems. Finite state machines have been 
very useful for programming systems that require frequent interaction with the 
environment (the user). An example is pressing the Pause button through a graphic 
user interface to pause the running of a system. In state machine implementations, 
a task (or a system with a single task) is divided into several states, with each state 
performing only a simple action. The system is actually a transition process from 
one state to another, and the system can be interrupted at each state transition. 
Since, for each state, only simple action is performed, it can enable the system 
to have real-time interaction. It is also very useful when multitasking is involved. 
Also, finite state machines are often more suited to the structured (object-oriented) 
approach to systems development. 

Handling Multiple Similar Cases 
How do we handler situations where several possible cases exist? Each case has its 
associated function to handler the corresponding situation, and so which of the 
functions to call depends on the situation or the case. In the C language, a com- 
mon method is to use the switch statement. First, a new enumeration data type is 
defined to index the cases. For example, there are several ways to do the crossover 
operation: one-point crossover, two-point crossover, uniform crossover, and so on. 
The new enumeration data type can be defined as that shown in Listing 4.1. 
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Listing 4.1 Enumeration data type for crossover operators. 

Typedef enum crossover_type_tag 
{ 

ONE_POINT_CROSSOVER, 

TWO_POINT_CROSSOVER, 

UNIFORM_CROSSOVER, 

NUM_CROSSOVER 

} crossover_type; 

A new data type to record the index of the current crossover operator to be used 
can be declared as 

crossover_type crossover_index; 

Which crossover operator to use, then, depends on the crossover_index as 
shown in Listing 4.2. 

Listing 4.2 Example of a crossover index. 

static void crossover_handler(int crossover_index) 
{ 

switch (crossover index) 
{ 

case ONE_POINT_CROSSOVER : 

one_point_crossover() ; break; 

case TWO_POINT_CROSSOVER- 

two_point_crossover() ; break; 

case UNIFORM_CROSSOVER : 

uniform_crossover () ; break; 
} 

} 

In Listing 4.2, one_point_crossover (), two_pointcrossover (), 

and uniform_crossover() are the routines actually handling the crossover 
operations. In the above implementation, if the NUN_CROSSOVER is less than 3, 
an if-then statement in the C language would generally be used instead of a switch 
statement. 

Another way to handler the multicase situation is to use a function pointer. Cor- 
responding to the enumeration data type c r o s s o v e r  t y p e ,  an array of function 
pointers is defined as that shown in Listing 4.3. 

Listing 4.3 An array of function pointers for crossover handlers. 

static constant fptr crossover_handler[NUM_CROSSOVER] = 
{ 

one_po int_c r o s sover, 
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two_point_crossover, 

uniform_crossover, 

In Listing 4.3, f p t  r is the function pointer data type. To invoke the crossover routine 
now is as simple as passing the case index to the array of function pointers to point 
to the right function. One disadvantage of using this is that the order of the function 
pointers is critical, and it has to be in exactly the same order as in the definition of 
the enumeration data type. Otherwise, a different function will be called. Cautions 
thus have to be taken when deleting and/or adding cases. 

Allocating and Freeing Memory Space 
Handling memory is always a challenge when using the C language. In programming 
a computational intelligence system, numerous arrays and vectors are typically used. 
In order for the source code to be reusable and suitable for general use, these arrays 
and vectors should be dynamically configured. The sizes of these arrays and vectors 
are dynamically read in when the program is running, and the memory space can't 
be reserved for them before runtime or during compile time. The memory space has 
to be allocated to them during the run and freed after finishing the program run. 
Listing 4.4 is an example of memory allocation and cleanup for a two-dimensional 
integer array. 

Listing 4.4 An example of memory allocation and cleanup. 

/* declare an integer array */ 

int **population; 

/* allocate memory space for the array */ 

population = (int **)calloc(number_of_row, sizeof(int *)); 

for (idx_i = O; idx_i < number_of_row ; idx_i++) 

population[idx_i] = (int *)calloc(number_of_column, sizeof(int)); 

/* release the allocated space */ 

for (idx_i = O; idx_i < number_of_row; idx_i++) 

free (population [idx_i] ) ; 

free (population) ; 

Error Checking 
In any application, it is a good habit to add error checking into your source code for 
debugging. Generally, most runtime errors can be detected by doing this. From an 
error message, you can (usually) easily locate the source of the error and fix it. For 
example, when accessing an element in a vector, you should first check whether the 
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index is valid. You should also check whether the system has enough memory space 
to be allocated to the array every time you are allocating memory space. You can use 
the a s s e r t  () routine defined in ASSERT. H or write your own error checking. 
If a s s e r t  () is used in your source code, it is recommended that you remove the 
a s s e r t  statements from the source code once your program has been debugged. 
Listing 4.5 is an example of error checking for memory allocation. 

Listing 4.5 An example of error checking for memory allocation. 

/* allocate memory space for the array */ 

population = (int **)calloc(number_of_row, sizeof(int *)); 

assert (population != NULL); 

for (idx_i = O; idx_i < number_of_row ; idx_i++) 
{ 

population[idx_i] = (int *)calloc(number_of_column, sizeof(int)); 

if (population[idx_i] == NULL) 
{ 

printf("file name: %s\t line number = %d\n", FILE , LINE); 

exit ( 1 ) ; 
} 

Genetic Algorithm Implementation 

Now that we've looked at issues common to the implementations of all evolution- 
ary algorithms, let's get down to some specifics. This section discusses the genetic 
algorithm implementation. The implementation is essentially a canonical genetic 
algorithm that uses mutation and crossover operators. It closely resembles the basic 
genetic algorithm described in the previous chapter, so material discussed there is 
not repeated. Please refer to Chapter 3 for the basics of genetic algorithms. We begin 
by examining some issues related to programming GAs. 

Programming Genetic Algorithms 
In genetic algorithm implementations, the evaluation/fitness function is an inte- 
gral part of the algorithm. The selection of representation methods depends heavily 
on the problem to be solved. The genetic algorithm implemented here is applied 
to search for optima of several benchmark functions with real-valued parameters. 
A good way to encode the problem is to use real-valued representation, but we 
choose to use a binary representation instead, since binary representation is the orig- 
inal type that has been studied and implemented in the literature and the genetic 
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operators have been thoroughly studied and are mature. It is also the original 
fundamental version of the genetic algorithm on which the schema theorem (dis- 
cussed in Chapter 3) is based. 

Figure 4.1 shows the flowchart of the GA implementation in this book. 

Definition of Enumeration and Structure Data Types 
Since C is not an object-oriented language, it's a good habit to define some enumer- 
ation and structure data types at the beginning of the GA implementation. (It can be 
argued that C is "object-based" since new objects and data types can be created via 
enumerated types and structures.) This can make the implementation more closely 

Figure 4.1 
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( ga_evaluateO ) ( ga_store_resultsO ) 

( ga_selectionO ) ( ga_free_memoryO ) 

( ga_mutationO ) 
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Flowchart of the binary genetic algorithm implementation. Routines in this 
figure are discussed in the text. 
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resemble an object-oriented one, and make it more reusable. In Listing 4.6 are the 
new enumeration data types used in the implementation. 

Listing 4.6 Enumeration data type in the GA implementation. 

typedef enum selection_type_tag 
{ 

ROULETTE_WHEEL_SCALING, 
BINARY_TOURNAMENT, 
RANKING, 
NUM_SELECTION 

} selection_type; 

typedef enum crossover_type_tag 
{ 

ONE_POINT_CROSSOVER, 
UNIFORM_CROSSOVER, 
TWO_POINT_CROSSOVER, 
NUM_CROSSOVER 

} crossover_type; 

typedef enum Evaluate_Function_Tag 
{ 

F6, 
PARABOL I C, 
ROSENBROCK, 
RASTRIGRIN, 
GRIEWANK, 
NUM_EVALUATE_FUNCTIONS 

} Evaluate_Function_Type; 

// 0 :F6: min 
// 1 :Parabolic: min 
// 2 :Rosenbrock: min 
// 3 :Rastrigrin: min 
// 4 :Griewank: min 
// Total no. of eval. functions 

Listing 4.7 Structure data type in the GA implementation. 

typedef struct ga_binary_data_type_tag 
{ 

unsigned char **population; 

// double pointer to the population of binary GA 
double *fit; // pointer to the fitness vector 
int popu_size; // population size: popsize 
int indi_length; // length of chromosome: length 
int iter_max; // iter: maximum number of iterations 
double crossover_rate; // crossover rate 
double mutation_rate; // mutation rate 
double termination_criterion; // criterion 
int best_index; 

// index of best individual of current population 
unsigned char bits_per_para; 

// each weight represented by bits_per_para bits 
unsigned char mutation_flag; 

// flag for mutation, I, variable, 0 constant 
crossover_type c_type; 

// crossover type: 0: one, I: uniform, 2: two 
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selection_type s_type; // selection method 
double *gau; // store gaussian function value for each bit 
int gene_index; // index of current generation 
double fit_variance; 

// variance of fitness of the current generation 
double fit_mean; // average of fitness of the current generation 

} ga_binary_data_type; 

typedef struct ga_env_data_type_tag 
{ 

char resultFile[NAME_MAX]; 
int dimension; 
Evaluate_Function_Type function; 

} ga_env_data_type; 

// result file name 
// N: 
// function to be solved 

The enumeration data types selection_type, crossover_type, and 
E v a l u a t e _ F u n c t i o n _ T y p e  are defined to specify which types of selection 
operators, crossover operators, and optimization functions will be implemented in 
the software run, respectively. 

Listing 4.7 shows the new structure data types in the GA implementation. In the 
ga_binary_data_type definition, unsigned char **population is a 
double unsigned char pointer pointing to the population. The unsigned 
c h a r  is used to represent a bit, which is a waste of memory space. The uns i g n e d  
c h a r  type occupies 1 byte, which consists of 8 bits. To save memory, a bit should be 
used to represent a bit in the population member string. Since there is no data type 
in the C language for bit, an uns i gned c h a r  should be used to represent 8 bits in a 
binary representation. For example, a binary representation with individual length 
160 can be stored in 160/8 - 20 bytes, that is, an array of 20 u n s i g n e d  c h a r s .  

unsigned char *binary_individual; 
binary_individual = (unsigned char*) calloc (20, sizeof(unsigned char)); 

The disadvantage of using a byte to represent eight elements in binary 
representation is that the genetic operations involve bit manipulations, which 
makes the computation more complex and generally consume more compu- 
tation time. There are thus trade-offs between required memory space and 
computation time/complexity and between code simplicity and complexity and 
a programmer's time to write and test extra code. For generality, we use the 
unsigned char type here. 

The u n s i g n e d  c h a r  variable b i t s _ p e r _ p a r a  is the number of bits used 
to represent a real-valued parameter. The variable f i t  is a double pointer 
pointing to fitness values of the population; gau is a double pointer pointing to 
the vector b i t s _ p e r _ p a r a  number of real values, which are used to store the 
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probability of mutating each bit. These probabilities are used for implementation 
of bit-position-based mutation. 

The integer type variables p o p u _ s i z e ,  2 n d i _ l e n q t h ,  and 2ter__max 
are the population size, the length of the individual, and the maximum number of 
generations. The double variables c r o s s o v e r _ r a t e ,  m u t a t i o n _ r a t e ,  and 
t e r m i n a t i o n _ c r i t e r i o n  are the crossover rate, the baseline mutation rate at 
the population level, and the criterion for terminating the run, respectively. (The 
only termination method implemented in the software on the book's Internet site is 
reaching the maximum number of generations.) The integer type variables 
b e s t _ i n d e x  and g e n e _ i n d e x  are the index of the best individual among the 
population at the current generation and the index of the current generation, respec- 
tively. The unsigned char m u t a t i o n _ f l a g  specifies which kind of mutation is 
going to be performed (explained later). The c r o s s o v e r _ t y p e  and 
s e l e c t i o n _ t y p e  variables c _ t y p e  and s _ t y p e  specify which types of 
crossover operator and selection operator are going to be used. The double types 
f i t _ v a r i a n c e  and f i t _ m e a n  are the variance and mean of the fitness values of 
the current generation. 

Another defined s t r u c t  data type is g a _ e n v _ d a t a _ t y p e ,  which includes 
three data types: the first is a file name in which the results of the run are to be 
stored; the second is the dimension of the problem (function). The length of each 
individual is calculated by multiplying it with b i t  s_pe r _ p a r a .  The last one is the 
function to be solved. 

Two global data variables g a _ d a t a  and g a _ e n v _ d a t a  are defined, as shown 
below, so the GA and its environment-related parameters are not required to 
be passed from one routine to another within the GA module. 

ga_binary_dat a_type ga_data; 
ga_env_dat a_t ype ga_env_dat a; 

The GA m a i n  () Routine 
Listing 4.8 is the main () routine, which is the entry point of the program. It is 
a good habit to keep main () routines simple. In the GA__Start_Up ( d a t F i l e )  
routine, shown in Listing 4.8, all the GA problem-related parameters are read in from 
the input file. For example, the variable "bits per parameter" b i t s _ p e r _ p a r a  is 
read in from the input file. This variable tells how many bits are used to encode one 
parameter to be evolved. The larger b i t s _ p e r _ p a r a  is, the higher the 
resolution is and the longer the individual population member length is, and 
therefore the more computation time it consumes. Also, memory space is allocated 
to the dynamic data, and the population is initialized. In the GA__C 1 ean_Up ( ) rou- 
tine, the results are stored to an output file and the previously allocated memory 
space is de-allocated. 
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Listing 4.8 The m a i n  ( ) routine of the binary GA implementation. 

void main(int argc, char *argv[]) 
{ 

if (argc != 2) 
{ 

printf("usage: ga [datFile]\n"); 
exit (i) ; 

} 

GA_Start_Up (dataFile) ; 
GA_Main_Loop ( ) ; 
GA_Clean_Up ( ) ; 

void GA_Start_Up (char *datFile) 
{ 

int idx_i; 
ga_read_parameter(datFile); 

ga_data.indi_length = ga_env_data.dimension * ga_data.bits_per_para; 
ga_allocate_memory(); 
ga_initialization(); 

for (idx_i = 0; idx_i < ga_data.bits_per_para; idx_i++) 
ga_data.gau[idx_i] = gaussian(sqrt(idx_i)); 

void GA_Clean_Up (void) 
{ 

ga_store_results ( ) ; 
ga_free_memory ( ) ; 

} 

void GA_Main_Loop (void) 
{ 

while ( (++ (ga_data.gene_index)) < ga_data.iter_max) 
{ 

ga_evaluate ( ) ; 
ga_selection () ; 
ga_crossover ( ) ; 
ga_mut at e ( ) ; 

} 

The GA_Main_Loop () routine is the main loop of the GA implementation. 
All the genetic operations are performed here. These operations form the core of 
the search process. 

For each cycle (generation), first the population of solutions is evaluated, then 
the next generation of solutions is selected using the selection operator according 
to the fitness values obtained in the last step. The newly formed solutions then go 
through crossover and mutation operations. This process is repeated until either the 
specified maximum number of generations is reached or a termination criterion is 
met. We didn't implement a termination criterion but left it as an exercise for the 
student (see Exercise 6 at the end of this chapter). 
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The g a _ e v a l u a t e  () Routine 
In the g a _ e v a l u a t e ( )  routine, shown in Listing 4.9, each individual is 
evaluated. First the binary representation is decoded into the real-valued parameters 
by calling the ge t_parameter  () routine, then the evaluation function specified 
in ga_env_data  (ga_env_data .  f u n c t i o n )  is called, We have implemented 
five benchmark functions: Shaffer's F6, Parabolic, Rosenbrock, the generalized 
Rastrigrin, and the generalized Griewank functions. They all are minimum opti- 
mization problems except Shaffer's F6 and have been transformed to the maximum 
optimization problems by multiplying by-1 in the implementation. 

Listing 4.9 The ga_e v a i u at e ( ) routine. 

void ga_evaluate (void) 
{ 

int idx_i; 

double *para; /* pointer to the parameters */ 

/* allocate memory space for the parameter matrix */ 

para = (double *)calloc(ga_env_data.dimension, sizeof(double)); 

/* fitness calculation */ 

for (idx_i = 0; idx_i < ga_data.popu_size; idx_i++) 
{ 

/* convert binary vector to real valued parameters */ 

get_parameter(idx_i,para); 

/* get fitness */ 

ga_data.fit[idx_i] = 

OPT_Function_Routines (ga_env_data. function, ga_env_data, dimension, para) ; 
} 

free(para); 

ga_data.best_index = maximum(ga_data.fit,ga_data.popu_size); 

ga_data.fit_mean = average(ga_data.fit, ga_data.popu_size); 

ga_data.fit_variance = variance(ga_data.fit,ga_data.fit_mean, 

ga_data.popu_size); 

double OPT_Function_Routines (int fun_idx, int dim, double *para) 
{ 

double result; 

switch (fun_idx) 
{ 

case F6 : 

result = f6(para); break; 

case PARABOLIC: 

result = parabolic (dim, para) ; break; 

case ROSENBROCK : 

result = rosenbrock(dim, para) ; break; 

case RASTRIGRIN: 

result = rastrigrin(dim, para); break; 

case GRIEWANK : 
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result = griewank(dim, para); 

default : 

) 

return (result) ; 

break; 

break; 

The g a _ s e l e c t i o n  () Routine 
The main objective of the selection operator in a GA is to give the candidate solu- 
tions having better performance (higher fitness value) more chances to survive and 
reproduce more copies into the next generation. 

In the g a _ s e l e c t i o n  () routine, shown in Listing 4.10, several selection 
mechanisms are implemented. They are proportionate selection, binary tournament 
selection, and ranking selection. All of them are combined with the elitist strategy; 
that is, at least one copy of the best candidate solution will be reproduced into the 
next generation. 

For the proportionate selection operator, the quantity of each candidate solution 
copied into the next generation is proportional to its fitness value. The simplest one 
is called roulette wheel selection, with each solution occupying an area on the wheel 
proportionate to its fitness value. (Roulette wheel selection is discussed in Chapter 3.) 
The wheel is spun as many times as the size of the population. Each time, a solution 
is selected according to where the pointer points. The advantage of this selection is 
that the concept is simple and easy to implement. The disadvantage is that the fitness 
value has to be positive, which generally can't be guaranteed, especially when there 
is no a priori knowledge about the problem to be solved. A way to overcome this 
problem is to shift the fitness values of the population. In our implementation, we 
shift the raw (original) fitness values by moving the minimal fitness value to about 
10 percent of the dynamic fitness range ( m a x _ f i t n e s s  - m i n _ f i t n e s s ) "  

new_fitness[i] = old_fitness - min_fitness + 0.i * (max_fitness - 

min_fitness) 

Another disadvantage of the roulette wheel selection operator is that this 
approach can't be directly used for a minimization optimization problem. The prob- 
lem has to be converted to a maximization problem. If the original fitness value is 
positive, then the fitness value of the converted problem is negative. The shifting 
approach then has to be applied to the fitness value of the converted problem in 
order to use a roulette wheel selection operator. This shift approach is also useful for 
relatively flat fitness surfaces and/or near the end of a run. 

For the binary tournament selection operator, two individuals are randomly 
picked and their fitness values are compared. The individual with the better fitness 
is copied into the next generation. The advantages of this approach are that it is 
easy to implement, there are no restrictions on fitness values, it is suitable for 
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parallel implementation and thus runs fast, and it can be applied to solve both 
minimization and maximization optimization problems directly. 

The ranking selection operator is similar to that for roulette wheel selection. First 
the solutions are ranked, then each solution is assigned a predetermined ranked fit- 
ness value based on its rank in the population. These values are usually evenly spaced, 
often between 0 and 1. After that the operations are similar to that in roulette wheel 
selection, so we don't repeat them here. This process is most useful when the fit- 
nesses have become bunched together late in the run. As a simple example, consider 
a ranked population of four individuals with fitnesses of 0.95, 0.96, 0.97, and 0.98. 
As is, they have very similar probabilities of selection into the next generation. Now 
evenly space their fitness values between 0 and 1, so that their ranked fitness values 
are now 0.25, 0.50, 0.75, and 1.0. Now the probabilities of selection are 10 percent, 
20 percent, 30 percent, and 40 percent, respectively, and the selection pressure has 
been substantially increased. 

Which selection operator to choose and how to implement it is critical since it 
impacts the selection pressure and, therefore, the performance of the GA. In List- 
ing 4.11, the source code of the implementation of a binary tournament selection 
operator is shown. In this implementation, an integer pointer flag is defined and a 
p o p u _ s i z e  quantity of integer type memory space is allocated to it. F l a g  [ i ] is 
used to record the copies of the individual i that have been selected for the next 
generation. At the beginning, no copies are selected for each individual; that is, 
f 1 ag  [ i ] : 0, Vi E{0,.. . ,  popu_s  i ze - 1 }. Each time an individual i is selected 
into the next generation, f l a g [ i ]  increases by 1. This process is repeated until 
total p o p u _ s  i z e copies of individuals have been selected. Then the new popula- 
tion is formed by checking each f l a g [ i ] .  If f l a g [ i ]  = 0, it means individual 
i has not been selected for the next generation. It is then replaced by an individual 
j with f l a g  [ j ]  > 1, and f l a g  [ i ] increases by 1 and f l a g  [ j ]  decreases by 1. 
This process is repeated until f l a g  [ j ]  = 1, Vj E{O,..., p o p u _ s i z e  - 1}. 

Listing4.10 The g a _ s e l e c t i o n  () routine. 

void ga_selection (void) 
{ 

switch (ga_data.s type) 
{ 

case ROULETTE_WHEEL_SCALING- 
roulette_wheel_scaling(); break; 

case BINARY_TOURNAMENT" 
binary_tournament(); break; 

case RANKING: 
ranking(); break; 

default: 
binary_tournament(); break; 
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Listing 4.11 The Binary tournament selection operator. 

static void binary_tournament (void) 
( 

int idx_i, idx_j, idx_k; 
int kid_l, kid_2; 

int *flag; /* information for selected times */ 
int no; 

flag = (int *)calloc(ga_data.popu_size, sizeof(int)); 

/* set all flags to be zero, means no one has been selected */ 
for (idx_i = O; idx_i < ga_data.popu_size; idx_i++) 

flag[idx_i] = O; 

flag[ga_data.best_index] = i; /* keep the best */ 

/* set the flags for all individuals */ 

for (idx_i = O; idx_i < (ga_data.popu_size- i); idx_i++) 
{ 

kid_l = rand()%(ga_data.popu_size); 
kid_2 = rand()%(ga_data.popu_size); 

if ((ga_data.fit[kid_l]) > (ga_data.fit[kid_2])) 
flag[kid_l] +=i; 

else 

flag[kid_2] += i; 

/* form the new population */ 

for (idx_i = O; idx_i < ga_data.popu_size; idx_i++) 
{ 

if (flag[idx_i] == O) 
{ 

no = O; 

for (idx_j = O; idx_j < ga_data.popu_size; idx_j++) 
{ 

if (flag[idx_j] > I) 
{ 

idx_k = idx_j; 

no = no + I; 

break; 
} 

} 

if (no == O) 
{ 

printf("something wrong in selection \n"); 
exit (i) ; 

) 

flag[idx_k] = flag[idx_k] - i; 

/* copy the selected individual to new individual */ 

for (idx_j = O; idx_j < ga_data.indi_length; idx_j++) 

ga_data, population [ idx_i ] [ idx_j ] = ga_data, population 

[ idx_k ] [ idx_j ] ; 
flag[idx_i] += I; 
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} 
} 

/* check the selection */ 
for (idx_i = O; idx_i < ga_data.popu_size; idx_i++) 
( 

if (flag[idx_i] != I) 
( 

printf("something wrong with selection in") ; 
exit ( 1 ) ; 

} 
} 
free (flag) ; 

The g a _ c r o s s o v e r  () Routine 
In the g a _ c r o s s o v e r  ( ) routine, as shown in Listing 4.12, three types of crossover 
operator are implemented. Which one to use is specified in the input file. First, (pop- 
ulation size)/2 pairs of individuals are randomly picked. Which pair of individuals is 
going to experience the crossover operation is randomly determined, with crossover 
occurring with a probability of c r o s s o v e r _ r a t e .  In the implementation, all 
the individuals have one chance to be selected to undergo the crossover operation. 
An integer pointer store_index is defined and allocated popu_size quantity 
of integer type memory space. Each element of s t  o r e  i n d e x  stores an index of an 
individual that has not been selected to go through the crossover operation. Another 
integer data variable r e m a i n _ n u m b e r  is defined to store the number of individ- 
uals that have not been selected. At the beginning, store_index[j] - j and 
r e m a i n n u m b e r  - p o p u s i z e  since no individuals have been selected yet. 

Each time an individual j is selected through calling the s e a r c h ( ) r o u t i n e ,  
s t o r e _ i n d e x  [ _~], _~ - _j,..., r e m a i n n u m b e r  is replaced byits next element 
through calling the r e o r d e r ( )  routine, that is, s t o r e  i n d e x [ j ]  = 
s t o r e  i n d e x [ j + l ] .  Then r e m a i n n u m b e r  decreases by 1. Each pair of 
individuals selected has a chance ( c r o s s o v e r _ r a t e )  to undergo the crossover 
operation. This process is repeated until r e m a i n n u m b e r  < 2. To facilitate fast 
computation, s t o r e _ i n d e x  may be better defined as a linked list data type. 

Listing4.12 The ga_crossover () routine. 

void ga_crossover(void) 
( 

int idx_i, idx_j; 

int *store_index; 

int remain_number, kidl, kid2; 
double prob; 

store_index = (int *)calloc(ga_data.popu_size, sizeof(int)) ; 
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for (idx_i = 0; idx_i < ga_data.popu_size; idx_i++) 
store_index[idx_i] = idx_i; 

remain_number = ga_data.popu_size; 

/* begin crossover among population */ 

for (idx_i = 0; idx_i < (ga_data.popu_size/2 + i); idx_i++) 

{ /* two kids are chosen each time */ 
if (remain_number >= 2) 

/* at least two individuals remain unchosen */ 
{ 

idx_j = search(remain_number); /* find the first kid */ 

kidl = store_index[idx_j]; /* index to the first kid */ 

remain_number--; /* update number of remaining unchosen */ 

reorder ( store_index, remain_number, idx_j ) ; 

/* reorder the sign vector */ 
idx_j = search(remain_number); /* find the second kid2 

kid2 = store_index[idx_j]; /* index to the second kid */ 

remain_number--; /* update number of remaining unchosen */ 
reorder (store_index, remain_number, idx_j) ; 

/* reorder the sign vector */ 
prob = (rand()%1000)/1000.0; 

if (prob <= ga_data.crossover_rate) 

/* probability for crossover */ 
{ 

if ((kidl != ga_data.best_index) && (kid2 != 

ga_data, best_index) ) 
{ /* keep the best */ 

switch (ga_data. c_type ) 
{ 

case ONE_POINT_CROSSOVER: 

onecross(kidl,kid2); break; 
case UNIFORM_CROSSOVER: 

unicross(kidl,kid2); break; 

default : 
twocross(kidl,kid2); break; 

} 
} 

} 
} 

} 

free (store_index) ; 

static int search (int si) 
{ 

int re; 

re = rand()%(si); 

return (re) ; 
} 

static void reorder (int *vec, int si, int ind) 
{ 

int i; 

if (ind<si) 

for (i=ind; i<si; i++) 

* (vec+i) =* (vec+i+l) ; 
) 
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The ga_mutation () Routine 
For a GA with binary representation, the mutation operation is generally performed 
by independently, randomly, uniformly flipping bits with a small probability. In the 
qa m u t a t i o n  ( ) routine, shown in Listing 4.13, two mutation methods are imple- 
mented. Which one to use depends on a "mutation according to bit position" flag, 
m u t a t i o n _ f l a g ,  which is read from the input file. When this flag is 0 (disabled), 
mutation is carried out in the normal way: mutation is done bit by bit with a fixed 
probability of mutation read in from the input file. When it is 1 (enabled), the prob- 
ability of mutation mb varies with the bit position in each variable. 

The variation in mutation across each variable is an exponential function; that 
is, it is much more probable that the least significant bit will be mutated than it is 
that the most significant bit will be. It is implemented according to equation 4.1, 
where b is the bit position (b - 0 for the least significant bit, b - 1 for the next- 
to-least significant bit, etc.) and m0 is the probability of mutation used when 
mutation_flag = O. 

1 _b2/2 
mb = m o - ~ e  (4.1) 

Note that the calculation is done across each variable. So, for a variable 
represented by 16 bits, the resulting probability of mutation is m0(1/2zr) 1/2, or about 
(m0)(0.40) for the least significant bit and about (mo)(O.40)exp(-7.5) = (m0)(0.40) 
(0.00055) for the most significant bit. The variance for the quasi-Gaussian function 
can thus be seen to depend on the variables' dynamic range and how each variable 
is represented by the binary string. 

This mutation by bit position can be seen to be similar in concept to the Gaus- 
sian mutation carried out in the evolutionary programming function optimization 
example and to the mutation scheme employed in evolutionary strategies, both 
described in Chapter 3. We therefore implement a hybrid GA/EP/ES algorithm with 
this mutation option. Listing 4.13 lists the g a _ m u t a t i o n  () C source code, where 
gau [ i d x _ i  ] records the bit-position-dependent probability for the ith bit, which 
is obtained by equation 4.1. 

Listing 4.13 GA mutation operation C source code. 

void ga_mutate (void) 
{ 

int idx_i, idx_j ; 

double prob, rate_m; 

for (idx_j = O; idx_j < ga_data.popu_size; idx_j++) 

if (idx_j != (ga_data.best_index)) 

for (idx_i = O; idx_i < ga_data.indi_length; idx_i++) 
{ 
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prob = (rand()%lO00)/lO00.O; 

if ((ga_data.mutation_flag == i)) 

rate_m = ga_data.mutation_rate * 

ga_data, gau [ idx_i% (ga_data. bit s_per_para) ] ; 

else 

rate_m = ga_data.mutation_rate; 

if (prob <= rate_m) 

if ((ga_data.population[idx_j] [idx_i]) == O) 

ga_data.population [idx_j] [idx_i] = i; 

else 

ga_data.population [idx_j] [idx_i] = O; 

Generally, values of mutation rate within [0.001, 0.01 ] are recommended for the 
canonical binary genetic algorithm discussed in this section, especially when a fixed 
mutation rate is used. The mutation operation, generally speaking, has a disruptive 
impact on the population and therefore brings new information into the population. 
It facilitates exploration of the search space. 

Running the GA Implementation 
Now that we've looked at the individual components of the GA implementation, 
let's put them all together. To run the genetic algorithm implementation (the code 
for which is on the book's web site) requires the executable file ga .  e x e  and an asso- 
ciated run file, for example, ga .  run. To run the implementation from within the 
directory containing ga .  e x e  and ga .  run, at the system prompt type ga g a .  run. 

One way to present the genetic algorithm implementation is to examine and dis- 
cuss the contents of a typical run file, as shown in Listing 4.14, that can be invoked 
with the executable file. 

Listing 4,14 An example of a GA run file. 

results.out 

I0 

4 

i0000 

16 

20 

0.75 

0.005 

0.02 

0 

2 

1 
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The first entry, results, out, is the name of the data file where the results are 
stored. The next two numbers are the dimension of the problem (10) and the func- 
tion type (4--Griewank). These inputs are related to the GA's working environment; 
that is, the function to be solved is the 10-dimensional generalized Griewank func- 
tion. The results of the run will be stored in a file named r e s u l t s ,  out .  

Following the environment inputs are numbers: the maximum number of 
generations (10,000), the number of bits per variable (16), the population size 
(20), the percent probability of crossover divided by 100 (0.75), the probability 
of mutation (0.005), the acceptable fitness values to which the problem is to be 
evolved (0.02), the "mutate according to bit position" flag (0), the crossover type 
(2), and the selection type (1). 

The maximum number of generations is the maximum number of epochs, that 
is, the maximum number of times the problem will be evaluated for the fitness of all 
individuals in the population. 

The number of bits per variable allows the user to set the resolution for each 
vector element; in this case, each element represents one function parameter. The 
trade-offhere is that a relatively high number of bits provides the resolution needed 
to successfully adjust parameters on a complex fitness surface, but it also increases 
computational complexity significantly. This GA implementation provides a tool to 
investigate this question with a variety of datasets representing various problems. 

The number of population members (20 in this case) can be varied according to 
the problem. A higher number allows a more thorough exploration of the problem 
domain, but increases computing time. Typically, the value should be set between 20 
and 200, but values outside the range may be appropriate for relatively simple prob- 
lems that involve relatively short individuals (< 20) or for highly complex problems 
that involve very large chromosomes (> 200). 

The probability of crossover should be set between 60 and 80 percent for many 
problems. The straightforward two-point crossover operator (as described in 
Chapter 3) can be implemented, as can one-point and uniform crossover. 

The next value (0.005 in the list) is the probability of mutation. Options for 
mutation implemented in this GA were explained previously. The value listed here 
is a sort of baseline value; it can be implemented in one of two ways. If not modi- 
fied, however, the value represents the chance that mutation will occur determined 
bit by bit. 

The next value, 0.02, is the fitness target for the performance of the "evolved" 
solution. The GA will terminate when this fitness level is achieved or when the max- 
imum number of generations have been calculated, whichever occurs first. In either 
case, the results are written to the specified output file. In this implementation, this 
value is not used. We terminate the run only when the maximum number of gener- 
ations is reached. 

The next value (0) is the "mutation according to bit position" flag. The meaning 
of this flag was explained in the previous section. 



Chapter FourmEvolutionary Computation Implementations 

The next-to-last value in the list (2) is the crossover type. The GA implementation 
allows the user to choose one of three kinds of crossover. If the crossover type is 
set to 0, one-point crossover is implemented. If it is set to 1, uniform crossover is 
implemented, and a value of 2 implements two-point crossover. 

The last value in the list (1) is the selection type. The GA implementation allows 
the user to choose any of three kinds of selection mechanisms. If the selection type 
is set to 0, the roulette wheel selection operator is implemented; if it is set to 1, the 
binary tournament selection operator is implemented; and a value of 2 implements 
the ranking selection operator. 

The output file lists the input parameters specified in the run file. It then lists the 
fitness value for each population member at the end of the run. Last, the parameter 
values for the population member with the highest fitness are listed. 

It is important to experiment with the GA implementation. Be aware that 
because of its stochastic nature, a GA may converge to a different point each 
time it is run. Researchers rely on computational experimentation to compare 
the effectiveness of evolutionary algorithms. You are encouraged to use accepted 
statistical tests such as t-tests and Tukey's method when you are reporting your 
results. 

You now know everything you need to know about running the GA implemen- 
tation. We suggest you take the application for a trial run. 

Particle Swarm Optimization Implementation 

Now that we've reviewed the GA software, we discuss PSO implementation. The 
PSO implementation is essentially an asynchronous version of particle swarm opti- 
mization that uses global best and pbes¢  (see Chapter 3). The basic particle 
swarm optimization discussed in the previous chapter is implemented first, then 
the implementation is expanded to provide the capability of running multi-PSOs, 
particularly co-evolutionary particle swarm optimization. We begin by looking at 
some programming issues. 

Programming the PSO Implementation 
In contrast to the implementation of the genetic algorithm discussed in the last 
section, the implementation of PSO is based on a state machine (SM) instead of 
a flowchart. Figure 4.2 shows the state machine of this PSO implementation. The 
arrow leading from one state to another state is called a transition. It describes how 
the SM transitions from state to state. The label of a transition describes the condi- 
tion that triggers the transition. 
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Figure 4.2 A state diagram of an asynchronous particle swarm optimization 
implementation. 

As in the GA implementation, some new data types are defined initially. 
Listings 4.15 and 4.16 show these definitions. 

Listing 4.15 Definition of some new data types in the PSO implementation. 

typedef float *P_FLOAT; 
typedef P_FLOAT FVECTOR; 
typedef P_FLOAT *FMATRIX; 

**WW***WWW*WWWWWW*W*WW***WWWWWWWWWW.W./ 

/* Enumerations */ 
**************************************** 

typedef enum PSO_State_Tag 
{ 

PSO_UPDATE_INERTIA_WEIGHT, // Update inertia weight 
PSO_EVALUATE, // Evaluate particles 
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PSO_UPDATE_GLOBAL_BEST, 
PSO_UPDATE_LOCAL_BEST, 
PSO_UPDATE_VELOCITY, 
PSO_UPDATE_POSITION, 
PSO_GOAL_REACH_JUDGE, 
PSO_NEXT_GENERATION, 
PSOS_DONE, 
NUM_PSO_STATES 

} PSO_State_Type; 

// Update global best 
// Update local best 
// Update particle's velocity 
// Update particle's position 
// Judge whether reach the goal 
// Move to the next generation 
// Finish one cycle of PSOs 
// Total number of PSO states 

typedef enum PSO_Initialize_Tag 
{ 

PSO_RANDOM_SYMMETRY_INITIALIZE, // 0 :Symmetry Initialization 
PSO_RANDOM_ASYMMETRY_INITIALIZE, // 1 :Asymmetry Initialization 
NUM_PSO_INITIALIZE // Number of initialization methods 

} PSO_Initialize_Type; 

typedef enum MINMAX_Tag 
{ 

MINIMIZATION, 
MAXIMIZATION 

} MINMAX_Type; 

// 0 :Minimization problem 
// 1 :Maximization problem 

typedef enum Evaluate_Function_Tag 

F6, 
PARABOLIC, 
ROSENBROCK, 
RASTRIGRIN, 
GRIEWANK, 
NUM_EVALUATE_FUNCTIONS 

} Evaluate_Function_Type; 

// 0 :F6: min 
// 1 :Parabolic: min 
// 2 :Rosenbrock: min 
// 3 :Rastrigrin: min 
// 4 :Griewank: min 
// Total number of evaluation functions 

typedef enum Inertia_Weight_Update_Method_Tag 
{ 

CONSTANT_IW, // 0 :Constant inertia weight 
LINEAR_IW, // 1 :Linearly decreasing inertia weight 
NOISE_ADDITION_IW, // 2 :Adding noise to the constant inertia weight 
NUM_IW_UPDATE_METHODS // Number of inertia weight update methods 

} IW_Update_Type; 

Listing 4.16 Structure data type definitions for PSO. 

/* Structures */ 
**************************************** 

typedef struct PSO_Initialize_Range_Type_Tag 
{ 

float left; 
float right; 

} P SO_Init iali ze_Range_Type; 
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typedef struct PSO_Environment_Type_Tag 
{ 

MINMAX_Type opti_type; 
Evaluate_Function_Type function_type; 
IW_Update_Type iw_method; 
PSO_Initialize_Type init_type; 
PSO_Initizlize_Range_Type init_range; 
float max_velocity; 
float max_position; 
int max_generation; 
int boundary_flag; 
FVECTOR low_boundaries; 
FVECTOR up_boundaries; 

} PSO_Environment_Type; 

typedef struct PSO_Type_Tag // PSO parameters 
{ 
PSO_Environment_Type env_data; 
int popu_size; 
int dimension; 
float inertia_weight; 
float init_inertia_weight; 
int global_best_index; 
FVECTOR pbest_values; 
FMATRIX velocity_values; 
FMATRIX position_values; 
FMATRIX pbest_position_values; 
float eva_fun_value; 
int popu_index; 
int gene_index; 

} PSO_Type; 

In Listing 4.15 the enumeration data type PSO_State_Type defines all the 
states in the PSO state machine. There are nine states, with each state having a 
handling routine corresponding to it. The P S O _ I n i t i a l i z e _ T y p e  defines the 
methods to initialize the population. There are two methods: symmetrical and 
asymmetrical initialization. The MINMAX_Type defines the types of optimization 
problems the PSO is going to solve: either a maximization problem or a mini- 
mization problem. 

Eva1 uat  e _ F u n c t  i on_Type defines the optimization functions to be solved 
as in the GA implementation. The IW_Update_Type defines methods to update 
the inertia weight dynamically. Three ways to deal with the inertia weight are imple- 
mented. The inertia weight can be kept constant, decreased linearly, or added as 
random noise through the course of the run. 

In Listing 4.16 the struct data type PSO_Initialize_Range_Type 
defines the data range within which the initialization is performed. The 
PSO_Environment_Type  defines a s t r u c t  data type that includes parameters 
related to the PSO environment. Included are optimization type ( o p t i _ t y p e ) ,  
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optimization function ( f u n c t i o n _ t y p e ) ,  inertia weight updating method 
( iw_method),  PSO initialization method ( i n i t _ t y p e ) ,  PSO initialization range 
( i n i t _ r a n g e ) ,  maximum velocity allowed ( m a x _ v e l o c i t y ) ,  maximum posi- 
tion allowed ( m a x _ p o s i t i o n ) ,  maximum number of generations 
( m a x _ g e n e r a t i o n ) ,  a flag telling whether there are boundaries for the para- 
meters to be evolved ( b o u n d a r y _ f l a g ) ,  and the upper and lower boundaries 
if the boundary_flag is TRUE (low_boundaries and up_boundaries). 

The PSO_Type defines a struct data type that includes all PSO parameters. 
Included are PSO environment data ( env_da ta ) ,  population size 
( popu_s i ze ) ,  dimension of the problem or length of the individual 
(dimens i on), current inertia weight ( i n e r t  i a_we i gh t  ), initial inertia weight 
( i n i t _ i n e r t i a _ w e i g h t ) ,  index of the global best at the current generation 
( g l o b a l _ b e s t _ i n d e x ) ,  vector of pbest values ( p b e s t _ v a l u e s ) ,  matrix of 
velocity values ( v e l o c i t y _ v a l u e s ) ,  matrix of position values ( p o s i t i o n _  
v a l u e s ) ,  matrix of pbest position values ( p b e s t _ p o s i t i o n _ v a l u e s ) ,  
fitness value of the current individual of the current generation ( e v a _ f u n _  
v a l u e ) ,  population index (popu_index) ,  and index of the current generation 
(gene_ index) .  

A P SO_Type variable ps o, shown below, is defined at the PSO module scope so 
it is unnecessary to pass the PSO-related parameters and variables from one routine 
to another within the PSO module. 

static PSO_Type pso; 

The main () Routine 
The main () routine is shown in Listing 4.17. As in the GA implementation, it is 
kept as simple as possible to make the PSO module as independent as possible. In 
the PSO_Star t_Up () routine, as shown in Listing 4.17, all the necessary param- 
eters for running the PSO implementation are read from the input file, then the 
dynamic data storage variables are allocated memory space and initialized. In the 
P SO_Clean_up () routine, the results are stored in an output file and the previ- 
ously allocated memory space is de-allocated. The PSO_Main_Loop () routine is 
the core of the PSO implementation, where the state machine is run. 

Listing 4.17 The PSO ma in ( ) routine. 

void main (int argc, char *argv[]) 
{ 

if (argc>=2) 
{ 

printf("Too many command line parameters"); 

exit (i) ; 
} 

PSO_Start_Up ( ) ; 
PSO_Main_Loop ( ) ; 
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PSO_Clean_Up ( ) ; 
} 

void PSO_Start_Up (void) 
{ 

read pso_parameters(); 
allocate_pso_memory(); 
pso initialize(); 

} 

void PSO_Clean_Up (void) 
{ 

pso_store_results () ; 
free_pso_memory ( ) ; 

} 

// allocate memory for particles 
// initialize particles 

// output results 
// free memory space of particles 

The P S O _ g _ a i n _ L o o p  ( ) Rout ine  
Before running the P S O _ M a i n _ L o o p  () routine, as shown in Listing 4.18, a PSO 
module scope variable is defined as 

static PSO_State_Type PSO_current_state; 

This variable records the current state of the PSO state machine and is defined as 
s t a t  i c to prevent the state from being changed by an outside module acciden- 
tally. When running the state machine, the current state calls its handling routine 
through pso_state_handler (PSO_current_state), where the state per- 
forms its action until a transition to another state occurs. The state machine keeps 
running until it reaches the state P SOS DONE. 

Listing4.18 The PSO_Main_Loop () routine. 

void PSO_Main_Loop (void) 
{ 

BOOLEAN running; 
running = TRUE; 
while (running) 
{ 

if (PSO_current_state = =  PSOS_DONE) 
running = FALSE; 

pso_state_handler(PSO_current_state); 
} 

State Handling Routines 
The main part of the PSO state machine is its state handler, which is shown in 
Listing 4.19. The state handler routine called is based on the current PSO state. 
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For example, if the current state is PSO_EVALUATE, then the Pso_evaluate ( ) 

handler routine, shown in Listing 4.20, is called. Within this routine, if the cur- 
rent population index is less than the population size, the evaluation function is 
called to evaluate the fitness of the current individual, and the state transitions to 
PSO_UPDATE_LOCAL_BEST; otherwise, the current state transitions to the state 
P SO_GOAL_REACH_JUDGE and the current population index is assigned the 
value of O. 

Listing 4.19 The PSO state handling routine. 

static void pso_state_handler (int state_index) 
{ 

switch (state_index) 
{ 

case PSO_UPDATE_INERTIA_WEIGHT : 

PSO_update_inertia_weight () ; 

case PSO_EVALUATE : 

PSO_evaluate ( ) ; 

case PSO_UPDATE_GLOBAL_BEST : 

PSO_update_global_best () ; 

case PSO_UPDATE_LOCAL_BEST : 

PSO_update_local_best () ; 

case PSO_UPDTAE_VELOCITY : 

PSO_update_velocity ( ) ; 

case PSO_UPDATE_POSITION : 

PSO_update_position ( ) ; 

case PSO_GOAL_REACH_JUDGE : 

PSO_goal_reach_judge ( ) ; 

case PSO_NEXT_GENERATION : 

PSO_next_generation ( ) ; 

case PSOS_DONE : 

PSOs_done ( ) ; 

default : 

break; 

break; 

break; 

break; 

break; 

break; 

break; 

break; 

break; 

break; 

Listing 4.20 The PSO_evaluate () routine. 

static void PSO_evaluate (void) 
{ 

if ((pso.popu_index) < (pso.popu_size)) 
{ 

evaluate_funct ions (pso. env_data, funct ion_type) ; 

PSO_current_state = PSO_UPDATE_LOCAL_BEST; 
} 
else 
{ 

PSO_current_state = PSO_GOAL_REACH_JUDGE; 

pso.popu_index = 0; 
} 
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Programming the Co-evolutionary PSO 
In the previous section, we described the implementation of a basic PSO. In this 
section, we expand it to provide the capability of running multi-PSOs. As we 
know, evolutionary algorithms have been successfully applied to solve many opti- 
mization problems. They have also been used to solve optimization problems with 
constraints by converting the constrained problems into unconstrained problems, 
which are what the evolutionary algorithms are good at. The most commonly 
employed conversion method adds penalty functions to punish the infeasible 
individuals. 

Another, potentially better, approach is to employ the augmented Lagrangian 
method to convert the constrained problem into min-max problems (Tahk and Sun 
2000). Then two evolutionary algorithm populations are used to solve the min-max 
problems. One is used to solve the minimization problem, with the maximization 
problem treated as a fixed environment of the minimization problem; the other is 
used to solve the maximization problem, with the minimization problem treated as 
the fixed environment of the maximization problem. The only interaction between 
these two algorithms is the fitness evaluations; that is, each is treated as an environ- 
ment of the other. 

Procedure for Running the Co-PSO 
The procedure for running the co-PSO is (Shi and Krohling 2002): 

1. Initialize two PSOs. 

2. Run the first PSO for max_qen_l  generations. 

3. Reevaluate the pbe  s tvalues for the second PSO if it is not the first 
cycle. 

4. Run the second PSO for max_qen_2 generations. 

5. Re-evaluate the p b e s t  values for the first PSO. 

6. Loop to step 2 until a termination condition is met. 

Each member of the first population is a vector of variables (elements), the values 
of which we are trying to optimize, and each element is randomly initialized within 
the range given for that variable when the problem is stated. Each member of the 
second population represents a ;l vector, each element of which is initialized in the 
range [0,1]. It is important to note that for both PSOs, the function that is evaluated 
is the augmented Lagrangian. The first PSO is run as a minimization problem, and 
the second as a maximization problem. The population sizes of the two populations 
do not have to be the same (but they may be). 

After initialization, the first PSO is run for max_qen_l  generations, as 
follows: The fitness of each population member vector of variables is evaluated 



Chapter FourmEvolutionary Computation Implementations 

with each ~ vector in the second PSO population. The highest fitness (lowest 
function value) thus obtained among all of the member/a combinations is defined 
as the fitness of that population member. Note that the a values are fixed 
during this step; they are part of the "environment" within which the evaluation 
o c c u r s .  

In the first iteration, called a cycle, we then go to step 4 of the procedure. 
If it is not the first cycle, the p b e s t  values for the second PSO population are 
recalculated. 

In step 4, we run the second PSO for max_gen_2 generations. This time, we are 
optimizing with respect to the ~ values in the second population. We evaluate the 
fitness of each population member vector of ;t values with each vector of variables 
(population member) in the first population. The highest fitness (highest function 
value) thus obtained among all of the ~/member combinations is defined as the fit- 
ness of that 2 population member. Note that all variable values are fixed during this 
step; they are part of the environment. 

In step 5, the pbe s t values for the first PSO population are recalculated. This is 
the completion of one cycle of the procedure. 

Benchmark Problems Selected for Implementation 
Three benchmark-constrained optimization problems reported in (Michalewicz 
and Schoenauer 1996), (Tahk and Sun 2000) and (Shi and Krohling 2002) were 
selected for implementation in this book. The first optimization problem G1 
consists of minimizing: 

4 13 

f(x) = 5Xl + 5x2 + 5x3 + 5x4 - 5 E g - E xi 
i=l i=5 

subject to 

2Xl + 2x2 + Xl0 + Xll <_ 10 

2Xl + 2x3 + Xl0 + X12 (_ 10 

2x2 + 2x3 + Xl 1 + Xl 2 _ 10 

--8Xl q" XlO _ 0 

--8X2+Xll  (_0 

--8X3+X12 <_0 

-2x4  - x5 + XlO ~ 0 

-2x6 - x7 --!- Xll <_ 0 

-2x8 - x9 + x12 _ 0 



where 
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0 ~ X i  ~ 1, i =  1, . . . , 9  

0 < Xi ___ 100, i -- 10, 11, 12 

0 < X i  < 1, i =  13 

The global m i n i m u m  is known to be 

X* = (1,1,1,1,1,1,1,1,1,3,3,3,1) 

wi th f (x*)  = - 1 5 .  
The second opt imizat ion  problem G7 consists of  minimizing:  

f(x) = x~ + x~ + xlx2 - 14xl - 16x2 + (x3 - 10) 2 
2 + 4(X4 -- 5)  2 + (X5 -- 3) 2 + 2(x6 - 1)2 -4- 5x  7 

+ 7(x8 - 11)2 + 2(x9 - 10) 2 + (Xl0 -- 7) 2 + 45 

subject to 

105 - 4 X l  - 5x2 + 3x7 - 9x9 _> 0 

-3(Xl  - 2) 2 - 4 ( x 2  - 3) 2 - 2x ]  + 7x4 + 120 _> 0 

-10Xl + 8x2 + 17x7 - 2x8 >_ 0 

- x  2 - 2x(x2 - 2) 2 + 2xlx2 - 14x5 + 6x6 >_ 0 

8Xl - 2x2 - 5x9 + 2XlO + 12 >_ 0 

- 5 x  ~ - 8x2 - (x3 - 6) 2 + 2x4 + 40 >_ 0 

3Xl - 6x2 - 12(x9 - 8) 2 + 7XlO _> 0 

-0 .5(Xl  - 8) 2 - 2(x2 - 4 )  - 3x 2 + x6 + 30 > 0 

where 

- 1 0  < Xi ~ 10, i = 1, . . . ,  10 

The global m i n i m u m  is known to be 

x*= (2.171996, 2.363683, 8.773926, 5.095984 

0.9906548, 1.430574, 1.321644, 9.828726 

8.280092, 8.375927) 

with f(x*) = 24.3062091. 
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The last optimization problem G9 consists of minimizing: 

f(x) = (Xl - 10) 2 + 5(x2 - 12) 2 + x 4 + 3(x4 - 11) 2 

+ 10x 6 + 7x ~ - 4x6x7 - 10x6 - 8x7 

subject to 

where 

1 2 7 -  2Xl 2 - 3x 4 - x 3 -  4x42 - 5x5 _> 0 

282 - 7Xl - 3x2 - lOx~ - x4 + x5 _> 0 

196 - 23Xl - x 2 _ 6x 2 + 8x7 _> 0 

-4Xl  2 -x22 + 3XlX2- 2 x ~ -  5x6 -1- l lx7 _> 0 

- 1 0  < xi < 10; 

The global min imum is known to be 

i = 1 , . . . , 7  

x* = (2.330499, 1.951372,-0.4775414, 4.365726, 

-0.6244870, 1.038131, 1.594227) 

with f(x*) = 680.6300573. 
For all three benchmark problems, the population sizes can be set to 40 and 30, 

respectively. The maximum number of generations for each PSO of one cycle is gen- 
erally chosen to be 10. To test the convergence speed of the co-evolutionary PSO, 
three maximum numbers of cycles can be tested, such as 40, 80, and 120. The parti- 
cles are randomly initialized within the boundaries for each run. The inertia weight 
of each PSO can be linearly decreased over the course of each run, starting from 0.9 
and ending at 0.4. Each different parameter setting can be tested by running multiple 
times, such as 50 times. Each run is terminated only when the maximum number of 
cycles has been reached. 

Modification of Data Types and Routines of PSO Implementation 
To implement the co-evolutionary PSO, the PSO implementation in the previous 
section is expanded so that multi-PSOs can co-exist. New states have been included 
into the enumeration data type p50 s t a t e  Type since there is now transition 
between different PSOs. The new m s o _ S t a t e _ T y p e  is defined as that shown in 
Listing 4.21. 

Listing 4.21 The PSO_State_Type for multi-PSOs. 

typedef enum PSO_State_Tag 
{ 

P SO_UPDATE_INERTIA_WE IGHT, 
P SO_EVALUATE, 

// Update inertia weight 
// Evaluate particles 
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PSO_UPDATE_GLOBAL_BEST, 
PSO_UPDATE_LOCAL_BEST, 

PSO_UPDATE_VELOCITY, 
PSO_UPDATE_POSITION, 

PSO_GOAL_REACH_JUDGE, 

PSO_NEXT_GENERATION, 
PSO_UPDATE_PBEST_EACH_CYCLE, 

P SO_NEXT_P SO, 

PSOS_DONE, 

NUM_PSO_STATES 

} PSO_State_Type; 

// Update global best 
// Update local best 

// Update particle's velocity 
// Update particle's position 

// Judge whether reach the goal 

// Move to the next generation 

// Update pbest each cycle for co-pso 
// due to the environment changed 

// Move to the next PSO in the same cycle or 

// the first pso in the next cycle 
// Finish one cycle of PSOs 

// Total number of PSO states 

The new added states are PSO_UPDATE_PBEST_EACH_CYCLE and 
P SO_NEXT_P SO. The state P SO_UP DATE_P BEST_EACH_CYCLE is used to adjust 
the p b e s t  fitness value since the environment in which the p b e s t  positions are 
evaluated was changed when the multi-PSO% algorithm was transitioned from one 
PSO to the other PSO; the state P SO_NEXT_P SO is used to start the new PSO eval- 
uation. The state machine is shown in Figure 4.3. 

The PSO_Type p s o  has also been replaced by 

static int NUM_PSO; 

static PSO_Type *psos; 

where NUM_P SO is read in from the input file at the beginning and tells how many 
PSOs co-exist in the implementation. The variable p s o s  is a PSO_Type pointer 
pointing to the array of the NUM_P SO number of PSOs. 

The P S O M a i n L o o p  ( ) also has to be modified to allow multi-PSOs to coexist, 
as shown in Listing 4.22. 

Listing 4.22 The PSO_Main_Loop () routine in multi-PSOs. 

void PSO_Main_Loop (void) 
{ 

BOOLEAN running; 

while ((pso_cycle_index++) < total_cycle_of PSOs) 
{ 

running = TRUE; 

while (running) 
{ 

if (PSO_current_state == PSOS_DONE) 

running = FALSE; 

pso_state_handler(PSO_current_state); 
} 
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Figure 4.3 State diagram of asynchronous version of multi-PSOs. 

In Listing 4.22 the integer variable total_cycle_of_PSOs keeps track of 
the number of cycles the multi-PSOs have run, with each running for the maxi- 
mum number of generations specified in its corresponding P so_Type  variable; the 
integer p s o _ c y c l e _ i n d e x  is the index of the PSO that is running. The variable 
t o t  a l _ c y  c I e_o  f_P s 0 s is specified in an input file and is read in at the beginning 
of the run. 
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The Evaluate_Function_Type has also been expanded to include 
constrained problems, and it is shown in Listing 4.23. Each constrained problem 
is associated with two evaluation functions corresponding to the two PSOs in the 
co-evolutionary PSO algorithms, respectively. For example, for the Gl-constrained 
problem, GI_MIN is the case index corresponding to the evaluation function of the 
PSO that is responsible for the minimum part of the min-max problem transformed 
from the G1 problem; GI_MA× is that for the maximum part of the min-max 
problem. 

Listing 4.23 Expanded Evaluate_Function_Type. 

typedef enum Evaluate_Function_Tag 
{ 

GI_MIN, // 0: GI, min part 
GI_MAX, // 1 : GI, max part 

G7_MIN, // 2: G7, min part 

G7_MAX, // 3: G7, max part 
G9_MIN, // 4- G9, min part 
G9_MAX, // 5: G9, max part 
F6, // 6" F6: min 
PARABOLIC, // 7: Parabolic: min 

ROSENBROCK, // 8: Rosenbrock: min 
RASTRIGRIN, // 9: Rastrigrin: min 
GRIEWANK, // i0: Griewank: min 
NUM_EVALUATE_FUNCTIONS // Total number of evaluation functions 

} Evaluate_Function_Type; 

The pso_state_handler (int state_index) also has to be modified to 
include new cases for handling the new states, which is shown in Listing 4.24. 

Listing 4.24 Modified pso_state_handler. 

static void pso_state_handler (int state_index) 
{ 

switch (state_index) 
{ 

case PSO_UPDATE_INERTIA_WEIGHT: 

PSO_update_inertia_weight(); break; 
case PSO_EVALUATE: 

PSO_evaluate(); break; 

case PSO_UPDATE_GLOBAL_BEST: 

PSO_update_global_best(); break; 

case PSO_UPDATE_LOCAL_BEST: 

PSO_update_local_best(); break; 
case PSO_UPDATE_VELOCITY. 

PSO_update_velocity(); break; 
case PSO_UPDATE_POSITION: 

PSO_update_position(); break; 
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case PSO_GOAL_REACH_JUDGE : 

PSO_goal_reach_judge ( ) ; break; 

case PSO_NEXT_GENERATION : 

PSO_next_generation ( ) ; break; 

case PSO_UPDATE_PBEST_EACH_CYCLE : 

PSO_update_pbest_each_cycle () ; break; 

case PSO_NEXT_PSO : 

PSO_next_pso ( ) ; break; 

case PSOS_DONE: 

PSOs_done ( ) ; break; 

default : break; 

The PSO_~.VALUAT~. State 
As in the single PSO implementation, if all the individuals have been evaluated, the 
state transitions to state P SO_GOAL_REACH_JUDGE, and the index of population 
is set to 0. Otherwise, the current individual is evaluated and the state transitions 
to state PSO_UPDATE_LOCAL_BEST since this is an asynchronous version of 
multi-PSO implementation. For a synchronous version of PSO implementation, 
the state stays at its current state P SO_EVALUATE until all the individuals have 
been evaluated, at which time it transitions to state PSO_UPDATE_LOCAL_BEST. 
For the co-evolutionary PSO, each PSO passes its function type to the 
e v a l u a t e _ f u n c t i o n s  () routine to call its corresponding function to evaluate 
the PSO's performance. For example, if the problem to be solved is GT, one PSO 
for solving the minimization problem calls G7_MIN (), and the other PSO for solv- 
ing the maximization problem calls G7 EAX (). The e v a l u a t e _ f u n c t i o n s  () 
routine is shown in Listing 4.25. 

Listing4.25 The evaluate_functions () routine. 

static void PSO_evaluate (void) 
{ 

if ((psos[cur_pso].popu_index) < (psos[cur_pso].popu_size)) 
{ 

evaluate_functions (psos [cur_pso] . env_data, function_type) ; 

PSO_current_state = PSO_UPDATE_LOCAL_BEST; 
} 
else 
{ 

P S O_c u r r e n t_s t a t e = P S O_GOAL_REAC H_JUD GE; 

psos [cur_pso] .popu_index = 0; 
} 

} 

static void evaluate_functions (int fun_type) 
{ 
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switch (fun_type) 
{ 

case GI_MIN: 

gl_min () ; break; 

case GI_MAX : 

gl_max () ; break; 

case G7_MIN: 

g7_min () ; break; 

case G7_MAX : 

g7_max ( ) ; break; 

case G9_MIN: 

g9_min () ; break; 

case G 9_MAX • 

g9_max () ; break; 

case F6 : 

f6 () ; break; 

case PARABOLIC: 

parabolic () ; break; 

case ROSENBROCK : 

rosenbrock() ; break; 

case RASTRIGRIN: 

rastrigrin(); break; 

case GRIEWANK: 

griewank () ; break; 

default : break; 

The PSO_UPDATE_LOCAL_BEST State 
In this state, the handler routine, as shown in Listing 4.26, first checks whether it's a 
minimization or a maximization problem according to the current PSO's optimiza- 
tion type so that the implementation can be applied to solve both the minimization 
and maximization problems. If the implementation is run as a co-evolutionary PSO, 
one PSO is run to solve the minimization problem; the other is run to solve the max- 
imization problem. 

Ifthe optimization type ofthe current PSO is minimization, it first checks whether 
it is the first generation ofthe first cycle. Ifit is, it assigns 0 as the global best index and 
the evaluation value as the current individual's p b e s t  value. It then checks whether 
the current individual's evaluation value is less than its pbe s ¢ value. If it is, the cur- 
rent position values are assigned to p b e s ¢  position values, and the p b e s ¢  value 
is assigned to be the evaluation value of the current individual's evaluation value. 
Finally, the state transitions to state P SO_UPDATE_GLOBAL_BEST. 

Listing 4.26 The PSO_UPDATE_LOCAL_BEST state handler routine. 

static void PSO_update_local_best (void) 
{ 

int idx_i ; 
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if ((psos[cur_pso] .env_data.opti_type) == MINIMIZATION) 
{ // minimization problem 

if ((pso_cycle_index == I) && ((psos[cur_pso] .gene_index) == 0)) 
{ 

psos [cur_pso] .global_best_index = 0; 

psos [cur_pso] .pbest_values [psos [cur_pso] .popu_index] = 

psos [ cur_pso ] . eva_fun_value; 
} 

if ((psos[cur_pso] .eva_fun_value) < 

(psos [cur_pso] .pbest_values [psos [cur_pso] .popu_index] ) ) 
{ 

psos [cur_pso] .pbest_values [psos [cur_pso] .popu_index] = 

psos [ cur_pso ] . eva_fun_value; 

for (idx_i = 0; idx_i < (psos[cur_pso].dimension) ;idx_i++) 
{ 

(psos [cur_pso] .pbest_position_values [psos [cur_pso] .popu_index] [idx_i] ) = 
(psos[cur_pso] .position_values[psos[cur_pso] .popu_index] [idx_i]); 

} 
} 

} 

else 

{ // maximization problem 
if ((pso_cycle_index == I) && ((psos[cur_pso] .gene_index) == 0)) 
{ 

psos [cur_pso] .global_best_index = 0; 
psos [cur_pso] .pbest_values [psos [cur_pso] .popu_index] = 

psos [ cur_pso ] . eva_fun_value; 
} 

if ((psos[cur_pso].eva_fun_value) > 
(psos [ cur_pso ] .pbest_values [psos [ cur_pso ] . popu_index] ) ) 

{ 

psos [cur_/oso] .pbest_values [psos [cur_pso] .popu_index] = 

psos [ cur_pso ] . eva_fun_value; 
for (idx_i = 0; idx_i < (psos[cur_pso] .dimension) ;idx_i++) 
{ 

(psos [ cur_pso ] . pbest_position_values [psos [ cur_pso ] . popu_index] [ idx_i ] ) = 

(psos [cur_pso] .position_values [psos [cur_pso] .popu_index] [idx_i] ) ; 
} 

} 
P SO_current_st at e = P SO_UPDATE_GLOBAL_BEST; 

The PSO_UPDATE_GLOBAL_BEST State 
Similar to the state PSO_UPDATE_LOCAL_BEST, this state first checks the opti- 
mization type, then updates the global best index if the current individual of the 
current PSO performs better than the global best. The state handler routine is shown 
in Listing 4.27. 
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Listing 4.27 The P SO_UPDATE_GLOBAL_BEST state handler routine. 

static void PSO_update_global_best (void) 
{ 

if ((psos[cur_pso] .env_data.opti_type) == MINIMIZATION) 

{ // minimization problem 
if ( (psos [cur_pso] .eva_fun_value) < 

(psos [ cur_pso ] . pbest_values [psos [ cur_pso ] . global_best_index ] ) ) 
{ 

psos [cur_pso] . global_best_index = psos [cur_pso] .popu_index; 
} 

} 
else 
{ // maximization problem 

if ((psos[cur_pso].eva_fun_value) > 
(psos [ cur_pso ] . pbest_values [psos [ cur_pso ] . global_best_index] ) ) 

{ 
psos [cur_pso] .global_best_index = psos [cur_pso] .popu_index; 

} 
} 
PSO_current_state = PSO_UPDATE_VELOC I TY; 

The PSO_UPDATE_VELOCITY State 
In this state, the velocity values of the current individual of the current PSO are 
updated according to equations 3.5 and 3.6 (in Chapter 3) and are checked with the 
maximum velocity to keep the velocity values within the boundary. The state is then 
transitioned to state P SO_UP DATE_POS I T I ON. 

Listing 4.28 The P SO_UP DATE_VELOC I TY state handler routine. 

static void PSO_update_velocity (void) 
{ 

int idx_i; 
for (idx_i = 0; idx_i < (psos[cur_pso] .dimension) ;idx_i++) 
{ 

psos [cur_pso] .velocity_values [psos [cur_pso] .popu_index] [idx_i] = 

psos [cur_pso] . inertia_weight) * 

(psos [cur_pso] .velocity_values [psos [cur_pso] .popu_index] [idx_i] ) + 

2* (rand()/32767.0) * 

(psos [cur_pso] .pbest_position_values [psos [cur_pso] . popu_index] [idx_i] - 

psos [cur_pso] .position_values [psos [cur_pso] .popu_index] [idx_i] ) + 

2* (rand()/32767.0) * 

(psos [ cur_pso ] . pbest_pos it ion_values [psos [ cur_pso ] . global_best_index ] 

[idx_i] - psos[cur_pso] .position_values[psos[cur_pso] .popu_index] [idx_i]); 

if ( (psos [cur_pso] .velocity_values [psos [cur_pso] .popu_index] 

[ idx_i ] ) > (psos [ cur_pso ] . env_data .max_velocity) ) 
{ 

psos [ cur_pso ] . velocity_values [psos [ cur_pso ] . popu_index] 

[idx_i] = psos [cur_pso] .env_data.max_velocity; 
} 
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else if ((psos[cur_pso] .velocity_values[psos[cur_pso] .popu_index] 
[idx_i]) < (-(psos[cur_pso] .env_data.max_velocity))) 

{ 
psos [cur_pso] .velocity_values [psos [cur_pso] .popu_index] [idx_i] = 

- (psos [cur_pso] . env_data .max_velocity) ; 
} 

} 
PSO_current_state = PSO_UPDATE_POSITION; 

The PSO_CKaDATE_POSITION State 
As in the previous state, the position values are updated according to equations 3.5 
and 3.6. The position values are then checked to see whether they are within the 
boundaries. If they exceed a boundary, they are assigned to the boundary value plus 
a random value to force them to be within the boundary. The state transitions back to 
the state v SO_EVALUATE to complete the remainder of the PSO operations for one 
individual. The index of the population is increased by 1. The state handler routine 
is shown in Listing 4.29. 

Listing 4.29 The P so_uP DATE_POS I T I ON state handler routine. 

static void PSO_update_position (void) 
{ 

int idx_i ; 
for (idx_i = 0; idx_i < (psos[cur_pso] .dimension) ;idx_i++) 
{ 

psos [cur_pso] .position_values [psos [cur_pso] .popu_index] [idx_i] += 
psos [ cur_pso ] . velocity_values [psos [ cur_pso ] . popu_index ] [ idx_i ] ; 

if (psos [cur_pso] .env_data.boundary_flag) 
{ 

if ( (psos [cur_pso] .position_values [psos [cur_pso] .popu_index] 

[ idx_i ] ) < (psos [ cur_pso ] . env_data, low_boundaries [ idx_i ] ) ) 
{ 
psos [cur_pso] .position_values [psos [cur_pso] .popu_index] [idx_i] = 

psos [ cur_pso] . env_data, low_boundaries [ idx_i ] + 

( (psos [ cur_pso ] . env_data, up_boundaries [ idx_i ] - 
psos[cur_pso] .env_data.low_boundaries[idx_i]) * rand()/(2 * 32767.0)); 

} 
else if ((psos[cur_pso] .position_values[psos[cur_pso] .popu_index] 

[ idx_i ] ) > (psos [ cur_pso ] . env_data, up_boundaries [ idx_i ] ) ) 
{ 
psos [cur_pso] .position_values [psos [cur_pso] .popu_index] [idx_i] = 

psos [ cur_pso ] . env_data, up_boundaries [ idx_i ] - 
( (psos [ cur_pso ] . env_data, up_boundaries [ idx_i ] - 

psos[cur_pso] .env_data.low_boundaries[idx_i]) * rand()/(2 * 32767.0)); 
} 

} 
} 
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PSO_current_st ate = P SO_EVALUATE; 

psos [cur_pso] .popu_index) ++; 

The PSO_GOAL_RZACH_JUDGE State 
In this state, all the criteria are checked. If the termination criteria are satisfied, 
the state transitions to state P SOS_DONE; otherwise, it transitions to state 
P SO_NEXT_GENERATION. Since we have not implemented criterion checking in 
this implementation, it transitions to state P SO_NEXT_GENERATION uncondi- 
tionally. The state handler routine is shown in Listing 4.30. 

Listing 4.30 The P SO_GOAL_REACH_JUDGE state handler routine. 

static void PSO_goal_reach_judge (void) 
{ 

PSO_current_state = PSO_NEXT_GENERATION; 
} 

The PSO_NEXT_GENERATION State 
In this state, the handler routine, as shown in Listing 4.31, first checks whether 
the generation index of the current PSO has reached its maximum number of 
generations. If it hasn't, the generation index increases by 1 to start the next 
generation of the current PSO, and the state transitions to state 
PSO_UPDATE_INERTIA_WEIGHT. Otherwise, it moves to the next PSO by 
increasing the PSO's index by 1. If all the PSOs have completed their runs within 
this cycle, the PSO's index is assigned to 0 to start from the first PSO for the next 
cycle. The state transitions to state PSO_UPDATE PBEST_EACH_CYCLE. 

Listing 4.31 The v SO_NEXT_GENERAT I ON state handler routine. 

static void PSO_next_generation (void) 
{ 

if ( (++ (psos [cur_pso] .gene_index) ) < 

(psos [ cur_pso ] . env_data .max_generation) ) 

{ // next generation of the same population of PSO 

PSO_current_state = PSO_UPDATE_INERTIA_WEIGHT; 
} 
else 
{ 

if ((++cur_pso) >= NUM__PSO) 
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{ // end of the cycle 

cur_pso = 0; // move to the first pso 
} 
PSO_current_state = PSO_UPDATE_PBEST_EACH_CYCLE; 

// move to the next state 

psos[cur_pso].popu_index = 0; 

The PSO_UPDATE_INERTIA_WEIGHT State 
In this state, the current PSO updates its inertia weight according to its inertia weight 
updating method. The state transitions to the state P SO_EVALUATE. The index of 
the population is set to 0 to start from the first individual. The state handler routine 
is shown in Listing 4.32. 

Listing 4.32 The P SO_UP DATE_I NERT IA_WE I GHT state handler routine. 

static void PSO_update_inertia_weight (void) 
{ 

iw_update_methods (psos [cur_pso] . env_data, iw_method) ; 

PSO_current_state = PSO_EVALUATE; // move to the next state 

psos[cur_pso] .popu_index = 0; // start with the first particle 

The PSO_UPDATE_PBEST_EACH_CYCLE Sta te  
In this state, if the PSO_UPDATE_PBEST_EACH_CYCLE_FLAG flag is dis- 
abled, it transitions to the state P SO_NEXT_PSO by doing nothing. If the 
PSO_UPDATE_PBEST_EACH_CYCLE_FLAG is enabled, it calls the evaluation 
function to evaluate the current individual's p b e s t  position. This state is main- 
tained until all the individuals' pbe s t  positions have been reevaluated. The reason 
to do this is that when a new PSO is running, the environment of the new PSO may 
have been changed after the last time it was run. The p b e s t  values don't reflect the 
true values within the current environment. For example, in the co-evolutionary 
PSO, evaluating the current PSO will treat the other PSO's parameters as fixed val- 
ues (environment), which have been changed since the last time the current PSO 
was run. The state handler routine is shown in Listing 4.33. 

Listing 4.33 The P SO_UPDATE_PBEST_EACH_CYCLE state handler routine. 

static void PSO_update_pbest_each_cycle (void) 
{ 

if (P SO_UP DATE_PBE S T_EACH_CYCLE_FLAG) 
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} 

else 
{ 

pso_update_pbest_each_cycle_pending = TRUE; 

if ((psos[cur_pso].popu_index) < (psos[cur_pso].popu_size)) 
{ 

evaluate_funct ions (psos [ cur_pso ] . env_data, funct ion_type ) ; 

psos [cur_pso] .pbest_values [psos [cur_pso] .popu_index] = 

psos [ cur_pso ] . eva_fun_value; 

psos [ cur_pso] . popu_index++; 
} 

else // done with evaluation, move to the next state 
{ 

PSO_current_state = PSO_NEXT_PSO; 

pso_update_pbest_each_cycle_pending = FALSE; 
} 

PSO_current_state = PSO_NEXT_P SO; 

The PSO_I~XT_PSO State  
In this state, the handler routine, as shown in Listing 4.34, first checks whether 
all PSOs have been run in this cycle. If they have, the state transitions to state 
P SOS_DONE to end the current cycle. Otherwise, the state transitions to state 
P SO_EVALUATE to start running the new PSO. 

Listing 4.34 The P SO_NEXT_P SO state handler routine. 

static void PSO_next_pso (void) 
{ 

if (cur_pso > 0) 

PSO_current_state = PSO_EVALUATE; 
else 

PSO_current_state = PSOS_DONE; 

psos[cur_pso].popu index = 0; 

psos[cur_pso].gene_index = 0; 
} 

// end of the cycle 
// start with the first particle 

// start with the first particle 

The PSOS_DONE State  
In this handler routine, as shown in Listing 4.35, the postprocessing is performed. 
For example, the results for this cycle can be saved to an output file for later view. 
Here we simply transition the state to P SO_EVALUATE, which makes the first PSO 
start with the state ? SO_EVALUATE if the maximum number of cycles has not been 
reached, as shown in the PSO__Main_Loop () routine. 
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Listing 4.35 The PSOS_DONE state handler routine. 

Static void PSOs_done (void) 
{ 

PSO_current_state = PSO_EVALUATE; 
} 

Running the/'SO Implementation 
Running the particle swarm optimization implementation requires the executable 
file p s o s .  e x e  andan input file p s o s .  run. To run the implementation from within 
the directory containing p s o s .  e x e  and p s o s .  run, at the system prompt type 
psos psos.run. 

The parameters required for running p s o s  are read in from the input file 
p s o s .  run. One way to demonstrate how to run the PSO implementation is to 
present and discuss the contents of a run file, as shown in Listing 4.36, that can 
be invoked with the executable. 

Listing 4.36 An example of a multi-PSOs run file. 
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1 

300 

0 

6 

1 

1 

0.0 

50.0 

I0 

I00 

I00 

30 

13 

0.9 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0.0 

0.0 

0.0 

0.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

I00.0 

i00.0 

I00.0 

1.0 
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1 

7 

1 

1 

0.0 

1.0 

0.5 

1 

70 

20 

9 

0.9 

1 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

The first entry (2) specifies that two PSOs are included in this run. If it is 1, only 
one PSO will be run. Any number of PSOs can be specified here to make multi-PSOs 
co-exist. The next number (1) is the p s o _ u p d a t e _ p b e s t _ e a c h _ c y c l e _ f l a q  
flag. When it is enabled, it means that before starting to run the next PSO, its pbe s t 
positions will be re-evaluated first, as in the co-evolutionary PSO algorithm dis- 
cussed previously. Following this is the number that specifies the total number of 
cycles to run the PSOs (300), which means the PSOs will be run for 300 cycles. These 
three inputs relate to all PSOs (here two PSOs). Following them are inputs specify- 
ing parameters for each PSO, starting with the first PSO, then the next, until all the 
PSOs have been specified. 

The fourth to fifteenth inputs are numbers for the first PSO" the optimization 
type (0--minimization), the function type (O--(GI_MIN), the inertia weight 
update method (I--linearly decreasing), the initialization type (1--asymmetry), 
left initialization range (0 .0) ,  right initialization range (5 0 .0  ), maximum velocity 
(10 .0 ) ,  maximum position (10 0 .0) ,  maximum number of generations for each 
cycle (10 0), the population size (3 0), the dimension of the individual (13), and the 
initial inertia weight (0 .9) .  

The next value (in the list) is the boundary flag (1). If it is disabled (0), it means 
no boundary values are required to be read from the input file. It is then the end 
of the input for the first PSO. If it is enabled (1) as in the list, then the boundaries 
must be provided in the input file. The first line after the boundary flag specifies the 
upper and lower boundary values for the first parameter to be evolved, followed by 
the second, and so on. Since the dimension in this example is 13, a total 13 lines of 
boundaries values must be provided. 
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Following the numbers for the first PSO are the numbers for the second PSO. All 
of the numbers have similar meanings to those for the first PSO, so we don't repeat 
the explanation here. Three points, however, should be noted. First, the optimization 
type is 1 (maximization problem) instead of 0 (minimization problem) and the 
corresponding function type is 1 (G1 lYnX) instead of 0 (GI_._MIN). Through this 
kind of specification, the two PSOs work as two swarms in a co-evolutionary PSO 
algorithm. Second, the number of dimensions (9) corresponds to the number of 
constraints. Third, the upper and lower boundaries for all of the parameters to be 
evolved are the same (0.0, 1.0) since they are the Lagrangian multipliers. 

S u m m a r y  

In this chapter, we first discuss the common issues related to the implementation 
of evolutionary algorithms. These issues include chromosome representation meth- 
ods, learning strategies, programming strategies, and memory handling. 

We then present two implementations of evolutionary computation: genetic 
algorithm implementation and a particle swarm optimization implementation. The 
genetic algorithm implementation is basically a "plain vanilla" genetic algorithm. 
The particle swarm optimization is implemented to be able to run either a single 
PSO or multi-PSOs simultaneously. An implementation of co-evolutionary PSO 
is described that solves min-max problems. 

The genetic algorithm is implemented based on flowchart programming strat- 
egy, and the particle swarm optimization is implemented based on the finite state 
machine programming strategy. The strength and weakness of each strategy, there- 
fore, are illustrated through the two implementations. 

Five benchmark functions are included with both the GA implementation and 
the PSO implementation. Also, additional constrained optimization problems are 
included for the (co-evolutionary) PSO implementation. 

Finally, how to run the implementations is specified in detail. Remember that 
output (results) files are provided on the book's Internet site; they were obtained 
by the authors using the executable and ancillary files provided. You may want to 
rename these output files, or move them to another directory, so that you can com- 
pare your results with the authors'. If you forget to do that, just go back to the Inter- 
net site and download them again. 

Exercises ....................................................................................................................................................................................... 

1. In the implementation of mutation operator, a "mutation according to bit posi- 
tion" flag is used to tell whether or not a mutation by bit position is implemented. 
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Define an enumeration data type to replace the flag and make corresponding 
changes in the implementation of the mutation operator. 

2. Draw a state machine diagram for the GA implementation. 

3. Draw a flowchart for the implementation of PSO. 

4. Draw a state diagram for the synchronous version of PSO and compare it with the 
asynchronous version. 

5. Five benchmark functions are identified in Table 4.2. Identify an additional 
benchmark function appropriate for evolutionary algorithms. Justify your choice. 
Modify the source code for the GA to implement this benchmark function so 
that it becomes an additional choice for the user. 

6. Add the capability for specifying a termination criterion (acceptable error, for 
example) to the GA source code. 

7. Implement the benchmark function you identified in exercise 5 into the PSO 
source code. 

8. Run the GA implementation, optimizing the Griewank function. Try two different 
crossover types and two different selection types (four combinations of 
parameters). For each combination of parameters, how many total generations 
are required to achieve a fitness of - l .3  or better? Turn in and discuss your results. 
Based on your results, which combination of parameters would you select? 

9. Run the PSO implementation as a single swarm, optimizing the F6 function. Note 
that the run file example in Listing 4.36 is for two swarms, so make sure you have 
an appropriate run file for a single swarm. Try two population sizes. Turn in and 
discuss your results. 

10. Run the PSO implementation using two swarms to optimize the G 1 function. Try 
two different population sizes for each of the two swarms (four combinations 
total). Turn in and discuss your results. 



chapter 
Ve 

Neural Network Concepts 
and Paradigms 

In the previous two chapters, we reviewed 
concepts, paradigms, and implementations 
of evolutionary computation. Chapters 3 
and 4 provide a foundation on which we 
build our computational intelligence struc- 
ture. Now we examine the second main 
component of computational intelligence, 
artificial neural networks. 

Building intelligent systems that can 
model human behavior has captured the 
attention of the world for decades. So it 
is not surprising that a technology such as 
neural networks has generated great inter- 
est. This chapter first discusses the history 
of neural networks. It next provides an evo- 
lutionary introduction to neural networks 
beginning with the key elements and termi- 
nology of neural networks and then devel- 
oping the topologies, adaptation methods, 
and recall dynamics from this infrastructure. 

The perspective taken in this chapter 
is largely that of an engineer or computer 
scientist, emphasizing the application 
potential of neural networks and draw- 
ing comparisons with other techniques that 
have similar motivations. As such, we rely 
on mathematics in some of the discussions 
to make points more precisely. 

The chapter includes a review of what 
neural networks are and why they are so 
appealing. We introduce a typical neural net- 
work to illustrate several key features. Using 
this network as a reference, we describe 
fundamental elements of a neural network 
such as input and output patterns, process- 
ing elements, connections, and activation 
calculations, and then we describe neural 
network topologies, adaptation algorithms, 
and recall dynamics. Finally, we present a 
comparison of neural networks and similar 
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non-neural information processing methods.Let's get started by traveling back to 
the roots of neural networks and looking at their history, m 

Neural Network History 

As is the case with the other history sections in this book, the focus is on people rather 
than just on theory or technology. Again, the selection of individuals is somewhat 
arbitrary because the intent is to provide a broad sample, rather than an exhaus- 
tive list, of people who contributed to current technology. We mention some well- 
known researchers only briefly and omit others. The fact that someone is discussed 
only briefly, or even omitted, is not meant to reflect the authors' opinion of that per- 
son's contribution. We discuss the selected people and their contributions roughly 
in chronological order. 

We address neural network history first by examining how neural networks 
got their name. Then we discuss the history of neural network development in 
five time segments, which we call ages. The first age begins at the time of William 
James, just over a century ago (1890). This is called the Age of Camelot. It ends 
in 1969 with the publication of Minsky and Papert's book on perceptrons. Next 
is the Dark Age, beginning in 1969 and ending in 1982 with Hopfield's landmark 
paper on neural networks and physical systems. The third age, the Renaissance, 
begins with Hopfield's paper and ends with the publication of Parallel Distributed 
Processing, Volumes 1 and 2, by Rumelhart and McClelland, in 1986. The fourth 
age, called the Age of Neoconnectionism after a review article on neural nets and 
artificial intelligence (Cowan and Sharp 1988), runs from 1987 until 1998. The 
final age, the Age of Computational Intelligence, runs from the second IEEE World 
Congress on Computational Intelligence in 1998 until the present. 

Where Did Neural Networks Get Their Name? 

If artificial neural networks are so different from biological ones, why are they even 
called neural networks instead of something else? The answer is that the background 
and training of the people who first developed useful neural network implementa- 
tions were generally in the biological, physiological, and psychological areas rather 
than in engineering and computer science. 

One of the most important publications that opened up neural network analysis 
by presenting it in a useful and clear way was a three-volume set of books entitled 
Parallel Distributed Processing (Rumelhart and McClelland 1986; McClelland and 
Rumelhart 1986; McClelland and Rumelhart 1988). The chapters in the first two 
volumes were authored by members of the interdisciplinary Parallel Distributed 
Processing (PDP) research group, who were from a variety of educational institu- 
tions. Several members of the PDP research group are cognitive scientists. Others 
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are psychologists. Computer scientists are definitely in the minority, and judging 
from the professional titles and affiliations of the PDP authors, none is an engineer. 

Had the concept of massively parallel processing initially been developed and 
made practical by electrical or computer engineers, we could be using "massively 
parallel adaptive filter" implementations instead of neural network implementations, 
or they might be called something that has no reference to the word neural. Neural 
networks do have technical roots in the fields of analog computing and signal pro- 
cessing that date back five or six decades and that rival in importance their roots in 
biology and cognitive science. This engineering heritage is reviewed in this section. 

Much of the neural network effort in biology, cognitive science, and related fields 
resulted from efforts to explain experimental results and observations in behav- 
ior and in brain construction. Why should engineers and computer scientists care 
about experimental results in brain research and cognitive science? For one thing, as 
Anderson and Rosenfeld (1988) point out, ifwe can find out what kind of"wetware" 
runs well in our brains, we may gain insight into what kind of software to write for 
neural network applications. In other words, cognitive scientists and psychologists 
may provide some important information for reverse-engineering artificial neural 
network software. 

The Age of Camelot 
We begin our look at neural network history in the Age of Camelot with a person 
considered by many to be the greatest American psychologist who ever lived, William 
James. James also taught, and thoroughly understood, physiology. It has been over a 
century since James published his Principles of Psychology, and its condensed version 
Psychology (Briefer Course) (James 1890). 

James was the first to publish a number of facts related to brain structure and 
function. He first stated, for example, some of the basic principles of correlational 
learning and associative memory. In stating what he called his Elementary Principle, 
James (1890) wrote: "Let us then assume as the basis of all our subsequent reason- 
ing this law: when two elementary brain processes have been active together or in 
immediate succession, one of them, on re-occurring, tends to propagate its excite- 
ment into the other." This is closely related to the concepts of associative memory 
and correlational learning. 

He seemed to foretell the notion of a neuron's activity being a function ofthe sum 
of its inputs, with correlation history contributing to the weight ofinterconnections: 

The amount of activity at any given point in the brain-cortex is the sum of the 
tendencies of all other points to discharge into it, such tendencies being proportion- 
ate (1) to the number of times the excitement of each other point may have accom- 
panied that of the point in question; (2) to the intensity of such excitements; and 
(3) to the absence of any rival point functionally disconnected with the first point, 
into which the discharges might be diverted. (James 1890) 
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Over half a century later, McCulloch and Pitts (1943) published one of the most 
famous neural network papers, in which they derived theorems related to models of 
neuronal systems based on what was known about biological structures in the 1940s. 
In coming to their conclusions, they stated five physical assumptions: 

1. The activity of the neuron is an "all-or-none" process. 2. A certain fixed number 
of synapses must be excited within the period of latent addition in order to excite a 
neuron at any time, and this number is independent of previous activity and position 
on the neuron. 3. The only significant delay within the nervous system is synaptic 
delay. 4. The activity of any inhibitory synapse absolutely prevents excitation of the 
neuron at that time. 5. The structure of the net does not change with time. 

The period of latent addition is the time during which the neuron is able to detect 
the values present on its inputs, the synapses. This time was described by McCulloch 
and Pitts as typically less than 0.25 milliseconds. The synaptic delay is the time 
between sensing inputs and acting on them by transmitting an outgoing pulse, stated 
by McCulloch and Pitts to be on the order of half a millisecond. 

The neuron described by the five preceding assumptions is known as the 
McCulloch-Pitts neuron. The theories they developed were important for a num- 
ber of reasons, including the fact that any finite logical expression can be realized 
by networks of their neurons. They also appear to be the first authors since William 
James to describe a massively parallel neural model. 

Although the paper was very important, it is quite difficult to read. In particu- 
lar, the theorem proofs presented by McCulloch and Pitts have stopped more than 
a few engineers in their tracks. Furthermore, not all of the concepts presented in 
the paper are being implemented in today's neural networks. In this book, compar- 
isons are not made between the theories and conclusions of McCulloch and Pitts (or 
anyone else) and the current theories of neural biology. The focus is strictly on the 
implementation (or nonimplementation) of their ideas in current neural network 
tools. 

One concept that is not generally being implemented is their all-or-none neuron. 
A binary, on or off, neuron is used as the processing element (PE) in neural networks 
such as the Boltzmann machine (Rumelhart and McClelland 1986), but it is not 
generally used in most neural network paradigms today. Much more common is 
a PE whose output value can vary continuously over some range, such as [0, 1] 
or [-1, 1]. 

Another example of an unused concept involves the signal required to "excite" 
a PE. First, because the output of a PE generally varies continuously with the input, 
there is no "threshold" at which an output appears. The PEs used in some neural 
networks activate at some threshold, but not in most of the network implemen- 
tations discussed in this text. For PEs with either continuous outputs or thresh- 
olds, no "fixed number of connections" (synapses) must be excited. The net input 
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to a PE is generally a function of the outputs of the PEs connected to it upstream 
(presynaptically) and of the connection strengths to those presynaptic PEs. 

A third example is that there is generally no delay associated with the connection 
(synapse) in a neural network implementation. Typically, the output states (activa- 
tion levels) of the PEs are updated synchronously, one layer at a time. Sometimes, 
as in Boltzmann machines, they are updated asynchronously, with the update order 
determined stochastically. There is almost never, however, a delay built into a con- 
nection from one PE to another. 

A fourth example is that the activation of a single inhibitory connection does 
not usually disable or deactivate the PE to which it is connected. Any inhibitory 
connection (a connection with a negative weight) has the same absolute magnitude 
effect, albeit subtractive, as the additive effect of a positive connection with the same 
absolute weight. 

With regard to the fifth assumption of McCulloch and Pitts, it is true that the 
structure of a neural network implementation does not change with time, with a 
couple of caveats. First, it is usual to "train" neural networks prior to their use. Dur- 
ing the training process, the structure doesn't usually change but the interconnect- 
ing weights do. In addition, it is not uncommon, once training is complete, for PEs 
and/or interconnecting weights that aren't contributing significantly to be removed. 
This certainly can be considered a change to the structure of the network. 

Given these examples, what are we left with of McCulloch and Pitts' five assump- 
tions? If truth be told, when referring to today's neural network implementations, 
we are in most cases left with perhaps one assumption, the fifth. 

Then why is their 1943 paper so important? First, they proved that networks 
of their neurons could represent any finite logical expression. Second, they used a 
massively parallel architecture. And, third, they provided the stepping stones for the 
development of the network models and adaptation techniques that followed. 

Just because neural network implementations don't conform to McCulloch and 
Pitts' work doesn't imply in any way that their work was bad. Current artificial neural 
networks don't always reflect what we understand about biological neural networks, 
either. For instance, it appears that a biological neuron acts somewhat like a voltage- 
controlled oscillator, with the output frequency a function of the input level (input 
voltage): The higher the input, the more pulses per second the neuron puts out. 
Neural network implementations usually work with basically steady-state values of 
the PE from one update to the next. 

The next personality along our journey through the Age of Camelot is Donald O. 
Hebb, whose 1949 book The Organization of Behavior (Hebb 1949) was the first to 
define the method of updating synaptic weights that we now refer to as Hebbian. He 
is also among the first to use the term connectionism. Hebb presented his method as a 
"neurophysiological postulate" in his chapter entitled "The First Stage of Perception: 
Growth of the Assembly" as follows: "When an axon of cell A is near enough to excite 
a cell B and repeatedly or persistently takes part in firing it, some growth process or 
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metabolic change takes place in one or both cells such that A's efficiency as one of 
the cells firing B, is increased." 

Hebb made four primary contributions to neural network theory: 

1. He stated that in a neural network, information is stored in the weights of 
the synapses (connections). 

2. He postulated a connection weight training rate that is proportional to the 
product of the activation values of the neurons. Note that his postulate 
assumed that the activation values are positive. Because he didn't provide a 
means for the weights to be decreased, they could theoretically go infinitely 
high. Adaptation that involves neurons with negative activation values has 
also been labeled Hebbian. This is not included in Hebb's original form- 
ulation but is a logical extension of it. 

3. He assumed that weights are symmetric. That is, the weight of a connection 
from neuron A to neuron B is the same as that from B to A. Although this 
may or may not be true in biological neural networks, it is often applied to 
neural network implementations. 

4. He postulated a cell assembly theory, which states that as adaptation occurs, 
strengths and patterns of synapse connections (weights) change, and 
assemblies of cells are created by these changes. Stated another way, if 
simultaneous activation of a group of weakly connected cells occurs 
repeatedly, these cells tend to coalesce into a more strongly connected 
assembly. 

All four of Hebb's contributions are generally implemented in today's neural net- 
works, at least to some degree. We often refer to adaptation schemes implemented 
in some networks as Hebbian. 

In the late 1950s, a landmark paper by Frank Rosenblatt (1958) defined a neural 
network structure called the perceptron. The perceptron was probably the first valid 
neural network implementation because it was simulated in detail on an IBM 704 
computer at the Cornell Aeronautical Laboratory. This computer-oriented paper 
caught the imaginations of engineers and physicists, despite the fact that its mathe- 
matical proofs, analyses, and descriptions contained tortuous twists and turns. Any- 
one capable of wading through the variety of systems and modes of organization 
in the paper will see that the perceptron is capable of "learning" to classify certain 
pattern sets as similar or distinct by modifying its connections. It can therefore be 
described as a "learning machine," or as we prefer to call it, an "adaptation machine." 

Rosenblatt used biological vision as his network model. Input node groups con- 
sisted of random sets of cells in a region of the retina, each group being connected 
to a single association unit (AU) in the next higher layer. AUs were connected bidi- 
rectionally to response units (RUs) in the third (highest) layer. The perceptron's 
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objective was to activate the correct RU for each particular input pattern class. Each 
RU typically had a large number of connections to AUs. 

He devised two ways to implement the feedback from RUs to AUs. In the first, 
activation of an RU would tend to excite the AUs that sent the RU excitation (positive 
feedback). In the second, inhibitory connections existed between the RU and the 
complement of the set of AUs that excited it (negative feedback), therefore inhibiting 
activity in AUs that did not transmit to it. Rosenblatt used the second option for 
most of his systems. In addition, for both options, he assumed that all RUs were 
interconnected with inhibitory connections. 

Rosenblatt used his perceptron model to address two questions. First, in what 
form is information stored, or remembered? Second, how does stored information 
influence recognition and behavior? His answers were as follows (Rosenblatt 1958): 

• . . the information is contained in connections or associations rather than topo- 
graphic representations.., since the stored information takes the form of new 
connections, or transmission channels in the nervous system (or the creation of 
conditions which are functionally equivalent to new connections), it follows that 
the new stimuli will make use of these new pathways which have been created, auto- 
matically activating the appropriate response without requiring any separate process 
for their recognition or identification. 

The primary perceptron adaptation mechanism is self-organizing or self-associative 
in that the response that happens to become dominant is initially random. However, 
Rosenblatt also described systems in which training or "forced responses" occurred. 

This paper laid the groundwork for both supervised and unsupervised train- 
ing algorithms as they are seen today in back-propagation and Kohonen networks, 
respectively. The basic structures set forth by Rosenblatt are therefore alive and well, 
despite the critique by Minsky and Papert that is discussed later. 

Rosenblatt also worked in the area of the recognition of sequences of patterns. 
His analyses showed that very long pattern sequences could be recalled if the num- 
ber of neurons available was roughly equal to the number in the brain. The major 
quantitative results of his model for long-term sequential memory in the brain are 
summarized in Rosenblatt (1964). 

Frank Rosenblatt died in a sailing accident on Chesapeake Bay in 1971 on his 43rd 
birthday. We can only speculate what further significant contributions he might have 
made had he lived longer. 

The last stop in the Age of Camelot is with Bernard Widrow and Marcian Hoff. 
In 1960 they published a paper entitled "Adaptive Switching Circuits" that, particu- 
larly from an engineering standpoint, has become one of the most important papers 
on neural network technology (Widrow and Hoff 1960). Widrow and Hoff are the 
first engineers discussed in this history section. Not only did they design neural net- 
work implementations that they simulated on computers, they implemented their 
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designs in hardware. And at least a couple of the lunch-box-sized machines they 
built "way back then" are still in working order! 

Widrow and Hoff (1960) introduced a device called an adaline (for adaptive 
linear). Adaline consists of a single processing element with an arbitrary number of 
input elements that can take on values ofplus or minus one and a bias element that is 
always plus one. Before being summed by a summing element, each input, includ- 
ing the bias, is modified by a unique weight that Widrow and Hoff call a "gain." 
(This name reflects their engineering background because the term gain refers to 
the amplification factor that an electronic signal undergoes when processed by an 
amplifier; it may be more descriptive of the function performed than the more com- 
mon term weight.) Following the summer is a quantizer that has an output of plus 
one if the summer output, including the bias, is greater than zero, and an output of 
minus one for summer outputs less than or equal to zero. 

What is particularly ingenious about the adaline is the adaptation algorithm. One 
of the main problems with perceptrons is the length of time it takes them to learn 
to classify patterns. The Widrow-Hoff algorithm yields adaptation that is faster and 
more accurate. The algorithm is a form of supervised adaptation that adjusts the 
weights (gains) according to the size of the error on the output of the summer (prior 
to the quantizer). 

Widrow and Hoff showed that the way they adjust the weights minimizes the 
sum-squared error over all patterns in the training set. For that reason, the Widrow- 
Hoff method is also known as the least mean squares (LMS) algorithm. The error 
is the difference between what the output of the adaline should be and the output 
of the summer. The sum-squared error is obtained by measuring the error for each 
pattern presented to the adaline, squaring each value, and then summing all of the 
squared values. 

Minimizing the sum-squared error involves an error reduction method called 
gradient descent, or steepest descent. Mathematically, it involves the partial deriva- 
tives of the error with respect to the weights. Widrow and Hoff showed that it isn't 
necessary to take the derivatives because they are proportional to the error (and its 
sign) and to the sign of the input. 

They further showed that for n inputs, reducing the measured error of the sum- 
mer by 1/n for each input does a good job of implementing gradient descent. Each 
weight is adjusted until the error is reduced by 1/n of the total error at the begin- 
ning. For example, if there are 12 input processing elements, each weight is adiusted 
to remove 1/12 of the total error. 

This method provides for weight adjustment (adaptation) even when the out- 
put of the classifier is correct. For example, if the output of the summer is 0.5, the 
classifier output is 1.0. If the correct output is 1.0, there is still an error signal of 0.5 
that is used to train the weights further. This is a significant improvement over the 
perceptron, which adjusts weights only when the classifier output is incorrect. That 
is one reason the adaptation of the adaline is faster and more accurate than that of 
the perceptron. 
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Widrow and Hoff's 1960 paper was prophetic, too. They suggested several 
practical implementations of their adaline: "If a computer were built of adaptive 
neurons, details of structure could be imparted by the designer by training (show- 
ing it examples of what he would like to do) rather than by direct designing." 

An extension of the Widrow-Hoff adaptation algorithm is used today in back- 
propagation neural networks. In addition, their work in hardware implementation 
of neural network implementations heralded cutting-edge work in very large-scale 
integration (VLSI) by people such as Carver Mead and his colleagues at the 
California Institute of Technology (Mead 1989). 

Widrow is the earliest significant contributor to neural network hardware system 
development who is still working in the area of neural networks. He and his students 
also did the earliest work known to the authors in biomedical applications of neural 
network tools. One of his doctoral students, Donald F. Specht (who later developed 
the probabilistic neural network paradigm), used an extension of the adaline, called 
an adaptive polynomial threshold element, to implement a vectorcardiographic diag- 
nostic tool that used the polynomial discriminant method (Specht 1967, 1967a). 
Widrow and his colleagues later did pioneering work using the LMS adaptive algo- 
rithm for analyzing adult and fetal electrocardiogram signals (Widrow et al. 1975). 

As the 1960s drew to a close, optimism was the order of the day. Many researchers 
were working in artificial intelligence (AI), both in the area exemplified by expert 
systems and in neural networks. Although many areas were still unexplored and 
many problems were unsolved, the general feeling was that the sky was the limit. 
Little did most folks know that, for neural networks, the sky was about to fall. 

The Dark Age 
In 1969 Marvin Minsky and Seymour Papert dropped a bombshell on the neural 
network community in the form of a book called Perceptrons (Minsky and Papert 
1969). Although it could be argued that neural network development in the late 
1960s had suffered from an overdose of hype and a paucity of performance, nearly 
all funding for neural networks (as well as for other computational intelligence 
concepts) dried up after the book was published. This was the beginning of the 
Dark Age. 

Most of Minsky and Papert's book is about simple perceptrons, with only an 
input layer and an output layer (no hidden layer). Furthermore, neurons are thresh- 
old logic units, so only two states are allowed, on and off. The authors' analysis of 
simple perceptrons was generally correct, but even this part of their book has a dis- 
turbing undertone because of the authors' style of writing and because of what is 
not said. Their writing style is illustrated by statements such as "Most of this writ- 
ing [about perceptrons] is without scientific value" and "It is therefore vacuous to 
cite a 'perceptron convergence theorem' as assurance that a learning process will 
eventually find a correct setting of its parameters (if one exists)" (Minsky and Papert 
1969). Words and phrases such as "vacuous" and "without scientific value" project 
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an attitude not likely to make friends and influence people. The book doesn't say 
much about perceptrons' good points; it isn't as much about what perceptrons can 
do as what they can't do. 

The coup de grace came in the last chapter, where Minsky and Papert wrote, 
"[O]ur intuitive judgment [is] that the extension [to multilayer perceptrons with 
hidden layers] is sterile." This statement has proved to be incorrect and, in the opin- 
ions of some, a conscious "hatchet job" on a research area whose proponents were 
competing with Minsky, Papert, and their colleagues for funding. 

Perhaps the most serious effect of the book is that it drove a wedge between 
the "traditional" AI folks (those who work with expert systems and symbolics) and 
the neural network people. This is particularly disturbing because it is becoming 
increasingly apparent that, at least in many areas, major breakthroughs in intelligent 
systems require a combination of approaches. The approaches of expert systems are 
being combined with neural networks, evolutionary computation, and fuzzy logic 
to form computational intelligence systems that are beginning to play an important 
role in complex systems such as those used for medical diagnosis, control systems, 
and financial analysis. 

In the decade following the publication of Minsky and Papert's book, the number 
of researchers working in the neural network area dropped significantly. For those 

J 

who remained, progress continued but in smaller steps. Now we look at the work of 
the Dark Age developers who have had a continuing impact on the field, particularly 
those whose contributions led to current techniques in neural network implemen- 
tations. 

Stephen Grossberg of the Center for Adaptive Systems at Boston University, the 
first Dark Age researcher discussed here, appeared on the neural network scene at 
about the same time as Minsky and Papert published their book. He became a pro- 
ductive, visible, and controversial personality in the field. His work is often abstract, 
theoretical, and mathematically dense. It is relatively difficult to read his papers 
because many of them refer to work described in several previous papers. 

In his early work, Grossberg introduced several concepts that are used in a num- 
ber of current neural network implementations. He and Gail Carpenter, his spouse, 
introduced and developed a network architecture known as adaptive resonance the- 
ory (ART). His early concepts include the "on-center off-surround" gain control 
system for a group of neurons. This basically says that if a PE in a population of PEs 
is strongly excited, the surrounding PEs will receive inhibition signals. This lateral 
inhibition idea is also used in other network implementations, such as Kohonen's 
self-organizing structures discussed later. 

Grossberg also contributed much to the theories of network memories, that is, 
how patterns can stay active after inputs to the network have stopped. He wrote of 
short-term memory (STM) and long-term memory (LTM) mechanisms, how the 
former are related to neuron activation values and the latter to connection weights. 
Both activation values and weights decay with time, a feature called forgetting. 
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Activation values decay relatively quickly (short-term memory) whereas weights, 
having long-term memory, decay much more slowly. 

Note that there is a basic difference between the Grossberg networks and the 
network structures discussed earlier. In the latter, the interconnecting weights are 
trained and then frozen, whereas Grossberg's patterns are presented to the networks 
to classify without supervised training. In previous networks, activation values of 
the PEs have no memory. The only thing determining the activation values is the 
pattern currently being presented to the network. 

Grossberg gives PEs (or groups of them, called cell populations) short-term mem- 
ory so that the current activation value depends on the previous one as well as on the 
average excitation of other connected populations. In accordance with on-center off- 
surround, Grossberg's earlier papers (Grossberg 1973) describe an inhibitory effect 
of activation values of connected populations. 

He also wrote about a different kind of PE activation function (output versus 
input) than had been discussed earlier: a sigmoid function. A typical sigmoid 
response function, as described in Grossberg (1973), is illustrated in Figure 5.1. 
In this paper, he shows that signal enhancement and decreased sensitivity to noise 
can occur if the signals transmitted between cell populations are sigmoid functions 
of the populations' average activity levels. This sigmoid function differs in several 
respects from the one used with back-propagation networks described later. For one 
thing, it only plays an inhibitory role, even when it is used as part of the shunting 
self-excitation term for a population of PEs. For another, it is always nonnegative in 
Grossberg's 1973 implementation. 

Another concept incorporated into Grossberg's network models that differs 
from those discussed previously is the adaptation algorithm. In models such as 
Widrow-Hoffand the back-propagation network, the training signal is proportional 
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Figure 5.1 A sigmoidal activation function. 
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to the error in the output, that is, the difference between the desired and actual 
values. In Grossberg's models, adaptation is computed from the sum of the desired 
and actual values, represented in some of his models by input and learned feedback 
signals. 

The adaptive resonance theory (ART) models developed by Grossberg and 
Carpenter incorporate most of the features described. There are several versions of 
the ART system, including ART1, ART2, and ART3. The ART network paradigms 
have been described as some of "the most complex neural networks ever invented" 
(Caudill 1989). 

ART1 networks can process only binary input patterns. Almost all neural 
network applications require continuous-valued patterns, which have to be approx- 
imated (coded in binary) for input to ART1. ART2 networks are even more compli- 
cated than those of ART1 and can process discrete-valued input data. Until recently, 
many people have perceived the ART models as powerful research models rather 
than available neural network tools. Recently, however, several implementations of 
ART have been developed that are computationally efficient and feasible to run on 
PCs. Actually, these implementations are approximations of ART but are satisfactory 
for many applications. 

Perhaps the most effective way to learn more about the ART2 and ART3 models 
is to study the collections of papers by Grossberg and Carpenter (Grossberg 1982, 
1988). Carpenter and Grossberg have also published a readable article that is pri- 
marily focused on ART2 (Carpenter and Grossberg 1987b). 

The Dark Age researcher discussed next is Shun-Ichi Amari, one of the most 
prominent researchers of artificial neural network theory. He began combining bio- 
logical neural network activity and rigorous mathematical expertise in his studies of 
neural networks in the late 1960s. 

One of Amari's earliest results was in the area of error correction adaptation, 
where he found a way to use a single hidden PE to form nonlinear decision bound- 
aries for a restricted class of functions (Amari 1967). He demonstrated optimal 
weight vector convergence, even with nonseparable pattern distributions. He gener- 
alized the theory to multicategory classifiers and showed that it applies to the case 
with general discriminant functions, including piecewise-linear discriminant func- 
tions. Had Amari's solution to this problem, known as the credit assignment prob- 
lem, been widely known and accepted, Minksy and Papert's book Perceptrons would 
probably not have had the negative impact it did on the neural network field. Other 
neural network research that Amari has done includes the analysis of randomly 
connected neural networks (Amari 1971) and studies of temporally associative 
memories (Amari 1972). 

One of his best-known papers was published in 1977 (Amari 1977). It discusses 
both recurrent, autoassociative networks, which Amari calls concept forming net- 
works, and pattern associators. The concept forming networks are precursors of the 
famous Hopfield networks discussed in the Renaissance section of this chapter. 
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An interesting feature ofAmari's 1977 paper is his concept of neuron pools. Unlike 
most other researchers, Amari doesn't assume that the neuron is the fundamental 
element in neural networks. Rather, he uses the idea of small mutually connected 
groups of neurons, called neuron pools, as the fundamental units of his models. 

In fact, there does not appear to be any reason why individual neurons should be 
considered the fundamental element. That is one reason why almost all researchers 
and developers today use terms such as processing element (PE), unit, processing 
unit, and neurode. The ability to assume a higher-level computing unit as the funda- 
mental network computing element allows much more flexibility in network design 
and development. 

In more recent work, Amari has extensively analyzed competitive adaptation, 
including that used in the self-organizing types of networks developed by Kohonen, 
described later. He is also well known for studies of the memory capacity of various 
kinds of networks. 

In 1972, two researchers on different continents published similar neural 
network development results. One, Teuvo Kohonen of the Helsinki University of 
Technology in Finland, is an electrical engineer; the other, James Anderson, is a 
neurophysiologist and professor of psychology at Brown University in the United 
States. Although Kohonen called his neural network structure "associative memory" 
(Kohonen 1972) and Anderson named his "interactive memory" (Anderson 1972), 
their techniques in network architectures, adaptation algorithms, and transfer func- 
tions were almost identical. Despite the similarity oftheir results, the lists ofreferences 
in the papers published by these two men do not contain a single item in common! 

Kohonen is chosen as the focus here, partly because of the current implementa- 
tions of his work in neural network implementations (discussed in detail in the next 
chapter) and partly because of his interest in applications such as pattern recognition 
and speech recognition. This is not to diminish in any way Anderson's work, which 
was and continues to be significant and relevant. In fact, a two-volume set edited by 
Anderson and Rosenfeld (1988) and by Anderson, Pellionisz, and Rosenfeld (1990) 
is arguably the best compilation of the significant early work in the neural network 
field. Each paper in the two volumes is prefaced by excellent introductory material 
that places the paper in context. Anderson has been interested more in physiological 
plausibility and models for his network structures and adaptation algorithms. 

One of the most notable things about Kohonen's 1972 paper is the PE, or pro- 
cessing element, that he uses. It is linear and continuous-valued rather than the 
all-or-none binary model of McCulloch-Pitts and Widrow-Hoff. Not only is the 
output continuous valued, but so are the connection weights and input values. 
Remember that Widrow-Hoff used continuous values to calculate the error values, 
but the output of the PE was binary. 

Also notable is Kohonen's use of networks with many simultaneously active 
input and output PEs, which are necessary when analyzing visual images or spectral 
speech information. Rather than have the output of the network represented by 
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the activation of a single "winning" neurode or the activation level of a single 
multivalued PE, Kohonen uses activation patterns on a relatively large number of 
output PEs to represent the input classifications. This tends to make the network 
better able to generalize and less sensitive to noise. 

Most notably, the paper lays the groundwork for a type of neural network very 
different from that evolved from the perceptron. The current version of the mul- 
tilayer perceptron most commonly used is the back-propagation network, which 
is trained by giving it examples of correct classifications, an example of supervised 
adaptation. Most current versions of Kohonen's networks, often referred to as self- 
organizing networks, learn to classify without being taught. This is called unsuper- 
vised adaptation and can frequently be used to categorize information when we 
don't know what categories exist. It is also possible to combine Kohonen's unsu- 
pervised architectures with architectures such as back-propagation to do interesting 
and useful things. 

The last researcher discussed in the review of the Dark Age is Kunihiko 
Fukushima of the NHK Broadcasting Science Research Laboratories in Tokyo. 
Fukushima has developed a number of neural network architectures and algorithms 
but is best known for the neocognitron. The neocognitron was briefly described first 
in English in a 1979 report, but the first thorough English-language description 
appeared in Fukushima (1980). Subsequent papers reported developments and 
refinements (Fukushima and Miyake 1982; Fukushima et al. 1983; Fukushima 1986). 

The neocognitron is a model for a visual pattern recognition mechanism and is 
therefore concerned with biological plausibility. As stated by Fukushima, the goal of 
the work was "to synthesize a neural network model in order to endow it [with] an 
ability to [perform] pattern recognition like a human being." The network originally 
described is self-organized and thus able to learn without supervision. 

Later versions of the model utilize supervised adaptation. Fukushima and col- 
leagues (1983) admit that the supervised adaptation situation more nearly reflects 
"a standpoint of an engineering application to a design of a pattern recognizer rather 
than that of pure biological modeling." Because the network emulates the visual ner- 
vous system, starting with retinal images, each layer is two-dimensional. An input 
layer is followed by a number of modules connected in series. Each module consists 
of two layers, the first representing S-cells (the more simple visual cortex cells) and 
the second representing C-cells (the more complex visual cortex cells). Cell activa- 
tions are nonnegative and continuous valued. 

Weights from G-cells in one layer to S-cells in the next layer are modifiable, as 
are those from the input to the first S-cells. Weights within a layer, from S-cells to 
C-cells, are fixed. There are a number of"planes" within each layer. Each cell receives 
input from a fixed, relatively small region of the layer preceding it. By the time the 
output layer is reached, each output cell "sees" the entire input as a result of this 
telescoping effect of decreasing the number of cells in each plane with the depth 
into the network. 
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It is beyond the scope of this summary to describe the neocognitron fully, but 
it exhibits a number of interesting features. For example, the network response is 
not significantly affected by the position of the pattern in the input field. It also 
recognizes input correctly despite small changes in shape or size of the input pat- 
tern. Later versions cope even better with deformation and positional shift than early 
versions and, when presented with a complex pattern consisting of several charac- 
ters, are able to pay selective attention to the characters one at a time, recognizing 
each in turn (Fukushima 1986). 

A comprehensive version of the neocognitron has not been implemented to any 
significant degree on smaller computers such as PCs (although several of the con- 
cepts have appeared in current neural network implementations), probably because 
of the paradigm's complexity. For example, in the network described in Fukushima 
(1980) an input layer of 256 cells (16x16) was followed by three modules of 8,544, 
2,400, and 120 cells, respectively. In addition to the complexity introduced by more 
than 11,000 PEs, the neocognitron has multiple feedforward paths and feedback 
loops, resulting in a computing complexity that is daunting. 

One important thing that Fukushima figured out, however, was how to deal with 
adaptation of inner "hidden" cells (PEs) that are neither input nor output cells. 
He assumes not only that you know what your desired response is but also that 
you know what computational process needs to be followed stage by stage through 
the network to get that response. Knowing the computational process is possible 
only in certain well-defined cases, such as the one described by Fukushima in which 
the 10 digits, 0 to 9, were being recognized in handwritten form. Nevertheless, it was 
quite an accomplishment. 

The Renaissance 

Several publications appeared in the period from 1982 to 1986 that significantly fur- 
thered the state of neural network research. Several individuals were involved, one 
who published his first two landmark neural network papers by himself, and oth- 
ers who, in addition to their individual efforts, published as a group. We call these 
researchers the Renaissance men. 

The individual who published by himself is John Hopfield of the California Insti- 
tute of Technology. In the early 1980s, Hopfield published a paper that, according 
to many neural network researchers, played a more important role than any other 
single paper in reviving the field (Hopfield 1982). A number of factors were respon- 
sible for the impact of Hopfield's 1982 paper and his follow-up paper (Hopfield 
1984). In addition to what he said, how he said it and his professional background 
are important. What he said is summarized later, but first let's examine his profes- 
sional background and how he presented his findings. 

Much of the significant work in neural networks during the Dark Age was 
done by biologists, psychologists, and other researchers who could be labeled 
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"carbon-based." Hopfield is a well-respected physicist. One might say that he is a 
"silicon-based" researcher. In presenting his findings, he gathered a number of areas 
into a coherent whole. He identified network structures and algorithms that could 
be generalized and that had a high degree of robustness. Significantly, he pointed out 
throughout his papers that his ideas could be implemented in integrated circuitry, 
which is why we call him silicon-based. He presented his networks in a manner that 
was easy for engineers and computer scientists to understand, showing the similar- 
ities between his work and that of others. 

Hopfield presented numerous lectures, all over the world, that convinced many 
researchers and developers to begin working in neural networks. According to 
Hecht-Nielsen (1990), 

By the beginning of 1986, approximately one-third of the people in the field had been 
brought in directly by Hopfield or by one of his earlier converts. Hopfield's work as 
a recruiter was perhaps the single most important contribution to the early growth 
of the revitalized field. 

In summary, he got the attention of the technical world. 
Hopfield didn't introduce many new ideas; he just put them together in new, cre- 

ative, and brilliant ways. One new idea was his definition of the energy of a network. 
For a given state of the network, the energy is proportional to the overall sum of the 
products of each pair of node activation values (Vi, Vj) and the connection weight 
associated with them (Wij); that is, 

= - 0 . 5  w jv vj 0) (s.1) 

i,j;i#j 

In other words, he proved that the network has stable states. 
Many of his ideas are incorporated into networks that we examine later in this 

chapter, but we don't present the Hopfield network in detail. Instead, we review the 
version of his network that uses binary processing elements (PEs) as presented in 
(Hopfield 1982). 

The network Hopfield described in 1984 (Hopfield 1984) is similar except that 
it contains continuous-valued PEs with a sigmoidal nonlinearity. The same gen- 
eral mathematical method is used for computing network values in each case. 
Despite the continuous sigmoidal nonlinearity, inputs to the network must be 
expressed in binary form. This arises from the network equations (to be shown) 
and presents significant problems in using this version of the Hopfield net in many 
applications. 

A very simple example ofa Hopfield network (the original 1982 version) is illus- 
trated in Figure 5.2. Each PE is binary; that is, it can take on only one of two values. 
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Figure 5.2 A simplified four-PE Hopfield network. 

Hopfield used values of 1 and 0, but subsequently showed that values of 1 and -1 
result in simplified mathematics. We use 1 and-1 .  The value that the PE assumes is 
governed by a hard-limiting function. By this we mean that if the net input to a PE 
is greater than or equal to some threshold value (usually defined to be 0), then the 
activation value is 1; otherwise, it is-1.  

Before we review the operation of the network, two limitations of Hopfield net- 
works should be mentioned. The first is that they can reliably store and recall only 
about 15 percent as many states as the network has PEs. For example, a network with 
60 PEs can store about 9 states. A second limitation is that the patterns stored must 
be chosen so that the Hamming distance between two patterns is about 50 percent 
of the number of PEs. The Hamming distance between two binary patterns is the 
number of bits in which the values are different. For example, the patterns 1 1 1 1 1 
and 1 -1 1 -1 1 have a Hamming distance of two. 

From the first limitation, you can see that we're stretching things to say we can 
store much of anything in a four-PE network. We'll use the patterns 1 1 1 1 and 
-1 -1 -1 -1 as the two we'll store. We store the patterns by initializing (training) the 
interconnecting weights according to equation 5.2. The equation says that a weight 
is equal to the sum over all stored patterns of the product of the activation values of 
the PEs on each end of the connection: 

~Vij = ~__aViVj (Wii = O) (5.2) 
patterns 

In our simple example, the sum over the two patterns of ViV i for each weight is 
always 1 + 1 = 2, so each weight in our trained network is 2. Now let's see how the 
network updates the activation values of the PEs, recovering complete patterns from 
partially incorrect ones. 
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The activation values of the PEs are updated asynchronously and, in Hopfield's 
original configuration, stochastically. To be updated asynchronously means that they 
are updated one at a time rather than all at once, as is the case with the back- 
propagation networks that we look at later in this chapter. Updating stochastically 
means that a probability is involved with a PE being updated at a given opportunity. 
For example, if it's the turn of PE number three to be updated, a random number 
[0, 1 ] is generated. Ifthe number generated is greater than, say, 0.5, the PE is updated; 
otherwise, it isn't. 

Keeping in mind the hard-limiting function described earlier, we find that 
equation 5.3 describes the process for calculating the net input to a PE, where Ii 
is the external input. 

Net input to PE i = E WijVj + Ii (5.3) 
i#j 

The activation value of the PE will be 1 if the net input is greater than or equal to 
zero, and -1 otherwise. Let's look at how this network, trained to "remember" the 
two states I 1 1 1 and-1  -1 -1 -1, deals with an "imperfect" input pattern. 

We input a pattern of I 1 1 -1, which has a Hamming distance of I from one 
of the two remembered states, and assume the four PEs now have these values. One 
way to think about this is to consider the weights Wij set to 0 during the external 
input process. Then the activation state of each PE assumes whatever we input to it. 

Now we asynchronously and stochastically update the activation states of all four 
PEs. If one of the PEs with a value of I is selected first, we calculate its new activation 
value. (External inputs are no longer being applied, so Ii is 0 for all PEs now.) Using 
equation 5.3, you can see that each of the three PEs with a value of I has the same net 
input whichever one is selected: 2(1) + 2(1) + 2(-1) = 2. Since 2 > 0, its activation 
value doesn't change. 

When the PE with the activation value of-1 is selected and updated, its activation 
value is changed to I because the net input to it is 2( 1 ) + 2(1) + 2(1) = 6. As soon as 
this happens, the pattern is stable, no matter how long you continue, because the net 
input of any PE selected is now greater than 0. We have thus successfully recovered 
one of the remembered states. 

Similarly, you can see that the other remembered state is recovered if you start 
with any pattern with a Hamming distance of 1 f r o m - 1  -1 -1 -1, such as 
1 -1 -1 -1. If you start with a pattern with a Hamming distance of 2 from each of 
the remembered states, the state recovered depends on which PE has its activation 
value updated first. That seems only fair because the test pattern is halfway between 
the two remembered states. 

Although this is a simple example, the same principles apply to a large Hopfield 
network. You should be able to work out more useful examples for yourself with the 
information given. 
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Hopfield's work was noticed almost immediately by the semiconductor 
industry. Within three years of his 1984 paper, AT & T Bell Laboratories announced 
the first hardware neural networks on silicon chips, utilizing Hopfield's theories. 
Caltech colleague Carver Mead continued the innovations, fabricating hardware 
versions of the cochlea and retina. 

Just prior to AT & T's announcement of the chips in 1986, the other Renais- 
sance men, the Parallel Distributed Processing (PDP) Research Group, published 
their first two volumes (Rumelhart and McClelland 1986, McClelland and Rumel- 
hart 1986). The third volume followed in two years (McClelland and Rumelhart 
1988). Although it is difficult to pinpoint when work on these volumes began, a 
meeting organized by Hinton and Anderson in 1979 seems to have been the first 
meeting that involved a significant number of the PDP group. The Renaissance in 
neural networks, kindled by Hopfield, burst into flames with the release of their 
books. Sixteen researchers made up the PDP Research Group, and anywhere from 
one to four of them wrote each chapter in the first two PDP volumes. McClelland 
and Rumelhart edited the first two volumes and contributed to the third. 

It is hard to overstate the effect these books had on neural network research and 
development. By late 1987, when one of the authors of this book [RE] bought his 
copy of volume 1, it was in its sixth printing. The software included with volume 3 
sold more copies in 1988 than all other neural network software combined. What 
accounted for the unparalleled success of Parallel Distributed Processing? In one sen- 
tence: The books presented everything practical there was to know about neural 
networks in 1986 in an understandable, usable, and interesting way. In fact, 1986 
seemed to mark the point at which a "critical mass" of neural network information 
became available. 

Recall that neural network paradigms have three primary attributes: the architec- 
ture, the PE activation functions and attributes, and the adaptation algorithms. The 
PDP books presented a variety of these three items, building several network types 
as examples. The most read and quoted are probably in Chapters 1 to 4 and Chapter 8 
in volume 1. Chapter 8 is entitled "Learning Internal Representations by Error 
Propagation" and contains the basic derivation of the back-propagation algorithm 
for multilayer perceptrons. It is one of the most quoted references in neural net- 
work literature. Other chapters also represent landmarks in neural network devel- 
opment, such as Chapter 7 on Boltzmann machines, written by Geoffrey Hinton of 
Carnegie-Mellon and Terry Sejnowski, then of Johns Hopkins University and now at 
the Salk Institute in San Diego. Hinton started out, with McClelland and Rumelhart, 
to be one of the editors of the books but decided to devote more of his time to the 
Boltzmann machine work. 

Certainly one of the most significant contributions of the PDP volumes has been 
the derivation and subsequent popularization of the back-propagation adaptation 
algorithm for multilayer perceptrons, described in a landmark article in Nature at 
about the same time (Rumelhart et al. 1986). Other groups developed the basic 
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back-propagation scheme in the late 1980s, including Paul Werbos and Dave Parker 
(Allman 1989). 

We include in chapter 6 of this book an implementation of the back-propagation 
model for personal computers. Competitive adaptation is briefly reviewed before we 
present the Kohonen networks. We do not cover in any significant way a number 
of other models and mechanisms described by the PDP group, including interac- 
tive activation and competition, constraint satisfaction (including the Boltzmann 
machine), and the pattern associator. 

The Age of Neoconnectionism 
In about 1987 we moved into the Age of Neoconnectionism, named by Cowan and 
Sharp (1988). The field of neural networks and the development of neural network 
implementations for personal computers expanded almost unbelievably in the next 
decade. It was no longer feasible to assemble "all there is to know" about the current 
state of neural networks in one volume, or one set of volumes, as the PDP Research 
Group attempted to do in 1986-1988. 

The first major conference on neural networks, the International Conference on 
Neural Networks, was held in San Diego in 1987, sponsored by the IEEE. This con- 
ference gave birth to both the IEEE Neural Networks Council (NNC) and the Inter- 
national Neural Networks Society (INNS). Robert Marks, then of the University of 
Washington, served as the first president of the IEEE NNC, and Steven Grossberg 
was the first INNS president. Marks also served as the founding editor-in-chief of 
IEEE Transactions on Neural Networks, arguably the most prestigious and widely read 
journal in the field. One of the authors [RE] served as the second president of the 
IEEE NNC. (In 2002 the IEEE Neural Networks Council became the IEEE Neural 
Networks Society, and it is now the IEEE Computelligence Society.) 

Dozens of neural network paradigms, with hundreds of variations, were 
described in the literature. Because of the sheer volume of work being done by thou- 
sands of people, it is difficult to decide which individual researchers to highlight 
in the Age of Neoconnectionism. However, one new general class of networks was 
increasingly utilized. These networks, sometimes called "basis function" paradigms, 
include probabilistic neural networks and radial basis function networks. The per- 
son generally credited with having the most to do with the early development of 
probabilistic neural networks is Donald Specht, who published the first papers 
about them (Specht 1988, 1990) and continues to contribute significantly to the 
development of basis function paradigms. 

In the decade from 1987 to 1997, the list of neural network applications 
expanded from biological and psychological uses to include uses as diverse as biomedi- 
cal waveform classification, music composition, and prediction of commodity prices. 
Neural network development activity intensified worldwide. Another development 
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occurred that is perhaps more important: the shift to PCs for neural network 
implementations. Personal computers had changed drastically since the introduc- 
tion of the first Altairs and Apples. Their increased capabilities (speed, memory, mass 
storage, communications, and graphics) and reduced cost of personal computers 
made the implementation of useful and cost-effective neural network systems uni- 
versally attractive. As of 1994, more than 50 million PCs were being sold annually 
worldwide (Gates 1995). 

In 1994 the first IEEE World Congress on Computational Intelligence was held 
in Florida. For the first time, major conferences on neural networks, evolutionary 
computation, and fuzzy logic were held together. The boundaries between method- 
ologies were beginning to erode. 

The Age of Computational Intelligence 
The second IEEE World Congress on Computational Intelligence was held in 1998 
in Anchorage, Alaska. By this time, the boundaries between the three main areas of 
computational intelligence had eroded even more, and we choose this year as the 
beginning of the age of computational intelligence. 

The third IEEE World Congress on Computational Intelligence in 2002 in 
Honolulu, Hawaii, was a gathering of engineers and scientists whose presentations 
and discussions were truly eclectic, and it was a celebration of the formation of the 
new IEEE Neural Networks Society. 

In 2005 the IEEE approved the society's change of the name to properly reflect its 
fields of interest: The IEEE Computelligence Society. In 2006, the fourth IEEE World 
Congress on Computational Intelligence was held in Vancouver, British Columbia, 
Canada. 

Hybrid systems are the order of the day. And if you want to keep up with the 
latest developments in neural networks, you have to skim the evolutionary compu- 
tation and fuzzy logic journals because many, if not most, advances in computational 
intelligence cut across methodologies. There is no looking back! 

What Neural Networks Are and Why They Are Useful 

Neural networks are information processing systems. In general, they can be thought 
of as "black box" devices that accept inputs and produce outputs. In the simplest 
terms, neural networks map input vectors onto output vectors. Some of the oper- 
ations that neural networks perform include the following. 

Classification. An input pattern is passed to the network, and the network produces 
a representative class as output. 
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Pattern matching. An input pattern is passed to the network, and the network 
produces the corresponding output pattern that best matches the input pattern. 

Pattern completion. An incomplete pattern is passed to the network, and the 
network produces an output pattern that has the missing pattern portions 
filled in. 

Noise removal. A noise-corrupted input pattern is presented to the network, and 
the network removes some (or all) of the noise and produces a cleaner version 
of the input pattern as output. 

Optimization. An input pattern representing the initial values for a specific optimi- 
zation problem is presented to the network, and the network produces a set of 
variables that represent an acceptably optimized solution to the problem. 

Control. An input pattern is presented that represents the current state of a con- 
troller and the desired response for it, and the network output is the command 
sequence that will create the desired response. 

Simulation. An input pattern (or series of patterns) is presented that represents 
the current state vector (and possibly previous state vectors) of a system or 
time series. The trained network generates structured sequences or patterns 
that simulate behavior of the system with time. 

Neural networks consist of processing elements and weighted connections. 
Figure 5.3 illustrates a typical neural network. Each layer in a neural network con- 
sists of a collection of processing elements. Each PE collects the values from all of its 
input connections, performs a predefined mathematical operation (such as a dot- 
product followed by a threshold), and produces a single output value. The neural 
network in Figure 5.3 has three layers: Fx, which consists of the PEs {Xl, x2, x3 }; F r, 
which consists ofthe PEs {Yl,)I2 }; and Fz, which consists ofthe PEs {Zl, z2, z3 } (from 
left to right, respectively). 
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Figure 5.3 A typical neural network. 
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Processing elements are connected with weighted connections. In Figure 5.3 
there is a weighted connection from every Fx PE to every F r PE, and there is a 
weighted connection from every F r PE to every Fz PE. Each weighted connection 
(referred to as either a connection or a weight; the terms are used interchangeably in 
this book) acts as both a label and a value. As an example, in Figure 5.3 the connec- 
tion from the Fx PE xl to the F r PE Y2 is the connection weight w21 (the connection 
from xl to y2). Connection weights store the information, or knowledge, in a net- 
work. The values of the connection weights are often determined by a neural net- 
work adaptation procedure (although sometimes they are predefined and hardwired 
into the network). It is through the adjustment of the connection weights that the 
neural network is able to adapt. By performing the update operations for each PE 
when an input pattern is presented, the neural network is able to recall information. 

There are several important features illustrated by the neural network shown in 
Figure 5.3 that apply to all neural networks: 

m Each PE acts independently of all others; each PE's output relies only on its 
constantly available inputs from the abutting connections. 

a Each PE relies only on local information; the information provided by the 
adjoining connections is all a PE needs to process. It does not need to know 
the state of any of the other PEs to which it does not have an explicit 
connection. 

'~ The large number of connections provides redundancy and facilitates a 
distributed representation. 

The first two features allow neural networks to operate efficiently in parallel. The 
last feature provides properly designed neural networks with fault-tolerance and 
generalization qualities that are very difficult to attain with most other computing 
systems. 

In addition to these features, by properly arranging the topology of the net- 
works, introducing a nonlinearity in the processing elements (i.e., adding a nonlin- 
ear threshold function), and using the appropriate adaptation rules, neural networks 
are able to "learn" arbitrary nonlinear mappings. This is a powerful attribute. There 
are three primary situations where neural networks are advantageous: 

1. Situations where relatively few decisions are required from a massive 
amount of data (e.g., speech and image processing) 

2. Situations where nonlinear mappings must be automatically acquired 
(e.g., loan evaluations and robotic control) 

3. Situations where a near-optimal solution to a combinatorial optimization 
problem is required very quickly (e.g., job shop scheduling and telecommu- 
nication message routing) 
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A basic knowledge of neural networks requires an understanding of the 
nomenclature and a comprehension of the rudimentary mathematical concepts 
used to describe and analyze neural network processing. In a broad sense, neural 
networks comprise three principal elements needed to specify the network: 

m T o p o l o g y ~ h o w  a neural network is organized into layers and how those 
layers are connected. 

m A d a p t a t i o n ~ h o w  a network is configured to store information. 

[] R e c a l l ~ h o w  the stored information is retrieved from the network. 

We describe each of these elements in detail after a discussion of connection weights, 
processing elements, and activation functions. 

Neural Network Components and Terminology 

Each neural network has at least two structural components: connection weights 
and processing elements. The combination of these components creates a neural 
network topology. A convenient analogy is the directed graph, where the edges are 
analogous to the connection weights and the nodes are analogous to the processing 
elements. In addition to connection weights and processing elements, processing 
element activation functions and input/output patterns are also basic components 
in the design, implementation, and use of neural networks. After a description of 
the terminology of neural networks, we examine each of these elements in turn. 

Terminology 
Neural network terminology remains varied, with standards yet to be adopted. The 
Standards Committee of the IEEE Neural Networks Council, now the IEEE Com- 
putational Intelligence Society, is actively involved in standardizing terminology and 
symbology (Eberhart 1990). We generally use terminology developed by the Stan- 
dards Committee in this book. There are, however, exceptions. Therefore, for clarity, 
we explain the terminology as appropriate. Figure 5.4 shows an illustration of some 
of the terminology. 

Input and output vectors (patterns) are denoted by subscripted capital letters 
from the beginning of the alphabet. The input patterns are denoted Ak = akl,  

ak2, • • . ,  akn); k = 1, 2 , . . . ,  m, and the output patterns as Bk = (bkl,  bk2, • • . ,  bkp); 

k = 1, 2, . . . ,  m. Note that the subscript k refers to a pattern and that there are m 
input patterns. 

The processing elements (PEs) in a layer are denoted by the same subscripted 
variable. The collection of PEs in a layer form a vector, and these vectors are denoted 
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(bkl, bk2, bk3 . . . . .  bkp) = B k 

(akl, ak2 . . . . .  akn) = A k 
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Figure 5.4 A network used to illustrate terminology. 

by capital letters from the end of the alphabet. In most cases three layers of PEs 
are sufficient. The input layer of PEs is denoted Fx = (xl,  x2, . . . ,  Xn), where each 
xi receives input from the corresponding input pattern component aki. The next 
layer of PEs is the Fv PEs, then the Fz PEs (if either layer is necessary). If more than 
one inner (hidden) layer is required, they are designated Frl, Fv2, and so on, moving 
from input to output. 

The number of layers in a network is determined by its use. Using the network in 
Figure 5.4 as an example, the second layer of the network is the output layer; hence, 
the number of Fr PEs must match the dimensionality of the output patterns. In this 
instance, the output layer is denoted Fr = (Yl, Y2, • • . ,  Yp), where each y) is correlated 
with the jth element of Bk. Connection weights are stored in weight matrices. Weight 
matrices are denoted by capital letters toward the end of the alphabet, typically U,V, 
and W. Referring to the example in Figure 5.4, this two-layer neural network requires 
one weight matrix to fully connect the layer of n Fx PEs to the layer ofp Fr PEs. The 
matrix in Figure 5.4 describes the full set of connection weights between Fx and Fr, 
where the weight wii is the connection weight from the ith Fx PE, xi, to the jth Fv 
PE, Yi" For a two-layer network, the weight matrix is usually denoted by W. Addi- 
tional layers and/or mean-variance weight configurations (discussed later) generally 
have weight matrices denoted by U and/or V. 

Input and Output Patterns 
Neural networks cannot operate without data. Some neural networks use only single 
patterns; others use pattern pairs. Note that the dimensionality of the input pattern 
is not necessarily the same as the output pattern. When a network uses only single 
patterns, it is defined as an autoassociative network. When a network uses pattern 
pairs, it is heteroassociative. 

One of the key issues when applying neural networks is determining what the 
patterns should represent. For example, in speech recognition systems there are 
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many types of features that can be employed, including linear predictive coding 
coefficients, Fourier spectra, histograms of threshold crossings, cross-correlation 
values, and others. The proper selection and representation of these features can 
greatly affect the performance of the network. 

In some instances, feature representation as a pattern vector is constrained by the 
type of processing the neural network can perform. For example, some networks can 
process only binary data, such as the binary Hopfield network (Amari 1972; Hop- 
field 1982), binary adaptive resonance theory (Carpenter and Grossberg 1987a), and 
the brain-state-in-a-box (Anderson et al. 1977). Others can process real-valued data, 
including back-propagation (Parker 1982; Rumelhart et al. 1986; Werbos 1974) and 
learning vector quantization (Kohonen 1988). Creating the best possible set of fea- 
tures and properly representing those features is the crucial first step toward success 
in any neural network application. This task often takes a significant portion of the 
system development effort. 

Network Weights 
A neural network is equivalent to a directed graph (digraph). A digraph has edges 
(weights, or connections) between nodes (PEs) that allow information to flow in 
only one direction (the direction denoted by the arrow). Information flows through 
the digraph along the edges and is collected at the nodes. Within the digraph rep- 
resentation, connections serve a single purpose: They determine the direction of 
information flow. 

Neural networks extend the digraph representation to include a weight with each 
edge (connection) that modulates the amount of signal passed from the output of 
one PE along the connection to the next PE. As an example, in Figure 5.4 the infor- 
mation flows from the Fx layer through the weighted connections, W, to the Fy layer. 
For simplicity, a dual role for weights is used. A weight both defines the informa- 
tion flow through the network and modulates the amount of information passing 
between PEs. 

The connection weights are adjusted during an adaptation process that captures 
information. Connection weights with positive values are excitatory connections. 
Those with negative values are inhibitory connections. A connection weight that 
has a zero value is the same as not having a connection present. By allowing only 
a subset of all the possible connections to have nonzero values, sparse connectivity 
between PEs can be simulated. 

For reasons that will be discussed later, it is often desirable for a PE to have an 
internal bias value (threshold value). Figure 5.5(b) shows the PE yj with three weights 
from FX {Wjl, wj2, wj3 } and a bias value, bj. It is convenient to consider this bias value 
as an extra weight, w0, emanating from the Fx layer PE x0, with the added constraint 
that xo is always equal to 1, as shown in Figure 5.5(b). This mathematically equivalent 
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Figure 5.5 An illustration of PEs with internal (a) and external biases (b). 
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representation simplifies many discussions. We use this method of representing bias 
(threshold) values throughout this book. 

Processing Elements 
The processing element (PE) is the component of the neural network where com- 
putations are performed. Figure 5.5 illustrates the most common type of PE. A 
PE can have one input connection, as is the case when the PE is an input layer 
PE and it receives only one value from the corresponding component of the input 
pattern, or it can have several input weights, as is the case of the Fy PEs shown 
in Figure 5.4 where there is a connection from every Fx PE to each Fy PE. Each 
PE collects the information that has been sent down its abutting connections and 
produces a single output value. PEs possess two important qualities: 

'~ PEs require only local information. M1 the information necessary for a PE to 
produce an output value is present at the inputs and resides within the PE. 
No other information about other values in the network is required. 

[] Each PE produces only one output value. This single output value either is 
propagated along the connections from the emitting PE to other receiving 
PEs or serves as an output from the network. 

These two qualities facilitate neural networks' parallel operation. As is done with 
the weights, the value of the PE and its label are referred to synonymously. As an 
example, the jth Fy PE in Figure 5.4 is yj, and the output value of that PE is also yj. 

There are several mechanisms for computing the output of a processing element. 
The output value of the PE shown in Figure 5.5(b), yj, is a function ofthe outputs of 
the preceding layer, Fx = X -  (Xl, x2 , . . . ,  Xn) and the weights from Fx to yj, Wj = 
(Wjl, wj2,. . . ,  wjn). Mathematically, the output of this PE is a function of its inputs 
and its weights, as shown in equation 5.4. Actually, it is usually a function of a func- 
tion. First, a calculation is performed to determine how the weights and previous 
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outputs are combined to form the input to the PE. Then an activation function is 
calculated that determines the output of the PE given its input. 

yj = F(X,W i) (5.4) 

Two common types of input computation are linear combination and mean- 
variance connections. The most common input computation performed by a PE is a 
linear combination (dot product) of the input values, X, with the abutting connec- 
tion weights, Wj, followed by an activation function (cfi. Hecht-Nielsen 1990; Maren 
et al. 1990; Simpson 1990 ). Using the PE in Figure 5.5(b) as an example, the output 
yj is computed using equation 5.5, where Wj = (Wjl, wj2, . . . ,  Win) and f(.) is one of 
the activation functions described later in this chapter. 

yj ~ f ( ~ x i w j i )  -- f ( X  . (5.5) 

The dot-product update has an appealing quality that is intrinsic to its computa- 
tion. Looking at the relationship Ak.  W i = cos(Ak, Wj)/[[Ak[[ [[Wj[[, we can see that 
the larger the dot-product (assuming fixed lengths Ak and Wj), the more similars 
the two vectors are. Hence, the dot-product can be viewed as a similarity measure. 
Note that if vectors X and W/are of fixed length, maximizing their dot (inner) prod- 
uct is the same as minimizing their mean-square separations, since 

I fx -  will = Jaxll + II wj II - two times the dot (inner) product. 

The second common type of input computation is mean-variance connections, 
which are used in instances where there are two weights connecting PE pairs instead 
of just one, as shown in Figure 5.6. One use of these dual weights is to allow one 
set of the abutting weights to represent the mean of a class, and the other the class 
variance (Lee and Kil 1989; Robinson et al. 1988). In this case, the output value of 
the PE depends on the inputs and both sets of weights, that is, yj = F(X, Vj, Wj), 
where the mean connections are represented by Wj = (Wjl, w j2 , . . . ,  Win) and the 
variance connections Vj = (vii, vj2, . . . ,  Vjn) for the PE yj. 

Using this scheme, the activation function ofyj calculates the difference between 
the input, X, and the mean, Wj, divided by the variance, Vj, squaring the resulting 
quantity and passing this value through a Gaussian nonlinear function to produce 
the final output value, as shown in equation 5.6, where the Gaussian nonlinear func- 
tion appears in equation 5.7. 
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Figure 5.6 APE with mean-variance connections. 

yj__g(~ Vii (5.6) 

g(x)= e x p ( - ~ - )  (5.7) 

Note that it is possible to remove one of the two connections in a mean-variance 
network, if the variance is known and stationary, by dividing by the variance prior to 
neural network processing. Gaussian nonlinear functions are described in the next 
section. 

Processing Element Activation Functions 
Processing element activation functions, also sometimes referred to as threshold 
functions or squashing functions, map a PE's (possibly) infinite domain to a pre- 
specified range. Although the possible number of activation functions is infinite, 
five are regularly employed by a majority of neural networks: (1) the linear func- 
tion, (2) the step function, (3) the ramp function, (4) the sigmoid function, and 
(5) the Gaussian function. With the exception of the linear function, all of these 
functions introduce a nonlinearity into the network dynamics by bounding the out- 
put values within a fixed range. Each activation function is briefly described below 
and illustrated in Figure 5.7, parts (a) to (e). 

The linear activation function, as in Figure 5.7(a), produces a linearly modulated 
output from the input x, as described by equation 5.8, where x ranges over the real 
numbers and a is a positive scalar. If a - 1, it is equivalent to removing the activation 
function completely. 

f ( x )  = a x  (5.8) 

The step activation function, as in Figure 5.7(b), produces only two values, 
p and -6. If the input to the activation function, x, equals or exceeds the threshold 
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Figure 5.7 Five of the most common activation functions. 

value 0, then the step activation function produces the value p; otherwise, it 
produces the value -6, where/~ and 5 are positive scalars. This function is described 
mathematically in equation 5.9. 

/ /~ i f x > O  
f(x) = 

-5  if x < 0 
(5.9) 

Typically the step activation function produces a binary value in response to the 
sign of the input, emitting + 1 ifx is positive and 0 if it is not. By making the assign- 
ments/~ = 1,6 = 0, and 9 = 0, the step activation function becomes the binary 
step function of equation 5.10, which is common to neural networks such as the 
Hopfield neural network (Amari 1972; Hopfield 1982) and the bidirectional 
associative memory (Kosko 1988). A small variation of equation 5.10 is the bipolar 
activation function, which replaces the 0 output value with a - 1. In punish-reward 
systems such as the associative reward-penalty paradigm (Barto 1985), the negative 
value is used to ensure changes where a 0 will not. 

f 
1 if x >_ 0 

f(x) [ 0 otherwise 
(5.1o) 

The ramp activation function, as in Figure 5.7(c), is a combination of the lin- 
ear and step activation functions. The ramp activation function places upper and 
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lower bounds on the values that the function produces and allows a linear response 
between the bounds. These saturation points are symmetric around the origin 
and are discontinuous at the points of saturation. The ramp activation function is 
defined in equation 5.11, where r is the saturation value for the function and the 
points x = r and x - - r  are where the discontinuities in f(.) exist. 

7 

f(x) - x 

- 7  

i f x > _ r  

if Ixl < r (5.11) 

i f x  _ < - r  

The sigmoid activation function, as in Figure 5.7(d), is a continuous version 
of the ramp activation function. The sigmoid (S-shaped) function is a bounded, 
monotonic, nondecreasing function that provides a graded, nonlinear response 
within a prespecified range. The most common sigmoid function is the logistic 
function of equation 5.12, where a > 0 (often a = 1, which provides an output 
value from 0 to 1. 

1 
f(x) = 1 + e -¢x (5.12) 

This function is familiar to statistics (as the Gaussian distribution function), 
chemistry (describing catalytic reactions), and sociology (describing human pop- 
ulation growth). Note that a relationship between equations 5.12 and 5.10 exists. 
When a - ~ in equation 5.12, the slope of the sigmoid function between 0 and 
1 becomes infinitely steep and, in effect, becomes the step function described by 
equation 5.10. Two alternatives to the logistic sigmoid function are the hyperbolic 
tangent, f ( x )  - tanh(x), which ranges from -1  to 1, and the augmented ratio of 
squares described by equation 5.13, which ranges from 0 to 1. 

x 
f i x ) =  ~ if x > 0  

0 otherwise 
(5.13) 

The Gaussian activation function, as in Figure 5.7(e), is a radial function (sym- 
metric about the origin) that requires a variance value greater than zero to shape 
the Gaussian function. In some networks the Gaussian function is used in con- 
junction with a dual set of connections, as described earlier by equation 5.6, and 
in other instances (Specht 1990) the variance is predefined. In the latter instance, 
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the activation function is described by equation 5.14, where x is the mean and v is 
the predefined variance. 

f(x) = exp( ) (5.14) 
V 

Neural Network Topologies 

The building blocks for neural networks have been described. Neural network 
topologies now evolve from the patterns, PEs, weights (weighted connections), 
and activation functions that have been described. Neural networks consist of 
one or more layers of PEs interconnected by weights. The arrangement of the 
PEs, weights, and patterns into a neural network is referred to as a topology. 
After we introduce some terminology, we describe two common neural network 
topologies. 

Terminology 
Neural networks are organized into layers of PEs. PEs within a layer are similar in 
two respects. First, the connections that feed the layer of PEs are from the same 
source. For example, the Fx layer of PEs in Figure 5.4 all receive their inputs from 
the input pattern, and the layer of Fy PEs all receive their inputs from the Fx PEs. 
Second, the PEs in each layer use the same type of update dynamics. In other words, 
all the PEs use the same connection source(s) and destination(s) and the same type 
of activation function. 

There are two types of weight that a neural network employs: intralayer weights 
and interlayer weights. Intralayer weights ("intra" is Latin for "within") are weights 
between PEs in the same layer. Interlayer weights ("inter" is Latin for "among") are 
weights between PEs in different layers. It is possible to have neural networks that 
consist of one or both types of weight. 

When a neural network has connections that feed information in only one direc- 
tion, from input to output without feedback pathways in the network, it is a feed- 
forward neural network. If the network has any feedback paths, where feedback is 
defined as any path through the network that allows the same PE to be visited twice, 
then it is a feedback neural network. Thus, a network using PEs that have self-feedback 
loops is a feedback network. 

Two-layer Networks 
Two-layer neural networks consist of a layer of n Fx PEs fully interconnected to a 
layer of p Fy PEs, as shown in Figure 5.8. The connections from the Fx to Fy PEs 
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Figure 5.8 Two-layer neural networks. 
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form the n-by-p weight matrix W, where the entry wji represents the weight for the 
connection from the ith Fx PE, xi, to the jth Fy PE, )I/. There are three common 
types of two-layer neural network: feedforward pattern matchers, feedback pattern 
matchers, and feedforward pattern classifiers. 

A two-layer feedforward pattern matching neural network maps the input pat- 
terns, Ak, to the most closely corresponding output patterns, Bk. The network shown 
in Figure 5.8(a) illustrates the topology of this feedforward network. The two-layer 
feedforward neural network accepts the input pattern Ak and produces an output 
pattern, Y - (yl ,)'2, • •., yp), that is the network's best estimate ofthe proper output 
given Ak as the input. An optimal mapping between the inputs and the outputs is one 
that always produces the correct response Bk when Ak is presented to the network, 
k -  1,2, . . . ,  m. 

Most two-layer networks are concerned with finding the optimal linear mapping 
between the pattern pairs (Ak, Bk) (cf. Kohonen 1988; Widrow and Winter 1988), 
but there are other two-layer feedforward networks that work with nonlinear map- 
pings by extending the input patterns to include multiplicative combinations of the 
original inputs (Maren et al. 1990; Pao 1989). 

A two-layer feedback pattern matching neural network, shown in Figure 5.8(b), 
accepts inputs from either the Fx or Fv layer, and produces the output for the other 
layer (Kosko 1988; Simpson 1990). An example of this kind of network is the bidi- 
rectional associative memory network (Kosko 1988). 
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A two-layer pattern classification neural network, shown in Figure 5.8(c), maps 
an input pattern, Ak, into one ofp classes. Representing each class as a separate Fy 
PE, the pattern classification task reduces to selecting the Fr PE that best responds 
to the input pattern. Some of the two-layer pattern classification systems use the 
competitive dynamics of global on-center/off-surround connections to perform the 
classification. 

Multila yer Networks 

A multilayer neural network has more than two layers, possibly several more. A 
general description of a multilayer neural network is shown in Figure 5.9, where 
there is an input layer of PEs, Fx, L hidden layers of Fy PEs (Fy1, Fy2,., FyL), and a 
final output layer, Fz. The Fy layers are called hidden layers because there are no 
direct weights (connections) between the input or output patterns to these PEs; 
rather, they are always accessed through another set of PEs such as the input and 
output PEs. 

Although Figure 5.9 shows weights only from one layer to the next, it is possible 
to have weights that skip over layers, that connect the input PEs to the output PEs, 
or that connect PEs within the same layer. The added benefit of these weights is not 
generally understood, but some implementations use them. 

Multilayer neural networks are used for pattern classification, pattern match- 
ing, and function approximation. By adding a continuously differentiable PE 
activation function, such as a Gaussian or sigmoid function, it is possible for the 
network to learn practically any nonlinear mapping to any desired degree of accuracy 
(White 1989). 
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Figure 5.9 General form of a multilayer neural network. 
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The mechanism that allows such complex mappings to be developed is not fully 
understood for each type of multilayer neural network, but in general the network 
partitions the input space into regions, and a mapping from the partitioned regions 
to the next space is performed by the set ofweights to the next layer of PEs, eventually 
producing an output response. This capability allows some very complex decision 
regions to be formed for classification and pattern matching problems, as well as for 
applications that require function approximation. 

Several issues must be addressed when working with multilayer neural networks. 
How many layers are sufficient for a given problem? How many PEs are needed in 
each hidden layer? How much data is needed to produce a sufficient mapping from 
the input layer to the output layer? 

Some of these issues have been addressed successfully. For example, several 
researchers have proved that three layers are sufficient to perform any nonlinear 
mapping (with the exception of a few remote pathological cases) to any desired 
degree of accuracy with only one layer of hidden PEs. See White (1989) for a review 
of this work. Although this is a very important result, it does not indicate the proper 
number of hidden layer PEs, or if the same solution can be obtained with more 
layers but fewer hidden PEs and weights overall. Note that throughout this book, 
the input is counted as a layer, so that a "three-layer" network has one hidden 
layer. 

There are several ways that multilayer neural networks can have their weights 
adjusted to learn mappings. The most popular technique is the back-propagation 
algorithm (Parker 1982; Rumelhart et al. 1986; Werbos 1974) and its many variants 
(see Simpson 1990 for a list). Other multilayer networks include the neocognitron 
(Fukushima 1980), the probabilistic neural network (Specht 1990), the Boltzmann 
machine (Ackley et al. 1985), the Cauchy machine (Szu 1986), and radial basis func- 
tion networks. 

Neural Network Adaptation 

Arguably the most appealing quality of neural networks is their ability to adapt. 
Adaptation in this context is defined as changes in connection weight values that 
result in the capture of information that can later be recalled. There are several 
procedures for changing the values of connection weights. After an introduction 
to some terminology, we describe two adaptation methods. For continuity of dis- 
cussion, we describe the adaptation algorithms in pointwise notation (rather than 
vector notation). In addition, we describe the algorithms using discrete-time equa- 
tions (rather than continuous time). The use of discrete-time equations makes them 
more accessible to computer simulations. 
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Terminology 
As discussed in Chapter 2, adaptation can be classified into three categories: 
supervised, unsupervised, and reinforcement adaptation. We first focus on super- 
vised and unsupervised adaptation. Supervised adaptation is a process that uses an 
external teacher and/or global information. The supervised adaptation algorithms 
discussed in the following sections include Hebbian, competitive, and error correc- 
tion adaptation. Examples of supervised adaptation issues include deciding when 
to turn off the adaptation, deciding how long and how often to present each asso- 
ciation for training, and supplying performance (error) information. 

Supervised adaptation is further classified into two subcategories: structural 
and temporal. Structural adaptation is concerned with finding the best possible 
input-output relationship for each pattern pair. Examples include pattern matching 
and pattern classification. The majority of adaptation algorithms used in practi- 
cal applications involve structural adaptation. Temporal adaptation is concerned 
with capturing a sequence of patterns necessary to achieve some final outcome. 
In temporal adaptation, the current response of the network depends on previ- 
ous inputs and responses. In structural adaptation, there is no such dependence. 
Examples of temporal adaptation include prediction, simulation, and control. The 
primary example of supervised adaptation included in this book is the back- 
propagation neural network, for which an implementation is discussed in the next 
chapter. 

Unsupervised adaptation, also referred to as self-organization, incorporates no 
external teacher or supervisor and relies only on local information during the entire 
adaptation process. Unsupervised adaptation algorithms perform clustering of the 
data. They organize presented data and discover its emergent collective properties. 
Examples of unsupervised adaptation that are discussed in this book include self- 
organizing feature maps and competitive adaptation. Implementations of the self- 
organizing feature map and learning vector quantization neural networks are 
discussed in the next chapter. 

We next consider off-line and on-line adaptation. Most adaptation techniques 
can use off-line adaptation. When the entire pattern set is used to condition the 
weights prior to the use of the network, it is called off-line adaptation. For example, 
the back-propagation algorithm is used to adjust weights in multilayer neural net- 
works, but it sometimes requires thousands of cycles through all the pattern pairs 
until the desired performance of the network has been achieved. Once the network 
is performing adequately, the weights are frozen and the resulting network is there- 
after used in recall mode. Off-line adaptation systems have the intrinsic requirement 
that all the patterns be resident for training. Such a requirement does not make it 
possible to have new patterns automatically incorporated into the network as they 
occur; rather, these new patterns must be added to the entire set of patterns and the 
neural network must be retrained. 
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Not all neural networks perform off-line adaptation. Some networks can 
perform on-line adaptation, adding new information "on the fly" nondestructively. 
If a new pattern needs to be incorporated into the network's connections, it can 
be done immediately without loss of stored information. The advantage of off-line 
adaptation networks is that they usually provide superior solutions to difficult prob- 
lems such as nonlinear classification, but on-line adaptation allows the neural net- 
work to adapt in situ. A challenge in the future of neural network computing is the 
development of adaptation techniques that provide high-performance on-line adap- 
tation without high costs. 

Hebbian Adaptation 
The simplest form of adjusting weight values in a neural network is based on the cor- 
relation of PE activation values. The motivation for correlation-based adjustments 
has been attributed to Donald O. Hebb (1949), who hypothesized that the change 
in a synapse's efficacy (its ability to fire or, as we are simulating it in our neural 
networks, the connection weight) is prompted by a neuron's ability to produce an 
output signal. If a neuron, A, was active, and A's activity caused a connected neuron, 
B, to fire, then the efficacy of the synaptic connection between A and B should be 
increased. Hebb's work is discussed in the history section of this chapter. 

This form of adaptation, now commonly referred to as basic Hebbian adap- 
tation (or Hebbian learning), has been mathematically characterized as the correla- 
tion weight adjustment described in equation 5.15, where i = 1 ,2 , . . . , n ;  
j = 1, 2 , . . . , p ;  ~ is a constant that represents an adaptation rate; xi is the value 
of the ith PE in the Fx layer of a two-layer network; yj is the value of the jth Fy 
PE; and the connection weight between the two PEs is wji. 

w.n. ew = W ° ld  j~ ji + rlxiYj (5.15) 

In general, the values of the PEs can range over the real numbers, and the weights 
are unbounded. When the PE values and weights are unbounded, these two-layer 
neural networks are amenable to linear systems theory. Neural networks, such as 
the linear associative memory (Anderson 1970; Kohonen 1972), employ this type of 
adaptation and we can analyze the capabilities of these networks using linear systems 
theory. The number of patterns that a network trained using equation 5.15 with 
unbounded weights and connections can recognize is limited to the dimensionality 
of the input patterns (cf. Simpson 1990). 

A special case of Hebbian adaptation is the delta rule, also sometimes called 
the Widrow-Hoff rule (Sutton and Barto 1981). It is called the delta rule because 
the amount of weight adjustment is proportional to the delta (the difference) 
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between the target PE activation value provided by the "teacher" (bkj) and the 
actual activation value calculated by the PE (Ykj). The delta rule is described in 
equation 5.16, where 6kj = bkj - Ykj, and ~ is the adaptation coefficient, which 
typically takes on values between 0 and 1. Since the subscript k denotes a pattern, 
and the subscript j in this case denotes an output PE, the value of delta calculated 
is for one pattern presented to one PE, and aki is the ith component of the kth 
input pattern. Implementation of the delta rule is discussed in the later section on 
multilayer error correction adaptation. 

W~.. ew = W ° ld  jz j~ + rl6kjaki (5.16) 

Competitive Adaptation 
Competitive adaptation (competitive learning), introduced by Grossberg (1970) and 
Von der Malsburg (1973), and extensively studied by Amari and Takeuchi (1978), 
Amari (1983), and Grossberg (1982), is a method of automatically creating classes 
for a set of input patterns. Competitive adaptation is a two-step procedure that cou- 
ples the recall process with the adaptation process in a two-layer neural network. 
Each Fx PE represents a component of the input pattern, and each Fy PE represents 
a class. 

Step 1 
Determine the winning Fy PE. An input pattern, Ak, is passed through the connec- 
tions from the input layer, Fx, to the output layer, Fy, in a feedforward fashion using 
the dot-product update equation yj = z n i= l XiWj i' where xi is the ith PE in the input 
layer Fx, i = 1, 2 , . . . ,  n, yj is the jth PE in the output layer Fy, j = 1, 2 , . . . ,  p, and wji 
is the value of the connection weight between xi and yj. Each set of connections that 
abuts an Fy PE, say yj, is a reference vector Wj = (Wjl, w j 2 , . . . ,  Win) representing the 
class j. The reference vector, Wj, that is closest to the input, Ak, should provide the 
highest activation value. 

If the input patterns Ak, k = 1 ,2 , . . . ,  m and the reference vectors Wj, 
j = 1, 2 , . . . , p  are normalized to Euclidean unit length, then the relationship of 
equation 5.17 holds, where the more similar Ak is to Wj, the closer the dot-product 
is to unity. The dot-product values, yj, are used as the initial values for winner- 
take-all competitive interactions. The result of these interactions is identical to 
searching the Fy PEs and finding the one with the largest dot-product value. 

O< y j = A k  • W j =  akiwji ~ 1 
i = l  

(5.17) 
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Using equation 5.18, it is possible to find the Fy PE with the highest dot-product 
value, called the winning PE. The reference vector associated with the winning PE is 
the winning reference vector. 

f 
_ ~ l i f y j  > y k  for a l l j ¢ k  

Yj 

L 0 otherwise 
(5.18) 

Step 2 
Adjust the winning Fy PE's weights. In competitive adaptation with winner-take- 
all dynamics like those described earlier, there is only one set of weights adjusted: 
those of the winning reference vector. The formula to adjust the winning reference 
vector and no others is equation 5.19, where a(t) is a nonzero, decreasing function 
of time. The result of this operation is the motion of the reference vector toward the 
input vector. Over many presentations of the data vectors [on the order of O(n 3) 
(Hertz et al. 1990)], the reference vectors will become the centroids of data clusters 
(Kohonen 1986). 

W new - -  w old j, ji + a(t)yj(aki - wji) (5.19) 

There have been several variations of this algorithm (cf. Simpson 1990), but one 
of the most important is the "conscience" mechanism (DeSieno 1988). By adding 
a conscience to each Fy PE, it is only allowed to become a winner if it has won 
equiprobably. The equiprobable winning constraint improves both the quality of 
solution and the training time. Neural networks that employ competitive adaptation 
include learning vector quantization (Kohonen 1988), self-organizing feature maps 
(Kohonen 1988), adaptive resonance theory I (Carpenter and Grossberg 1987a), and 
adaptive resonance theory II (Carpenter and Grossberg 1987b). Implementations in 
the next chapter are devoted to the learning vector quantization paradigm, which 
includes a conscience mechanism, and to the self-organizing feature map. 

Multilayer Error Correction Adaptation 
Error correction adaptation (also called error correction learning) adjusts the con- 
nection weights between PEs in proportion to the difference between the desired 
and computed values of each output layer PE. Two-layer error correction adaptation 
is limited to capturing linear mappings between input and output patterns. Multi- 
layer (> 2 layers) error correction adaptation is able to capture nonlinear mappings 
between the inputs and outputs. 

A problem that once plagued error correction adaptation was its inability to 
extend adaptation beyond a two-layer network. Because it remained a two-layer 
adaptation rule, only linear mappings could be acquired. There were several attempts 
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to extend the two-layer error correction adaptation algorithm to multiple layers, but 
the same problem kept arising: For how much of an output-layer PE error is each 
hidden-layer PE responsible? Using the three-layer neural network in Figure 5.10 to 
illustrate, the problem of multilayer adaptation (in this case, three-layer adaptation) 
is calculating the amount of error each hidden-layer PE, yj, should be assigned for 
an output-layer PE's error. Note that the output layer of PEs has activation values 
Zl, z 2 , . . . ,  zq, and that the weight matrix from the input layer to the hidden layer is 
denoted V. 

This problem, called the credit assignment problem (Barto 1984; Minsky 1961), 
was solved through the realization that a continuously differentiable activation func- 
tion for the hidden-layer PEs would allow the chain rule of partial differentiation to 
be used to calculate weight changes for any weight in the network. Using the three- 
layer network in Figure 5.10 to illustrate the multilayer error correction adaptation 
algorithm, the output error across all the Fz PEs and for all m input patterns is found 
using the cost (error) function of equation 5.20. 

m q 

o.5 T_., ,T_., (b,J- ",J) 
k = l j = l  

(5.20) 

(bkl, bk2, bk3 . . . . .  bkn) = Bk 

o o o  

. . .  7.q Fz 

W 

Fy 

ft 

V 

fr 

Fx 

(ak l ,  ak2, ak3 . . . . .  akn) -- A k 

Figure 5.10 A network illustrating multilayer error correction adaptation. 
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The output of an Fz PE for one pattern k, Zkj, is computed using equation 5.21, 
and the output of each Fy (hidden-layer) PE for one pattern, Yki, is computed using 
equation 5.22. The output layer thus comprises linear PEs, andft(rkj) is a linear func- 
tion. Since the hidden PE functions are nonlinear, f~(rki) is a nonlinear function. 
Note that the subscript h is used for the input PE layer x. Since the input layer serves 
as just a pass-through layer, aki = Xkh. Also note from Figure 5.10 that there are p 
hidden PEs and q output PEs. 

P P 

Zkj -- ~ YkiWji -- f l ( rkj ) , where rkj = ~ YkiWji 

i=1 i=1 

(5.21) 

h-1 

where rki "- ~ akhVih (5.22) 
h=l 

The hidden-layer PE activation function is defined in equation 5.23. The hidden PE 
activation function is thus the sigmoid function, which is nonlinear, and f,,(rki) is a 
nonlinear function. 

1 
fn(rki)  = 1 + e -rki (5.23) 

The weight adjustments are performed by moving along the cost function in the 
opposite direction of the gradient to a minimum (where the minimum is considered 
to be the input-output mapping producing the smallest amount of total error). The 
connection weights between the Fy and Fz PEs are adjusted using the chain rule of 
partial differentiation, yielding equations 5.24(a) and (b). 

OEkj OEkj OZkj 
= ( 5 . 2 4 a )  

Owj~ OZkj Owj~ 

OEkj 

c)wji ] 
~ i=1 

= -(bkj - Z k j ) Y k i  (5.24b) 

= --6kjYki 

Next, the adjustments to the connection weights v between the input Fx and 
hidden Fy PEs are calculated using the chain rule of partial differentiation. We define 
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the error assigned to a hidden PE as t~ki ~ --aEk / t'ki, where t'ki is the net input to the 
hidden PE, thus yielding equation 5.25. 

f)Ek c)Ek c)rki 
"- = --6kiakh (5.25) 

OVih Orki OVih 

The key is how to compute the C)ki 'S for the hidden PEs. From equation 5.22, we see 
that C)Yki / c)rki -- fn'(rki), or the derivative of the sigmoid activation function of the 
hidden PE. We now apply the chain rule again, as shown in equations 5.26(a) and 
(b), to arrive at a value for 6ki in equation 5.26(c). 

aEk OEk C)Yki c)Ek fn '(rki) (5.26a) 8ki = = = - - ~  
c)t'ki C)Yki Ot'ki C)Yki" 

but ) Oyki = ~-~ ~rkj ~ = ~rkj O;ki YkiWji "- -- ~ 6kjWji (5.26b) 
j . . j 

therefore Ski = fi'(rki) ~_j 8kjWji (5.26C) 
J 

But it is straightforward to show that fn'(rki)  = OYki/Orki = Yk i (1  --Yki)  , so the 
error assigned to a hidden PE is given in equation 5.27. The calculation of the error 
assigned to an output PE with a sigmoid activation function is described in the later 
section on back-propagation. 

Ski = Yki (1 -- Yki) ~_~ ~kjWji (5.27) 
J 

The multilayer version of this algorithm is commonly referred to as the 
back-propagation of errors adaptation rule, or simply back-propagation. Using the 
chain rule, it is possible to calculate weight changes for an arbitrary number of lay- 
ers. The number of iterations that must be performed for each pattern in the dataset 
is generally large, making this off-line adaptation algorithm relatively slow to train. 

Although the cost function is computed with respect to only a single pattern for 
the single weight, it has been shown (Widrow and Hoff 1960) that the motion in the 
opposite direction of the error gradient for each pattern, when taken in aggregate, 
acts as a noisy gradient motion that still achieves the proper end result. Therefore, 
OEj / OWji = ~_~k(OEkj / OWji ), which applies to one weight attached to one output PE, 
and the total error for an output PE is Ej = ~ k  Ekj. Analogous equations apply to 
hidden PEs. 

Using equations 5.24(b) and 5.25, with the preceding relationships, the weight 
adjustment equations are given by equations 5.28 and 5.29, where a and p are 
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positive, constant-valued adaptation rates that regulate the amount of adjustments 
made with each gradient move. In practice, a and p are usually identical and are set 
equal to an adaptation rate r/that is uniform for all weight layers. 

OE ld E ~..ew ._ wold _ a = Wj ° -[- tt tSkjYki (5.28) 
P ] l t)Wji 

k 

vl~"ewih = v°ldih OVihOE = v°ldih E -- fl + fl tSkiakh (5.29) 
k 

The back-propagation algorithm was introduced by Werbos (1974) and later 
independently rediscovered by Parker (1982) and Rumelhart, Hinton, and Williams 
(1986). The algorithm explanation presented here has been brief. There are several 
variations on the algorithm (cfl Simpson 1990), including alternative multilayer 
topologies, methods of improving the training time, methods for optimizing the 
number ofhidden layers and the number ofhidden-layer PEs in each hidden layer, and 
many more. Although many issues remain unresolved with the back-propagation of 
errors adaptation procedure, such as the proper number of training parameters, the 
existence of local minima during training, the relatively long training time, and the 
optimal number and configuration ofhidden-layer PEs, the ability of this adaptation 
method to automatically capture nonlinear mappings remains a significant strength. 

Summary of Adaptation Procedures 
We have described two main classes of neural network adaptation algorithms: com- 
petitive adaptation and multilayer error correction adaptation (back-propagation). 
Nowwe briefly examine five attributes of these algorithms. This information is meant 
as a guide and is not intended to be a precise description of the qualities of each 
neural network. 

Training time. How long does it take the adaptation algorithm to adequately 
capture information? Neither of the algorithms is fast. Competitive adaptation 
is usually described as slow and back-propagation as very slow. 

Off-line~on-line. Competitive adaptation can be used either off-line or on-line; 
back-propagation is strictly an off-line algorithm. 

Supervised~unsupervised. Back-propagation is a supervised adaptation procedure; 
competitive adaptation is unsupervised. 

Linear~nonlinear. Back-propagation is capable of capturing nonlinear mappings; 
competitive adaptation is limited to linear mappings. 



Chapter FivemNeural Network Concepts and Paradigms 

Storage capacity. Competitive adaptation is capable of fairly high information 
storage capacity relative to the number of weights in the network; back- 
propagation has a very high capacity. 

Comparing Neural Networks and Other Information 
Processing Methods 

Several information processing techniques have capabilities similar to the neural net- 
work adaptation algorithms described earlier. Despite the possibility of comparable 
solutions to a given problem, several additional aspects of a neural network solution 
are appealing, including fault tolerance through the large number of connections, 
parallel implementations that allow fast processing, and on-line adaptation that 
allows the networks to constantly change according to the needs of the environ- 
ment. The following sections briefly describe some alternative methods of pattern 
recognition, clustering, control, and statistical analysis. 

Stochastic Approximation 
The method of stochastic approximation was first introduced by Robbins and Monro 
(1951) as a method for finding a mapping between inputs and outputs when the 
inputs and outputs are extremely noisy (i.e., they are stochastic variables). The 
stochastic approximation technique has been shown to be identical to the two-layer 
error correction algorithm (Kohonen 1988) and the multilayer error correction 
algorithm (White 1989) presented in previous sections. 

Kalman Filters 
A Kalman filter is a technique for estimating, or predicting, the next state of a 
system based on a moving average of measurements driven by additive white noise. 
The Kalman filter requires a model of the relationship between the inputs and the 
outputs to provide feedback that allows the system to continuously perform its 
estimation. Kalman filters are used primarily for control systems. Singhal and Wu 
(1989) have developed a method using a Kalman filter to train the weights of a 
multilayer neural network. Ruck and colleagues (1992) have shown that the back- 
propagation algorithm is a special case of the extended Kalman filter algorithm and 
have provided several comparative examples of the two training algorithms on a 
variety of datasets. 

Linear and Nonlinear Regression 
Linear regression is a technique for fitting a line to a set of data points such that the 
total distance between the line and the data points is minimized. This technique, 



Comparing Neural Networks and Other Information Processing Methods 

used widely in statistics (Spiegel 1975), is similar to the two-layer error correction 
adaptation algorithm described previously. 

Nonlinear regression is a technique for fitting curves (nonlinear surfaces) to 
data points. White (1990) points out that the activation function used in many 
error correction adaptation algorithms is a family of curves, and the adjustment of 
weights that minimizes the overall mean-squared error is equivalent to curve fitting. 
In this sense, the back-propagation algorithm described earlier is an example of an 
automatic nonlinear regression technique. 

Correlation 
Correlation is a method of comparing two patterns. One pattern is the template and 
the other is the input. The correlation between the two patterns is the dot-product. 
Correlation is used extensively in pattern recognition (Young and Fu 1986) and 
signal processing (Elliot 1987). In pattern recognition the templates and inputs are 
normalized, allowing the dot-product operation to provide similarities based on the 
angles between vectors. In signal processing, the correlation procedure is often used 
for comparing templates with a time series to determine when a specific sequence 
occurs (this technique is co mmo nly referred to as cross-co rrelatio n o r matched filters). 
The Hebbian adaptation techniques described earlier are correlation routines that 
store correlations in a matrix and compare the stored correlations with the input 
pattern using inner products. 

Bayes Classification 
The purpose of pattern classification is to determine to which class a given pattern 
belongs. If the class boundaries are not cleanly separated and tend to overlap, the 
classification system must find the boundary between the classes that minimizes 
the average misclassification (error). The smallest possible error (theoretically) is 
referred to as the Bayes error, and a classifier that provides the Bayes error is called a 
Bayes classifier (Fukunuga 1986). Two methods are often used for designing Bayes 
classifiers: the Parzen approach and k-nearest-neighbors. The Parzen approach uses 
a uniform kernel (typically the Gaussian function) to approximate the probability 
density function of the data. A neural network implementation of this approach is the 
probabilistic neural network mentioned previously (Specht 1990). The k-nearest- 
neighbors approach uses k vectors to approximate the underlying distribution of 
the data. The learning vector quantization network (Kohonen 1988) is similar to the 
k-nearest-neighbor approach. 

Vector Quantization 
The purpose ofvector quantization is to produce a code from an n-dimensional input 
pattern. The code is passed across a channel and then used to reconstruct the original 
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input with a minimum amount of distortion. Several techniques have been proposed 
to perform vector quantization (Gray 1984), with one of the most successful being 
the LBG algorithm (Linde et al. 1980). The learning vector quantization algorithm 
described earlier in this chapter is a method of developing a set of reference vectors 
from a dataset and is quite similar to the LBG algorithm. A comparison of these 
two techniques can be found in Ahalt et al. (1990). 

Radial Basis Functions 
A radial basis function is a function that is symmetric about a given mean (e.g., 
a Gaussian function). In pattern classification, a radial basis function is used in 
conjunction with a set of n-dimensional reference vectors, where each reference 
vector has a radial basis function that constrains its response. An input pattern is 
processed through the basis functions to produce an output response. The mean- 
variance connection topologies that employ the back-propagation algorithm (Lee 
and Kil 1989; Robinson et al. 1988) are methods of automatically producing the 
proper sets of basis functions (by adjustment of the variances) and their placement 
(by adjustment of their means). 

Computational Intelligence 
Neural networks are not the only method of adaptation that has been proposed for 
machines (although they are probably the most biologically related). Examples of 
other methods are evolutionary algorithms and fuzzy systems. Increasingly, engineers 
and computer scientists implementing applications are finding it useful to combine 
two or more of these machine adaptation techniques into an effective solution. This 
hybrid approach, which usually includes knowledge elements, has evolved into the 
field of computational intelligence, which is the focus of this book. 

Preprocessing 
In this section we describe the most important considerations in selecting and 
preparing data for training neural networks. Many of these considerations are also 
valid for other computational approaches. 

Before data can be processed in a neural network, it must be prepared, using 
data editing tools and methods of data transfer, to get the data into the network. 
Generally, training sets, test sets, and validation sets must be selected from the 
available application data or obtained during a data gathering phase. Once a neural 
network has been trained, tested, and validated, it is put into production to process 
live data or to recall data directly from the application. Throughout the lifetime of 
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the project, it is normally necessary to revisit the training and validation phases to 
ensure continued correct performance of the neural network. Proper selection and 
maintenance of the training and test sets are therefore an ongoing concern. 

The training set data is almost never in a form that can be accepted directly by 
the neural network, and some form of normalization, scaling, or transformation 
must be done first. 

Selecting Training, Test, and Validation Datasets 
Selection and preparation of the training datasets, as well as the test and validation 
datasets, are crucial steps in successfully completing and deploying a project. If the 
datasets are selected or prepared improperly, the network will usually fail to train 
correctly or it might yield disappointing results during testing and production. 

We first consider training datasets. All neural networks must be trained, tested, 
and validated before they can be reliably used to recall information. Neural networks 
that require off-line adaptation absolutely must be trained before they can be used; 
otherwise, they will be incapable of producing any results at all. At least a minimum 
level of training has to be completed first. Even neural networks employing on-line 
adaptation require preliminary training and test phases to validate their performance. 

A neural net is trained with a training dataset, consisting of typical samples 
and patterns from the application data. The training set should be sufficiently 
representative of the patterns that the network is expected to encounter, once deployed 
in the application environment. The objective is to present sufficient examples of the 
application data so that the net adapts to recognize important features and also to 
generalize. Training patterns should cover the intended application data hyperspace 
reasonably well and especially should include patterns close to decision boundaries 
of the hyperspace. This will allow the net to be able to distinguish different pattern 
classes, even in cases where some samples fall close to the decision boundaries. If 
gross areas of the total data hyperspace are left out of the training set, the net is 
unlikely to recognize patterns that fall into those areas when put into production. 

We now look at test datasets. The performance of a neural network is measured 
and evaluated using a test dataset, consisting of samples or patterns obtained using 
the procedures outlined for constructing the training set. The test set should be 
distinct from the training set; otherwise, testing will not reveal the true nature of 
the net's adaptation and generalization ability. 

The normal procedure is to assemble and prepare a large dataset and then split 
it into training, test, and validation sets. Patterns can be selected randomly for each 
set; however, it is important that the training set be composed of samples that cover 
the range of expected patterns, as outlined earlier. 

Once the training set has been composed, remaining patterns can be selected 
and placed in the test set and the validation set. The purpose of the test set is to 
evaluate net performance and determine how well the trained net is expected to 
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perform in the production environment. Sometimes, when more training variety is 
sought, the training and test sets can be exchanged. That is, the original training set 
takes on the role of test set, while the original test set takes on the role of training 
set. For the training and test sets to be exchangeable in this way, it is necessary that 
both meet the criteria for selection of samples, described earlier. Each set should 
be similarly composed of representative samples from each class of data. Test sets 
generally should reflect the probability distribution of patterns expected in the 
running environment if it is known. 

Once a neural network has been trained and tested, the performance is validated 
against an independent validat ion dataset,  consisting of unused samples or patterns 
from the application data. The validation set should be distinct from, and independent 
of, both the training and test sets. It is important not to influence the method of 
training and testing through the use of the validation set (Masters 1993). Validation 
can also be used to determine when to stop training (when the error for the validation 
data hits a minimum) and/or to prune PEs from a network (Reed 1993). 

The neural network, once trained and validated, can be used on-line to process 
real-time (live) patterns (real-time datasets) directly from the application environ- 
ment. This processing primarily involves the multiplication of the input vectors by 
network weight vectors, which can often (usually) be done in real time, given the 
speed of today's microprocessors. 

Preparing Data 
The characteristics of the data determine how the neural net is structured and how 
data is presented to it. The data also needs to be compatible with the neural net, in 
terms of number of parameters (elements) and dynamic range. 

Many neural nets and other computational intelligence tools require data to be 
scaled before it is presented. The raw data values are scaled so that they fall into 
a defined range acceptable to the neural network. Often, this will be the range 
0 to 1 or, alternatively, -1  to + 1. Scaling consists of applying a scale factor and 
an offset to each raw value. The scale factor and offset should be chosen such that 
they are applicable to training, test and validation sets, and live datasets. The factors 
should be the same in all cases so that data elements are not clipped and do not 
lose significant digits. This can occur if, for example, some large samples occur in 
one of the datasets and nowhere else. Equation 5.30 suggests a method for scaling 
a dataset. 

(Aki - Akmin)(Hi- Lo) 
A' - + Lo (5.30) 

ki (Akmax - Akmin) 

Here, A' is the ith element of the scaled input data vector; Aki is the ith element of ki 
the raw data vector; Akmin is the minimum raw data value; Akmax is the maximum 
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raw data value; (Akmax  - -  A k m i n )  is the divisor, normalizing the raw input vector to 
the range 0-1; Hi is the highest desired input value; Lo is the lowest desired input 
value, defining the minimum value to be presented to the neural net; and (Hi - Lo) 
is the scale factor, mapping the raw data into the desired input range. For example, 
to scale raw data patterns in the range 0 to 1, set Hi = 1, and Lo = 0. To scale raw 
data patterns in the range -1  to + 1, set Hi = 1, and Lo = -1 .  

Other neural networks, such as the LVQ-I network presented in the next chapter, 
require n-dimensional vector representations of the data rather than groups of inde- 
pendent values. The networks view the data as vectors in n-dimensional hyperspace. 
The data is normalized to unit length vectors, using equation 5.31. 

Aki (5.31) A t - 

ki - V/~ (Aki)2 

Here, A' is the ith element of the normalized input vector, Aki is the ith element ki 
of the raw data vector, and ( ~ A  2 1/2 ki ) is the length of the raw data vector. Dividing 
each element by the length of the original raw input vector gives a normalized 
vector of unit length, which is input to the network. A similar normalization step 
is often employed for weight vectors during training to ensure that they are also 
normalized. This is necessary for the Euclidean distance measure, which is used to 
determine the winner, to be valid. See Chapter 6 for more details on this aspect of 
normalization. 

Normalization as described above, which is used to prepare data for presentation 
to the LVQ-I network, has its drawbacks. It requires that the length of input vectors be 
the same for all training and testing patterns, and therefore it loses information about 
the absolute magnitude of the parameters. Only relative magnitudes are retained. 
For example, the four-dimensional input vectors -1 ,  1, 2, 3 and -5 ,  5, 10, 15 will 
each be normalized to identical input vectors. 

Z-axis normalization is an approach to solve this problem. Prior to carrying out 
z-axis normalization, each parameter must be scaled. For purposes of this discussion, 
assume each is individually scaled to the range [-1, 1 ]. This means, of course, that 
the minimum value for each parameter in the dataset is -1 and the maximum 
value for each parameter is 1. The Euclidean length L of the scaled input vector is 

L - (zin__l A 2 1/2 ki) , where Aki is  the scaled input vector. Since each component is 
limited to a maximum absolute value of 1, the maximum Euclidean length for an 
n-dimensional vector is v/-n. 

Z-axis normalization is similar to creating another dimension in the input data 
(Masters 1993). In the process, an additional input parameter, called a synthetic 
parameter, is created. The value of the synthetic parameter for each pattern is a 
function of the input parameters for that pattern. 
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The total length of the input vector with the synthetic parameter must, of course, 
still be 1. The z-axis normalization process is described by equations 5.32(a) and 
(b), where s is the synthetic variable. 

, Aki  
Aki  = x/n (5.32a) 

~/  L2 
s = 1 ( 5 . 3 2 b )  

/1 

Note that the absolute magnitude information regarding each parameter is 
preserved. Also note that the synthetic parameter becomes an additional input 
to the network, so that there are now n + 1 inputs instead of n. 

To see how z-axis normalization works, consider a simple case where there are two 
(already scaled) four-dimensional input patterns: -1,  1, -1,  1 and -0.6, 0.6, -0.6, 
0.6. They would, of course, normalize to identical input vectors using the method 
outlined in the previous section. Using z-axis normalization, the first pattern trans- 
forms into the input vector -0.5, 0.5, -0.5, 0.5, 0, where 0 is the value ofthe synthetic 
parameter. The second pattern (L - 1.2) transforms into -0.3, 0.3, -0.3, 0.3, 0.8, 
where s = 0.8. 

The only cases where z-axis normalization is counterproductive are those in which 
a vast majority of individual parameter values stay at or near 0 for most patterns. 
In these cases, the synthetic parameter will consistently be the most significant 
component of the input vector. For many applications, however, including the 
preparation of inputs for the LVQ network, z-axis normalization can be beneficial. 

The presentation of patterns is an important issue. The order in which patterns 
are presented to the network should be considered during the design and training 
phase of implementation. Patterns are presented to the network during training 
from the training sets constructed by the researcher or directly from the application 
environment, for recall. In the case of training, it is usually possible for the developer 
or researcher to control the order of presentation to optimize adaptation. However, 
in the case of recall, the order of presentation is usually controlled outside the neural 
network implementation and determined by the application environment. 

During training, presentation order can dramatically affect the way adaptation 
is accomplished. If patterns are presented sequentially in the order they happen to 
occur in the training set, the network may be biased by the occurrence of samples 
early in the training set. This may prevent the net from being able to recognize subtle 
differences in later samples. Therefore, it is necessary to select patterns randomly 
from the training set, especially for networks employing on-line adaptation (that is, 
weight adaptation after every pattern presentation). For batch (off-line) adaptation, 
in which weights are adapted only at the end of each epoch, presentation order is not 



Postprocessing (~ ,  : : ~ 

likely to have an effect. Another approach sometimes used is the shuffling of the data 
after each epoch (as opposed to random selection). The results of different training 
runs, each with randomly or sequentially selected patterns, should be compared for 
the effect of presentation order on the outcome of training. 

Another important consideration in preparing data for training a neural network 
is the addition of noise to perturb the data. By adding noise (jitter) to the data, the 
result is a convolutional smoothing ofthe target (Reed, Marks, and Oh 1995). This is 
a technique that may be helpful when only a relatively small number of patterns are 
available for training the network; additional patterns may be generated by adding 
noise to existing patterns. 

Postprocessing 

This section describes the most common technique encountered in postprocessing the 
outputs of neural networks and other computational approaches: denormalization. 
Much ofpostprocessing is covered bythe topics discussed in Chapter 10, Performance 
Metrics. This section concentrates on some of the basic concerns for obtaining the 
outputs in a usable form. 

Denormalization of Output Data 
Denormalization produces real-world output data from the internal form of the 
network or other computational tool. Denormalization is the reverse of the nor- 
malization procedure described earlier. The network typically produces output 
values in a limited range defined by the logistic or other activation function. These 
values bear little resemblance to the real-world values of the application environ- 
ment, and steps should be taken to denormalize the data back to the original data 
domain. This procedure, suggested by equation 5.33, is analogous to that given in 
equation 5.30. 

C' (Cki - Lo) (Ckmax - -  Ckmin ) 
ki - -  ( H i -  Lo) + Ckmin (5.33) 

Here, C' is the ith element of the real output vector; Cki is the ith element of the raw ki 
net output vector; Lo is the minimum network activation value; Hi is the maximum 
network activation value; (Hi - Lo) is the divisor, normalizing the raw net output 
vector to the range 0-1; Ckmax is the upper limit of the output domain; Ckmin is the 
lower limit of the output domain; and (Ckmax - C k m i n )  is the scale factor, mapping 
the net output into the desired output domain. 
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Summary 

In this chapter we review the history ofneural networks, discuss fundamental network 
elements and topology, and describe some of the main adaptation methodologies. 
We also describe data preprocessing and postprocessing approaches that should 
help you present input data to neural networks and obtain required results. And we 
compare neural network approaches and other information processing approaches. 

The next chapter presents detailed implementation information for three neural 
network paradigms: learning vector quantization, self-organizing feature maps, and 
back-propagation. You will be able to apply the concepts discussed in this chapter. 

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1. In a single-layer neural network with n processing elements (PEs), how many 
unique weights are possible if the only restriction is that no self-feedback 
connections are allowed? How many are possible if it is also specified that 
weights are symmetric, that is, wji = wij? 

2. Show that a hidden layer doesn't change (improve) network performance if all 
PEs (hidden and output) have linear activation functions. 

3. The sigmoid activation function is 1/(1 + e-input). Derive the first derivative of 
this function. 

4. If one hidden layer of sigmoidal PEs can approximate any nonlinear function, 
why might we decide to use more than one? 

5. What are the differences among supervised adaptation, unsupervised adaptation, 
and reinforcement adaptation? 

6. Review White (1989). Summarize the reasoning behind the proof that one 
hidden layer is sufficient to approximate virtually any nonlinear function. 

7. Prove the convergence of the binary Hopfield network. 

8. Derive a back-propagation (BP) adaptation algorithm for a four-layer BP neural 
network. Assume the activation function of the hidden PEs is a sigmoid 
function as expressed by equation 5.23. The activation function of the output 
PEs is a linear function as expressed by equation 5.8 with a = 1. 

9. Assume we want to scale inputs to [-1, 1] for z-axis normalization. One of the 
input parameters varies over all the patterns from -4.2 to + 10.0. How would 
you scale this input? Why? 
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Neural Netwo rk Imple mentations 

This chapter presents four neural network 
implementations: back-propagation neu- 
ral networks, the learning vector quan- 
tizer, Kohonen's self-organizing feature 
map networks, and evolutionary multilayer 
perceptron neural networks. Executable 
code and source code for each implemen- 
tation, together with other useful utilities, 
are available on the book's web site. 

The source code is particularly useful for 
studying the implementation details of the 
neural network paradigms and if you wish 
to make changes to the code for your appli- 
cations. 

The source code is written in C and 
is being distributed as shareware. You are 
welcome to use it for classroom or per- 
sonal learning in conjunction with the text- 
book at no cost. If you use it, either as 
is or with modification, for a project out- 
side of your classroom (or learning on 
your own), please submit a payment in 
accordance with the shareware payment 

instructions on the Internet site for the 
book. 

The backpropagation source code for 
the neural network implementation is writ- 
ten to support the implementation of 
one or more hidden layers. The num- 
ber of hidden layers and the number of 
PEs in each layer can be specified in the 
run file. The classification of Iris data is 
included as a benchmark problem to be 
solved. 

The Iris dataset is a set of feature mea- 
surements for iris flowers popularized by 
Anderson (1935). It consists of 150 four- 
dimensional vectors representing 50 plants 
of each of three species: Iris sectosa, Iris 
versicolor,  and Iris virginica: 

x i = 0(i.1, xi2, xi3, )(i.4), i = 1 .... ,150 
where x;1 is the sepal length, x;2 is the sepal 
width, xi3 is the petal length, and )(,.4 is 
the petal width (Anderson 1935). All the 
attribute values have been scaled into real 
numbers in the range [0,1]. The problem 
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here is to discriminate the species according to the feature vectors. This is a 
well-known three-class classification problem. Three of the 150 four-dimensional 
vectors are listed here as examples: 

0.637500 0.437500 0.175000 0.025000 1 0 0 

0.875000 0.400000 0.587500 0.175000 0 1 0 

0.787500 0.412500 0.750000 0.312500 0 0 1 

In each row, the first four elements correspond to the sepal length, sepal width, 
petal length, and petal width; the last three columns correspond to the three 
species, Iris sectosa, Iris versicolor, and Iris virginica, respectively. Value 0 means 
the feature vector doesn't belong to this class and value 1 means it does. 

The back-propagation neural network is an example of supervised neural net- 
works; the learning vector quantizer is implemented as an example of unsuper- 
vised neural networks. 

The learning vector quantizer (LVQ), sometimes referred to as a Kohonen net- 
work, is probably second only to back-propagation in the number of applications 
for which it is being used. Kohonen networks (of which LVQ and self-organizing 
feature maps are examples) were originally described by Teuvo Kohonen of the 
Helsinki University of Technology in Finland. 

Several versions of LVQ exist. The LVQ implementation included with this book 
and described in this chapter is discussed in the 1988 edition of Kohonen's book 
on self-organization and associative memory (Kohonen 1988). A good additional 
source is the tutorial given at the 1989 International Joint Conference on Neural 
Networks (Kohonen 1989). The book and tutorial also describe other versions 
of LVQ, as well as Kohonen's self-organizing feature map. Henceforth, the LVQ 
implementation presented in this book is referred to as LVQ-I. Another algorithm, 
LVQ-II, is briefly discussed later. The Roman numerals I and II are not synonymous 
with Kohonen's designations LVQ1 and LVQ2. 

The LVQ-I and self-organizing feature map paradigms are more biologically ori- 
ented than the back-propagation model. One indication of this is that both net- 
works learn without supervision. This roughly resembles learning in the neural cells 
of the brain in that nobody applies electronic stimuli to brain neurons to train them 
to, say, learn to walk or to speak. The self-organizing feature map--an extension 
of LVQ-I, described by Kohonen~bears some rough resemblance to the way areas 
of the brain are organized. [] 

Implementation Issues 

This section discusses issues related to implementing neural networks on personal 
computers. The implementation issues are explained step by step, with detailed 
equations and explanations along the way. Some implementation issues, such as 
topology, are relevant to a variety of networks. Others are specific to a network type. 
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We describe the topologies of the neural network paradigms first. Then we 
described the ways input is presented to a neural network implementation. We 
also introduce normalization techniques and options. 

We present equations describing the network training and operation. These 
equations are divided into two main categories: feedforward calculations and adap- 
tation calculations. 

Finally, we describe issues related to evolutionary neural networks. 

Topology 
All four of the neural networks implemented are layered networks. The back- 
propagation neural networks have more than two layers (at least one hidden layer), 
and the Kohonen networks have only two layers (no hidden layers). 

The back-propagation network is described in terms of the architecture of the 
implementation. The term architecture, as applied to neural networks, has been used 
in different ways by various authors. Often its meaning has been taken to be basically 
equivalent to topology, that is, the pattern of PEs and interconnections, together with 
other attributes such as direction of data flow and PE activation functions. 

We use the term architecture in this volume to mean the specifications sufficient 
for a neural network developer to build, train, test, and operate the network. The 
architecture is therefore not related to the details of the implementation but rather 
provides the complete specifications needed by someone for implementation. 

A simple, three-layer back-propagation network is illustrated in Figure 6.1. This 
represents the network in detail, with each PE represented by a circle and each inter- 
connection, with its associated weight, by an arrow. The PEs with the letter "b" inside 
are bias PEs. 

We describe each network element a bit later. We also discuss the operation and 
training of the back-propagation network of Figure 6.1, with a description of what 
happens at each step. But first, we turn to presenting input to the network. 

The LVQ-I and self-organizing feature map networks consist of a two-layer feed- 
forward topology, where the input layer is fully connected to the output layer, as 
shown in Figure 6.2. The input PEs simply distribute the inputs to the output layer; 
the output PEs have linear activation functions. 

Back-propagation Network Initialization and Normalization 
Each neural network must be initialized first and the input data needs to be pre- 
processed. Different networks have different requirements for network initialization 
and input data preprocessing. 

We first consider the back-propagation neural network. The left side of Figure 6.1 
shows inputs to the input layer of the network, to a layer of PEs. The set of n inputs 
is presented to the network simultaneously. (However, when implemented on a Von 
Neumann computer, the network must process the data serially.) 
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C o n nection C on nectio n 
Weights Weights 

Input1 Output1 

Input2 Output 2 

Inputn Outputq 

Input Hidden Output 
Layer Layer Layer 

Figure 6.1 The back-propagation network structure. 
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Figure 6.2 An LVQ-I Kohonen network topology. 

These inputs may be a set of raw data, or a set of parameters, or whatever has 
been chosen to represent one single pattern of some kind. The way n, the number of 
inputs, is chosen depends on the kind of problem being solved and the way the data 
are represented. 

To deal with a relatively small segment of a sampled raw voltage waveform, for 
example, one input PE may be assigned to each sampled value. On the other hand, 
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to deal with a relatively large video image, a value averaged over several pixels may 
be presented to each PE. Another approach is to present calculated parameters to 
the input PE field. 

Beware of the urge to "mix and match" input data in an attempt to reduce the 
number of input PEs. For example, generally resist the urge to combine parameters 
somehow before presentation to a PE. It will be a more efficient use of your and your 
computer's time if the network takes a little longer to train successfully than if it fails 
to train at all. 

For the back-propagation implementation, each input can take on any real value 
between 0 and 1. That is, the input values are continuous and scaled between the 
values of 0 and 1. The fact that continuous-valued inputs can be used adds significant 
flexibility to the implementation. 

Does the scaling between 0 and 1 constrain us in a significant way? Usually not. 
Whenever we deal with a computer system that is receiving input, we are limited by 
the size of numbers that can be processed. 

As long as the resolution of the input data is not lost in the scaling process, the 
system will be able to get reasonable results. In the standard implementation ofback- 
propagation, floating-point variables are used, called float in C. This type of variable 
is 32 bits long, using 24 bits for the value and 8 bits for the exponent. There is there- 
fore a resolution of about one part in 16 million, or seven decimal places. So, if your 
data has seven or fewer significant digits, you'll be okay. Input data from a 16-bit 
analog-to-digital (A/D) converter requires a little less than five digits of resolution. 
Many applications seem to require only three to five digits of resolution. 

Another approach is to use double-precision variables, which extend the reso- 
lution of computations considerably. This approach exacts a cost in performance 
as well as memory space. It is feasible to adopt this approach, however, given the 
gigahertz speed of personal computers and the gigabyte-sized RAMs available. 

Scaling input patterns can actually provide a tool for preprocessing data in dif- 
ferent way. The data can be scaled by considering all of the n inputs together, scaling 
each input channel separately, or scaling groups of channels in some way that makes 
sense. (Input channel means the stream of inputs to one input PE.) In some cases, 
the way chosen to scale inputs can affect the performance of the implementation, so 
this is one place to try different approaches. 

If the input consists of raw data points, all channels are typically scaled together. 
If the input consists of calculated parameters, each channel may be scaled separately, 
or groups of channels representing similar parameters may be scaled together. For 
example, if input patterns consist of parameters that represent amplitudes and time 
intervals, then the amplitude channels might be scaled as a group and the time chan- 
nels as a group. 

Please note that so far we have talked only about scaling between values of 0 
and 1. This is the most common type of scaling. However, for supervised adaptation, 
the scaling as well as the target values for network outputs are tied to the activation 
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functions used in the network. Values of 0 and 1 are commonly used with a linear 
activation function. We often will scale from 0 to 1, and have output target values of 
0 and 1, when the sigmoid function is used, but sometimes we will use values of 0.1 
and 0.9 with this activation function. Often, we scale from -1  to 1, and use these as 
target values, when our network PEs have hyperbolic tangent activation functions. 

This concludes our look at initialization and normalization for the back- 
propagation neural network. 

Learning Vector Quantizer Network Initialization 
and Normalization 
We now examine initialization and normalization for the learning vector quantizer 
neural network. At the bottom of Figure 6.2, a set of n inputs comes into the input 
layer of the network. The inputs are presented simultaneously, but bear in mind 
that most personal computer implementations simulate this network algorithm by 
processing the inputs serially. 

The number of input processing elements selected depends, as in the case of the 
back-propagation network, on the problem to be solved. There is, however, a differ- 
ent emphasis than in back-propagation on how to think about the input and choose 
the number of input processing elements. It is more common to use "raw" data than 
precalculated parameters as inputs to the LVQ-I model. This is because one of the 
main accomplishments of LVQ-I is to cluster input data patterns into quasi-classes, 
thus reducing the dimensionality of the data. In other words, the LVQ-I model auto- 
matically parameterizes the data. 

Another reason it is less common to use precalculated parameters is that most 
researchers working with LVQ-I normalize each input vector. With back- 
propagation, each individual input vector component is constrained to the range 0 
to 1, without limiting the magnitude of the input vector, the square root of the sum 
of the squares of each input component. 

For input to the LVQ-I network, parameterized inputs can be distorted by 
normalization in unpredictable ways. Carefully calculated parameters, perhaps 
"normalized" by constraining their values to lie between 0 and 1, can have their 
values changed in unforeseen ways during an input vector normalization process. 

Several neural network researchers suggest that in some applications, input 
vectors do not necessarily have to be normalized. It is sometimes a good idea 
to try training with and without normalization and select the better method. 
Others argue that if input vectors are not normalized, then the Euclidean distance 
calculation cannot be used to select the "winning" processing element (Caudill 
1989a). 

There is general agreement on the need to initialize weight vectors by normaliza- 
tion. What isn't necessarily clear is the best way to do it. Typically, random values are 
first assigned to each weight. We might start with random values in the range 4-0.3. 
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Some implementations choose values in the range 0 to 1. Other implementations 
generate initial weight vectors lying at random locations on the unit hypersphere. 

The weight vector normalization procedure is done for all weights connected to a 
given output processing element, from all input processing elements. The most logi- 
cal way to do this would seem to be to set the square root of the sum of the squares of 
the weights from all ofthe inputs to each output to the same value, presumably 1. The 
reason we say "would seem" and "presumably" is that various examples of Kohonen 
implementations have normalized weights in different ways. 

Kohonen's ToPreM2 program uses a value of one-half times the sum of the 
squares of the weights, called the "squared norm" of the weights. Caudill, on the 
other hand, normalizes weight vectors in what appears to be a more logical way: 
dividing each weight vector component by the square root of the sum of the squares 
of all weight vector components (Caudill 1988). In this way, the total length of 
each weight vector from all inputs to a given output is 1. If w'.. is the initial random 

J* 
weight generated in the interval from 0 to 1, then the normalized weight, wji, is 
given by equation 6.1. 

! 
W . .  jz 

wji = (6.1) 

~i=~lW'J i2 
Perhaps a two-dimensional geometric example of the process of initial normali- 

zation might make things clearer. In Figure 6.3(a), the circle has a radius of 1; it is 
what we call a unit circle. We show four unit-length two-dimensional weight vectors, 
W1 through w4, that have already been initialized randomly and normalized, perhaps 
using Caudill's method. They all terminate on the unit circle. 

Now consider two inputs, il and i2 that have the values (2.0, 1.0) and (-0.5, -0.5), 
respectively. There are probably many more inputs, but we will consider just these 
two so that the explanation is clearer. Now, when these two inputs are normalized, 
they are modified so that they terminate on the unit circle, as shown in Figure 6.3(b). 
Note that the angles made with the axes stay the same; all we do is adjust their length 
to unit length. 

Now we can see what we mean by "close to" in the sense of where the vectors 
terminate on the unit circle. The tip of w 1 is the closest weight vector tip to the tip 
of the normalized input il *, and the tip of w3 is closest to the tip of the normalized 
input i2". 

Feedforward Calculations for the Back-propagation Network 
The feedforward calculations are used both in training (adaptation) operation mode 
and in testing or recall operation mode of the trained network. The feedforward 
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(a) 

11 

(b) 

Figure 6.3 Weight vector and input vector initialization before (a) and after (b) input 
vector normalization. 

calculation of one neural network generally is different from that of another 
network. We first consider the back-propagation network. 

After the set of input patterns is scaled, what happens at the input layer? The 
input PEs simply distribute the signal along multiple paths to the hidden-layer PEs. 
The output of each input-layer PE is exactly equal to the input and is in the range 
of 0 to 1. (Another way of looking at the input layer is that it performs scaling, even 
though in most implementations this is done prior to presentation of the pattern to 
the network.) 

Note that a fully connected feedforward topology is used. That is, each PE of the 
input layer is connected to every PE of the hidden layer. Likewise, each PE of the 
hidden layer is connected to every PE of the output layer. 

Also note that each connection weight, and all data flow, goes from left to right 
in Figure 6.1. This is called a feedforward network. There are no feedback loops, 
even from a PE to itself, in a feedforward network. Almost all back-propagation 
implementations are feedforward. 

For the remaining discussion on back-propagation networks in this chapter, 
unless otherwise stated, we assume that a sigmoid activation function is being used. 
Most back-propagation implementations today use the sigmoid function. 

We present equations here that describe both the training (adaptation) and 
testing or recall modes of a back-propagation implementation. They are presented 
without derivations or proofs. This information can be found in Chapter 5, as well 
as in Rumelhart and McClelland (1986), where much of it is in Chapter 8, which 
focuses on internal representations. 
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The signal presented to a hidden layer PE in the network of Figure 6.1 due to one 
single connection is just the output value of the input PE (the same as the input of 
the input PE) times the value of the connection weight. 

The activation of the ith Fy (hidden) PE for a given input pattern k as a function 
of its input connections, is described in equation 6.2, where Xkh is the output of the 
Fx layer, Vih the Fx to Fy connection, and fsig(') the sigmoid function, described in 
Chapter 5. Note that h starts from 0, the bias PE. 

h=0 

(6.2) 

The nonlinear nature of the sigmoid transfer function plays an important role 
in the neural network's performance. Other functions can be used, as long as they 
are continuous and possess a derivative at all points. Functions such as the trigono- 
metric sine and the hyperbolic tangent have been used, but the exploration of other 
transfer functions is beyond the scope of this book. For more information, refer to 
Rumelhart and McClelland (1986) and McClelland and Rumelhart (1988). (Note 
that the requirement that the function be continuously differentiable holds for the 
back-propagation learning algorithm, but that PE activations with hard [step] non- 
linearities can be trained using random search techniques, simulated annealing, or 
evolutionary algorithms.) 

The sigmoid (squashing) function can be viewed as performing a function simi- 
lar to that of an analog electronic amplifier. The gain, or amplification, of the ampli- 
fier is analogous to the slope of the line, or the ratio of the change in output for a 
given change in input. The slope of the function (gain of the amplifier) is greatest 
for total (net) inputs near 0. This serves to mitigate problems caused by noise and 
by the possible dominating effects of large input signals. 

Once the activations of all hidden-layer PEs have been calculated, the outputs 
of the Fz layer are calculated in an analogous manner. The activation of the jth Fz 
(output) PE as a function of its input connections is described in equation 6.3, where 
Yki is the output of the Fy (hidden) layer, and wji the Fy to Fz connection weight. 

0 

(6.3) 

This set of feedforward calculations, resulting in the output state of the network 
(the set of activations of all output PEs), is carried out in exactly the same way 
during the training phase as during the testing phase. The test operational mode 
just involves presenting an input set to the input PEs and calculating the resulting 
output state in one forward pass. 
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Feedforward Calculations for the LVQ-I Net 
As in the back-propagation neural network, the input PEs simply distribute the 
signal along multiple paths to the output layer PEs. The Euclidean distance between 
the input vector and the weight vectors associated with each output PE is first cal- 
culated according to equation 6.4. The Euclidean distance is the square root of the 
sum of the squares of the differences between each input vector component and its 
associated weight vector component. Since relative magnitudes are what is impor- 
tant, as is conserving computing time, square root calculations often are not done 
in software implementations. The output PE with the minimum Euclidean distance 
between the input vector and the weight vector associated with the output PE is the 
winner and represents the cluster or class to which the input vector belongs. 

dj= (aki wji 
i=1  

(6.4) 

Back-propagation Supervised Adaptation 
by Error Back-propagation 
Adaptation calculations are applied only during training. Back-propagation is an 
example of a supervised adaptation model, while LVQ-I is a prime example of unsu- 
pervised adaptation. (LVQ-II is a supervised version of a Kohonen network.) 

With supervised adaptation models, input patterns are presented with targets to 
the network, the targets being the desired output values for each input pattern. With 
unsupervised adaptation models, on the other hand, input patterns are presented 
without targets. The network adapts from the input patterns alone. In this section, 
we look at back-propagation supervised adaptation. 

During the training phase, the feedforward output state calculation is combined 
with backward error propagation and weight adjustment calculations that represent 
the network's adaptation, or training. It is this adaptation process resulting from 
the back-propagation of errors, and how it is implemented, that is the "secret to the 
success" of the back-propagation implementation. Central to the concept of training 
a network is the definition of network error. A measure of how well a network is 
performing on the training set must be identified. 

Rumelhart and McClelland (1986) define an error term that depends on the dif- 
ference between the desired, or target, output value of an output PE, bkj, and its 
actual value, Zkj. The error term is defined for a given pattern and summed over all 
output PEs for that pattern. 

Equation 6.5 presents the definition of the error. The subscript k denotes that the 
value is for a given pattern. Note that the error calculation in the back-propagation 
training algorithm generally is implemented PE by PE over the entire set (epoch) of 
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patterns, rather than on a pattern-by-pattern basis. The error is then summed over 
all PEs, giving a grand total for all PEs and all patterns. 

Then the grand total is divided by the number of patterns, to give an "average 
sum-squared error" value. This makes sense because the number of patterns in our 
training set can vary, and we want some sort of standardized value that allows us to 
compare apples with apples, so to speak. And since the factor 0.5 is a constant, it is 
often deleted from the calculations. (The 0.5 does, however, allow "neat" differentia- 
tion that makes the math elsewhere easier. If not used, factors of two appear in other 
terms.) 

q 
_ )2 

Ek = 0.5 ( bkj Zkj 
j = l  

(6.5) 

The goal of the adaptation process is to minimize this average sum-squared error 
over all training patterns. Figuring out how to minimize the error with respect to 
the hidden PEs was the key that opened up back-propagation models for widespread 
applications. 

The derivation is not presented here. It can be found in a nonrigorous format in 
Chapter 5, or in Chapter 8 of Rumelhart and McClelland (1986). Even their deriva- 
tion lacks absolute rigor, but reviewing it should provide an understanding of where 
the equations come from and help make you more comfortable with using them. 

A quantity called the error signal ~Sj, for sigmoid nonlinear output layer PEs, is 
defined in equation 6.6, where the term Zkj(1 - Zkj) represents the first derivative of 
the sigmoid function. 

r)kj -- Zkj (1 - Zkj ) (bk j  -- Zkj) (6.6) 

It is necessary to propagate this error value back and perform appropriate weight 
adjustments. There are two ways to do this: 

On-line, or single-pattern, learning. Propagate the error back and adjust weights 
after each training pattern is presented to the network. 

Off-line, or epoch, learning. Accumulate the ~'s for each PE for the entire training 
set, add them together, and propagate the error back, based on the grand total 6. 

The back-propagation algorithms in the implementation with this book are 
implemented using both off-line and on-line learning, with emphasis on off-line 
learning. In fact, Rumelhart and McClelland (1986) assumed that weight changes 
occur only after a complete cycle of pattern presentations. As they point out, it's all 
right to calculate weight changes after each pattern as long as the learning rate ~/is 
sufficiently small. It does, however, add significant computational overhead to do 
that, and it is desirable to speed up training whenever possible. 
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Before the weights can be updated, however, there must be something to update. 
That is, each weight must be initialized to some value. You can't just start out with all 
weights equal to 0 (or all equal to any single number, for that matter), or the network 
won't be trainable. The reason can be seen by studying the weight update equations 
presented next. 

It is typical to initialize the weights in a back-propagation network to random 
values between 0.3 and -0.3. Picking random numbers over some range makes 
intuitive sense, and you can see how different weights go in different directions by 
doing this. But why pick -0.3 and 0.3 as the bounds? To be honest, there is no better 
reason than "it works." Most back-propagation implementations seem to train faster 
with these bounds than, say, 1 and -1.  It may have something to do with the fact 
that the bounds of the PE activation values are 1 and -1.  This makes the products of 
weights and activation values relatively small numbers. Therefore, if they start out 
"wrong," they can be adjusted quickly. 

Neural network researchers have recommended a number of variations on the 
initial weight range. For example, Lee (1989) has shown that in some instances ini- 
tializing the weights feeding the output layer to random values between 0.3 and -0.3, 
while initializing weights feeding the hidden layer to 0, speeds training. (Initializing 
all weights feeding the hidden layer to 0 is permissible, as long as the next layer up is 
initialized to random, nonzero values. This can be verified by working through the 
weight updating equations that follow.) In most cases, however, the random num- 
ber initialization to values from -0.3 to 0.3 works well and is almost always a good 
place to start. 

We now describe how to use 6kj to update weights that feed the output layer, wji. 
To a first approximation, the updating of these weights is described by equation 6.7. 
Here, t/(the lowercase Greek letter eta) is defined as the learning coefficient, with a 
value between 0 and 1. 

wj new : wj °ld + r /E  ~kj Yki (6.7) 

k 

This kind of weight updating sometimes has a problem in that it gets caught in what 
are called "local energy minima." If you can visualize a bowl-shaped surface with a 
lot of little bumps and ridges in it, you can get an idea of the problem, at least in 
three dimensions. 

The error minimization process is analogous to minimizing the energy of the 
position in the bumpy, ridge-lined bowl. Ideally, we'd like to move the position (per- 
haps marked by a very small ball bearing) to the bottom of the bowl, where the 
energy is minimum; this position is the globally optimal solution. 

Depending on how much or how little the ball bearing can be moved at one time, 
however, it might get caught in some little depression or ridge that it can't get out of. 
This situation is most likely with small limits on each movement, which correspond 
to small values of r/. 
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The situation can be helped by using the "momentum" of the ball bearing. Its 
momentum (previous movement) is taken into account by multiplying the previous 
weight change by a "momentum factor" that is labeled a, the lowercase Greek letter 
alpha. The momentum factor a can take on values between 0 and 1. Equation 6.8, 
which is just equation 6.7 with the momentum term added, becomes the equation 
actually used in the back-propagation implementation to update the weights feeding 
the output layer. 

wneW -- w°ld E °tAw°ld ji jz -b r l ~  tSkj Yki q- jz (6.8) 
k 

Watch out! We've just thrown another delta at you. This one, Aw °ld, stands for 
the previous weight change. Stated in words, the new weight is equal to the old weight 
plus the weight change. The weight change consists of the 6 error signal term and the 

momentum factor term. The momentum term is the product of the momentum 
factor a and the previous weight change. The previous "movement" of the weight 
thus imparts "momentum" to the ball bearing (the weight), and it is much more 
likely to reach the globally optimum solution. 

Keep in mind that there are "bias PEs," indicated by the letter "b" in Figure 6.1, 
which always have an output of 1. They serve as threshold units for the layers to 
which they are connected, and the weights from the bias PEs to each PE in the follo- 
wing layer are adjusted exactly like the other weights. In equation 6.8, then, for each 
of the output PEs, the subscript i takes on values from 0 to p, which is the number 
of hidden PEs. The 0th value is associated with the bias PE. 

Now that we have the new values for the weights feeding the output PEs, we 
turn our attention to the hidden PEs. What is the error term for these units? It isn't 
as simple to figure this out as it was for the output PEs, where it could intuitively 
be reasoned that the error should be some function of the difference between the 
desired and the actual output. 

We really have no idea what the value for a hidden PE "should" be. Again, refer 
to the derivation in Chapter 5, as well as to the one by Rumelhart and McClelland 
(1986). Both show that the error term for a hidden PE is given by equation 6.9, where 
the term Yki(1 - Y k i )  represents the first derivative of the sigmoid function. 

q 

tSki ---- Yki(1 -- Yki) E Wji 6kj 
j=l 

(6.9) 

The weight changes for the connections feeding the hidden layer from the input 
layer are now calculated in a manner analogous to those feeding the output layer, as 
shown in equation 6.10. 

1/new -" v°ld E °tAv°ld ih ih d- rl tSki Xkh q- ih (6.10) 
k 
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For each hidden PE, the subscript h takes on values of 0 to n, the number of input 
PEs. As before, the bias PEs are represented in the calculations by the 0th value. 

We now have all of the equations (6.6, 6.8, 6.9, and 6.10) to implement back- 
propagation of errors and adjustment of weights for both groups of weights. First, 
the error terms are calculated for each output PE using equation 6.6, then for each 
hidden PE using equation 6.9 for each pattern in the training set. Then the error 
terms are summed after all patterns have been presented once, and the weight adjust- 
ments are calculated as in equations 6.8 and 6.10. 

There are a few things to keep in mind. 

[] For updating using the off-line (epoch) mode, it is necessary, in equations 
6.8 and 6.10, to sum over all patterns in the training set, whereas the 6's in 
equations 6.6 and 6.9 are calculated pattern by pattern. 

m Although values for rt and a can be assigned layer by layer, or even PE by PE, 
there is typically only one value selected for each in a given implementation. 
These values are often adjusted in the process of getting a network to 
successfully train, but once chosen are usually left alone. 

[] When 6's are calculated for the hidden layer in equation 6.9, the old 
(existing) weights (rather than new ones that might have been calculated 
from equation 6.8) from the hidden to the output layer are used in the 
equation. This is really only a potential problem if the weights are updated 
after each training pattern is presented. If epoch training is performed, 
weights aren't updated until all patterns have been presented, so there is no 
cause for worry. 

LVQ Unsupervised Adaptation Calculations 
The unsupervised adaptation process consists of presenting pattern vectors from the 
training set to the network one at a time. For each pattern presentation, select the 
winning processing element and adjust the weights of the winner. 

The result of unsupervised adaptation is that the outputs of the network fall into 
class clusters reflecting the probability density of the input vectors. When the net- 
work has adapted, the output-layer processing elements represent pattern class clus- 
ters of the input pattern vectors. Note that the network isn't adapted in a supervised 
way by telling it what the "correct" answers are. The patterns are simply presented 
to the network repeatedly, and the network adapts by adjusting its weights so as to 
form pattern classes. 

The winner is chosen by finding the PE with the minimum Euclidean distance 
between the input vector and the weight vectors associated with each output PE. 
The Euclidean distance is the square root of the sum of the squares of the differences 
between each input vector component and its associated weight vector component, 
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as illustrated in equation 6.4. (See Chapter 10 for a discussion of other distance 
metrics.) 

The winner for the particular iteration of an input pattern is the processing ele- 
ment with the smallest Euclidean distance. The calculation of this dimensionless 
Euclidean distance has meaning because the input and weight vectors are normalized 
before performing the calculations. The weights connected to the winner are then 
adjusted according to equation 6.11, where the learning coefficient ~ is a decreasing 
function of time. Note that equation 6.11 calculates the weight change that must be 
added to the weight. 

Awji = rl( t) ( aki -- wji ) (6.11) 

Equations 6.4 and 6.11 are calculated for each pattern presented to the network 
during adaptation. Presentations continue until the weight adjustments become 
acceptably small or a criterion for the maximum number of iterations is met. 

Is it necessary to renormalize the weight vectors during or after training, given 
what was said about the validity of the dot product? No, not as long as the changes 
to the weight vector components carried out according to equation 6.11 are small 
enough. Keeping them small keeps the length of the weight vectors near 1 (near the 
surface of a unit hypersphere), and the dot product process remains valid. 

Selection of training patterns for the LVQ-I network is the subject of much discu- 
ssion in the literature (Kohonen 1988, 1989; Caudill 1989a). It is generally agreed 
that each category, or classification, to which the network is trained should be rep- 
resented by "gold standard" examples (i.e., right down the center of the category 
space), as well as by examples near the decision surfaces with other categories. Exper- 
imentation is needed to determine the training vector requirements for a particular 
application. 

The LVQ Supervised Adaptation Algorithm 
The LVQ-II algorithm is a supervised adaptation extension of LVQ-I. The classifi- 
cations of all patterns used for training must therefore be known. In implementing 
LVQ-II, assuming that the output PE layer has p PEs, the weights to these PEs should 
initially be set equal to p input patterns, such that the number of weights from each 
pattern class reflects the probability distribution of the classes. If there are c classes, 
and the distribution is unknown, then instantiate p/c weight vectors of each class. 

The updating ofweights is done with a reward-punish scheme: The weight of the 
winning PE is moved toward the pattern weight if the classification. Is correct and 
moved away if it is incorrect. Assume that the winning class is Cwin. Then the winning 
PE's weight vector is adjusted according to equation 6.12. (Only the winning PE's 
weight vector is modified.) 
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W new = W °ld 
jz j i  + r l ( t ) ( a k j  - -  Wji) for Cin = Cwin 

w new = w °ld - r / ( t ) (akj  - Wji) for Gin ~ Cwin jl jz 

(6.12) 

This is a useful scheme when the classifications of the training patterns are known 
and it is desirable to reduce misclassifications. However, if classifications are known, 
a back-propagation network is generally a better pattern classifier, so an LVQ-II 
implementation is not included in this book. We include it here more for purposes 
of completeness. 

Issues in Evolving Neural Networks 
The neural network adaptation presented in the previous section is based on con- 
nection weight adaptation with fixed network architecture. Much of the time, it's 
hard to select the right network architecture for the application at hand. Both the 
network architecture and the connection weights need to be adapted simultaneously 
or sequentially. 

Two of the general (nonevolutionary) approaches used to evolve network topo- 
logy are constructive and destructive algorithms. A constructive algorithm starts with 
a minimal topology and evolves the appropriate topology by adding weights, PEs, 
and layers, as needed. The destructive approach starts with a large network and 
evolves the appropriate topology by removing weights, PEs, and/or layers. 

In this chapter, we provide an implementation of a back-propagation neural 
network with an evolutionary algorithm (EA) using particle swarm optimization 
(PSO). EAs have been shown to be superior to these constructive and destructive 
approaches because of the large (often infinite) size, nondifferentiability, complex- 
ity, and multimodality of the search space (Yao 1995). 

Evolutionary computation methodologies have generally been applied to three 
main attributes of neural networks: network connection weights, network architec- 
ture, and network learning algorithms. A fourth area, the evolution of inputs (find- 
ing the optimal set of inputs), has received a relatively minor amount of attention. 

With respect to the architecture of a neural network, evolutionary algorithms 
have been applied to evolve the network weights, the network topology (structure), 
and the PE transfer function. Occasionally, they have been used for more than one 
purpose~for example, evolving the network weights and the structure simultane- 
ously. Furthermore, evolutionary computing methodologies are sometimes used 
in combinations and sometimes with other methodologies. For example, it is pos- 
sible for an EA such as a GA to find a set of weights in the global minimum's 
basin of attraction. A greedy local search algorithm can then be used to find the 
globally optimal neural network weight matrix (Yao 1995). A number of approaches 
have been used to encode the weights into the chromosome of a GA. Included 
are direct encoding schemes, in which each weight is explicitly represented in the 
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chromosome, and indirect schemes, in which a compression scheme is used that 
requires an expansion of the chromosome to derive the individual weights. We 
cite a few specific examples of these approaches next. We chose them to be repre- 
sentative only; an exhaustive survey is beyond the scope of this book. 

As early as 1968, Bremmermann, a pioneer in the evolutionary computation 
field, suggested in (Bremmermann 1968) that "we should be encouraged to try 
[evolutionary search] procedures on more complex problems, where no efficient 
algorithms are known (e.g., searching for strategies, optimizing 'weights' in a mul- 
tilayer neural net, etc.)." Widespread efforts to evolve neural network parameters, 
however, did not occur until the popularization of the back-propagation algorithm. 

One of the first published works that described use of a GA and included exam- 
ple applications was by Whitley (1989), in which a GA was used to learn the weights 
in a feedforward neural network. He applied the technique to relatively small prob- 
lems, such as the exclusivemor (XOR). Also in 1989, Montana and Davis (1989) 
described the use of a GA to train a neural network of approximately 500 weights. 
It wasn't a "traditional" GA in that, instead of replacing the entire population each 
generation, only one or two individuals were produced, which then had to com- 
pete to be included in the new population. Also, network weights were represented 
by real, rather than binary, numbers. This type of implementation is known as a 
"steady-state" GA. Furthermore, Montana and Davis's paradigm included an option 
for improving population members using back-propagation. This was thus a truly 
hybrid approach. (This hill-climbing capability, however, did not result in better 
results than when using the GA alone.) 

Another promising early result was that of Schaffer, Caruana, and Eshelman 
(1990), which demonstrated that an evolved neural network had better generaliza- 
tion performance than one designed by a human and trained with back- 
propagation. A number of similar papers were also published. The reported network 
training times were sometimes faster and sometimes slower than back-propagation 
but were generally not as fast as network training algorithms noted for their speed, 
such as quickprop. 

Most of the work involving the evolution of network architecture has focused on 
the network topological structure. Relatively little has been done on the evolution 
of PE activation functions and even less on evolving topological structure and PE 
activation functions simultaneously. 

Reduced (indirect) coding schemes have been developed in which parameters 
that specify the network topology are evolved. This approach often involves a dis- 
crete number (limited set) of architectures. Other times, the number of PEs and/or 
the number of hidden layers is encoded (Caudell 1990). These approaches result in 
chromosome discontinuities between any two network configurations. 

Another approach is to evolve developmental rules used to construct the net- 
work topology. Kitano (1990) evolved a graph generation grammar, or rules for 
generating weight connection matrices. His grammar included rules for obtaining 
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2 x 2 matrices from 1 x 1 matrices, 4 x 4 matrices from 2 x 2 matrices, and so 
on, until a matrix of the size necessary to specify the weight connectivity for the 
network was obtained. Although Kitano reported better results than some direct 
encoding methods, his method is not very good at fine-tuning connections among 
single nodes. 

Perhaps the first publication reporting the evolution of both network topology 
and PE activation functions using a GA was that of Stork and colleagues (1990). They 
were modeling a biological neuron in the tail-flip circuitry of a crayfish. Although 
the network had only seven PEs, the activation function evolved was the very com- 
plex Hodgkin-Huxley equation for neuronal activity. Chromosomes included coded 
specifications for neuron type, cell surface molecules, neurotransmitter type, 
synapse receptor types, cell channel densities, and other functional properties of the 
network. 

Koza and Rice (1991) used the genetic programming paradigm to find both the 
weights and topology (number of layers, number of PEs per layer, and weight con- 
nectivity pattern) of a neural network. They encoded a tree structure of Lisp 
S-expressions in the chromosome. Special crossover and mutation operators were 
used that preserved the syntax. This may be the first published report of using genetic 
programming to evolve neural networks. 

Some investigators have investigated the optimization of the EA operators used 
to evolve neural networks. Research work reported by Whitley, Dominic, and Das 
(1991) indicated that hill-climbing capabilities of GAs using real-valued encoding 
for the network weights were increased significantly by a combination of increas- 
ing the mutation rate, decreasing the crossover rate, and decreasing the population 
size. Convergence was faster, too, but the probability of obtaining a usable solution 
decreased by about 10 percent. It should be noted that "steady-state" GAs similar 
to those of Montana and Davis (1989) were used, resulting in relatively monotonic 
searches. This type of GA is referred to as a "genetic hill-climber" (Schaffer, Whitley, 
and Eshelman 1992). GAs have thus been designed that emphasize either global or 
local search. The trick, of course, is knowing which to use for a particular problem, 
or, perhaps more important, how and when to switch from one to the other when 
solving a problem. 

Advantages and Disadvantages of Previous 
Evolutionary Approaches 
In this section, we briefly summarize some of the advantages and disadvantages 
that have been discussed in the literature and that researchers have experienced 
with respect to using evolutionary computation techniques with artificial neural 
networks. The discussion is not meant to be thorough. Rather, we are highlighting 
the successes and examining issues that should be addressed in order to make 
progress. We do not review the advantages and disadvantages of neural networks 
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and evolutionary algorithms individually. Such reviews appear in a number of 
places (Schaffer, Whitley, and Eshelman 1992; Yao 1995). 

Let's first look at the advantages. Evolutionary algorithms can be used to adapt 
neural networks with nondifferentiable (even discontinuous) PE transfer functions. 
Step functions are an example. Additionally, not all of the transfer functions have to 
be identical in a network trained by an EA. 

Evolutionary algorithms can also be used in cases where gradient or error infor- 
mation is not available (Schaffer, Whitley, and Eshelman 1992). (See, however, a 
statement from the same reference in the section below on disadvantages.) EAs can 
thus be applied to neural networks using many architectures and topologies. In 
addition to back-propagation, EAs have been applied to networks using a variety 
of learning algorithms, including reinforcement learning, recurrent learning, and 
higher order learning. 

Evolutionary algorithms have the capability to perform a global search in the 
problem space. 

The fitness of an architecture evolved by an EA can be defined in a way appro- 
priate for the problem. For example, speed of learning, topological complexity, and 
performance on the test set can all be incorporated into the fitness function. 
Furthermore, the fitness function does not have to be continuous or differentiable. 

Now, let's look at the disadvantages. Schaffer, Whitley, and Eshelman (1992) state 
that "Using a genetic algorithm as a replacement for back-propagation does not seem 
to be competitive with the best gradient methods (e.g., quickprop)." GAs are known 
to perform global search quite well but to be relatively inefficient in fine-tuned local 
search (Yao 1995). 

Evolution of network topology is generally done in ways that result in disconti- 
nuities in the search space. Examples include removing and inserting connections 
(weights), discrete changes in connections (weights), from 1 to-1 for example, and 
removing and inserting PEs. These discontinuities usually require readaptation of 
the network. Since the adaptation of a back-propagation network is sensitive to the 
randomized initial weights, the fitness value used to measure the network's per- 
formance reflects noise as well as the network architecture. It is therefore usually 
necessary to adapt the network several times and compute an average fitness value, 
or partially adapt the network a number of times to get an indication of convergence 
rates. Either approach is computationally intensive. 

Selection of a representation for the weights in a chromosome is often difficult. 
In addition to the basic decision whether to use binary or real representations, the 
ordering of the weights must be considered, especially if an EA that uses crossover 
or recombination is being used. For instance, should the heuristic (Yao 1995) that 
weights connecting into the same hidden PE be adjacent in the chromosome be 
implemented? If binary encoding is selected, which encoding method should be 
selected (uniform, Gray, exponential, etc.)? Once the representation is selected, 
the genetic operators (crossover, mutation, etc.) and their parameter values must 
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be selected or, in many cases, developed. Often, operators are designed specifically 
for a problem. 

If a real number representation for weights is used, a set of operators must be 
selected or developed. These must generally be tailored to the application. In addi- 
tion, the criterion for selection must be specified. 

Finally, a problem that has consistently been reported in the literature is the 
permutation problem (Yao 1995; Hancock 1992), also referred to as the competing 
conventions problem (Schaffer, Whitley, and Eshelman 1992) and the isomorphism 
problem (Hancock 1992). This situation arises whenever there exist multiple chro- 
mosome configurations that represent equivalent optimum solutions. These con- 
figurations are called permutations or competing conventions, and the error surfaces 
are multimodal. For example, two neural networks that have a different order to 
their hidden PEs (and thus have a different representation on the chromosome) 
but are otherwise identical are equivalent. In fact, any permutation of the hidden 
PEs produces an equivalent network in this case. 

Hancock's work was limited to the specification of the network connectivity, 
not the weights associated with the connections. Nonetheless, he reported that 
"The most unexpected result here was that permutations are apparently more of a 
help than a hindrance" and that "It appears that, in practice, the permutation or 
competing conventions problem is not as severe as had been supposed" (Hancock 
1992). We agree. 

Evolving Neural Networks with Particle Swarm Optimization 
The benefits of evolving attributes of neural networks are clear. Multilayer percep- 
trons (feedforward networks using the back-propagation algorithm as the learn- 
ing algorithm) have been shown to be capable of being universal approximators 
(Hornick et al. 1989). The most common transfer function used is the sigmoidal 
function: output = 1/(1 + e-input). The idea of being able to automatically evolve a 
universal approximator is quite attractive, especially if it can be done as (or more) 
quickly than training the network with back-propagation. 

One of the first uses of particle swarm optimization (PSO) was for evolving 
neural network weights. Eberhart, Simpson, and Dobbins (1996) reported using 
particle swarm optimization to replace the back-propagation learning algorithm 
in a multilayer perceptron. 

The implementation reported in (Eberhart and Shi 1998) is the use of PSO to 
evolve the network weights and, indirectly, to evolve the structure. The methodology 
has the additional benefit of making the preprocessing (such as normalization or 
scaling) of input data unnecessary. 

This is accomplished by evolving, in addition to the network weights, the slopes 
of the sigmoidal transfer functions of the hidden and output PEs of a feedfor- 
ward network. In other words, if we now consider the transfer function to be 
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output = 1/(1 + e-k'input), then we are evolving k in addition to evolving the 
weights. (The method is quite general and can be applied to other network topolo- 
gies, such as recurrent networks, and to other transfer functions, such as radial 
basis functions.) 

Slopes are allowed to be either positive or negative. The output of a transfer func- 
tion with a negative slope is just one minus the output with a positive slope of the 
same absolute value. The effect of a transfer function with a negative slope is identi- 
cal to that of a transfer function with a positive slope (with the same absolute value) 
if the signs of the input weights are reversed. There is thus no reason to constrain 
slopes to be positive, and by allowing them to take on negative values, the flexibility 
of the network evolution process is increased, resulting in faster convergence. 

This method can be used to evolve the network structure indirectly. If the evolved 
slope is sufficiently small (the exact amount depends on the application), then the 
output is essentially constant regardless of the input. (In the case of the sigmoidal 
transfer function, the output would be 0.5, or very nearly so.) If the PE is in a hid- 
den layer, it can therefore be removed. Its effect can be replicated by increasing the 
weights from the bias PE in that hidden layer to each of the PEs in the next layer 
by one-half the value of each weight from the PE being removed to the next-layer 
PEs. The method therefore can be used to prune PEs from the network, reducing 
network complexity. 

Additionally, if the slope is sufficiently large (the exact amount depends on the 
application), then the sigmoid transfer function can be replaced by a step transfer 
function. A sigmoid with a large positive slope is thus replaced by a step transfer 
function that has an output of 0 for inputs less than or equal to 0, and 1 for positive 
inputs. A sigmoid with a large negative slope is replaced by a step function with an 
output of 1 for inputs less than or equal to 0, and 0 for positive inputs. Sigmoidal 
function PEs can thus evolve to be step function PEs, reducing the computational 
complexity of the network significantly. 

Since the slopes can evolve to large values (relative to 1, which is the slope used 
in traditional back-propagation network transfer functions), input normalization 
or scaling is generally not needed. Since data preprocessing requires a significant 
amount of effort in most applications, this methodology can simplify the applica- 
tions process and shorten development time. 

Another feature of this methodology is the continuous nature of the PSO algo- 
rithm. Transfer function slopes are evolved in a continuous way; that is, slopes 
can vary continuously from large negative to large positive values. This results 
in an evolution of network structures that is also continuous. For example, as a 
hidden PE's transfer function slope approaches 0, it is replaced with revised con- 
nection weights from the bias PE; as the slope becomes very large, the sigmoidal 
PE is replaced by a threshold PE. No significant discontinuities exist in the evo- 
lutionary process such as those that plague other approaches to evolving network 
structures. 
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Back-propagation Implementation 

This section discusses the back-propagation implementation. This is an implemen- 
tation of a fully connected feedforward layered network. Connections exist only 
from the PEs in one layer to the PEs in the next layer. There are no feedback connec- 
tions, even among PEs in the same layer. The number of hidden layers and number 
of PEs in each layer can be specified in a run file. For the basics of back-propagation 
neural networks, please refer to Chapter 5. 

Programming a Back-propagation Neural Network 
Figure 6.4 shows the state transition diagram used in the implementation of the 
back-propagation neural network discussed in this section. First we define some new 
data types in the next subsections. 

We first look at general definitions for neural networks. In this section, some 
data types applicable to several neural network implementations in this book are 
defined as shown in Listing 6.1. In Listing 6.1 are the new enumeration data types. 
These definitions are also used in the implementations of other neural networks, in 
addition to the back-propagation neural network discussed in this section. 

Listing 6.1 Enumeration data type definitions for neural networks. 

/* Enumerations */ 

typedef enum NN_Operation_Mode_Type_Tag 
{ 

NN_TRAINING, 
NN_RECALL, 
NUM_BP_OPERATION_MODES 

} NN_Operation_Mode_Type; 

typedef enum NN_Function_Type_Tag 
{ 

NN_LINEAR_FUNCTION, 
NN_GAUSIAN_FUNCTION, 
NN_SIGMOID_FUNCTION, 
NUM_NN_FUNCTION_TYPES 

} NN_Function_Type; 

typedef enum NN_Layer_Type_Tag 
{ 

NN_INPUT_LAYER, 
NN_HIDDEN_LAYER, 
NN_OUTPUT_LAYER, 
NUM_NN_LAYERS 

} NN_Layer_Type; 
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Figure 6.4 A back-propagation neural network state transition diagram in training mode. 

The enumeration data type NN_Operation_Mode_Type defines the opera- 
tion mode of the neural network. The neural network can be in training 
mode or in testing or recall mode. The data type NN_Funct i on_Type defines the 
function types of the PE activation functions. Three kinds of activation functions 
are included. More can be included later if necessary. These three activation 
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functions are the linear function, Gaussian function, and sigmoid function. The 
NN_Layer_Type data type defines the nature of the neural network layer. Three 
kinds of layers are included here. They are the input layer, hidden layer, and output 
layer. This data type is more for layered networks than for other types of networks. 

Now, let's consider some definitions for the back-propagation neural network. 
This section defines some date types applicable only to the implementation of the 
back-propagation neural network (BP net). They are defined in Listings 6.2 and 6.3. 
The new enumeration data types are in Listing 6.2. The new structure data types are 
in Listing 6.3. 

Listing 6.2 Enumeration data type for BP net. 

/* Enumerations */ 
**************************************************************** 

typedef enum BP_Training_Mode_Tag 
{ 

NN_BATCH_MODE, 
NN_SEQUENTIAL_MODE, 
NUM_NN_TRAINING_MODES 

} BP_Training_Mode_Type; 

typedef enum BP_State_Tag 
{ 

BP_GET_PATTERN, 
BP_FEEDFORWARD_INPUT, 
BP_FEEDFORWARD_HIDDEN, 
BP_FEEDFORWARD_OUTPUT, 
BP_BACK_PROPAGATION_OUTPUT, 
BP_BACK_PROPAGATION_HIDDENS, 
BP_BATCH_TEMP_WEIGHT_STEP_CHANGE, 
BP_NEXT_PATTERN, 
BP_WEIGHT_STEP_CHANGE, 
BP_WEIGHT_CHANGE, 
BP_NEXT_GENERATION, 
BP_UPDATE_LEARNING_RATE, 
BP_UPDATE_MOMENTUM_RATE, 
BP_TRAINING_DONE, 
BP_RECALL_DONE, 
NUM_BP_STATES 

} BP_State_Type; 

The enumeration data type BP_Training_Mode_Type specifies the training 
mode for the back-propagation implementation. It can be either in batch training 
mode (off-line adaptation) or in sequential training mode (on-line adaptation). The 
data type B P _ S t a t e _ T y p e  defines all the states in the back-propagation 
state machine. There are fifteen states, each with a corresponding state handling 
routine. 
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Listing 6.3 Structure data type definitions for BP net. 

/* Structures */ 
**************************************************************** 

typedef struct Neuron_Type_Tag 
{ 

NN_Function_Type 
float 
float 
FVECTOR 

double 
FVECTOR 
FVECTOR 

neuron_function; // neuron function 
in; // neuron input 
out; // neuron output 
w; 

// connection weights from the previous layers 
error; // error of neuron's output 
delta_w; // step change of weights 
temp_delta_w; // temp. step change of weights 

} Neuron_Type; 

typedef struct NN_Layer_Arch_Type_Tag 
{ 

int size; 
Neu r on_Type * neu r on s; 
NN_Laye r_Type i aye r_t ype; 

// number of neurons in the layer 
// pointer to the array of neurons 

} NN_Layer_Arch_Type; 

typedef struct BP_Arch_Type_Tag 
{ 

int size; 
NN_Layer_Arch_Type *layers; 
int *hidden_number; 

// number of layers 
// pointer to the layers 

} BP_Arch_Type; 

typedef struct BP_Env_Type_Tag 
{ 

NN_Operation_Mode_Type operation_mode; // training or recall 
BP_Training_Mode_Type train_mode; // training mode if in training 
float 

float 
float 
int 
int 
int 
int 

} BP_Env_Type; 

alpha; // learning rate 0.075 

gama; // momentum rate 0.15 
criterion; // error criterion for termination 
max_gen; // maximum number of generations 
cur_gen; // current generation index 

max_tra_pat; // total number of training patterns 
cur_pat; // current training pattern index 

typedef struct BP_Type_Tag 
{ 

BP_Arch_Type 
BP_Env_Type 

arch; 
env; 
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double 
} BP_Type; 

mse; // mean squared error 

typedef struct BP_Pattern_Set_Type_Tag 
{ 

int size; // number of patterns 
int dim_in; // input dimension 
int dim_out; // output dimension 
FMATRIX patterns; // pointer to the array of in/outpatterns 

} BP_Pattern_Set_Type; 

The structure data type Neuron_Type defines the parameters of the network's 
PEs (neurons)--the basic building components of the neural network. It consists of 
an activation function (NN_Funct i on_Type), input ( f 1 oa t  ), output ( f 1 oa t  ), 
connection weights to a PE (FVECTOR), error (double) ,  step change of weights 
(FVEETOR), and temporary step change of weights (FVECTOR). The last three are 
included for the purpose of training, especially when used in a back-propagation 
neural network. The NN_Laye r_Ar ch_Type defines the architecture of the neural 
network layer. It consists of a layer type (NN_Layer_Type), a pointer to the PEs 
(Neuron_Type) in the layer, and the number of PEs in the layer ( in t ) .  (Note that 
in the code PEs are referred to as neurons.) 

The structure data type BP_Arch_Type defines the architecture of the back- 
propagation neural network. The component s i z e  ( i n t )  specifies the number of 
layers in the network; the component l a y e r s  (NN_Layer_Arch_Type *) is a 
pointer to the layers; and the component h idden_number  ( i n t  * ) is a pointer 
to the number of PEs in hidden layers. 

The BP_Env_Type defines all of the environment parameters for running the 
back-propagation implementation. They are operation mode (ope r a t  i on_mode), 
training mode ( t ra in_mode) ,  learning rate (a lpha) ,  momentum (gama), train- 
ing error criterion for termination ( c r i t e r i o n ) ,  maximum number of genera- 
tions (max_gen), current generation index (cur_gen) ,  total number of training 
patterns (max_t r a _ p a t ) ,  and current training pattern index ( cu r_pa t ) .  

The BP_Type defines a struct data type, which specifies the back- 
propagation neural network. It includes BP architecture data (arch),  BP environ- 
ment data (env), and mean squared error (mse). 

The B P _ P a t t e r n _ S e t _ T y p e  defines the set of patterns that are fed to the BP 
net. It consists of number of patterns (s i ze), input dimension (dim_in),  output 
dimension (dim_out),  and a pointer to the array of input/output pairs of patterns 
(patterns). 

The m a i n  () routine is shown in Listing 6.4. It is kept as simple as pos- 
sible to make the back-propagation module as independent as possible. In the 
BP_Sta r t_Up () routine, all the necessary parameters for running the back- 
propagation implementation are read from the input (run) file; the dynamic 
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data storage variables are allocated memory space and initialized. In the 
BP_C 1 ean_Up () routine, the results are stored in an output file and the memory 
space previously allocated is de-allocated. The BP__Main_Loop () routine is the 
core of the back-propagation implementation, where the state machine is run. 

Listing 6.4 Back-propagation main ( ) routine. 

void main (int argc, char *argv[]) 
{ 

int idx_i ; 

// check command line 
if (argc != 2) 
{ 

printf("Usage: exe_file run_file"); 
exit ( 1 ) ; 

} 

main_start_up(argv[l]); 
BP_Main_Loop(); 
main_clean_up(); 

static void main_start_up (char *dataFile) 
{ 

BP_Start_Up (dataFile) ; 
} 

static void main_clean_up (void) 
{ 

BP_Clean_Up ( ) ; 
} 

We now consider the BP_Main_Loop() routine. Before running the 
BP__Main_Loop () routine, several BP module scope variables are defined as 
follows: 

static BP_Type 
static BP_Pattern_Set_Type 
static BP_State_Type 

bp; 
pat set ; 

bp_cur_state; 

These three variables are defined as s t a t  i c to prevent them from being accidentally 
changed by outside modules. The variable bp has information related to the back- 
propagation net during the run. 

The variable p a t  s e t  stores all the input/output pairs of patterns. The variable 
b p _ c u r _ s t a t e  records the current state of the back-propagation state machine. 
When the BP_Main_Loop () routine is running, it keeps calling the current 
state's handling routine through b p _ s t a t e _ h a n d l e r  ( b p _ c u r _ s t a t e ) ,  
where the current state performs its action until it is transitioned to another state. 
The BV_Main_Loop ( ) keeps running until its current state is transitioned to either 
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the state BP_TRAINING_DONE when BP is in the training operation mode or to the 
state BP_RECALL_DONE when BP is in the recall/test operation mode. 

void BP_Main_Loop (void) 
{ 

BOOLEAN running; 

running = TRUE; 

while (running) 
{ 

if ( (bp_cur_state == BP_TRAINING_DONE) 

{ 

running = FALSE; 
} 

bp_state_handler (bp_cur_state) ; 

I I  (bp_cur_state == 
BP_RECALL_DONE) ) 

The Back-propagation State Handling Routines 
We now examine the BP state handling routines. The most important part of the 
BP state machine is its state handler, which is shown in Listing 6.5. As shown in the 
listing, which state handler routine is called is based on the current BP state. 

Listing 6.5 Main part of the BP state machine. 

static void bp_state_handler (int state_index) 
{ 

switch (state_index) 
{ 

case BP_GET_PATTERN : 

bp_get_pattern ( ) ; 
break; 

case BP_FEEDFORWARD_INPUT : 

bp_feedforward_input ( ) ; 

break; 

case BP_FEEDFORWARD_HIDDEN : 

bp_feedforward_hidden ( ) ; 

break; 

case BP_FEEDFORWARD_OUTPUT : 

bp_feedforward_output () ; 

break; 
case BP_BACK_PROPAGATION_OUTPUT : 

bp_back_propagat ion_output ( ) ; 

break; 
case BP_BACK_PROPAGATION_HIDDENS : 

bp_back_propagat ion_hiddens ( ) ; 

break; 
case BP_BATCH_TEMP_WEIGHT_STEP_CHANGE : 

bp_batch_temp_weight_step_change ( ) ; 

break; 
case BP_NEXT_PATTERN : 
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bp_next_pattern ( ) ; 

break; 

case BP_WEIGHT_STEP_CHANGE : 

bp_weight_step_change () ; 

break; 

case BP_WEIGHT_CHANGE : 

bp_weight_change () ; 

break; 

case BP_NEXT_GENERATION : 

bp_next_generation ( ) ; 

break; 

case BP_UPDATE_LEARNING_RATE : 

bp_update_learning_rate ( ) ; 

break; 

case BP_UPDATE_MOMENTUM_RATE : 

bp_update_momentum_rate ( ) ; 

break; 

case BP_TRAINING_DONE : 

bp_training_done ( ) ; 

break; 

case BP_RECALL_DONE : 

bp_recall_done ( ) ; 

break; 

default : 

break; 

In the BP_GET_PATTERN state, the portion of the current pattern specified by 
bp. env .  c u r _ p a t  is copied to the input PEs in the input layer and to the target out- 
put; then the current state is transitioned to the state BP FEEDFORWARD_INPUT. 
The state handler routine is shown here. 

static void bp_get_pattern (void) 
{ 

int idx; 

for (idx = 0; idx < (bp.arch.layers[0].size); idx++) 
{ 

bp. arch. layers [0] .neurons [idx] . in = 

patset.patterns [bp. env. cur_pat ] [idx] ; 
} 

for (idx = 0; idx < patset.dim_out; idx++) 
{ 

target_out[idx] = patset.patterns[bp.env.cur_pat] 

[patset.dim_in + idx]; 
} 

bp_cur_state = BP_FEEDFORWARD_INPUT; 

In the BP_FEEDFORWARD_INPUT state, the output of the input layer is calcu- 
lated. Normally, the input layer is treated only as a path to the hidden layer. The 
output of each PE in the input layer is equal to the input of the same PE. Certainly, 
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a different type of activation function can be used for the PEs in the input layer, and 
some data preprocessing can be encoded into the activation function of the PEs in 
the input layer. Here, in our implementation, the data preprocessing is done out- 
side of the neural network implementation and the input layer is a linear layer fea- 
tured as an input path to the hidden layer. The current state transitions to the state 
BP_FEEDFORWARD_HIDDEN. The state handler routine is shown here. 

static void bp_feedforward_input (void) 
{ 

int idx; 

for (idx - 0; idx < (bp.arch.layers[0].size); idx++) 
{ 

bp.arch, layers [0] .neurons [idx] .out = 

bp. arch. layers [0] .neurons [idx] . in; 
) 
bp_cur_state = BP_FEEDFORWARD_HIDDEN; 

In the BP_FEEDFORWARD_HIDDEN state, the outputs of PEs in the hidden 
layer(s) are calculated. If there is more than one hidden layer, the outputs of the 
PEs in the first hidden layer are first calculated, then the second hidden layer, until 
all the hidden layer outputs have been calculated. In the calculation of the output 
of a PE, first the net input to the PE is calculated; then the output is calculated by 
calling the function activate_function (net_input, function_type). 
Normally, in a back-propagation network, the activation function for PEs in the 
hidden layer is the sigmoid function. The current state transitions to the state 
BP FEEDFORWARD OUTPUT. The state handler routine is shown here. 

static void bp_feedforward_hidden (void) 
{ 

int idx, idx_prev, idx_cur; 

float sum; 

for (idx = i; idx < (bp. arch. size - i); idx++) 

{ // loop through the hidden layers 

for (idx_cur = 0; idx_cur < (bp.arch.layers[idx].size); idx_cur++) 

{ // loop through the neurons of the current hidden layer 

sum - 0.0; 

for (idx_prev- 0; idx_prev < (bp. arch. layers 

[idx - l].size);idx_prev++) 

{ // loop through the outputs of the previous layer 

sum += (bp.arch.layers[idx - l].neurons[idx_prev].out) * 

(bp. arch. layers [idx] .neurons [idx_cur] .w[idx_prev] ) ; 
) 
sum += (bp.arch. layers [idx] .neurons [idx_cur] . 

w[bp.arch.layers[idx - l].size]); 

bp.arch.layers[idx].neurons[idx_cur] .in = sum; 

bp.arch, layers [idx] .neurons [idx_cur] . out = 

activate_function (sum, bp. arch. layers [ idx ] . 

neurons [ idx_cur] .neuron_function) ; 
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} 
} 
bp_cur_state = BP_FEEDFORWARD_OUTPUT; 

In the BP_FEEDFORWARD_OUTPUT state, the outputs of PEs in the output 
layer are calculated. The calculation procedure is the same as that in hidden lay- 
ers. The current state transitions to the state BP_BACK_PROPAGATION_OUTPUT 
if the operation mode is NN_TRAINING; otherwise, it transitions to the state 
BP_NEXT_PATTERN to test the next pattern. The state handler routine is shown 
here. 

static void bp_feedforward_output (void) 

{ 
int idx_out, idx__prev; 

float sum; 

for (idx_out = 0; idx_out < (bp. arch. layers [bp . arch. size - l].size); 

idx_out++) 

// loop through the neurons of the output layer 

sum = 0.0; 

for (idx_prev = 0; idx_prev < (bp. arch. layers 

[bp.arch.size - 2] .size);idx_prev++) 

{ // loop through the outputs of the previous layer 

sum += (bp.arch.layers[bp.arch.size - 2] .neurons 

[idx_prev].out) * (bp.arch.layers[bp.arch.size- I]. 

neurons [idx_out ] .w[idx_prev] ) ; 
} 
sum +=(bp.arch.layers[bp.arch.size - i] .neurons[idx_out] . 

w [bp. arch. layers [bp. arch. size - 2] .size]) ; 

bp.arch.layers[bp.arch.size - I] .neurons[idx_out] .in=sum; 

bp.arch.layers[bp.arch.size - I] .neurons[idx_out] .out = 

activate_function (sum, bp.arch.layers[bp.arch.size - i] . 

neurons [idx_out] . neuron_function) ; 

} 

if (bp.env.operation_mode == NN_RECALL) 
{ 

print_recall_result () ; 
} 
if (bp.env.operation_mode == NN_TRAINING) 
{ 

bp_cur_state = BP_BACK_PROPAGATION_OUTPUT; 
} 
else 

{ / / recall 

bp_cur_state = BP_NEXT_PATTERN; 
} 

In the BP_BACK_PROPAGATION_OUTPUT state, the errors of the PEs in the 

output layer are calculated for the current training pattern. The calculation depends 
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on the type of activation function of the output PEs. For a back-propagation 
network, the activation function is usually a linear function or one of several 
S-shaped functions. The mean-square error is also accumulated for this training 
pattern. 

The current state transitions to the state BP_BACK_P ROPAGAT I ON_H IDDENS. 
Following is the state handler routine. 

static void bp_back_propagation_output (void) 
{ 

lint idx; 

double tempA, tempB; 

for (idx = 0; idx < (bp. arch. layers [bp. arch. size - l].size); idx++) 
{ 

tempA = (target_out[idx] - bp.arch.layers[bp.arch.size - I] . 

neurons [idx] .out) ; 

switch (bp.arch.layers[bp.arch.size - i] •neurons[idx] 

• neuron_function) 
{ 

case NN_LINEAR_FUNCTION: 

bp.arch.layers[bp.arch.size - i] .neurons[idx] .error = 

t empA; 

break; 

case NN_GAUSIAN_FUNCTION: 

printf("BP net can't have Gaussian Neurons, exit\n"); 

exit (I) ; 

break; 

default : // NN_SIGMOID_FUNCTION 

tempB = (bp. arch. layers [bp. arch. size - i] .neurons[idx] .out) * 

(I.0 - (bp. arch. layers [bp. arch. size - I] 

• neurons [idx] . out) ) ; 

bp. arch. layers [bp. arch. size - i] .neurons[idx] .error = 

tempA * tempB; 

break; 
} 
bp.mse += (tempA * tempA); 

} 
bp_cur_state = BP_BACK_PROPAGATION_HIDDENS; 

In the BP_BACK_PROPAGATION_HIDDENS state, the errors of the PEs in all 

hidden layers are calculated. The errors are calculated backward, from the last hid- 
den layer to the first hidden layer. Since only one kind of S-shaped function, the 
sigmoid function, is included in the enumeration data type NN_Funct ion_Type ,  
the calculation is hard-coded into the function that is below. If more S-shaped 
functions are included later, then either an if-else statement or a switch 
statement should be used. The current state transitions to the state BP_BATCH_ 
TEMP_WEIGHT_STEP_CHANGE. The state handler routine is shown here. 

static void bp_back_propagation_hiddens (void) 
{ 

int idx_l, idx_cn, idx_nn; 
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double tempA, sum; 

for (idx_l = bp.arch.size- 2; idx_l > 0; idx_l--) 

{ // loop through all the hidden layers 

for (idx_cn = 0; idx_cn < (bp.arch.layers[idx_l].size);idx_cn++) 

{ // loop through all the neurons in the current hidden layer 

sum = 0.0; 

for (idx_nn = 0; idx_nn < (bp.arch.layers[idx_l + l].size); 

i dx_nn + + ) 

{ // loop through the next layer's neurons 

sum += (bp.arch.layers[idx_l + l] .neurons [idx_nn] .error) * 

(bp.arch.layers[idx_l + l].neurons[idx_nn] 

.w [idx_cn] ) ; 
} 

tempA = bp.arch.layers[idx_l] .neurons[idx_cn] .out * 

(i.0 - (bp.arch.layers[idx_l] .neurons[idx_cn] .out)); 

bp.arch.layers[idx_l] .neurons[idx_cn] .error = sum * tempA; 
} 

) 

bp_cur_st ate = BP_BATCH_TEMP_WE I GHT_STEP_CHANGE; 

In the BP_BATCH_TEMP_WEIGHT_STEP_CHANGE state, the temporary con- 
nection weight incremental changes are calculated. This state is added for the pur- 
pose of batch mode training. If only the sequential training mode is used, this state is 
unnecessary. The calculation is based on equation 6.8. The current state transitions 
either to the state BP_NEXT_PATTERN if batch mode training is being used or to 
the state BP_WEIGHT_STEP_CHANGE if sequential mode training is being used. 
The state handler routine is listed here. 

static void bp_batch_temp_weight_step_change (void) 
{ 

int idx_layer, idx_cn, idx_pn; 

double tempA; 

for (idx_layer = bp.arch.size- I; idx_layer > 0; idx_layer--) 

{ // loop through layers 

for (idx_cn = 0; idx_cn < (bp.arch.layers[idx_layer] .size); 

idx_cn++) 

{ // loop through neurons in the current layer 

for (idx_pn = 0; idx_pn < (bp.arch.layers[idx_layer - I] .size); 

i dx_pn + + ) 

{ // loop through neurons in the previous layer 

tempA = bp.arch.layers[idx_layer] .neurons[idx_cn] .error * 

bp.arch.layers[idx_layer - i] .neurons[idx_pn] .out; 

tempA *= bp.env.eta; 

bp. arch. layers [idx_layer] . neurons [idx_cn] 

.temp_delta_w[idx_pn] += tempA; 
} 

bp. arch. layers [ idx_layer ] . neurons [ idx_cn] . temp_delta_w [bp. arch 

.layers[idx_layer- l].size] += bp.env.eta * 

bp. arch. layers [idx_layer] .neurons [idx_cn] .error; 
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if (bp.env.train_mode == NN_BATCH_MODE) 
{ 

bp_cur_state = BP_NEXT_PATTERN; 
} 
else 
{ 

bp_cur_state = BP_WEIGHT_STEP_CHANGE; 
) 

The BP_NEXT_PATTERN state is used to determine which state to transition to 
according to back-propagation network environment information. First, the current 
training pattern index is increased by one. 

If the back-propagation net is in training operation mode and the training 
mode is batch mode training, then the current training pattern index is compared 
with the maximum number of training patterns. If the current training pattern 
index is less than the maximum number of training patterns, the current state 
transitions to the state BP_GET_PATTERN; otherwise, it transitions to the state 
BP_WE I GHT_S TEP_CHANGE. 

If the back-propagation net is in the training operation mode and the training 
mode is sequential training, then if the current training pattern index is less than 
the maximum number of training patterns, the current state transitions to the state 
BP_GET_PATTERN. Otherwise, it transitions to the state BP_.NEXT_GENERAT I ON. 
• If the back-propagation net is in recall/testing operation mode, then the cur- 

rent training pattern index is compared with the maximum number of pat- 
terns. If the current training pattern index is less than the maximum number 
of patterns, the current state transitions to the state BP_GET_PATTERN; other- 
wise, it transitions to the state BP_RECALL_DONE. The state handler routine is 
listed here. 

static void bp_next_pattern (void) 
{ 

bp. env. cur_pat++; 

if (bp.env. operation_mode == NN_TRAINING) 
{ 

if (bp. env.train_mode == NN_BATCH_MODE) 
{ 

if (bp.env.cur_pat < bp.env.max_tra_pat) 
{ 

bp_cur_state = BP_GET_PATTERN; 
} 
else 
{ 

bp_cur_state = BP_WEIGHT_STEP_CHANGE; 
} 

} 
else 
{ 

// sequential learning 

if (bp.env.cur_pat < bp.env.max_tra_pat) 
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} 
else 
{ 

{ 
bp_cur_state = BP_GET_PATTERN; 

} 
else 
{ 

bp_cur_state = BP_NEXT_GENERATION; 
} 

// recall 

if (bp.env.cur_pat < patset.size) 
{ 

bp_cur_state = BP_GET_PATTERN; 
} 
else 
{ 

bp_cur_state = BP_RECALL_DONE; 
} 

In the BP_WEIGHT_STEP_CHANGE state, the connection weight step changes 
are calculated according to equation 6.8, and the temporary connection weight step 
changes are cleared. The current state transitions to the state BP._WE I GHT CHANGE. 
The state handler routine is listed next. 

static void bp_weight_step_change (void) 
{ 

int idx_layer, idx_cn, idx_pn; 

for (idx_layer = i; idx_layer < (bp.arch.size); idx_layer++) 

{ // loop through the layers 

for (idx_cn = 0; idx_cn < (bp.arch.layers[idx_layer].size); 

idx_cn++) 

{ // loop through the neurons in the current layer 

for (idx_pn = 0; idx_pn <= (bp.arch.layers[idx_layer-l].size); 
i dx_p n + + ) 

{// loop through the connection weights of the current neurons 

bp. arch. layers [idx_layer] . neurons [ idx_cn] . delta_w [ idx_pn] *= 

bp. env. alpha; 

bp. arch. layers [idx_layer] . neurons [idx_cn] .delta_w [idx pn] 

+= (bp. arch. layers [idx_layer] .neurons [idx_cn] 

• temp_delta_w [ idx_pn ] ) ; 

bp. arch. layers [idx_layer] . neurons [ idx_cn] 

.temp_delta_w[idx_pn] = 0.0; 
} 

} 
} 
bp_cur_state = BP_WEIGHT_CHANGE; 

In the BP_WEIGHT_CHANGE state, the connection weight changes are 
calculated according to equation 6.8. The current state transitions to the state 
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BP_NEXT_GENERATION if in batch mode training; otherwise, to the state 
BP_NEXT PATTERN. The state handler routine is shown next. 

static void bp_weight_change (void) 
{ 

int idx_layer, idx_cn, idx_pn; 

for (idx_layer = i; idx_layer < (bp.arch.size); idx_layer++) 
{ // loop through the layers 

for (idx_cn = 0; idx_cn < (bp.arch.layers[idx_layer].size); 
idx_cn++) 

{ // loop through the neurons in the current layer 

for (idx_pn = 0;idx_pn <= (bp.arch.layers[idx_layer - l].size); 
idx_pn++) 

{ // loop through the connection weights of the current neurons 
bp. arch. layers [ idx_layer ] . neurons [ idx_cn ] 

.w[idx_pn] += bp.arch.layers[idx_layer] .neurons[idx_cn] 
• delta_w [idx_pn] ; 

} 

if (bp.env.train_mode == NN_BATCH_MODE) 
{ 

bp_cur_state = BP_NEXT_GENERATION; 
} 
else 
{ 

bp_cur_state = BP_NEXT_PATTERN; 
) 

In the BP_NEXT_GENERATION state, the errors of all PEs in the network are 
first cleared for the next generation; then the mean-squared error is calculated 
by dividing the accumulated mean-squared error by the total number of training 
patterns. The current generation index is increased by 1 and compared with the 
maximum number of generations. If the current generation number is less than the 
maximum number of generations, the mean-squared error is cleared and the state 
transitions to the state BP_UPDATE_LEARNING_RATE; otherwise, the current 
state transitions to the state BP TRAINING_DONE. 

static void bp_next_generation (void) 
{ 

int idx_layer, idx_cn; 

for (idx_layer = 0; idx_layer < (bp.arch.size); idx_layer++) 

{ // loop through the layers 

for (idx_cn = 0; idx_cn < (bp.arch.layers[idx_layer].size); 

idx_cn++) 
{ // loop through the neurons in the current layer 

// clear the error 

bp.arch.layers[idx_layer].neurons[idx_cn].error = 0.0; 
) 
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bp.mse /= bp.env.max_tra_pat; 

if ((++bp.env.cur_gen) < bp.env.max_gen) // add error criterion later 

{ 
bp.mse = 0.0; //clear mean squared error 

bp_cur_state = BP_UPDATE_LEARNING_RATE; 
} 

else 
{ 

bp_cur_state = BP_TRAINING_DONE; 
} 

In the two states, BP_UPDATE_LEARNING_RATE and BP_UPDATE_ 

MOMENTUM_RATE, if a dynamic learning rate and/or momentum rate are 
used, then the new learning rate and momentum rate are updated. In our implemen- 
tation, rates are fixed. Therefore, these two state handler routines do nothing except 
transition the current state to state BP_UPDATE_MOMENTUM_RATE and state 
B P_G E T_P AT T E RN, respectively. 

In the two states BP_TRAINING_DONE and BP_RECALL_DONE, the post- 
processing of data or results is performed. In the current implementation, nothing 
is performed in either state. 

Running the Back-propagation Implementation 
To run the back-propagation neural network implementation requires the execu- 
table file bp.  e x e  and an associated run file, for example, i r i s _ b p ,  run. To 
run the implementation from within the directory containing b p . e x e  and 
i r i s _ b p .  run, at the DOS system prompt type bp i r i s.__bp, run. 

The contents of the i r i s _ b p ,  run file, an example of a run file for a back- 
propagation network with one hidden layer, are listed here: 

0 

0 

0.075 

0.15 

0.01 

I0000 

99 

3 

4 
150 

4 
3 

iris.dat 

The first entry (0) is for specifying the network operation mode, 0 for train- 
ing and 1 for recall or testing. The second entry (0) tells which training mode is 
going to be used if the operation mode is the training mode (0); otherwise, the 
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value is ignored. 0 specifies batch mode training and 1 specifies sequential mode 
training. The third value ( 0 .0  7 5) and the fourth value ( 0 .15  ) are the learning rate 
and momentum rate, respectively. 

The next value, 0 .01 ,  is the error termination criterion. In the current imple- 
mentation, the only termination criterion is the maximum number of generations. 
Implementing the error termination criterion is left as an exercise at the end of this 
chapter. 

The next value (10 0 0 0) is the maximum number of generations followed by the 
total number of training patterns ( 9 9). Note that the Iris dataset has 15 0 patterns; 
here we are using 9 9 of them for training. 

Following the total number of training patterns are the number of layers (3), 
the number of PEs in the hidden layer (4), the total number of patterns (15 0), the 
dimension of the input (4), the dimension of the output (3), and the filename of 
the data file ( i  r i s .  da t ) where the patterns are stored. Note that this run file (with 
three layers) is valid for a network with one hidden layer. 

For a network with two hidden layers, see the contents of the 
i r i s_..bp2, run  file, listed next. 

0 

0 

0.075 

0.15 

0.01 

i0000 

99 

4 

4 

3 

150 

4 

3 

iris.dat 

In this example, following the total number of training patterns are the number of 
layers (4), the number of PEs in the first hidden layer (4), the number of PEs in 
the second hidden layer (3), the total number of patterns (15 0), the dimension of 
the input (4), the dimension of the output (3), and the filename of the data file 
( i  r i s .  d a t )  where the patterns are stored. 

Following the training of the network, the results, which include the weights 
of the trained network and the final mean-squared error for the training 
pattern set, are in file BP_RES. TXT. After you run the test patterns, a summary of 
the test results appears in BY_TEST. TXT, and a pattern-by-pattern listing of the 
target values versus output values for the Iris dataset appears in i r i  s r e s .  t x t .  
Note that the weights of the trained network are the essential output of this 
training step. 
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The Kohonen Network Implementations 

In this section, we first present an implementation of another common neural 
network paradigm, the learning vector quantizer (LVQ), sometimes referred to 
as a Kohonen network. We then discuss the implementation of Kohonen's self- 
organizing feature map network, which is an extension of LVQ. 

Programming the Learning Vector Quantizer 
Figure 6.5 shows the state transition diagram for the implementation of the lear- 
ning vector quantizer discussed in this section. First we define some new data 
types. 

We now present LVQ network definitions. This section defines some data types 
applicable only to the implementation of the LVQ network. The general definitions 
previously discussed in the General Definitions for Neural Networks subsection of 
the Back-propagation Implementation section are still valid here. The new data 
types are shown in Listings 6.6 and 6.7. The new enumeration data types are in 
Listing 6.6, and the new structure data types appear in Listing 6.7. 

Listing 6.6 Enumeration data types for the LVQ network. 

W******WWW**W*W**WWW*WW*WWWWW*W*W*WWWWW*WWW*WW*WWW*WWWW*WW*WW*/ 

/* Enumerations */ 
**************************************************************** 

typedef enum LVQ_Training_Mode_Tag 
{ 

LVQ_RANDOM_MODE, 
LVQ_SEQUENTIAL_MODE, 
NUM_LVQ_TRAINING_MODES 

} LVQ_Training_Mode_Type; 

typedef enum LVQ_State_Tag 
{ 

LVQ_GET_PATTERN, 
LVQ_WEIGHT_NORMALIZATION, 
LVQ_FEEDFORWARD_INPUT, 
LVQ_FEEDFORWARD_OUTPUT, 
LVQ_WINNING_NEURON, 
LVQ_WEIGHT_STEP_CHANGE, 
LVQ_WEIGHT_CHANGE, 
LVQ_NEXT_PATTERN, 
LVQ_NEXT_ITERATION, 
LVQ_UPDATE_LEARNING_RATE, 
LVQ_UPDATE_CONSCIENCE_FACTOR, 
LVQ_TRAINING_DONE, 
LVQ_RECALL_DONE, 
NUM_LVQ_STATES 

} LVQ_State_Type; 
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typedef enum LVQ_Conscience_Type_Tag 
{ 

LVQ_NO_CONSCIENCE, 
LVQ_CONSCIENCE, 
NUM_LVQ_CONSCIENCE 

} LVQ_Conscience_Type; 

LVQ_ 
FEEDFORWARD_ 

INPUT 

LVQ_UPDATE_ ~ LVQ_NEXT_ >=max ite - ) ~ ~ L V Q _ T R A I N I N G  
LEARNING ITERATION DONE 

, RATE - / \ / , - , 

' LVQ_ ' 
FEEDFORWARD_ 

, OUTPUT , 

// 

g~ 

Q. 
0 

NEURON 

LVQ NEXT LVQ WEIGHT 

LVQ_WEIGHT_ 
CHANGE 

Figure 6.5 A state diagram of the LVQ network in training operation mode. 
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The enumeration data type LVQ_Training_Mode_Type defines two 
training modes: LVQ_RANDOM_MODE and LVQ_SEQUENTIAL_MODE. In 
LVQ_RANDOM_MODE training mode, the training pattern is randomly selected 
from the training pattern set and presented to the LVQ network; in 
LVQ_SEQUENTIAL MODE training mode, the training pattern is selected in the 
order of the patterns in the training pattern set and presented to the 
network. 

The data type LVQ_St at  e_Type defines all the states in the LVQ state machine. 
There are a total of 13 states, each of which has a corresponding state handling 
routine. The states transition to each other according to the state transition diagram, 
as shown in Figure 6.5. 

The data type LVQ_Conscience_Type defines two conditions: LVQ_NO_ 
CONSCIENCE and LVQ_CONSCIENCE. These two conditions, as explained in the 
subsection describing the LVQ_UPDATE_CONSCIENCE_FACTOR state, specify 
how the LVQ adapts with or without a conscience. 

Listing 6.7 Structure data types for the LVQ network. 

/* Structures */ 
**************************************************************** 

typedef struct Neuron_Type_Tag 
{ 

NN_Function_Type neuron_function; 
float in; 
float out; 
FVECTOR w; 
FVECTOR delta_w; 
float c_f; 
float b_v; 
int w_s; 

// neuron function 
// neuron input 
// neuron output 

// weights from the previous layers 
// step change of weights 
// conscience factor 
// bias value 

// winner status, y in equation 

} Neuron_Type; 

typedef struct NN_Layer_Arch_Type_Tag 
{ 

int size; 
Neuron_Type *neurons; 
NN_Layer_Type layer_type; 

} NN_Layer_Arch_Type; 

// number of neurons in the layer 

// pointer to the neurons 

typedef struct LVQ_Arch_Type_Tag 
{ 

int size; 
NN_Layer_Arch_Type *layers; 

} LVQ_Arch_Type; 

// number of layers 
// pointer to the layers 
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typedef struct LVQ_Env_Type_Tag 

NN_Operation_Mode_Type operation_mode; 
LVQ_Training_Mode_Type train_mode; 
float eta; 
float 
float 
float 
float 
int 
int 
int 
int 
int 
LVQ_Conscience_Type 
int 
int 

} LVQ_Env_Type; 

// training or recall 
// training mode 
// learning rate 

gama; // bias factor 
beta; // 
shrink; // (eta) shrinking coefficient 
criterion; // criterion for termination 
max_ite; // maximum number of iterations 
cur_ite; // current iteration index 
max_tra_pat; // total number of training patterns 
cur_pat; // current training pattern index 
pat_counter; 
conscience; // 0: no conscience, i: conscience 
winner; // index of winning neuron 
no_clusters; // number of clusters 

typedef struct LVQ_Type_Tag 
{ 

LVQ_Arch_Type arch; 
LVQ_Env_Type env; 

} LVQ_Type; 

typedef struct LVQ_Pattern_Set_Type_Tag 
{ 

int size; // number of patterns 
int dim_in; // input dimension 
int dim_out; // output dimension 
FMATRIX patterns; // pointer to the array of patterns 

} LVQ_Pattern_Set_Type; 

The structure data types for the LVQ network are shown in Listing 6.7. The 
structure data type Neuron_Type defines PEs (neurons)--the basic building 
components for the LVQ implementation. It is similar to the definition of PEs 
in the back-propagation implementation. They share several identical elements 
and have their own unique elements, which are put there for the purpose of 
the corresponding learning algorithms' implementation. In a more organized 
way (left as a exercise), the common elements can be put together alone and 
defined as a data type Neuron_Type, and the unique elements in each network 
can be defined as data types BP_Neuron_Type and LVQ_Neuron_Type, as 
shown in Listing 6.8. Other data types will then use BP...Neuron_Yype and 
LVQ._Neuron_Type instead of Neuron_Type.  

The structure date type LVQ_Env_Yype defines the environment parameters 
for running the LVQ network in a manner similar to the BP implementation. It 
includes operation mode ( o p e r a t i o n _ m o d e ) ,  training mode ( t ra in_mode) ,  
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Listing 6.8 Alternative way to define the neuron (PE) data type. 

typedef struct Neuron_Type_Tag 
{ 

NN_Function_Type 

float 

float 
FVECTOR 
FVECTOR 

} Neuron_Type; 

neuron_function; // neuron function 
in; // neuron input 

out; // neuron output 
w; // weights from the previous layers 
delta_w; // step change of weights 

typedef struct BP_Neuron_Type_Tag 
{ 

Neuron_Type neuron; // basic neuron data type 
FVECTOR temp_delta_w; // temp. step change of weights 

} Neuron_Type; 

typedef struct LVQ_Neuron_Type_Tag 
{ 

Neuron_Type neuron; 
float c_f; 
float b_v; 
int w_s; 

} LVQ_Neuron_Type; 

// basic neuron data type 
// conscience factor 
// bias value 

// winner status, y in equation 

learning rate (eta), bias factor (gama), constant value beta (beta), learning rate 
shrinking rate ( s h r i n k ) ,  training criterion for termination ( c r i t e r i o n ) ,  maxi- 
mum number of iterations (max_i t e), current iteration index ( c u r _ i  t e), total 
number of training patterns ( m a x _ t r a _ p a t ) ,  current pattern index ( c u r _ p a t ) ,  
pattern learned counter within the current iteration ( p a t _ c o u n t e r ) ,  flag for 
whether conscience is used ( c o n s c i e n c e ) ,  index of current winning neuron 
(winner) ,  and number ofclusters ( n o _ c l u s t e r s ) .  Note that the number of clus- 
ters is the number of output PEs. 

The definition of structure date types NN_Layer_Arch_Type,  
LVQ_Arch_Type, LVQ_Type, and LVQ_Pattern_Set_Type are the same as 

defined in the BP implementation except that the mean-squared error (mse) 

and hidden layers are not included in the data type definitions since LVQ is a 
two-layered network and no error back-propagation-like learning algorithm is used. 

The ma in ( )  routine is shown in Listing 6.9. As in the back-propagation 
implementation, it is kept as simple as possible to make the LVQ module as indepen- 
dent as possible. In the LVQ_Star t_Up () routine, all the necessary parameters for 
running the LVQ implementation are read from the input file, and the dynamic 
data storage variables are allocated memory space and initialized. In the 
LVQ_C 1 e an_Up () routine, the results are stored in a output file and the memory 
space previously allocated is de-allocated. The LVQ Main_Loop () routine is the 
primary part of the LVQ implementation. 
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Listing 6.9 LVQ m a i n  ( ) routine. 

void main (int argc, char *argv[]) 
{ 

// check command line 
if (argc != 2) 
{ 

printf("Usage: exe_file run_file"); 
exit (i) ; 

} 

main_start_up (argv [ 1 ] ) ; 
LVQ_Main_Loop ( ) ; 
main_clean_up ( ) ; 

static void main_start_up (char *dataFile) 
{ 

LVQ_Start_Up (dataFile) ; 
} 

static void main_clean_up (void) 
{ 

LVQ_Clean_Up ( ) ; 
} 

We now consider the L V Q _ M a i n _ L o o p  ( ) routine. Before running this routine, 
we define several LVQ file scope variables. 

static LVQ_Type 
static LVQ_Pattern_Set_Type 
static LVQ_State_Type 

ivq; 
pat set; 
ivq_cur_state; 

As in the back-propagation implementation, these three variables are defined as 
s t a t  i c to prevent them from accidentally being changed by outside modules. The 
variable l v q  stores information related to the LVQ net during the run. The variable 
pa t s e t stores all the input/output pairs ofpatterns. The variable 1 v q _ c u  r _ s  t a t  e 
records the current state of the LVQ state machine. When the LVQ_Main_Loop ( ) 
routine is running, it calls the current state's handling routine through 
ivq_state_handler ( ivq_cur_state ), where the current state performs its 
action until it is transitioned to another state. The Ivq_Main_Loop () keeps run- 
ning until its current state is transitioned to the state LVQ_TRAINING_DONE when 
the LVQ net is in training operation mode or the state LVQ_RECALL_DONE when 
the LVQ net is in recall/test operation mode. The LVQ__Main_Loop () routine is 
listed here. 

void LVQ_Main_Loop (void) 
{ 

BOOLEAN running; 

running = TRUE; 
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while (running) 
{ 

if ( (ivq_cur_state == LVQ_TRAINING_DONE) 

(ivq_cur_state == LVQ_RECALL_DONE) ) 
{ 

running = FALSE; 
} 

Ivq_state_handler (ivq_cur_state) ; 

LVQ State Handling Routines 
We now examine the LVQ state handling routines. As in the BP implementation, the 
most important part of the LVQ state machine is its state handler, which is shown 
in Listing 6.10. The state handler calls its current state's handling routine until the 
current state is transitioned to a new state, where the new state's handling routine is 
called by the state machine. 

Listing 6.10 Main part of the LVQ state machine. 

static void ivq_state_handler (int state_index) 
{ 

switch (state_index) 
{ 

case LVQ_GET_PATTERN : 

ivq_get_pattern ( ) ; 

break; 

case LVQ_WE I GHT_NORMAL I ZAT I ON • 

ivq_weight_normalization ( ) ; 

break; 

case LVQ_FEEDFORWARD_INPUT : 

ivq_feedforward_input () ; 

break; 

case LVQ_FEEDFORWARD_OUTPUT : 

Ivq_feedforward_output () ; 

break; 

case LVQ_WINNING_NEURON : 

ivq_winning_neuron ( ) ; 

break; 

case LVQ_WEIGHT_STEP_CHANGE : 

ivq_weight step change() ; 

break; 

case LVQ_WE I GHT_CHANGE • 

ivq_weight change() ; 

break; 

case LVQ_NEXT_PATTERN : 

ivq_next_pattern ( ) ; 

break; 

case LVQ_NEXT_ITERATION : 

ivq_next_iterat ion ( ) ; 

break; 

case LVQ_UPDATE_LEARNING_RATE : 

ivq_update_learning_rate ( ) ; 

break; 
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case LVQ_UPDATE_CONSCIENCE_FACTOR: 

ivq_update_conscience_factor ( ) ; 

break; 

case LVQ_TRAINING_DONE : 

ivq_training_done ( ) ; 

break; 

case LVQ_RECALL_DONE : 

ivq_recall_done ( ) ; 

break; 

default : 

break; 

In the LVQ_GET_PATTERN state, the current pattern portion specified by 
l vq .  e n v .  c u r _ p a t  is copied to the input PEs in the input layer and to the 
target output; then the current state transitions to the state LVQ_WEIGHT_ 
NORMALIZATION if the operation mode is NN_TRAINING mode; otherwise, it 
transitions to the state LVQ_FEEDFORWARD_INPUT. The state handling routine 
is shown here. 

static void ivq_get_pattern (void) 
{ 

int idx; 

for (idx = 0; idx < (ivq.arch.layers[0].size); idx++) 
{ 

ivq.arch.layers[0] .neurons[idx] .in = patset.patterns 

[ivq.env. cur_pat ] [idx] ; 
} 

for (idx = 0; idx < pat set. dim_out; idx++) 
{ 

target_out[idx] = patset.patterns[ivq.env.cur_pat] 

[patset.dim_in + idx]; 
} 

if (Ivq. env. operation_mode == NN_TRAINING) 
{ 

ivq_cur_state = LVQ_WEIGHT_NORMALIZATION; 
} 

else 
{ 

ivq_cur_state = LVQ_FEEDFORWARD_INPUT; 
} 

In the LVQ_WEIGHT_NORMALI ZATION state, the weight vector is normalized 
according to equation 6.1. The i f statement i f (sum > 0 . 0  ) is added to avoid 
the rare situation where all the weights connected to output neurons are 0s. The 
current state transitions to the state LVQ_FEEDFORWARD_INPUT. The state han- 
dling routine is shown here. 
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static void ivq_weight_normalization (void) 
{ 

int idx_cn, idx_pn; 

double sum; 

float temp_f; 

for (idx_cn = 0; idx_cn < (ivq.arch.layers [l] .size) ; idx_cn++) 

{ // loop through neurons in the output layer 

sum = 0.0; 

for (idx_pn = 0; idx_pn < (ivq.arch.layers[0].size) ; idx_pn++) 

{ // loop through all the weights connected to this neuron 

sum += ivq.arch.layers[l].neurons[idx_cn].w[idx_pn] * 

ivq. arch. layers [ 1 ] .neurons [idx_cn] .w [idx_,pn] ; 
} 
sum = sqrt(sum); 

if (sum > 0.0) 
{ 

for (idx_pn = 0; idx_pn < (ivq.arch.layers [0] .size) ; idx_pn++) 

{ // loop through all the weights connected to this neuron 

temp_f = ivq. arch. layers [ l] .neurons[idx_cn] .w[idx_pn]/sum; 

ivq.arch.layers[l] .neurons[idx_cn] .w[idx_pn] = temp_f; 
} 

} 
} 
ivq_cur_state = LVQ_FEEDFORWARD_INPUT; 

In the LVQ_FEEDFORWARD_INPUT state, the output of the input layer is calcu- 
lated. As in the back-propagation implementation, the input layer is treated as only 
a path to the next layer (the output layer). The output of each input PE equals its 
input. The current state transitions to the state LVQ_FEEDFORWARD_OUTPUT. The 
state handling routine is shown here. 

static void ivq_feedforward_input (void) 
{ 

int idx; 

for (idx = 0; idx < (ivq.arch.layers[0].size); idx++) 
{ 

ivq.arch.layers[0].neurons[idx].out = ivq.arch.layers[0] 

• neurons [idx] . in; 
} 
ivq_cu r_s t at e = LVQ_FEEDFORWARD_OUTPUT; 

In the LVQ_FEEDFORWARD_OUTPUT state, the Euclidean distance between the 
input vector and the weight vector for each output PE (neuron) is first calculated 
according to equation 6.4. Then the output of each output PE is calculated, which 
is equal to the its Euclidean distance since the output PEs have a linear activation 
function. The current state transitions to the state LVQ_WINNING_NEURON. The 
state handling routine is shown here. 
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static void ivq_feedforward_output (void) 
{ 

int idx_out, idx_prev; 

double sum, temp_f; 

for (idx_out = 0; idx_out < (ivq.arch.layers[l].size); idx_out++) 

{ // loop through the neurons of the output layer 

sum = 0.0; 

for (idx_prev = 0; idx_prev < (ivq.arch.layers[0].size); 

idx_prev++ ) 

{ // loop through the neurons of the input layer 

temp_f = (ivq.arch.layers[0] .neurons[idx_prev] .out - 

ivq. arch. layers [I ] .neurons [idx_out ] .w[idx_prev] ) ; 

sum += (temp_f * temp_f) ; 
} 

temp_f = sqrt (sum) ; 

ivq.arch, layers [i ] .neurons [idx_out ] . in = temp_f; 

ivq.arch.layers[l] .neurons[idx_out].out = activate_function( 

temp_f, Ivq. arch. layers [I ] .neurons [ idx_out ] .neuron_function) ; 
) 

ivq_cur_state = LVQ_WINNING_NEURON; 

In the LVQ_WINNING_NEURON state, the new winning PE for the current input 
pattern is determined. The last and new winning neurons' winning statuses are 
updated. The current state transitions to the state LVQ_WEIGHT_STEP_CHANGE 
if it is in training operation mode; otherwise, it transitions to the state 
LVQ_NEXT_PATTERN and the recall/test result is recorded. The state handling 
routine is shown here. 

static void ivq_winning_neuron (void) 
{ 

int idx, temp_w; 

float min_v = i000.0; 

for (idx = 0; idx < (ivq.arch.layers[l].size); idx++) 

{ // loop through the neurons in output layer 

if ((ivq.arch.layers[l] .neurons [idx] .out - 

ivq.arch.layers[l] .neurons[idx].b_v) < min_v) 
{ 

min_v = ivq.arch.layers[l] .neurons[idx] .out - 

ivq. arch. layers [ i] .neurons [idx] .b_v; 

temp_w = idx; 
} 

ivq.arch.layers [I] .neurons [ivq.env.winner] .w_s = 0; 

ivq.env.winner = temp_w; 

ivq. arch. layers [I] .neurons [ivq.env.winner] .w_s = I; 

if (ivq.env.operation_mode == NN_TRAINING) 
{ 

ivq_cur_state = LVQ_WEIGHT_STEP_CHANGE; 
} 

else 

{ // recall 
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update_recall_result(); 

ivq_cur_state = LVQ_NEXT_PATTERN; 

In the LVQ_WE I GHT_S TEP_CHANGE state, the winning neuron's weight change 
increments are calculated according to equation 6.11. The state transitions to the 
state LVQ__WE I GHT_CHANGE. The state handling routine is shown here. 

static void ivq_weight_step_change (void) 
{ 

int idx_pn; 

for (idx_pn = 0; idx_pn < (ivq.arch.layers[0].size) ; idx_pn++) 

{ // loop through the connect weights of the current neurons 

Ivq. arch. layers [I ] . neurons [ivq.env.winner] .delta_w [idx_pn] = 

ivq. arch. layers [0] .neurons [idx_pn] . out - 

ivq. arch. layers [ 1 ] . neurons [ivq.env.winner] .w [idx_pn] ; 

ivq. arch. layers [I] .neurons [ivq.env.winner] .delta_w[idx_pn] *= 

Ivq. env. eta; 
} 
ivq_cur_state = LVQ_WEIGHT_CHANGE; 

In the LVQ_WE I GHT_CHANGE state, the winning neuron's weights are updated 
by adding its newly calculated weight change increments. The state transitions to the 
state LVQ_NEXT_PATTERN. The state handling routine is shown here. 

static void lvq_weight_change (void) 
{ 

int idx_pn; 

for (idx_pn = 0; idx_pn < (ivq.arch.layers[0].size) ; idx_pn++) 

{ // loop through the connect weights of the current neurons 

Ivq.arch.layers [i] .neurons [ivq.env.winner] .w[idx_pn] += 

ivq. arch. layers [ 1 ] . neurons [Ivq. env.winner] . delta_w [ idx_pn] ; 
} 
ivq_cur_state = LVQ_NEXT_PATTERN; 

The LVQ_NEXT_PATTERN state is used to determine which state is the next state 
according to the LVQ network environment information. 

If the LVQ is in training operation mode, first the next input pattern is selected. If 
it is in random training mode, an input pattern is randomly selected from the train- 
ing pattern set. Otherwise, the next pattern in the training pattern set is selected, 
or the first pattern is selected if it is at the end of the training pattern set. The pat- 
tern counter is then increased by one. If it is less than the total number of train- 
ing patterns, the current state transitions to the LVQ_UPDATE_LEARNING_RATE. 
Otherwise, it transitions to the state LVQ_NEXT_I TERAT I ON. 

If the LVQ is in recall operation mode, the current pattern index is increased 
by one. If the current pattern index is less than the total number of training 
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patterns, the current state transitions to the state LVQ_GET_PATTERN; otherwise, 
it transitions to the state LVQ_RECALL_DONE. The state handling routine is 
shown here. 

static void ivq_next_pattern (void) 
{ 

if (ivq.env.operation_mode == NN_TRAINING) 
{ 

if (ivq.env.train_mode == LVQ_RANDOM_MODE) 

{ // random training 

ivq.env.cur_pat = rand()%(Ivq.env.max_tra_pat); 
} 

else 
{ // sequential training 

if (++ivq.env.cur_pat >= Ivq.env.max_tra_pat) 
{ 

ivq.env.cur_pat = 0; 
} 

} 

if ((++ivq.env.pat_counter) <ivq.env.max_tra_pat) 

{ // add other termination criterion here 

ivq_cur_state =LVQ_UPDATE_LEARNING_RATE; 
} 

else 
{ 

Ivq_cur_state = LVQ_NEXT_ITERATION; 
) • 

} 

else // recall 
{ 

if ((++ivq.env.cur_pat) < patset.size) 
{ 

ivq_cur_state = LVQ_GET_PATTERN; 
} 

else 
{ 

ivq_cur_state = LVQ_RECALL_DONE; 
} 

In the LVQ_NEXT_ITERATION state, the current iteration index is increased 
by one. If the index is less than the maximum number of iterations, the current 
state transitions to the state LVQ_UPDATE LEARNING RATE; otherwise, it 
transitions to the state LVQ_TRAINING_DONE. The state handling routine is 

shown here. 

static void ivq_next_iteration (void) 
{ 

ivq.env.pat_counter = 0; 
if ((++ivq.env.cur_ite) < ivq.env.max_ite) 
{ // add other termination criterion here 

ivq_cur_state = LVQ_UPDATE_LEARNING_RATE; 
) 



The Kohonen Network Implementations 

else 
{ 

ivq.env.pat_counter = 0; 

lvq_cur_state = LVQ_TRAINING_DONE; 

In the LVQ_UPDATE_LEARNING_RATE state, the new learning rate ~(t ) dec- 
reases over time. In this implementation, r/(t ) is shrinking over time (number of 
patterns presented to the LVQ network) and is calculated according to equation 6.13. 

,/(t + 1 )=  ,7(t) x ~ (6.13) 

~(0 )  = ~o 

where both r/0 and fl are positive constants. Other decreasing functions of time can 
also be used as functions to update learning rate r/(t ), which is left as a exercise for 
the student. 

The current state transitions to the state LVQ_UP DATECON SC I ENCE_FACTOR. 
The state handling routine is shown here. 

static void lvq_update_learning_rate (void) 
{ 

ivq.env.eta *= ivq.env.shrink; 

ivq_cur_state = LVQ_UPDATE_CONSCIENCE_FACTOR; 
} 

In the LVQ_UP DATE_CON SC I ENCE_FACTOR state, a "conscience" is added into 
the network if a network conscience is specified in the input file. We now explain 
what a conscience is and why it is often necessary for an LVQ network to incorporate 
a conscience. 

Optimally, in an LVQ network with n output PEs, each PE should represent 
(should have been the winner for) exactly 1/n of the training patterns. Given a net- 
work free to train constrained only by equation 6.11, however, it is not likely that 
this evenly distributed representation will occur. It is especially unlikely to occur if 
the distribution of the (randomized) initial weights does not match the probability 
distribution of the pattern set used for training very well. The following example 
should help you visualize this situation. 

Consider a case of three-dimensional pattern vectors that all terminate on the 
surface of a sphere. Assume that the pattern vectors are fairly evenly distributed over 
the sphere's surface. Further assume that the weight vectors are initialized so that 
all but one terminate in, and are fairly evenly distributed over, one hemisphere; the 
last weight vector is alone near the center of the other hemisphere. The lone weight 
vector will thus be the "winner" for far more of the patterns than any other weight 
vector; it will "dance" around its hemisphere trying to represent far more than its 
share of patterns, and it will end up not representing them well at all. What is needed 
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is some mechanism that "punishes" the lone weight for winning too often and moves 
other weight vectors into the lone weight's hemisphere. 

A method to accomplish this was developed by DeSieno (1988). He des- 
cribes the method as adding a conscience to the network. First, for a given input pat- 
tern, the Euclidean distance as described in equation 6.4 is calculated for each output 
PE. Normally, the PE with the minimum distance would be declared the winner, and 
the weights abutting it would be updated according to equation 6.11. Before a win- 
ner is declared, however, the following calculations are made. 

Before starting the training, a conscience factor )j is defined for each output 
PE, and each is initialized to the value 1/n, where n is the number of output PEs. 
Each time a pattern is presented to the network, the winning PE is selected 
according to equation 6.14(a), where bj is a bias value calculated for each output 
PE according to equation 6.14(b). (When training starts, each bias value is 0.) The 
"bias factor" r in equation 6.14(b) is usually set to a value of approximately 10. 

Only the single winning PE selected in equation 6.14(a) has its weights updated 
according to equation 6.11. Following the winning PE's weight updates, all PEs have 
their conscience factors updated according to equation 6.14(c), where # is a constant 
typically valued at about 0.0001. 

y~inner = 1 for min(dj-  bj), 

bj  - - ~ '  _ _  
n 

~new ._ fjold + ,(yj  _ fffld) 

yj=0 for all other PEs (a) 

(b) (6.14) 

(c) 

A brief example may clarify how the conscience works. Consider a network with 
10 output PEs. The initial values of all ])'s are thus 0.1. When the very first training 
pattern is presented to the network, the PE with the weight vector closest to the 
pattern (minimum Euclidean distance) is the winner and has its weights updated (all 
bi's are 0 at this point). All output PEs then have their conscience factors updated. 
For the winning PE, the new value of]~ is [0.1 + 0.0001(1.0 - 0.1)] - 0.10009; for 
all other PEs, the new conscience factor is 0.1 - 0.00001 = 0.09999. The value of bj 
for the winner is now -0.0009; its value is 0.0001 for all other PEs. When the second 
pattern is presented, the previous winner's Euclidean distance is thus penalized by 
having 0.0009 added to it; all others are enhanced by having 0.0001 subtracted from 
them. Frequent winners will have negative bj's, infrequent winners will have positive 
b i's, and the result will be a good model of the probability density function of the 
input patterns. 

The constant # should be picked so that the conscience factors )j do not reflect 
random fluctuations in the data. The bias factor r determines the distance a losing 
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PE can move in order to enter the solution. A bias factor of O corresponds to a "plain 
vanilla" Kohonen LVQ. 

The LVQ_UPDATE_CONSCIENCE_FACTOR state transitions to the state 
LVQ_GET_PATTERN. The state handling routine is shown here. 

static void lvq_update_conscience_factor (void) 
{ 

int idx; 

float temp_f; 

if (ivq.env.conscience == LVQ_CONSCIENCE) 
{ 

for (idx = 0; idx < (ivq. arch. layers [ l] . size) ; idx++) 

{ // loop through the neurons in output layer 

temp_f = ivq. arch. layers [l ] .neurons[idx] .c_f; 

Ivq. arch. layers [ l ] .neurons[idx] .c_f = temp_f + ivq.env.beta * 

(ivq.arch.layers[l] .neurons[idx] .w_s - temp_f) ; 

ivq. arch. layers [l ] .neurons[idx] .b_v = ivq.env.gama * 

(l.0/ivq.env.no_clusters - ivq. arch. layers [l ] 

.neurons [idx] .c_f) ; 
} 

} 

Ivq_cur_state = LVQ_GET_PATTERN; 

We now examine the states LVQ_TRAINING_DONE and LVQ_RECALL_DONE. 
As in the back-propagation implementation, in these two states the post- 
processing of the data or results can be performed. In our current implement- 
ation, the l v q _ w e i g h t _ n o r m a l i z a t i o n  () routine is called in the state 
LVQ_TRAINING_DONE's handling routine. 

Running the LVQ Implementation 
To run the learning vector quantizer implementation requires the executable 
file l v q .  e x e  and an associated run file, for example, i r i s _ l v q ,  run. To run 
the implementation from within the directory containing l v q . e x e  and 
i r i s _ l v q ,  run, at the DOS system prompt type: l v q  i r i s _ l v q ,  run. 

The contents of the i r i s _ l v q ,  run run file are shown in Listing 6.11. 

Listing6.11 Run file iris_ivq, run. 

0 

0 

0.3 

0.999 

i0 

0.0001 

0.001 

500 
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99 

1 

6 

150 

4 

3 

iris .dat 

The file contains specifications for a run. The file specifies operation mode (0) (0 is 
training, I is testing), training mode (0) (0 is random pattern selection, 1 is sequen- 
tial), learning rate (0.3) ,  learning rate shrinking coefficient (0 .9  9 9), bias factor 
(10), beta (0 .0  0 01), training termination criterion (0 .0  01), maximum number 
of iterations (5 0 0), total number of training patterns (9 9), network conscience sta- 
tus (1), maximum number of clusters (6), total number of patterns in the training 
file (150), dimension of pattern input (4), dimension of pattern output (3), and 
pattern data filename (i  r i s .  da t )  from which the patterns are read. 

At the end of the run, two output files are obtained. The file r.VQ_RES, t x t  
contains the weights for the LVQ network. The file LVQ_TV. S T. TXT contains a sum- 
mary of the results. The summary table lists how many patterns from each class were 
put into each cluster. 

Programming the Self-organizing Feature Map 
The self-organizing feature map neural network is an extension of the learning vec- 
tor quantizer. In this section, we discuss the implementation of the self-organizing 
feature map (SOFM), starting with an introduction to SOFM concepts. 

The self-organizing feature map neural network, like LVQ networks, was devel- 
oped by Teuvo Kohonen (1982a, 1982b) of the Helsinki University of Technology. 
Self-organizing feature maps pick up where LVQ-I, as described earlier in this chap- 
ter, leaves off. All of the features of LVQ-I, including the conscience, are incorpo- 
rated into self-organizing feature maps. In addition, the adaptation procedure used 
by SOFMs incorporates what is called a neighborhood. In order to discuss neighbor- 
hoods and how they are used, we introduce the notion of a PE slab, which examines 
topology and notation for the network. 

To facilitate understanding the adaptation process of a self-organizing feature 
map network, we implement the concept of a slab in the context of neural networks. 
Slabs can simplify network diagrams because groups of PEs can be represented by 
one symbol. 

Functionally, a slab of PEs is a collection of PEs with similar attributes and a 
defined (and fixed) topology. These attributes include such things as activation func- 
tion, learning coefficient, and, if applicable, momentum factor. (Some attributes 
have meaning only for certain types of network.) In addition, all PEs in a given slab 
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Figure 6.6 A rectangular slab of PEs. 

receive their inputs from the same source(s) (slab(s) and/or input pattern) and send 
their outputs to the same destination(s) (slab(s) and/or output pattern). 

The main difference between a layer of PEs and a slab of PEs is that topology 
plays an important role in a slab. In PE layers, PEs can be moved around if their 
weights (and inputs or outputs, if applicable) are moved with them. This is not the 
case with slabs. While there usually are no connections among PEs in a slab, their 
topological relationships are important, and operations are carried out that depend 
on that topology. We suggest that the term slab be used only when these topologically 
dependent operations are present. 

Figure 6.6 illustrates the concept of a slab. In the figure, the PEs are arranged in 
a rectangular pattern. The geometrical arrangement of PEs in a slab can vary and 
depends on the application. (Most implementations of slabs are two-dimensional; 
the word slab implies a flat structure, such as a thick plate or slice.) In the self- 
organizing feature map, a rectangular array is usually used to depict the PEs in the 
input slab and is often used for the output slab as well. Another arrangement, the 
hexagonal array (Figure 6.7), is also sometimes used to represent the output slab 
in the self-organization model. The geometry chosen to represent the output slab 
determines the configuration of the neighborhood of each PE, a subject we address 
later. 

A simple illustration of a self-organizing feature map appears in Figure 6.8. We 
use essentially the same notation as we used for the LVQ-I network, except for the 
input and output slabs. 

The two-dimensional slab configuration makes it desirable, in some cases, to use 
double subscripts for PEs and for the input and output vectors. We use the single 
subscript version in this section, primarily for simplicity. 

A learning coefficient that is defined later is represented by the lowercase Greek 
letter rl (eta). A few words of caution are appropriate here. This learning coeffi- 
cient isn't exactly the same as the one for the back-propagation implementation. 
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Figure 6.7 A slab of PEs in a hexagonal array. 
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Figure 6.8 Self-organizing feature map network model. 

(We discuss that later.) Also, Kohonen used the lowercase Greek letter a (alpha) for 
his learning coefficient. We chose ,7 for consistency with the back-propagation imple- 
mentation. When you see 17 in this book in connection with neural networks, you 
know that it's a learning coefficient, and when you see a, you know it's a momen- 
tum term. 

Let's look at network initialization and input. On the left of Figure 6.8 a set 
of inputs comes into the input slab of the network. As is the case with the LVQ-I 
paradigm, you are more likely to use raw data and less likely to use precalculated 
parameters as inputs to a self-organizing feature map. As with LVQ-I, most people 
working with SOFM usually normalize each entire input vector (see equation 6.1). 
Be careful of destroying useful information in the normalization process; you may 
want to consider using the z-axis normalization process described in Chapter 5. 

There is general agreement about the need to initialize the SOFM weight vec- 
tors by normalization. What isn't necessarily clear is the best way to do it. First, 
random values are assigned to each weight. One common approach is to initially 
assign random weight values between 0.4 and 0.6. However, if you refer to the initial 
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illustration of Figure 5.16 in Kohonen (1988), you see that he initialized his network 
weights to values between 0.45 and 0.55. Ifyou look at the Pascal code for a program 
called ToPreM2, which he published with his 1989 tutorial notes (Kohonen 1989), 
you find each weight initialized to a random value between 0.4 and 0.6. Meanwhile, 
in Caudill (1989a) initial weight vectors are generated that lie at random locations 
on the unit circle, in accordance with equation 6.1. 

The adaptation process for SOFM is quite similar to that for LVQ-I. The winning 
PE is selected based on the minimum Euclidean distance between the input and 
weight vectors using equation 6.4. The update of the weight vectors, however, is dif- 
ferent from the update in LVQ-I and involves a concept known as a neighborhood. 
Weight adjustments are made using a PE neighborhood that shrinks over time and a 
learning coefficient that also decreases with time. The result is that the values of the 
weights form clusters that reflect the probability density of the input vectors. When 
the network has self-organized and training is complete, PEs that are topologically 
near each other react similarly to similar input patterns. 

The neighborhood is the portion of the output slab (the PEs) within a specified 
topological radius of a given winning PE. We must first define the initial size of the 
neighborhood. All PEs in the neighborhood of the winning PE have their weights 
adjusted. Each iteration of a complete training pattern dataset is a discrete step in 
time, or epoch. Thus, the first epoch is at to, the next at tl, and so on. In a rectangular 
output slab, the topology of the PEs may (or may not, depending on the user) wrap 
around left to right and top to bottom. 

For the moment let us suppose that the PE in the center of the slab illustrated in 
Figure 6.6 is the winner. For the first group of iterations (epochs), the neighborhood 
of the winning PE is relatively large, perhaps large enough to cover most or all of the 
output slab. For example, in Figure 6.7 the initial neighborhood may consist of the 
winning PE and the 18 PEs surrounding it. After further iterations, the neighbor- 
hood is decreased in size. This smaller neighborhood could consist, in our example, 
of the winning PE plus the six PEs immediately surrounding it. Finally, after another 
set of iterations, the neighborhood could shrink to include only the winning PE. The 
number of iterations between changes in neighborhood size varies appreciably with 
the application but is often in the range of a few hundred to a few thousand. 

Now that you know how to decrease the size ofthe neighborhood with time, what 
do you do with the weights ofthe PEs inside the neighborhood? (Remember that the 
weights of the PEs outside the neighborhood are not changed.) Figure 6.9 illustrates 
three approaches to weight adjustment. To implement these functions, imagine that 
the PE slab is significantly larger than those of Figures 6.6 and 6.7, so that the initial 
neighborhoods can be eight to ten PEs in diameter. 

Figure 6.9(a) illustrates the "Mexican hat" function described by Kohonen (1988). 
The largest weight adjustment, which is positive, occurs for the winning PE. Some- 
what smaller positive changes are made to adjacent PEs, and still smaller changes to 
PE weights adjacent and just outside of these, and so on, until at some distance r0 
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Figure 6.9 Magnitude of weight correction versus distance from winning PE in a self- 
organizing feature map. 

the weight adjustments go to 0. The weight changes then become slightly negative 
for a while, finally becoming 0. 

The shape of the Mexican hat function is reminiscent of the on-center off- 
surround excitation pattern observed in some biological systems and implemented 
by Grossberg (1973) in his gain control system for a PE group (see the section in the 
history of neural networks of Chapter 5). Although the Mexican hat function may 
exhibit biological plausibility, it adds computational complexity to a set of calcula- 
tions that is usually performed thousands of times while training a SOFM. There- 
fore, most applications of SOFMs have used simplified functions. 

In the "stovepipe hat" function of Figure 6.9(b), identical positive weight changes 
are made to all PEs within a radius of ro of the winning PE, and identical negative 
weight changes are made to PEs at a Slightly larger radius. Taking the simplifica- 
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tion even further, we arrive at the "chef hat" function, shown in Figure 6.9(c), in 
which only identical positive weight changes are made to those PEs within the r0 
radius. This simple method is often used in implementations of the SOFM network 
(Kohonen 1988). 

In addition to reducing computational complexity, the chef hat function is used 
for a practical reason. If we assume r0 is about three times as large as the region of 
negative reinforcement beyond it, as in Figure 6.9(a and b), then there Won't be any 
negative reinforcement for neighborhoods less than nine PEs across. For a neigh- 
borhood nine PEs across, the winning PE and three PEs on each side will receive 
positive weight reinforcement, while one PE on each side (and four PEs away) 
will receive negative reinforcement. As soon as the neighborhood shrinks to five 
across, all in the neighborhood will receive positive reinforcement. In the authors' 
experience, we have seldom worked with output slabs larger than five across, and 
never larger than eight across, so it is rare that we start with neighborhood larger 
than five across. 

In summary, training consists of finding the winning PE according to the mini- 
mum Euclidean distance method (perhaps including the effects of a conscience), as 
in LVQ-I, and then updating the PE weights in the neighborhood according to equa- 
tion 6.15. Note that this equation is identical to that for weight updating for LVQ-I 
with the addition of the neighborhood function n(t). In the simplest version (most 
often implemented) n(t) is 1.0 within the chef hat neighborhood and 0.0 outside the 
neighborhood, and the neighborhood size shrinks over time. 

wji(t + 1) = wji(t) + n(t)rl(t)(aki- wji) (6.15) 

Iterations continue until the corrections in equation 6.15 become acceptably 
small or the specified maximum number of iterations is reached. As with LVQ-I, 
it is not necessary to renormalize the weight vectors during or after training as long 
as the changes to the weight vector components carried out according to equation 
6.15 are small enough. Keeping them small keeps the weight vector near the surface 
of the unit hypersphere and the dot-product remains valid. See the discussion of 
the selection of training patterns for the LVQ-I paradigm; similar guidance should 
be followed for SOFM. Also remember that the same conscience mechanism as that 
for LVQ-I should be implemented for SOFM. 

Let's now examine SOFM data type definitions. SOFM is an extension of LVQ. 
Thus the data types defined for the LVQ implementation are utilized here with minor 
changes and different names--for example, LVQ_Type is renamed SOFM_Type. 
Since in the SOFM a neighborhood concept is incorporated and is the main dif- 
ference between LVQ and SOFM, the neighborhood concept is programmed into 
the SOFM implementation. For SOFM, for visualization, the output slab is most 
often two-dimensional; the neighborhood is therefore two-dimensional. The PEs 
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(neurons), at least in the output slab, use double subscripts. Certainly, one- or 
three-dimensional output slabs can also be used. Ifthe output slab is one-dimensional, 
the source code for LVQ implementation, except the routines for updating weights, 
can be used here, where now all the PEs within the neighborhood of the winning 
PE, instead of only the winning PE as in LVQ, have their weights updated. Actually, 
this can also be true even for a two- or three-dimensional output slab, but it involves 
some conversion routines from one-dimensional subscript expression to double or 
triple subscripts and from double or triple subscripts to one-dimensional subscripts. 
In our implementation, the common two-dimensional slab and double subscripts 
are used. Therefore, minor changes to the LVQ implementation are required for 
the SOFM implementation. The new data types are listed in Listing 6.12 for 
convenience. 

Listing 6.12 Data type definitions for SOFM. 

/* Enumerations */ 
**************************************************************** 

typedef enum SOFM_Training_Mode_Tag 
{ 

SOFM_RANDOM_MODE, 
SOFM_SEQUENTIAL_MODE, 
NUM_SOFM_TRAINING_MODES 

} SOFM_Training_Mode_Type; 

typedef enum SOFM_State_Tag 
{ 

SOFM_GET_PATTERN, 
SOFM_WEIGHT_NORMALIZATION, 
SOFM_FEEDFORWARD_INPUT, 
SOFM_FEEDFORWARD_OUTPUT, 
SOFM_WINNING_NEURON, 
SOFM_UPDATE_NEIGHBORHOOD, 
SOFM_WEIGHT_CHANGE, 
SOFM_NEXT_PATTERN, 
SOFM_NEXT_ITERATION, 
SOFM_UPDATE_LEARNING_RATE, 
SOFM_UPDATE_CONSCIENCE_FACTOR, 
SOFM_TRAINING_DONE, 
SOFM_RECALL_DONE, 
NUM_SOFM_STATES 

} SOFM_State_Type; 

typedef enum SOFM_Conscience_Type_Tag 
{ 

SOFM_NO_CONSCIENCE, 
SOFM_CONSCIENCE, 
NUM_SOFM_CONSCIENCE 

} SOFM_Conscience_Type; 

typedef enum Neighbor_Function_Type_Tag 
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CHEF_HAT, 
MEXICAN_HAT, 
STOVEPIPE_HAT, 
NUM_NEIGHBOR_FUNC 
Neighbor_Function_Type; 

**************************************************************/ 

/* Structures */ 
**************************************************************** 

typedef struct SOFM_2D_Size_Type_Tag 
{ // rectangular 

int width; 
int height; 

} SOFM_2D_Size_Type; 

typedef struct Neuron_Type_Tag 

NN_Function_Type neuron_function; 
float in; 
float out; 
FVECTOR w; 
FVECTOR delta_w; 
float c_f; 
float b_v; 
int w_s; 
Neuron_Type; 

typedef struct NN_Layer_Arch_Type_Tag 
{ 

SOFM_2D_Size_Type size; 
Neuron_Type **neurons; 
NN_Layer_Type slab_type; 

} NN_Slab_Arch_Type; 

typedef struct SOFM_Arch_Type_Tag 
{ 

int size; 
NN_S i ab_Ar ch_Type * s i ab s ; 

} SOFM_Arch_Type; 

typedef struct SOFM_Env_Type_Tag 
{ 

NN_Ope rat ion_Mode_Type operat ion_mode; 
SOFM_Training_Mode_Type train_mode; 

float eta; 
float gama; 

float beta; 

float shrink; 

float criterion; 
int max_ite; 
int cur_ite; 
int max_t ra_pat ; 
int cur__pat ; 
int pat_counter; 
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SOFM_Conscience_Type 
SOFM_2D_Size_Type 
SOFM_2D_Size_Type 
SOFM_2D_Size_Type 
Neighbor_Function_Type 

} SOFM_Env_Type; 

conscience; 
winner; 
neighbor; 
cur_neighbor; 
neighbor_function; 

typedef struct SOFM_Type_Tag 
{ 

SOFM_Arch_Type arch; 
SOFM_Env_Type env; 

} SOFM_Type; 

typedef struct SOFM_Pattern_Set_Type_Tag 
{ 

int size; 
int dim_in; 
int dim_out; 
FMATRIX patterns; 

} SOFM_Pattern_Set_Type; 

As shown in Listing 6.12, most data types are the same as those in the 
LVQ implementation except for having different names, but there are some 
differences. A new state SOFM_UPDATE_NETGHBORHOOD is added into 5OFM__ 
S t a t e _ T y p e ,  and two states for weight changes are merged into one state 
S OFM_WE I GHT_CHANGE. 

A new struct data type SOFM_2D_Size_Type is defined to record the two- 
dimensional object. Another new data type Ne i ghbo r_Fun ct i on_Type is defi- 
ned to enumerate the neighborhood function types. The name of the element 
n e u r o n s  in NN_Slab_Arch_Type is a double pointer, instead of a pointer, to 
Neuron_ type .  The name of the element l a y e r _ t y p e  has been changed to 
s l a b _ t y p e  to reflect the slab concept. The same is true for element slabs in 
SOFM_Arch_Type. 

In the data type SOFM_Env_Type, the element no_clusters is removed, the 
element winner's data type int is replaced with data type SOFM_2 D_S i z e_Type, 
and the new elements neighbor, cur_neighbor, and neighbor_function 
are added. The SOFM_2D_Size_Type neighbor records the initial neighbor- 
hood size, the cur_neighbor records the current neighborhood size, and the 
N e i g h b o r _ F u n c t i o n _ T y p e  n e i g h b o r _ f u n c t i o n  stores which neighbor- 
hood function is being used. 

There are a few programming differences between SOFM and LVQ. Most of the 
SOFM implementation is similar to the LVQ implementation except that double 
subscripts represent the PEs where LVQ uses single subscripts. The main difference 
is that a new state SOFM._.UPDATE_NE I GHBORHOOD is added to update the neigh- 
borhood size, and the state handling routine for state SOFM_WE I GHT_CHANGE has 
to be significantly modified to reflect that all the PEs within the neighborhood of the 
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winning PE are required to update their weights; in LVQ only the winning PE must 
update its weight. 

In the SOFM__UP DATE_NE I GHBORHOOD state, the neighborhood size is updated. 
The variable i t e _ p e r _ u p d a t e _ n e i g h b o r ,  h e i g h t  records the rate at which 
neighborhood size is decreased. Both dimensions of the neighborhood size are 
updated. The current state transitions to the state SOFM_WEIGHT_CHANGE. The 
state handling routine is shown here. 

static void sofm_update_neighborhood (void) 
{ 

static int temp_c; 

temp_c = sofm.env.cur_ite/ite_per_update_neighbor.height; 

sofm.env.cur_neighbor.height = sofm.env.neighbor.height - temp_c; 

temp_c = sofm.env.cur_ite/ite_per_update_neighbor.width; 

sofm.env.cur_neighbor.width = sofm.env.neighbor.width - temp_c; 

if (sofm.env.cur neighbor.height < 0) 
{ 

sofm.env.cur_neighbor.height = 0; 
} 

if (sofm.env.cur_neighbor.width < 0) 
{ 

sofm.env.cur_neighbor.width = 0; 
} 

sofm_cur_state = SOFM_WEIGHT_CHANGE; 
} 

In the SOFM_WEI GHT_CHANGE state, all the PEs within the neighborhood of the 
wining PE have their weights updated. When considering the neighborhood, the 
PEs' subscripts are wrapped around; the PEs on one side of a boundary are topologi- 
cal neighbors to the PEs on the other side ofthe boundary. The n e i g h b o r  func  ( ) 
routine is called to get the neighborhood weight value. The current state transitions 
to the state SOFM_NEXT_PATTERN. The state handling routine is shown here. 

static void sofm_weight_change (void) 
{ 

int idx_pn, idx_h, idx_w; 

int n_h, n_w; 

for (idx_pn = 0; idx_pn < (sofm.arch.slabs[0].size.width) ; idx_pn++) 

{ // loop through the connect weights of the current neurons 

for (idx_h = -(sofm.env.cur_neighbor.height); idx_h <= 

(sofm.env.cur_neighbor.height) ; idx_h++) 
{ 

n_h = sofm.env.winner.height + idx_h; 

if (n_h < 0) 
{ 

n_h += sofm. arch. slabs [l] .size.height; 



Chapter SixmNeural Network Implementations 

} 

else if (n_h >= sofm. arch. slabs [l] .size.height) 
{ 

n_h -= sofm.arch.slabs[l] .size.height; 
} 

for (idx_w = -(sofm.env.cur_neighbor.width); idx_w <= 

(sofm.env.cur_neighbor.width) ; idx_w++) 
{ 

n_w = sofm.env.winner.width + idx_w; 

if (n_w < 0) 
{ 

n_w += sofm. arch. slabs [ l ] .size.width; 
} 

else if (n_w >= sofm.arch.slabs[l].size.width) 
{ 

n_w -= sofm. arch. slabs [ l] .size.width; 
} 

sofm. arch. slabs [i] .neurons [n_h] [n_w] .delta_w[idx_pn] = 

sofm. arch. slabs [0] .neurons [0] [idx_pn] . out - 

sofm. arch. slabs [I ] .neurons [n_h] [n_w] .w[idx_pn] ; 

sofm.arch.slabs [I] .neurons [n_h] [n_w] .delta_w[idx_pn] *= 

(sofm.env.eta * neighbor_func(idx_h, idx_w)) ;; 

sofm. arch. slabs [i] .neurons [n_h] [n_w] .w[idx_pn] += 

sofm. arch. slabs [i ] .neurons [n_h] [n_w] .delta_w[idx_pn] ; 
} 

} 
} 

sofm_cur_state = SOFM_NEXT_PATTERN; 

static float neighbor_func (int height, int width) 
{ 

int temp_i; 

float result; 

temp_i = (height > width) ?height :width; 

switch (sofm.env.neighbor_function) 
{ 

case CHEF_HAT : 

result = chef_hat (temp_i) ; 

break; 

case MEXICAN_HAT : 

result = mexican_hat (temp_i) ; 

break; 

case STOVEPIPE_HAT : 

result = stovepipe_hat (temp_i) ; 

break; 

default : 

printf("need to specify neighborhood function\n"); 

exit ( 1 ) ; 

break; 
} 

return (result) ; 
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Running the SOFM Implementation 
To run the self-organizing feature map implementation requires the executable 
file sofm.  exe and an associated run file, for example, i r i s _ s o f ,  run. To run 
the implementation from within the directory containing s o f m . e x e  and 
i r i s _ s o f ,  run,  at the DOS system prompt type sofm i r i s _ s o f ,  run. 

The content of an i r i s _ s o f ,  run  run file is shown in Listing 6.13. 

Listing 6.13 The run file i r i s _ s o f ,  r u n .  

0 

0 

0.3 

0.999 

I0 

0.0001 

0.001 

500 

99 

1 

1 

1 

4 

4 

0 

150 

4 

3 

iris.dat 

The file contains specifications for a run. It specifies operation mode (0), train- 
ing mode (0), learning rate (0.3) ,  learning rate shrinking coefficient (0 .999) ,  
bias factor (10), beta (0 .0001) ,  training termination criterion (0 .001) ,  max- 
imum number of iterations (500), number of patterns used for training (99), 
network conscience status (1), initial width of neighborhood size (1), initial 
height of neighborhood size (1), width of output slab (4), height of output slab 
(4), neighborhood function type (0), total number of patterns in pattern file 
(150), dimension of pattern input (4), dimension of pattern output (3), and 
pattern data filename of ( i r i s .  d a t )  from which the patterns are read. In our 
implementation, the only neighborhood function type available is 0, a chef hat 
function. Implementation of other neighborhood types is left as an exercise for the 
reader. 

Two output files are generated for each run. One is SOFM_RES. TXT, which 
contains the weights for the SOFM network. The other is SOFM_TES. TXT, which is 
a summary table listing the number of patterns of each input class assigned to each 
output PE in the output slab. 
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Evolutionary Back-propagation Network Implementation 

The implementation of the evolutionary back-propagation network discussed in this 
section applies particle swarm optimization to evolve network weights. The slope 
of sigmoid function of each neuron can easily be added to go through evolution, 
as discussed previously, which is left as an exercise. A review of techniques used to 
evolve neural networks can be found in Eberhart and Shi (1998). 

Programming the Evolutionary Back-propagation Network 
To implement the evolutionary back-propagation network, we simply merge the 
particle swarm optimization implementation and the back-propagation implemen- 
tations with some minor changes. The BP network gets its connecting weights from 
a PSO individual and runs under recall operation mode, which, in turn, feeds its 
performance back to PSO as the fitness of that PSO individual. To the data type 
E v a l u a t e _ F u n c t i o n _ T y p e  on the PSO side, a new element BP is added to 
reflect that a BP net is being evolved. In addition, some new functions have to be 
added to act as interfaces between the PSO implementation and the BP implemen- 
tation, and the main () function must be modified accordingly. 

The main () routine is shown in Listing 6.14. It differs from both the PSO and 
BP implementations in that now both the PSO and BP startup routines and cleanup 
routines are included instead of only one, as in either implementation alone, but only 
the PSO_Hain_Loop () is included since the BP network is treated as an applica- 
tion problem for PSO to solve. The BP_Main_Loop () routine is called only when 
an individual of the PSO needs to be evaluated. 

Listing 6.14 The main ( ) routine of evolutionary BP net. 

void main (int argc, char *argv[]) 
{ 

// check command line 
if (argc != 3) 
{ 

printf("Usage: exe_file pso_run_file bp_run_file\n"); 
exit (i) ; 

} 

// initialize 
main_start_up (argv [ 1 ], argv [ 2 ] ) ; 
PSO_Main_Loop ( ) ; 
main_clean_up () ; 

} 
static void main_start_up (char *psoDataFile, char *bpDataFile) 
{ 

BP_Start_Up (bpDataFile) ; 
PSO_Start_Up (psoDataFile) ; 

} 

static void main_clean_up (void) 
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PSO_Clean_Up ( ) ; 

BP_Clean_Up ( ) ; 

Now we discuss interface routines. To initialize the PSO, the length of an 
individual particle is calculated by calling the BP Get PSO D i m e n s i o n  () 
routine, which returns the number of connection weights (including the biases) in 
the BP net to be evolved. The BP Get_mso D i m e n s i o n  () routine is shown in 
Listing 6.15. 

Listing 6.15 The BP_Get_PSO_Dimension ( ) routine. 

int BP_Get_PSO_Dimension (void) 
{ 

int idx_l; 

pso_dimension = 0; 

for (idx_l = 0; idx_l < (bp.arch.size- i); idx_l++) 
{ 

pso_dimension += 
((bp.arch.layers[idx_l] .size + I) * bp.arch.layers 

[idx_l + I] •size); 
} 
return (pso_dimension) ; 

Since the BP element is added into data type Evaluate_Function_Type's 
definition, the eval uat e_funct i on ( ) routine should add a corresponding case 

to handle the evaluation ofthe BP net. In the modified evaluate_functions () 

routine shown in Listing 6.16, only the new case is shown. To evaluate the 
current individual, which is a representation of the weights of a BP network, 
the individual is first transformed to the connection weights of a BP net by 
calling BP_Weights_From_PSO (current_individual); then the routine 
BP__Main_Loop () is called to evaluate the BP net. The routine is the same as that 
in the BP implementation except that here it returns a float value, which records the 
number of patterns the BP net being evaluated recognizes correctly. 

Listing 6.16 The evaluate_Functions ( ) routine. 

static void evaluate_functions (int fun_type) 
{ 

switch (fun_type) 
{ 

case BP_MIN : 
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BP_Weights_From_PSO (psos [ cur_pso ] . 

position_values [psos [ cur_pso ] . popu_index ] ); 

psos [ cur_pso ] . eva_fun_value = BP_Main_Loop ( ) ; 

break; 

default : 

break; 

void BP_Weights_From_PSO (float *vec) 

{ int idx_layer, idx_cn, idx_pn; 

int counter = 0; 

for (idx_layer = i; idx_layer < (bp. arch. size) ; idx_layer++) 

{ // loop through the layers 

for (idx_cn = 0; idx_cn < (bp.arch.layers[idx_layer] •size) ; 

idx_cn++) 

{ // loop through the neurons in the current layer 

for (idx_pn = 0; idx_pn <= (bp.arch.layers [idx_layer - I] 

• size) ; idx_pn++) 
{ // loop through the connect weights of the current neurons 

bp. arch. layers [idx_layer] .neurons [idx_cn] .w [idx_pn] = 
vec [counter++] ; 

} 
) 

} 

if (counter != pso_dimension) 
{ 

printf("not match in BP Weights_From_PSO routine 1 \n"); 

exit ( 1 ) ; 
} 

Running the Evolutionary Back-propagation Network 
To run the evolutionary BP network implementation requires the executable file 
p s o _ n n ,  exe  and two associated run files, for example, p s o .  run and bp.  run. 
The two run files specify the information required for running the PSO part and 
the BP part of the evolutionary BP network, respectively. To run the implementa- 
tion from within the directory containing p s o _ n n ,  exe,  p s o .  run, and bp.  run, 
at the DOS system prompt type pso_nn  p s o .  run bp.  run. 

The p s o .  run file is the same format as the run file for running a single PSO in 
the PSO implementation except that the length of the PSO individual is not specified 
in the run file, but rather is obtained from the BP module by calling 
BP_Get_PSO_Dimension () as discussed in the preceding section on interface 
routines. Note that the optimization type should be set to "maximize," since we are 
trying to maximize the number of correct classifications. Also note that the eval- 
uation function will be a unique code for calling BP weights from within the PSO 
application. The bp.  run file is shorter than the run file for running the entire BP 
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implementation since the BP is run in the recall operation mode only. Therefore, 
the parameters related to the network training don't need to be specified in the 
run file. The content of a bp.  run  file for the Iris dataset is shown in Listing 6.17. 

Listing 6.17 The b p .  r u n  file. 

3 

4 

150 

4 

3 

iris.dat 

The first entry (3) specifies the number of layers in the BP net to be evolved, 
followed by the number of PEs (neurons) in each hidden layer (4). The third entry 
(15 0) specifies the number of patterns involved in the evaluation of the BP net. The 
next two values (4 and 3) specify the input and output dimensions of each pattern, 
respectively. The last entry ( i  r i s .  da t )  provides the name of the pattern data file 
where the patterns are obtained. 

S u m m a r y  

In this chapter, we look at implementation issues for several types of neural network. 
We then discuss four network implementations: back-propagation, learning vector 
quantization, self-organizing feature maps, and evolutionary back-propagation. The 
code for all of these implementations is on the web site for the book. The source code 
is distributed as shareware. 

In the next chapter, we continue our journey through the primary concepts 
of computational intelligence by looking at fuzzy logic history, concepts, and 
paradigms. 

Exercises ............................................................................................................................................................................................................ 

1. In back-propagation networks, why should we use PEs with biases in the hidden 
and output layers? Why choose nonlinear functions as activation functions? 

2. During back-propagation network training, is it generally desirable to train the 
network to have as small a sum-squared error as possible on the training patterns? 
Why? 
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0 

10. 

11. 

It is usually recommended to scale or preprocess the input values prior to 
presentation to a neural network. List some reasons for doing this. List some ways 
to do this. 

4. Compare the LVQ-I, LVQ-II, and SOFM network paradigms. What are the 
similarities? What are the differences? Why might you choose to use SOFM rather 
than LVQ-I? 

5. List the attributes necessary to specify a back-propagation neural network 
implementation. Repeat for an evolutionary back-propagation implementation. 

6. List the attributes necessary to specify a learning vector quantizer neural network 
implementation. Repeat for a self-organizing feature map implementation. 

7. Add an error termination criterion into the back-propagation implementation so 
that the BP training can be terminated based on either maximum number of 
generations or the error termination criterion. 

8. Using BP_Neuron_Type as the definition for the PE (neuron) in the 
back-propagation network, make necessary changes to other data types, and 
specify the corresponding changes that should be made in the source code. 

9. Assume that the activation function for PEs in the hidden and output layers of the 
back-propagation implementation is the hyperbolic tangent function. Specify 
the changes that should be made in the source code. 

In the state BP_FEEDFORWARD_HIDDEN, all hidden layers are calculated in 
one cycle of the state machine. Modify the code so that only one hidden layer is 
calculated in one cycle. 

In the state BP_FEEDFORWARD_OUTPUT, modify the state handling routine 
so that calculations for only one output PE are done for each cycle of the state 
machine. 

12. 

13. 

14. 

15. 

16. 

Define one or two decreasing functions of time for updating the learning rate r/(t) 
and make corresponding changes in the l v q  u p d a t e _ l e a r n i n g _ r a t e  () 
routine. Compile and run the LVQ and compare the performance with the 
original version. 

Modify the LVQ source code for the implementation of a SOFM with a one- 
dimensional output slab. 

Based on the implementation from exercise 8, implement the SOFM with a 
two-dimensional output slab. 

Modify the evolutionary back-propagation implementation so that it also evolves 
the slope of the sigmoid function. 

Run the back-propagation implementation on the web site using the run files 
provided for training and testing on the Iris dataset. Keeping everything else 
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constant in the run files, try training for 10,000, 1,000, and 100 iterations. Discuss 
your results with respect to both training and testing. 

17. Run the learning vector quantization implementation on the web site using the 
run files provided. Vary the number of clusters specified. Try 6 clusters as specified 
in the run file on the Web; then try 3 clusters, then try 9 clusters. Discuss your 
results. Which number of clusters would you select for this problem? Why? 



chapter 
s e v e n  

Fuzzy Systems Concepts 
and Paradigms 

This chapter presents the computational 
intelligence component methodology that 
is known as fuzzy logic. Fuzzy logic pro- 
vides a general concept for description and 
measurement. Most fuzzy logic systems 
encode human reasoning into a program 
to make decisions or control machinery. 
Fuzzy logic is most widely used to con- 
trol dynamical systems, such as equipment 
that must adjust to constantly changing 

conditions. The concept, or perhaps we 
could say the philosophy, of fuzzy logic can 
be as abstract as any body of thought or it 
can be as down to earth as common sense. 
The present chapter discusses fuzzy sets 
and approximate reasoning, and the next 
presents an implementation of a fuzzy-logic 
system. We begin with a brief history of the 
field that focuses on some of the people 
who made significant contributions, m 

269 
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History 

There are those who would argue that a discussion of the history of fuzzy logic 
should start with an examination of the life of Gautama Buddha, born about 563 BC. 
Indeed, Buddhism often describes things in shades of gray and embraces what West- 
erners would consider contradictions, or paradoxes. Everything exists and interacts 
in a continuum (Goddard 1970). The statement "X is not-X" is accepted by most 
Buddhists and rejected by almost all Westerners. 

By contrast, Western scientific and mathematical thought has been shaped by the 
logic of Aristotle, born approximately 200 years after Gautama Buddha. Aristotle's 
logic is the "crisp logic" of either-or, true or false, 1 or 0. Truth is all or nothing, 
absolutely true or absolutely false, with no middle ground possible. Aristotle's logic 
has ruled Western thought for more than two millennia. 

Probability is then overlaid on Aristotle's logic, supporting it and making it 
more reasonable and workable. Although the axioms of probability spring, as 
do all axioms, from assumptions rather than being derived from general theory, 
Westerners have built mathematics and science around it. 

Aristotelian logic and probability have ingrained Westerners with much resis- 
tance to the concepts surrounding fuzzy logic and approximate reasoning, while 
the same concepts have been embraced by scientists, engineers, and mathematicians 
in the East. For a more detailed discussion of the differences between Eastern and 
Western approaches, see Kosko (1993). 

With Western cultural resistance to the idea of fuzziness or approximate 
reasoning established, we begin our history of the development of fuzzy logic 
with a Polish mathematician. Jan Lukasiewicz was born in 1878 and taught at 
the University of Warsaw before fleeing to Germany and Ireland as a result of 
World War II. He first published a short paper on three-valued logic in 1920. He 
expanded his foundation to include logic with an arbitrary number of values in 
a book originally published in Poland in 1923 (Lukasiewicz 1963). In discussing 
the values of truth assigned to statements, he said: 

In this way we should obtain a bundle of many-valued logics: a three-valued logic, 
a four-valued logic, etc., and finally a logic of infinitely many values. Symbols other 
than "0" and "1" used in the proofs of independence would thus correspond to the 
various degrees of truth of sentences in logics with the corresponding numbers of 
values. 

In the same book, he also established that every theorem of three-valued logic is 
also a theorem of two-valued logic (but not vice versa), and therefore that "three- 
valued logic is a proper part of two-valued logic." Jan Lukasiewicz thus developed 
the structure of fuzzy sets and established their relationship to traditional logic. 

Following Lukasiewicz's pioneering work, such luminaries as Kurt G6del and 
John Von Neumann developed multivalued logics of their own. There can, in fact, 
be many multivalued logic schemes. 



The next stop along the fuzzy logic history track is with quantum philosopher 
Max Black, who taught at Cornell for his entire career. He recognized that a conti- 
nuum implies vagueness and that vagueness has degrees. In a now famous paper, he 
described quasi-fuzzy sets (Black 1937). He used as an example objects that more or 
less resembled chairs. He recognized that a number could be assigned to each object 
based on the degree to which it was perceived to be a chair. At this point, however, he 
took a different tack than would be taken by today's fuzzy logicians: Black assigned to 
"degree" the percentage of people (as would be obtained in a poll) who would label 
the object a chair. Thus, his work, if it had been widely recognized and accepted, 
might have altered the development of fuzzy logic as we know it. 

When electronic computers came into existence in the mid-twentieth century, 
it was immediately apparent that, besides doing numerical calculations, these 
machines could be used to manipulate symbols: They should be able to perform 
logical reasoning. 

It almost immediately turned out, however, that computers did not live up to 
expectations. They could fairly easily accomplish the logical operations of compli- 
cated deductive arguments, and they could even find solutions to difficult logical 
puzzles. Although computers only became widely available in the 1950s, by the 
mid-1950s Newell and Simon (1956) had already written a program that could 
prove mathematical theorems~even discovering proofs that had eluded human 
thinkers. 

But these "brilliant" machines weren't very good at solving real problems, prob- 
lems having to do with real people and real business, and things with moving parts. 
It seemed that no matter how many variables were added to the decision process, 
there was always something else. Systems didn't work the same when they were 
hot, or cold, or stressed, or dirty, or cranky, or in the light or in the dark, or 
when two things went wrong at the same time. There was always something else. 
The problem was that the computer was unable to make accurate inferences. It 
couldn't very well tell what would happen given some preconditions, no matter 
how precisely specified they were. It remained for the man we discuss next to set it 
straight. 

Lotfi A. Zadeh is certainly the single most significant developer and champion 
of fuzzy logic theory and applications. Born in 1921 in Baku in Soviet Azerbaijan, 
he came to the United States as a graduate student at the Massachusetts Institute of 
Technology in 1944, where he received a master's degree in electrical engineering 
in 1946. He then went to Columbia University, where he earned his Ph.D. in 
1949. A year later, he co-published with his thesis advisor, John Ragazzini, a paper 
entitled, "An Extension of Wiener's Theory of Prediction," an analysis of time 
series prediction that Zadeh cites as his first significant technical contribution 
(Perry 1995). 

In 1954 Zadeh published a paper entitled "System Theory," which was the foun- 
dation for a new field of the same name that is still active. Fuzzy logic theory, in fact, 
seems to have evolved out of his work in the area of complex systems. He moved to 
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the University of California at Berkeley in 1959 and has been there ever since, except 
for a short time at IBM. He apparently first conceived of some of the basic ideas of 
fuzzy quantities in about 1961, when he suggested in a paper that a new approach 
was needed that involved "fuzzy" mathematics. 

His landmark paper that launched the field, entitled "Fuzzy Sets," was written 
in late 1964 and published the next year (Zadeh 1965). By the time the paper was 
published, Zadeh was well known for his text on linear systems theory, published in 
1963, which was used as a textbook in many universities. One of the amazing things 
about the paper is its comprehensiveness. In effect, Zadeh's paper gave birth to a 
relatively mature paradigm. Everything that is needed to apply fuzzy logic is in the 
original paper (although the paper doesn't contain the term "fuzzy logic"). 

Zadeh's key concept is that of membership values. A membership value measures 
the degree or extent to which an object meets vague and/or imprecise properties. 
These membership values are defined over the universe of discourse by a membership 
function, which is the fuzzy set. Zadeh also defined what have become known as 
the "classical" operations for fuzzy sets, which comprise all the mathematical tools 
necessary to apply them. 

Zadeh immediately became a tireless spokesperson for the nascent field. In the 
beginning, his job was difficult. He was often harshly criticized, both verbally and 
in writing. For example, in 1972 R. E. Kalman said (Perry 1995): "Fuzzification is 
a kind of scientific permissiveness; it tends to result in socially appealing slogans 
unaccompanied by the discipline of hard scientific work." 

But Zadeh always stands up for what he believes and endures criticism with 
patience and grace. He has, of course, prevailed. Among his numerous awards, he 
was the recipient in 1995 of the IEEE Medal of Honor, the highest award the Insti- 
tute of Electrical and Electronics Engineers can bestow. He thereby joins the ranks 
of such Medal of Honor awardees as Alexander Graham Bell and Thomas A. Edison. 

It was the early 1970s before someone articulated the first fuzzy control strategy 
implementing Zadeh's concepts. Working at London University in 1973, Ebrahim 
Mamdani and one of his graduate students, Sedrak Assilian, designed and built a 
fuzzy controller for a small steam plant consisting of a boiler and an engine. They 
implemented a 24-rule fuzzy control system that used fuzzy membership functions 
for pressure error and the change in pressure error to control the change in the heat. 
The entire control system was designed over one weekend (McNeill and Freiberger 
1993) and the results published two years later (Mamdani and Assilian 1975). This 
work, while only a laboratory-based development, was an important milestone in 
that it demonstrated that Zadeh's ideas could be reduced to practice. 

Also in the early 1970s, Hans Zimmerman became active in fuzzy logic at the 
University of Aachen in Germany. He founded the first European working group on 
fuzzy logic in 1975. He also co-founded and became the first editor of Fuzzy Sets and 
Systems, the first important journal in the field, in 1978. In June 1984, as a result of 
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a conference in Hawaii, Zimmerman helped create the International Fuzzy Systems 
Association (IFSA) and became its first president. 

In France, Didier Dubois and Henri Prade became charter members of the Euro- 
pean working group. With computer science and mathematical backgrounds, they 
went back to first principles to develop the mathematical foundations of fuzzy opera- 
tors. They also developed families of operators and co-authored a textbook on fuzzy 
logic (Dubois and Prade 1980). Prade was instrumental in founding a fuzzy logic 
institute in France. 

Meanwhile, in the United States two important contributors in the early years 
(1965-1975) were King Sun Fu at Purdue University and Azriel Rosenfeld at the Uni- 
versity of Maryland. Their impact was significant partly because both were already 
well known professionally, and both encouraged students to do fuzzy sets work. Fu, 
who was the founding president of the North American Fuzzy Information Process- 
ing Society (Bezdek and Pal 1992), published one of the earliest papers on fuzzy 
pattern recognition with his student Bill Wee (Wee and Fu 1969). Wee is believed to 
have written the first Ph.D. dissertation on fuzzy pattern recognition (Wee 1967). It 
is hard to judge the importance of Fu and Rosenfeld because at the time Zadeh was 
enduring considerable ridicule, and these two individuals were insightful enough to 
understand fuzzy logic's potential. 

Two other important early contributors in the United States were Enrique 
Ruspini of the Artificial Intelligence Center at SRI International and James Bezdek 
of the University of West Florida. 

Ruspini was born in Buenos Aires, Argentina, and received his Ph.D. from the 
University of California at Los Angeles in 1977. He derived significant theoretical 
underpinnings of fuzzy logic and wrote the first paper on fuzzy clustering (Ruspini 
1969). His clustering methodology used fuzzy partitions, and similarity was mea- 
sured using membership values (Ruspini 1970). 

Bezdek received his Ph.D. in applied mathematics from Cornell University 
in 1973 and later served as director of the Information Processing Laboratory 
at the Boeing Electronics High Technology Center. He developed fuzzy pattern 
recognition algorithms, introduced the fuzzy c-means clustering algorithms, and 
was one of the first to recognize the importance of, and develop applications 
of, combinations of fuzzy logic and neural networks (Bezdek and Harris 1978; 
Bezdek 1981). 

Bezdek and Ruspini have been active in fuzzy logic professional society activities. 
Among other activities, Bezdek chaired the IFSA meeting in Hawaii out of which the 
society was born, served as the second president of both IFSA and the North Amer- 
ican Fuzzy Information Processing Society (NAFIPS), and was the founding editor- 
in-chief of the IEEE Transactions on Fuzzy Systems. Bezdek and Ruspini served as 
chairs of the first and second FUZZ/IEEE international conferences (IEEE interna- 
tional conferences on fuzzy systems), respectively. 
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The first industrial application of fuzzy control was developed in the late 1970s by 
L. P. Holmblad and J,-J. Ostergaard, two engineers living in Denmark (Sugeno 1985). 
Their first control system was for a cement kiln, and it was followed by additional 
similar systems in Sweden and other countries (McNeill and Thro 1994). 

After a few successful applications in the 1970s, fuzzy logic entered what is 
considered its dark age in the 1980s, especially in the United States. Funding in 
the United States was largely allocated to development of expert systems and other 
traditional artificial intelligence (AI) projects. That distinctively irreverent word, 
"fuzzy," seemed to make engineers, computer scientists, and, more significantly, 
funding agency program managers think that the method was somehow inadequate 
for "serious" projects; it became the kiss of death for research proposals. 

Then, as has happened with a number of other American innovations, fuzzy 
logic really caught on in Japan; the Japanese, calling it faaji, began using fuzzy logic 
for everything from vacuum cleaners, cameras, and elevators to robots. The activity 
in Japan, however, had begun in the early 1970s; practical applications proliferated 
there earlier because of the continuity of activity (funding support) compared with 
the United States and Europe. We begin our look at Japan with an early Japanese 
researcher, Michio Sugeno. 

Sugeno received his undergraduate degree in 1962 from the University of Tokyo. 
He joined the Tokyo Institute of Technology in 1965, where he began working with 
Toshiro Terano in the control engineering department. In 1972 Terano formed a 
fuzzy systems working group, with Sugeno as secretary. In 1974 Sugeno developed 
a fuzzy measure theory for his Ph.D. dissertation. He then spent eight months in 
England with Mamdani and eight months in France before going back to Japan in 
1977. He was convinced that the way to stimulate interest and activity in fuzzy logic 
was to develop a successful application. In 1978, therefore, he began working on 
fuzzy control systems and in 1983 implemented one for a water purification plant 
owned by Fuji Electric Company. It was the first commercial application of fuzzy 
logic in Japan. 

The first consumer product to utilize fuzzy technology was a shower head that 
used fuzzy circuitry to control the water temperature, produced in Japan in 1987 by 
Matsushita Electric. Perhaps the most visible early fuzzy application also occurred 
in Japan in 1987. Engineers at the Hitachi Systems Development Laboratory, Shoji 
Miyamoto and Seiji Yasunobu, developed a fuzzy control system for the subway 
system in Sendai. Later in 1987 a landmark conference was held in Tokyo. At this 
meeting, T. Yamakawa demonstrated an application of fuzzy control to the "inverted 
pendulum" system using a set of fuzzy logic chips (Kecman 2001). It is believed 
by many that the second annual International Fuzzy Systems Association (IFSA) 
conference was a turning point for the technology. 

In 1989 Terano was named director of the Laboratory for International Fuzzy 
Engineering Research (LIFE) in Yokohama, and Sugeno was named its "leading advi- 
sor." LIFE quickly became a center for leading-edge fuzzy technology development. 
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As we enter the new millennium, a growing number of concepts, paradigms, and 
implementations are being fuzzified. In the words of Klir and Yuan (1995), perhaps 
the most important thing being gained through this fuzzification is "a methodology 
for exploiting the tolerance for imprecision." 

Fuzzy Sets and Fuzzy Logic 

It is hardly an exaggeration to say that Lotfi Zadeh single-handedly conceptualized 
many of the important developments in the field. Though fuzzy logic was first 
greeted with skepticism, it has since become widely accepted by engineers and 
computer scientists and is becoming common in applications in many diverse 
fields. 

Previous theories of logic had assumed that the rules of reasoning were clear and 
that they could be expressed in words or mathematical symbols. Then one only had 
to introduce some premises, follow the rules, and the conclusions would be pro- 
duced automatically. But Zadeh noted that this "first-order logic" was insufficient 
for solving real problems. Almost all of human reasoning, he argued, is imprecise. 
The amazing process called "common sense," which humans are very good at, was 
too hard for computers because it is fundamentally imprecise. 

In the remainder of this chapter, we introduce some of the basic concepts of fuzzy 
logic knowledge engineering. We begin with a brief discussion of Zadeh's theory of 
fuzzy sets, especially comparing the theory to previously existing theories of binary 
logic. Next we discuss "approximate reasoning," that is, how inferences are made 
from fuzzy sets. In the final sections we review some of the issues and applications 
of fuzzy logic. In the next chapter, implementations of fuzzy logic demonstrate how 
fuzzy systems are created. 

Logic, Fuzzy and Otherwise 
Fuzzy logic comprises fuzzy sets, which are a way of representing nonstatistical uncer- 
tainty, and approximate reasoning, which includes the operations used to make infer- 
ences in fuzzy logic. Traditional Aristotelian logic is two-valued in both facts and 
operations. Thus, in two-valued logic a statement is either true or false; it implies 
another statement or it doesn't. A traditional logic program does one thing if state- 
ment X is true and another thing if it's false. These kinds of rules, technically called 
production rules, are often referred to as "if-then" rules because they're expressed 
in the form "if A, then B." Of course, they can be more complicated than that, for 
instance: 

[] IfA and B, then C. 

m IfA and not-B, then C. 
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a IfA or B, then not-C. 

n If (((not-A) or B) and not-C) or D, then E. 

For more on traditional binary logic processing, a good reference is Patrick Henry 
Winston's (1984) Artificial Intelligence, especially Chapter 7, "Logic and Theorem 
Proving," which clearly lays out the principles of inference in traditional artificial 
intelligence. 

One of Zadeh's insights was that in the real world we often encounter degrees of 
truth, phenomena that are "sort of A" or "mostly B" or "very C." A, B, and C are 
not entirely true or false, or perfect members of a set or category. Consequently, a 
rule such as "If it's cloudy, then it will rain" simply doesn't work in the real world. 
Sometimes~most of the time--it 's  partly cloudy, or kind of cloudy, or maybe it's 
entirely cloudy, but the clouds are wisps of puff that couldn't produce rain no matter 
what. Real things occur by degree. Cloudiness can range from "not cloudy at all" 
to "completely cloudy." In fuzzy set theory, the sky is a member of the set "cloudy 
skies" by degree; the statement "The sky is cloudy" can vary in its degree of truth 
on a scale from 0 to 1. This introduces the concept of fuzziness, which Bellman and 
Zadeh (1970) defined as "a type of imprecision which is associated w i t h . . ,  classes 
in which there is no sharp transition from membership to non-membership." 

Not only are there degrees of cloudiness, but rain also occurs by degree. It might 
rain just a little bit, or it might rain a lot. So in the real-world application, it would 
not make much sense~that  is, common sense~to assign a value of 0 or I to cloudi- 
ness and then try to estimate the 1/0, yes/no, true/false answer to whether rain will 
fall. But that is how traditional logic would attempt to answer the question. Fuzzy 
logic goes about it in a different way. 

Fuzziness Is Not Probability 
Criticisms of fuzzy logic are often based on confusion between the concepts of fuzzi- 
ness and probability. Each morning the weather forecaster tells us the probability of 
rain for that day, based on a kind of if-then reasoning like that given earlier but, of 
course, taking into account a number of variables. Probability is a number from 0 to 
I that expresses the certainty that an event will occur. If probability - 0.0, then we 
are certain that the event will not occur. If it is 1.0, we are certain that it will occur 
(or that it has already occurred). Returning to the weather example, note that fore- 
casters usually don't say how much rain will fall: Occurrence itself is either 0 or 1, a 
binary variable, at least when the meteorologist says it. 

One important difference is that probability is meaningful only for things that 
haven't happened yet. Once the event occurs, probability evaporates (it becomes 1 
or 0). The credibility of weather forecasters would decrease if they announced the 
probability of it raining yesterday! Yet it is meaningful, and in fact it does happen, 
for the announcer to talk about the severity of yesterday's weather. With pictures of 
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torn-off roofs and downed power lines, they inform the audience that the storm was 
a "real bad one," or "yesterday was a beautiful day, if you're a duck." These are ways 
of saying that, as storms go, this was a real storm: Its membership in the set "storms" 
was very high. Probability is meaningless, but fuzzy set membership continues after 
the event. 

Other important differences exist between fuzzy logic and probability. Prob- 
ability is based on a closed world model in which it is assumed that everything is 
known: Fuzzy logic is not based on that model and makes no such assumption. Prob- 
ability is based on frequency (Bayesian on subjectivity); fuzzy logic and crisp logic 
state objective descriptions/measures. Probability requires independence of vari- 
ables; fuzzy logic has no such requirement. In probability, absence of a fact implies 
knowledge; in fuzzy logic, it does not. 

This discussion isn't meant to imply that probability is useless. Probability is 
appropriate for randomly governed occurrences. If, when solving a problem, every- 
thing needed to calculate probabilities is available and valid, design of a probabilistic 
system may be a good idea. On the other hand, the more complex a system is, and 
the more it involves intelligent behavior (defined in Chapter 2), the more likely it 
is that fuzzy logic will be a good approach. We continue our examination of this 
approach with a discussion of the theory of fuzzy sets. 

The Theory of Fuzzy Sets 

Zadeh's fuzzy logic can be seen as an extension of set theory. In classical set theory, 
an element is either a member of a set or it is not. In a Venn diagram (Figure 7.1), 
we can see that part of the universe exists inside the circle that represents a set and 
some of it exists outside that circle. We have never seen a Venn diagram where, if a 
set was represented by a red circle, some parts of it were pink and some parts were 
dark scarlet. In two-valued logic, it's either red or it's not. 

( 
Figure 7.1 The shaded area represents the intersection of sets A and B in traditional binary 

set theory. Fuzzy set theory would allow areas of the Venn diagram to be darker 
or lighter shades of gray. 
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In fuzzy logic, set membership occurs by degree. Suppose we want to talk about 
the set "tall men." Professional basketball player Shaquille O'Neal is 2.16 meters 
(7 feet 1 inch) tall. By any standard, in any country in the world, "Shaq" is a mem- 
ber of the set "tall men." On the other hand, another basketball player, Travis Best 
is "only" 1.80 meters (5 feet 11 inches) tall. This is about the average height for an 
American male (1.78 meters, or 5 feet 10 inches), but it is definitely not tall for an 
American male professional basketball player. In our unscientific survey of six U.S. 
National Basketball Association teams (Indiana Pacers, Los Angeles Lakers, Atlanta 
Hawks, Boston Celtics, Detroit Pistons, and Utah Jazz), we didn't find anyone play- 
ing at the time this chapter was written shorter than 1.80 meters. (There were alto- 
gether three players on the six teams 1.80 meters tall.) 

This exercise points out something to which you must pay attention when dis- 
cussing fuzzy sets: It is important to define the set carefully, including specifying over 
which domain a set is defined. So let's recast our set as "tall American male profes- 
sional basketball players," or TAMPBP, over the domain "American male profes- 
sional basketball players." Thus, using traditional, two-valued logic, with a universe 
consisting of these two individuals, we would assert: 

TAMPBP- {Shaquille O'Neal} and Not-TAMPBP- {Travis Best} 

Given the extremes of these two players, this set assignment would be fine for some 
things. But that's a mighty small universe, two guys. What if we encounter someone 
like Reggie Miller of the Pacers, who is 2.01 meters (6 feet 7 inches)? That's pretty 
tall, but not extraordinary for a pro basketball player, especially next to someone like 
O'Neal. At first glance, we might be inclined to put Miller into the TAMPBP set, but 
closer inspection of the height distribution of his Pacer teammates reveals that nine 
of them are taller than he is and only four are shorter. So which set does he go into? 

The fuzzy solution is to assign degrees of set membership to everyone. We might 
say that Shaquille O'Neal's set membership is 1.0; that is, he is entirely a member of 
the set TAMPBP. Travis Best gives us a little trouble: He isn't tall for a professional 
basketball player, but in certain company he might stand head and shoulders above 
the others. He's not a 0, so we might say he is a member of the set TAMPBP to degree 
0.1. (All set membership values stay between 0 and 1.) Suddenly it is not too hard to 
see how we can assign membership to Reggie Miller. He is "pretty" tall; perhaps we 
will say he is a member of the set TAMPBP to the degree 0.6. (And notice how we 
were able to translate the term "pretty tall" into a set membership value.) The fuzzy 
set can be written in this form: 

TAMPBP - 1.0/Shaquille, 0.1/Travis,0.6 / Reggie 

where the first term is the name of the set, and the terms on the right side of the 
equals sign name elements of the set with their set membership value, separated by 
a slash. 
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In the developing field of fuzzy logic, however, notation is still not completely 
standardized; there are other ways to represent degrees of membership in fuzzy sets. 
Perhaps the most common, and the one we will use throughout the remainder of the 
book, is a representation of the form UA (x) = m, which states that the membership 
value of x in the fuzzy set A is m, where 0 _< m _ 1. The example of TAMPBP can 
therefore be written in the form PTAMPBP ( Shaquille) - 1.0, PTAMPBP ( Travis) - O. 1, 
and so forth. 

Now any statements about "tall American male professional basketball players" 
can be applied to anyone. Suppose someone proposed the statement "Only tall Amer- 
ican male professional basketball players are outstanding at making basketball slam 
dunks." (For those readers unfamiliar with basketball, a slam dunk is a basketball 
goal worth two points that is made by a player who jumps high enough to carry 
the basketball sufficiently above the rim of the goal so that the ball is physically and 
forcefully pushed downward through the goal.) With two-valued logic, we would 
have inferred that Shaquille O'Neal was outstanding at slam dunks in basketball 
and that Travis Best was not, since he's not a member of the set TAMPBP. What 
would we do, though, with Reggie Miller? We wouldn't know if we could infer any- 
thing about his ability to make basketball shots since we don't even know if he 
belongs to the set, and we are only allowed those two choices. 

With fuzzy logic, though, we are able to make an inference. We infer that to the 
degree that the statement is true, Shaquille is outstanding at slam dunks, Travis is not 
outstanding at slam dunks, and Reggie is fairly (about halfway) outstanding at slam 
dunks. Thus we are able to reason by degree, applying logical operations to fuzzy sets. 
The operations are discussed later, in the section titled "Approximate Reasoning." 

Fuzzy Set Membership Functions 
One thing that is immediately obvious is that there is a kind of "shape" to the set 
TAMPBP if we graph it over the variable American male professional basketball 
players' height. Men whose height is under 1.75 meters have zero membership; then 
the degree of membership increases with their height, as shown in Figure 7.2(a), 
until we reach a height, about 2.15 meters, above which everybody has membership 
= 1.0. Thus, set membership rises with height from 0 until it reaches the maximum. 

A fuzzy set on a numeric variable such as height or temperature is represented by 
a fuzzy  membership function. Figure 7.2(b) illustrates one way to draw a fuzzy mem- 
bership function for the linguistic variable warm. It is this function that is the fuzzy 
set. The function can be linear, either descending or ascending; it can be normal, 
bell-shaped, or triangular; it can be an S-shaped (sigmoid or logistic) function; it 
can be arbitrary or irregular; it can have plateaus or "shoulders," as in the preced- 
ing example of TAMPBP. It is customary for the highest part (maximum value) of 
the function to be set to 1.0: This is called normalization of the function. Without 
normalization, the effect of a fuzzy set tends to be watered down and weak. 
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Figure 7.2 Two kinds of fuzzy membership function. 

Graphs, as in Figure 7.2, are one way to specify membership functions. Another 
way is to specify enough of the membership function points to allow someone to 
graph them. A common way to do this is illustrated for the fuzzy sets TAMPBP and 
Warm of Figure 7.2 as follows: 

0 0.50 1 ) 
TAMPBP = 1.75 + 1 - ~  + 

{ 0  0.50 1 0.50 O }  
W a r m =  5-6+--ff6--+7"-6 + 80 +9"-0 

Note that in this type of specification the plus signs do not represent addition but 
rather the aggregation or collection of representative domain points. Also note that 
the horizontal lines do not represent division but are delimiters, with the member- 
ship value above the line associated with the domain point below the line. This kind 
of fuzzy set representation is most often used for triangular fuzzy sets (consisting of 
only straight lines). 

Now let's consider another fuzzy set. We want to buy a high-speed cable modem 
for our computer at a fair price. Below "fair price," we expect that the quality of the 
product will decline, and above "fair price," we feel we are spending money need- 
lessly. The fuzzy set "fair price," then, must be defined for cost in such a way that it 
drops offbelow (as TAMPBP did), and also drops off above, some point, which for 
this particular product is around $80.00 (membership = 1.0). If the cable modem 
were being sold for less than $60.00, we would suspect it to be inferior ("fair price" 
membership ~- 0.0), and ifthe price were above $100.00 we would feel we were being 
cheated (also "fair price" membership ~ 0.0). Thus, the set membership function 

can be represented as 12FAIR_.PRIC E (p) = e -(p-8°)2/5°, where p is the price in dollars, 
which resembles the normal distribution seen in probability theory. Because of the 
computational costs of this curvilinear function, many fuzzy logic applications use 
a triangular approximation for functions of this type, as shown in Figure 7.2(b) for 
the fuzzy set "warm." It turns out that the trade-off in terms of performance usually 
is small compared to the savings in computation. 

There are, of course, infinitely many shapes of set membership functions. A mem- 
bership function for "short American male pro basketball players (SAMPBP)," for 
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instance, might have the same shape as one for TAMPBP, but reach a plateau 
on the left. Medium-height players, MAMPBP, might drop off on both sides, but 
with a plateau in the middle for some small range of heights. Further, as we will 
see, fuzzy sets can be combined to form sets like "medium or tall," "short or tall 
and not medium," and so on. These new sets can have complex set membership 
functions. 

As we will see when we work with complete fuzzy systems, the dynamic range of a 
variable such as height or temperature is usually covered by several fuzzy sets. Cold, 
warm, and hot comprise one choice for three fuzzy sets to cover the temperature 
domain, for example. The number of fuzzy sets chosen is problem dependent, but 
often the number is three or five, and almost always it is an odd number (perhaps 
so that the exact middle of the dynamic range has a membership value of 1.0 in one 
of the membership functions). 

Linguistic Variables 
One of the most exciting things about fuzzy logic is its ability to translate ordinary 
language into logical or numerical statements. It accomplishes this by use of the 
concept of the linguistic variable. Zadeh has devoted much of his writing to this con- 
cept. He defines a linguistic variable as "a variable whose values are words or sen- 
tences in a natural or artificial language" (Zadeh 1975). These are contrasted with 
numeric variables. For instance, instead of talking about "tall American male profes- 
sional basketball players" in the previous example, we could have stated the rule in 
an equation relating the independent variable height to the dependent variable abil- 
ity to make basketball slam dunks. (We would probably have had to use a nonlinear 
function, such as logistic "squashing," to keep the result in the [0,1] range.) 

This kind of formula might work, and it would take into account the differ- 
ences in height and their effect on some consequent variable. There are advantages, 
though, to encoding the statements using linguistic variables, especially when effects 
are not linearly related to causes, as in a curvilinear membership function such as 
that for "fair price." Many engineering control applications that were previously 
implemented using precise and complex equations been improved significantly by 
using the simpler, flexible rules of fuzzy logic. 

According to Zadeh, a label such as "tall" is really a linguistic value for the numeric 
variable height. We could have said that Shaquille O'Neal was 2.16 meters tall, and by 
that we would have gained precision, but we would have eroded our ability to reason 
about other tall basketball players. The very imprecision of linguistic variables makes 
them useful for reasoning. 

There are three main categories of linguistic variable: quantification terms, usual- 
it), terms, and likelihood terms. Examples of quantification terms are all, most, many, 
about half, few, and no. Examples of usuality terms are always, frequently, often, 
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occasionally, seldom, and never. Likelihood terms include certain, likely, possible, 
uncertain, unlikely, and certainly not. 

Linguistic Hedges 
An important aspect of linguistic variables is that they can modify or qualify one 
another. Consider, for instance, the word "very." A "very tall" man is taller, in gen- 
eral, than a "tall" one. In other words, "very" modifies tall by shifting it up on the 
scale of height. But look what it does to "short": A very short man is shorter than a 
short man, so "very" shifts short down on the scale of height. Linguistic variables that 
change the shape or position of a membership function are called linguistic hedges 
(Zadeh 1972). 

There are many linguistic hedges, some more clearly understood than others. For 
instance, "sort of" is perceived by some to shift values in the other direction from 
"very": a man who is "sort of short" is likely to be taller than a man who is "short," 
and a man who is "sort of tall" could be perceived shorter than a "tall" man. Others 
think of "sort of" as a synonym for words that are centered on the concept. It is 
therefore important to be careful in the use of linguistic hedges and to define them 
clearly. 

Besides moving the center of a linguistic variable up and down on the underlying 
numeric variable, linguistic hedges can affect the width of the graph of the linguistic 
variable's membership function. An easy example is that of "medium-height" men. 
"Sort of medium," assumes a function similar to that of medium, but it's wider at 
the peak. "Sort of medium" includes both shorter and taller men than "medium" 
by itself. On the other hand, "very medium" is narrower than "medium." We expect 
someone who is very, very medium in height to be exactly the average. 

Some common kinds of linguistic hedges are ones that 

[] intensify a fuzzy set (very, extremely). 

[] dilute a fuzzy set (about, somewhat, sort of, generally). 

[] express probabilities (probably, not very likely). 

[] approximate a scalar or single number (exactly). 

m express vague quantities (many, most, seldom). 

The richness of human language suggests that there can be very many kinds of lin- 
guistic hedges, lust as we are able to insinuate unstated facts in subtle ways through 
skillful use of language, fuzzy set memberships can be rather tricky to implement. 
On the other hand, the richness of language, operated upon with a tool as versatile 
as the concept of the linguistic variable, results in a very powerful instrument for 
modeling complex systems. 

Some conventions have arisen for the programming of linguistic hedges in fuzzy 
systems. For example, Zadeh (1975) has suggested that the linguistic hedge "very" 
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is a mathematical square, If a room has, for instance, 0.50 membership in the set 
"warm," it would have 0.25 membership in the set "very warm." It is not until mem- 
bership in warm = 1.0 that the element is equivalently a member of very warm. On 
the other hand, the linguistic hedge "somewhat" can be implemented by taking the 
square root of a membership function; thus, a room that is 0.81 "warm" (to make 
an easy example) would be 0.9 "somewhat warm." This operation generally causes a 
variable's membership in the "somewhat" set to be slightly higher than in the fuzzy 
set without "somewhat." Thus, if we ordinarily say a room is "warm," we would 
likely say that calling it "somewhat warm" is an understatement. 

Linguistic hedges such as "very" that reduce the membership values for 
values other than 1.0 are called concentrations, and those such as "somewhat" 
that increase the membership values for values other than 1.0 are called dilations 
(Zadeh 1972). 

Another linguistic hedge concept is called intensification, which is a kind of com- 
bination of concentration and dilation. For original membership values between 0.5 
and 1.0, membership values are increased, and original membership values between 
0.0 and 0.5 are decreased. The original version of intensification proposed by Zadeh 
(1972) appears in equation 7.1. Other versions are, of course, possible. 

aintensified = 2/~a2(X) 

1 - 2 [1 - #a(X)] 2 

for 0 < ~a(X) < 0.5 

for 0.5 < ~a (x) < 1.0 
(7.1) 

Intensification increases the differentiation between set elements with membership 
greater than 0.5 and those with less than 0.5 membership. We invoke this concept 
by saying that something is intensely a. 

Approximate Reasoning. 
Reasoning in fuzzy systems involves logic. Many relations and operations used in 
fuzzy reasoning have evolved from familiar Boolean algebra (cf. Kennedy 1973) and 
have familiar names, such as AND, OR, and NOT. However, if something's mem- 
bership in fuzzy set A = 0.8 and in fuzzy set B = 0.2, how much is it a member of 
the union, the set made up of A OR B? Fuzzy logic requires new definitions for these 
concepts. 

Paradoxes in Fuzzy Logic 
Fuzzy logic solves paradoxes that are irresolvable in traditional binary logic. Pop- 
ular writers are in the habit of expressing the difference between fuzzy logic and 
binary logic as if it were the same as the difference between Eastern and Western 
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philosophy. Perhaps they' re essentially correct, but it seems fair to point out that 
Western thinkers have always been fascinated with paradoxes. 

Consider the oR-quoted "Cretan paradox," in which a person from Crete says, 
"All Cretans are liars." The paradox is that if the statement is true, then the speaker 
himself is lying and so the statement must be false. Ironically, many examples cited 
by writers to demonstrate that "Western thought" is uncomfortable with paradoxes 
have actually been created by mainstream Western thinkers! The Cretan paradox is 
not known as the Tokyo, Bombay, or Beijing paradox. In fact, "Western thought" 
at least since the time of the Greeks has been fascinated by paradoxes even if they 
have been excluded from the branch of philosophy known as logic. 

Aristotelian logic includes rules that forbid a statement's being true and not-true 
at the same time (though Aristotle himself acknowledged that one statement could 
be "truer" than another). The two relevant axioms are the Law of Noncontradiction 
and the Law of the Excluded Middle. These "laws" are not relevant to the operations 
of fuzzy logic, and it is worthwhile here to consider the reasons for this. 

The Law of Noncontradiction states that the intersection of a set with its com- 
plement results in an empty or null set. Intersection in binary logic means that the 
AND operator, that is, the intersection of A and B, contains all the elements that 
are members of set A AND members of set B. In a Venn diagram, this is where two 
circles overlap. The intersection of a set with its complement, then, is the set that 
contains all members of A AND all members of not-A. Impossible, you say? In tra- 
ditional logic, yes, it's impossible; but in fuzzy logic, it's not a problem. We look out 
our window and see several clouds in a blue sky. Is today a member of the set "cloudy 
days" ? Technically, yes, it is. It does have clouds. Is it a member of the set "not cloudy 
days?" Well, yes, it really isn't that cloudy; it's mostly sunny. So ifA = "cloudy days," 
today is a member of A and not-A. In real life, the Law of Noncontradiction is broken 
constantly. 

The Law of the Excluded Middle states that the union of a set with its com- 
plement results in a universal set of the underlying domain. A set made up of all 
elements that are either members of A or are members of not-A, in binary logic, 
should include the universe. Everything either is A or is not A, either a statement 
is true or it's not true. Where the Law of Noncontradiction asserts that a statement 
can't be true and false at the same time, the Law of the Excluded Middle asserts, 
beyond that, that a statement must be either true or false. In a Venn diagram, a 
point is either inside or outside a circle. This law fades away to insignificance in 
fuzzy logic. 

Equafity of Fuzzy Sets 
In traditional binary logic, two sets containing the same elements are equal: {a, d, g} 
equals {a, d, g}. That is really a pretty easy concept to grasp, but what does it mean 
for two fuzzy sets to be equal? Let us say there are two fuzzy sets, X and Y, and each 
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is defined on a universe of three discrete values: a, d, and g. For fuzzy set X, a has a 
0.1 membership, d has a 0.6 membership, and g has a 0.8 membership. For fuzzy set 
Y, on the other hand, a's membership is 0.9, d's is 0.7, and g's is 0.8. 

Stated in a notation we introduced earlier: 

0.1 O.6 0 . 8 )  
X =  + + = -5- -?- 

{0 .9  0.7 0 . 8 }  
Y= + + 

7 T 

Are these fuzzy sets equal? No. 
By equality, we are saying that two sets are the same. While it may be that sets X 

and Y are rather similar to one another, they are not the same. In fuzzy logic, two 
sets are considered equal if and only if they have identical set membership values on 
identical domains. For continuous domains, the graphs of the fuzzy sets lie on top 
of one another. 

Containment 
In crisp logic, a set A is considered a subset of another set B if and only if all elements 
in A are also in B. Thus, no apples are included in the set "oranges," but the sets 
"apples" and "oranges" are subsets of the set "fruit." These sets are clear. 

Now consider the fuzzy sets X and Y defined above. Our goal is to determine 
whether X is a subset of (is contained in) Y. This is a way of asking whether each ele- 
ment's membership in Yis greater than or equal to its membership in X. Comparing 
the individuals' memberships in the two sets, we see that all membership values in 
Y are greater than or equal to corresponding membership values in X, and therefore 
X is contained in Y. If we were to, say, change d's membership in Y to 0.4, then X 
would no longer be contained in Y. 

Thus, containment in fuzzy logic means that membership values for all elements 
in a subset are less than or equal to the membership values of those same elements in 
the superset. In many cases containment is seen when a linguistic variable is added 
to modify an existing set: Very tall men is contained in tall men, hot engines is con- 
tained in somewhat hot engines, and so on. 

NOT." The Complement of a Fuzzy Set 

In binary logic, the complement of a set is simply the set of all the elements that are 
not in that set. The complement of A is not-A. This is obviously not so easy when 
sets are fuzzy. If everyone has some degree of membership in the set of middle-aged 
people, how would we define the set of not-middle-aged people? 
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The answer is that everyone also has some degree of membership in the set of 
not-middle-aged people. Suppose we say that "middle-aged" (M) has a triangular 
membership function: 

{0 1 0} 
M =  ~-~ + ~-~ + ff-~ 

Randy is 50 years old, and we have assigned him degree of membership 0.8 in 
the set of middle-aged people. The solution is to say that Randy's membership in 
the set "not-middle-aged" (M) is 1 minus 0.8 = 0.2. He is 80 percent a member, so 
he is 20 percent not a member. In general, then, the value of the complement of a 
membership value is (1 - the membership value): 

_ {1 0 1} 
M =  

Using our earlier examples of fuzzy sets X and Y: 

= ( 0 " 9  0.4 0 . 2 } a  + - - d + - - g  

= (0.1a + "~0"3 0.2 } +  --g 

Now we can see why the Law of the Excluded Middle is not appropriate in fuzzy 
logic. That law states that something must be either A or not-A. The violation of this 
Aristotelian law of logic is the lifeblood of fuzzy logic. Of course, says Lotfi Zadeh, 
every statement is both true and not-true--reality flourishes on ambiguity. 

AND: The Intersection of Fuzzy Sets 

Fuzzy logic's ability to remain unflustered by paradoxes results from the flexibility of 
fuzzy sets. Something can be true and not-true because it's not entirely true or false. 
In binary logic, as mentioned earlier, the intersection of two sets contains elements 
that are contained in both sets: The intersection of A and B contains those elements 
that are in A AND in B. If things can be members of sets by degree, however, it is 
not immediately intuitively obvious how to define the intersection of sets. A couple 
of guidelines exist, however. 

First, we need to be able to apply the intersection operator (also the union opera- 
tor, discussed later) in a pairwise fashion irrespective of the order. Second, for a par- 
ticular element, a decrease in the membership value of that element in either fuzzy 
set can't lead to an increase in the intersection of the two sets. These properties are 
known as associativity and monotonicity, respectively. 

In usual practice, the weakest membership determines the degree of membership 
in the intersection of two or more fuzzy sets. Zadeh's intersection operation in fuzzy 
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logic is simply to take the minimum set membership. For instance, if an item has 0.5 
membership in set A, 0.9 membership in set B, and 0.2 membership in set C, then its 
membership in A AND B AND C is defined as 0.2, the minimum membership value. 

Referring back to fuzzy sets X and Y, their intersection is 

XO Y= { 0.1a 0.6 0.8 } 
+ - 7 - +  g . 

Note that since X is contained in Y (X c Y), the intersection is just the original fuzzy 
set X. 

To provide other examples, let's define fuzzy set Z on the same universe of three 
discrete values (a, d, and g) as fuzzy sets X and Y, as follows: 

Z = {  0"3a + --d0"4 + gO'9} 

Now, 
X n Z = {  0"la + -~0"4 + -~0"8} 

Y A Z = {  0"3a + '~0"4 + ~0"8} 

We can see that the Law of Noncontradiction has become moot. Something can 
be A and not-A at the same time; the fuzzy intersection of A and not-A is not empty 
or null. Using the previously defined fuzzy set X as an example, 

Xn~" {0.1 0.4 0 .2} 
= + + , 

-7- g 

OR: The Union of Fuzzy Sets 
The union of two sets in crisp set theory is made up of all the elements that are either 
in one set or in the other, or both. The union of A and B includes everything that 
is a member of A OR a member of B. In a Venn diagram with two circles drawn in 
it, the union of the two sets is everything contained in both circles. (Note that the 
Exclusive-OR, or XOR, set contains elements that are in one set, or circle, or the 
other, but not in both. The overlap of two circles is excluded.) 

The union operator is just the opposite of the intersection operator. In usual 
practice, the strongest membership determines the degree of membership in the 
union of two or more fuzzy sets. Zadeh's union operation in fuzzy logic is to take 
the maximum set membership. For instance, if an item has 0.5 membership in set 
A, 0.9 membership in set B, and 0.2 membership in set C, then its membership in A 
OR B OR C is defined as 0.9, the maximum membership value. 
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Using fuzzy sets X and Z, X OR Z is 

X u Z =  { 0.3a 0.9 } 

+ + T  " 

Summary of Fuzzy Relations and Operators 
If l,t A ( X ) a n d  la B (X) represent the degrees to which x is a member of fuzzy sets A 
and B, respectively, and the sets have common domains, then the following are the 
basic relations of fuzzy sets: 

Equality A = B iff all/~A [X] --- I, tB[X ] 

Containment A c B iff all ~A[X] _ ~B[x] 

The following are the basic operations on fuzzy sets: 

Intersection ~AnB (x) = min(~A[X], ~B[x]) 

Union ~Aun (x) = max(~A [x], ~n[X]) 

Complement ~ (x) = 1 - ~A[Xl 

Compensatory Operators 
Note that there are alternative fuzzy operators to those we have defined; the choice 
needs to be made carefully, depending on the particular situation. Compensatory 
operators are alternatives to the set operations such as intersection and union 
defined by Zadeh. Experience with numerous fuzzy system applications has demon- 
strated the need for these operators, particularly for the fuzzy intersection operator 
most commonly used in the antecedent (if) portion of fuzzy rules. The operators 
are called compensatory because they provide less strict (softer) relationships than 
Zadeh's original operators. Note, however, that they still must comply with the prop- 
erties of associativity and monotonicity described earlier. 

With Zadeh's intersection operator, the truth level for the entire antecedent is 
controlled by the minimum membership value. For example, for the rule "If A and 
B and C and D, then Q," if the membership values for A through D are 0.9, 0.7, 
0.8, and 0.2, respectively, then the truth level of the expression is 0.2. In practical 
applications, the effect of this is often too extreme in terms of its effect on the fuzzy 
system. 

A number of compensatory operators have been defined. Some of them involve 
only relatively simple arithmetic transformations, and others require more compli- 
cated functional transformations. A complete review of compensatory operators is 
beyond the scope of this book; we refer you to sources such as (Cox 1994) and (Von 
Altrock 1997). 
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These operators attempt to answer the question "How much of an increase in one 
parameter can compensate for a lower value in another?" There is no pat answer to 
this question, and sometimes it doesn't have an answer. A sailboat needs at least one 
sail and one rudder. Two sails do not compensate for no rudder; and two rudders 
can't compensate for no sails. But in many cases, a compensatory operator makes 
sense. 

We limit our discussion to two compensatory operators: the mean operator and 
the gamma operator. The former is a simple arithmetic operator; the latter is more 
complex. We suggest that you use these operators with caution. It is a good idea in 
most cases to start out with Zadeh's original operators, incorporating compensatory 
operators only if needed; and, if needed, start with a relatively simple one, such as 
the mean operator. 

The intersection of two fuzzy sets is usually defined as the minimum set member- 
ship value, but with the mean operator it is defined as the average (mean) ofthe various 
set membership values. Thus, for our previous example for which the antecedent 
terms have truth values of 0.9, 0.7, 0.8, and 0.2, the truth level of the expression 
using the mean operator is 0.65 (rather than 0.20). Referring to the previously 
defined fuzzy sets X, Y, and Z, we can see that 

xnrOZmean-- ( 0 . 4 3  0.57 0 . 8 3 } a  + d + g 

In our fuzzy rule system implementation, which we discuss in the next chapter and 
is provided on the book's web site, we implement the mean operator as well as the 
traditional Zadeh intersection (min) operator. 

The more complex gamma operator was developed by Zimmerman and Zysno 
( 1980, 1983). They report that it represents, or mimics, the human decision process 
more faithfully than Zadeh's min/max operators used for intersection and union. 
The gamma operator is defined as follows: 

" amma : [i0"i] • 1 - ( 1  - ~ i )  

i=1 

where 0 < r < 1 and rn is the number of fuzzy membership values. 
The determination of the best value for gamma in a particular situation can 

be complicated and is beyond the scope of this book (see Von Altrock 1997 for 
a step-by-step process). In practice, most folks end up with a value between 0.2 
and 0.4 for gamma. We suggest that you try an initial value of 0.25 or 0.30 and 
adjust up or down by 0.05 until you get the best system performance you can. As an 
example of a result obtained with the gamma operator, consider the case for which 
r = 0.3,/,t 1 (X)  - -  0.3, and P 2 ( X )  - -  0.8. Then ~'(kt 1 , P 2 )  - -  0.35. You may want to work 
out other examples for yourself. 
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Fuzzy Rules 
Fuzzy rules, like the if-then rules in a traditional rule (or expert) system, have an 
antecedent part and a consequent part. There are several forms of fuzzy rules used 
in the literature. Usually, they share the same form for the antecedent part but have 
different expressions for the consequent part. Two of the most common fuzzy rules 
are the Mamdani-type fuzzy rule (Mamdani and Assilian 1975) and the TSK model 
(Takagi and Sugeno 1985; Sugeno and Kang 1986). Mamdami and Assilian employed 
rules in which the consequent is another fuzzy variable, while Takagi and colleagues 
used rules whose consequent is a polynomial function of the inputs (TSK model). 
The following two rules represent the generic expressions of the two forms of rules, 
respectively. 

IfXl is A1 a n d . . ,  and Xn is An then Y is Bj 

IfXl is A1 a n d . . ,  and Xn is An then Y = Po + Pl Xl + " "  + Pn Xn 

where Xl, .  • . ,  Xn are fuzzy input variables. Ai represents one ofthe fuzzy sets defined 
over the domain of the fuzzy variables Xi. Y is a fuzzy output variable, Bj is one of 
the fuzzy sets defined over the domain of variable Y, and Po,. • .,Pn are parameters. 

In addition to these two forms of rules, there is a rule form especially designed 
for classification (Ishibuchi et al. 1995): 

If X1 is A1 a n d . . ,  and Xn is An, then Y is class i with confidence degree = CDi. 

By default, the fuzzy rules discussed in this chapter are of the Mamdani-type. The 
TSK model is described in the later section of this chapter entitled The Takagi- 
Sugeno-Kang Method. For details on the third form of fuzzy rules, please refer to 
Ishibuchi et al. (1995) or other references. 

Fuzzification 
Given the fuzzy operators we have described, we can make significant progress 
toward constructing a workable fuzzy system. The first step is to learn how to com- 
bine antecedent sets, that is, the sets on the "if" side of a rule, using the operators just 
given; this step is calledfuzzification. Next we will discuss how fuzzy rules fire in par- 
allel. Then we'll figure out how to get the combined sets to produce an output that 
can be used to make an inference or control a system; this step is called defuzzifica- 
tion. Throughout this process we'll use a simplified example of a gas flow regulator 
for a furnace. The furnace may be used to heat air (more common in the United 
States) or to heat water that passes through radiators (more common in Europe). 

Suppose that a set of fuzzy if-then rules has been written to control the gas flow 
for the furnace. (Increasing the gas flow, of course, increases the energy available to 
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heat the building, and vice versa.) These rules could include such input parameters 
as indoor temperature, outdoor temperature, and change in indoor temperature 
over the past five minutes. Each input parameter would, of course, have fuzzy 
membership functions defined over its domain. (We recognize that a real controller 
of this type would almost certainly have more than three input parameters.) Our 
output parameter is the change in gas flow to the furnace. 

For purposes of our furnace example, we define the following parameters and 
fuzzy sets: 

For input parameters, we use those listed above, abbreviated to InTemp, OutTemp, 
and DeltalnTemp. Our output parameter is called FlowChange. The fuzzy sets 
are all triangular membership functions. 

For the InTemp parameter, we define three fuzzy sets: cool, comfortable, and 
too_warm. 

For OutTemp, we define five fuzzy sets: very_cold, chilly, warm, very_warm, and hot. 

For DeltaInTemp, we define five fuzzy sets: large_negative, smaltnegative, 
near_zero, small_positive, and large_positive. 

For FlowChange, we define five fuzzy sets: decrease_greatly, decrease_small, 
no_change, increase_small, and increase_greatly. 

Note that you don't have to use the same number of membership functions for each 
parameter; the number selected depends on a variety of things such as the resolution 
needed for that parameter. 

We don't concern ourselves with the details of all of the membership functions 
for all of the parameters here; we consider just enough of them to build a few rules. 
Following are a few possible rules: 

Rule 1" If InTemp is comfortable and DeltalnTemp is near_zero, then FlowChange is 
no_change. 

Rule 2: If OutTemp is chilly and DeltalnTemp is small_negative, then FlowChange is 
increase_small. 

Rule 3: If InTemp is too_warm and DeltalnTemp is large_positive, then FlowChange 
is decrease_greatly. 

Rule 4: If InTemp is cool and DeltalnTemp is near_zero, then FlowChange is 
increase_small. 

There may be a dozen or more rules in an actual system, but we'll consider only 
these four. Now, we have to know what the membership functions used in these 
four rules are before we can put them into action. Again, we look only at those we 
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need for the four rules. (Temperatures and changes in temperatures are in degrees 
Fahrenheit.) 

For In Temp, comfortable = { o  + 1 + o }. Just as a review, this is a triangular 
membership function with a membership value of 0.0 at 60 degrees, 1.0 at 70 degrees, 
and 0.0 at 80 degrees. So the membership values at both 65 and 75 degrees are 0.5. 

For In Temp, too_warm = { o  + 8_!0 + 9_!0 }. This is called a "right-triangular" 
membership function with a membership value of 0.0 at 70 degrees and 1.0 at 
80 degrees and above. 

In an analogous manner, for In Temp, cool = {3!60 + 1 + o }. This is a "left- 
triangular" membership function with a membership value of 0.0 at 70 degrees, and 
1.0 at 60 degrees and below. 

For Deltaln Temp: 

(o o) 
small_negative = --~ + --2 + -0 

(OlO) 
near_zero = --~ + -0 + - ~  

l large_positive = -~ + ~ + -~ 

For OutTemp: ( 0 1 o  1 chilly= -~-d + -~-d + -~--d 

Note that we've defined only those fuzzy sets we need to implement our four rules. 
We'll look at the details ofthe output parameter fuzzy sets later. For now, let's pick 

a set of input parameters and fuzzify them. Let's assume that the indoor temperature 
is 67.5 degrees, the change in indoor temperature over the past five minutes is -1.6 
degrees, and the outdoor temperature is 52 degrees. We now determine the resulting 
membership values for the fuzzy sets in our four rules. 

For InTemp, klcool (67.5) = 0.25, klcomfortabl e (67.5) 
= 0.75, and atoo_warm (67.5) = 0.0. 

For DeltalnTemp, l.tsmall_negativ e ( - -1 .6)  = 0.8, ktnear...zer o ( - -1 .6)  

= 0.2, and l.tlarge__positiv e (-- 1.6) = 0.0. 

For OutTemp, ktchilly (52)  = 0.9. 

Remember that Zadeh's method for the AND process, which we use here, is to take 
the minimum of the values in the antecedent. 

For Rule 1, we obtain 0.75 n 0.20 = 0.20 = I~no_chang e for  our output FlowChange. 

For Rule 2, we have 0.9 n 0.8 = 0.8 = I~increase_small for FlowChange. 
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For Rule 3 we get 0.0 fl 0.0 = 0.0 = l, taecrease...greatly for FlowChange, which means 
that rule 3 does not produce any output. Rule 3 is said to have fired but not to 
have been activated. 

For Rule 4 we get 0.25 n 0.2 = 0.2 = l.tincreasesmall for FtowChange. 

Note that rules 2 and 4 result in the activation of the increase_small fuzzy set. 

Fuzzy Rules Fire in Parallel 
So far, it has not been very hard to determine the set membership of various aspects 
of the furnace parameters and the consequences implied by the fuzzy sets. In this 
simple example, it is important to notice that all the rules were fired but only three 
out of four rules were activated, whether they were relevant (produced output) or 
not: Fuzzy rules fire in parallel. Of course, on a sequential "Von Neumann".com- 
puter, the parallelism is simulated by evaluating the rules in series and then executing 
an action based on the result. 

This parallelism entails quite a different approach from that of other control 
methods. For instance, in traditional AI systems, decisions are made sequentially, 
one after the other, and if the process runs into a dead end it backs out again or 
starts over, depending on what kind of algorithm (i.e., "depth first," "breadth first") 
is being used. 

When equations are used to make decisions, numeric variables must be defined 
precisely, and the decision is a function of those precise numbers. Forming rules 
using vague linguistic variables is often much more efficient for the task. Fuzzy logic 
evaluates an entire group of expressions and then makes a decision based on the set 
of evaluations. 

For our furnace gas flow controller with the input parameters given in the previ- 
ous section, assume that only rules 1, 2, and 4 among all the fuzzy rules are activated*, 
then only two out of five fuzzy sets defined over the output variable domain are acti- 
vated. The fuzzy set no_change is activated by rule 1, and the fuzzy set increase_small 
is activated by rules 2 and 4 with two different activation levels (membership values). 
Usually, especially when the number of fuzzy rules in the rule set is large, several 
fuzzy sets will be activated by several fuzzy rules with different activation levels. The 
activation levels for all activated fuzzy sets are combined to obtain the membership 
value for this fuzzy set. 

Remember that Zadeh's method for the OR process, which we use here, is to 
take the maximum of the membership values produced for each fuzzy set of the 
output variable in the consequent part by all the rules. So for the output fuzzy set 
no_change, we obtain membership value 0.2. For fuzzy set increase_small, we get 
0 . 2  O 0 . 8  = 0 . 8  = Uincrease_small. For the other three fuzzy sets, we get membership 
values of 0. 
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Defuzzification 

Note that the rules for our furnace gas flow controller relate to the change in the 
gas flow, not to its absolute quantity. The output (control) parameter is accordingly 
defined as flow change in cubic meters per minute, as illustrated in Figure 7.3. Note 
that five fuzzy membership functions are defined over the flow change domain. 

We have created a set of triangular membership functions that are positioned 
over different portions of the output variable domain (the change of gas flow rate). 
Specific values must be assigned to the domain range because defuzzification must 
yield one precise value for the output variable (or, in the case of more than one 
output variable, a precise value for each). 

As can be seen, the no_change (NC) membership function is centered at 0 
change and has left and right boundaries at -1  cubic meter per minute (CMM) 
change in gas flow and I CMM, respectively. The increase_slightly (IS) membership 
function is centered at 1 CMM change and has boundaries at 0 and 2 CMM. The 
increase_greatly (IG) membership function is centered at 2 CMM change with a left 
boundary at 1 CMM. It then has a constant membership value of 1 from 2 CMM to 
the upper limit of the dynamic range of the change_in_flow, specified as 3 CMM 
flow change. The left side of the graph of membership functions is symmetric, 
specifying values for decreasing flow: decrease_slightly (DS) and decrease_greatly 
(DG). For this example, a minimum flow increment (or decrement) of 0.1 CMM is 
specified. A discrete domain for flow change is thus defined with 61 possible values 
(including 0). 

Now suppose that the input parameters are as given in the previous section 
on fuzzification. We have shown that the if parts of the if-then rules produce the 
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Figure 7.3 Defuzzification of the furnace gas flow example. DG, decrease greatly; DS, 
decrease slightly; NC, no change; IS, increase slightly; IG, increase greatly. 
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following FlowChange fuzzy set membership values: ~Is = 0.8, ~NC = 0.2, and the 
three other memberships = 0.0. (One ofthe rules fired but didn't produce an output.) 

Clearly the membership values suggest increasing the gas flow somewhat, but 
how much? The final step is to get a nonfuzzy number or scalar out of our fuzzy 
logic system in order to precisely control the gas flow by increasing or decreasing it. 
The process of translating the output of the fuzzy rules into a scalar (a precise change 
in gas flow, in this case) is called defuzzification. 

There are a number of methods for defuzzification. Here we illustrate one 
called the clipped center of gravity approach. Numerical values associated with the 
antecedent linguistic variables (the if parts of the if-then rules) can be thought of as 
chopping off the set membership functions of the consequent (output) linguistic 
variables in Figure 7.3. In accordance with the FlowChange membership values 
listed above, then, we "chop off" increase_small (IS) at its 0.8 level and no_change 
(NC) at its 0.2 level. Chopping off the tops results in trapezoidal shapes. The other 
three fuzzy memberships are chopped off at 0, so they have no effect (in many 
fuzzy systems, most output fuzzy memberships produce zero effect). 

The most common way to derive a scalar from these functions is called the clipped 
center of gravity, or centroid, method: The idea is to find the "center of gravity" of 
the composite output membership function (the overlapping trapezoids), draw a 
vertical line from that point to the numeric variable, and use the numeric value 
found there to control the system or define a conclusion. 

If we represent the membership of element xi in fuzzy set A as kl A [Xi] and the ith 
value of the underlying numeric variable as xi, then equation 7.2 describes centroid 
defuzzification. Note that the output variable FlowChange in our example is defined 
over a discrete domain with 61 possible values. In the cases where the output variable 
is defined over a continuous domain, the summations in equation 7.2 are replaced 
with integrals. 

]~ xi~ (xi) 
i (7.2)  

Output= E la (Xi) 
i 

There are several ways to perform centroid defuzzification. One method allows 
the membership functions to overlap (cover one another), as seen in Figure 7.3. Each 
area of overlap is used only once. The center of gravity then defines a point on the 
numeric variable. This method, which is frequently used in fuzzy applications, yields 
a value of about 0.76 CMM increase in flow that should occur in the case illustrated 
in Figure 7.3. 

Another method adds the set membership functions where they overlap. An area 
is counted (weighted) twice if it is part of that triangular area common to two mem- 
bership functions that will be defuzzified. In Figure 7.3 the triangular area common 
to the IS and NC membership functions below the membership value of 0.2 would 
be counted (weighted) twice. It has been argued that this guarantees that each if 
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variable has an effect on the then variable, as set memberships are not covered by 
one another. 

In this simple example, the only output variable is the change in gas flow. In the 
later section on fuzzy control, we discuss the implementation of fuzzy logic in more 
realistic systems with multiple inputs and outputs. 

Other Defuzzification Methods 
There are other methods of defuzzification besides the centroid method, to be 
adapted to the particular situation in which they are being used. Defuzzification 
takes the outputs of all the fuzzy rules, maps them onto a numeric variable, and 
produces a scalar, or real nonfuzzy number, which can be used to define the conclu- 
sion of an argument, suggest changes in a dynamic system, or run a control device. 

A detailed discussion of these methods is beyond the scope of this book. We 
examine only three: the max-membership method, the mean-max membership 
method, and the center-of-maximum method. For more information about options 
for defuzzification, see a fuzzy logic textbook such as Ross (1995). The names of the 
methods may seem confusing to you; they are to us, too. In fact, it seems that many 
of the names are interchangeable. So it may be helpful to remember what they do 
and how they do it, rather than what they're called. 

Each method we discuss in this section is very simple. Each also uses a simplified 
representation of the output similar to Figure 7.4. 

The max-membership method is very simple and somewhat inexact. In this 
method, the centroid of the fuzzy membership function with the highest value is 
used for the defuzzified output scalar. In our furnace example, the centroid of the 
highest membership value (0.8) is at 1.0, so the output is set to 1.0 CMM flow 
change. This is significantly different from the value of 0.76 CMM obtained by the 
centroid method. 

Each of the remaining two methods projects the output for each membership 
function that is not 0 onto one point on the output domain. In the case of member- 
ship functions with a peak, the point coincides with the location of the peak. For a 
membership function with a flat top (the maximum membership is a plateau), the 
location coincides with the median value of the plateau projected down onto the 
domain axis. 

0.8 
0.2 

-1 0 1 2 
Change in Gas Flow in CMM 

Figure 7.4 Simplified representation of output for gas furnace example. 
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In our example, the two values on the domain axis, X1 and X2, are 0 and 1, and the 
corresponding membership values, u(xl) and u(x2), are 0.2 and 0.8, corresponding 
to the clipped values of the fuzzy sets NC and IS. 

The mean-max membership method (also called the middle-of-maximum 
method) simply averages the values on the domain axis (Ross 1995). So the output 
for our furnace gas example is (xl + x2)/2  = 0.5 CMM. Like the max-membership 
method, this value is significantly different from the value of 0.76 obtained by the 
center of gravity method, and it may not be sufficiently representative for many 
applications. On the other hand, it is extremely simple and fast to calculate. 

The center-of-maximum method (Von Altrock 1997) seems to us to be more 
representative of the clipped output membership functions. The activated mem- 
bership functions are represented by arrows, the length of which correspond to the 
(clipped) membership values, as in Figure 7.4. These are treated as weights pushing 
down on the dynamic range axis, and the "best compromise" position that balances 
the weights is chosen as the output. In our case, that occurs at point 0.8. Since in 
our example the interval between Xl and x2 is 1.0, the calculation is 0.2 * Xout = 0.8 * 
(1.0 - Xout), and Xout = 0.8. This method produces an output value close to that pro- 
duced bythe centroid method (0.76) and is fast to calculate. It seems like a reasonable 
choice for many practical applications. 

In the fuzzy rule system implementation described in the next chapter, we have 
included three types of defuzzification: the center of gravity without overlap, center of 
gravity with overlap, and max-membership methods. You might want to implement 
the center-of-maximum (or some other) method on your own. 

Measures of Fuzziness 

Now that we've discussed the process of running a fuzzy system, let's consider fuzzi- 
ness metrics that help us answer the question "How fuzzy is it?" In this section, we 
discuss quantitative measures of fuzziness for discrete fuzzy sets. Measures of fuzzi- 
ness are metrics of fuzzy uncertainty, which is that type of uncertainty that arises 
from linguistic imprecision or vagueness. Stated another way, measures of fuzziness 
estimate the average ambiguity in fuzzy sets in some well-defined sense (Pal and 
Bezdek 1994). Ambiguity is the degree or extent to which an element belongs to a 
fuzzy set. One measure of ambiguity is entropy. 

Set membership functions describe the degree to which an element is a mem- 
ber of a set. Thus, a fuzzy membership value near 0 or near 1 represents an item 
that would be considered not-in or in the corresponding crisp set. For example, in 
the set "fish," 

lafish(bass) = 1.0, ,fish(goldfish) = 1.0, lafish(Seahorse) = 0.8, lafish(whale) = 0.0 

we can say with some certainty that a crisp set, "fish," would contain {bass, goldfish}, 
and that "not-fish" would contain {whale}. We may need to consult a zoology text 
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before deciding that seahorses are indeed a kind of fish, thus pushing its "fish" set 
membership toward 1.0. 

On the other hand, a set such as "flowers," 

I~flowers(rose) = 1.0, l~flowers(dogwood) = 0.5, ~flowers(bread) = 0.0 

presents the problematic case of the dogwood, whose "flower" is actually an ornate 
ring of white or pink leaves. 

It is meaningful, then, to state that classification of roses and bread as flowers is 
more certain than classification of dogwoods. The set of fuzzy membership values 
"flowers" is fuzzier than the set "fish." Fuzzy logic needs a measure of the fuzziness 
of sets, or the uncertainty of set membership values, in order to completely describe 
the relationships of elements to sets and sets to one another. 

Entropy is a measure of the disorganization of a physical or informational system, 
which is presumed to be constantly increasing as systems wear down, run down, and 
deteriorate. Even though the universe appears to be an orderly arrangement of plan- 
ets circling stars and stars clustering in galaxies, according to commonly accepted 
theories of the universe, we may be sure that eventually all the planets will fall from 
their orbits and all the stars will burn up and collapse into a dark heap: This is a 
great source of pleasure for cynics and misanthropes. Everyone's desk, on its own, 
tends to get messy. Entropy always tends to increase. Entropy is also used in informa- 
tion theory as a measure of information in a message or bit string. High uncertainty 
corresponds to high entropy. 

Because entropy is a measure of ambiguity, the concept of entropy is relevant to 
a discussion of fuzziness. A set with membership values near 0 and 1 can be used 
with a degree of certainty that correlates with the extremity of memberships. On the 
other hand, operations involving sets whose elements are not clearly "in" or "out" of 
the set present problems: The uncertainty, or entropy, of those sets seems to escalate 
as the sets are combined, until the outcome is entirely unpredictable and mean- 
ingless. From a strictly geometrical perspective (Kosko 1994), fuzzy entropy is thus 
maximum at the center of the hypercube defined by the fuzzy membership values 
defined in the fuzzy set. 

Numerous measures of fuzziness have been proposed. Many of them are dis- 
cussed in Pal and Bezdek (1994). These measures are based on things such as the 
distance from a set of fuzzy membership values to the nearest crisp set and the dis- 
tance between a set of fuzzy membership values and its complement. 

A number of attributes exist that seem to make sense for any definition of 
fuzziness. For example, since the ambiguity of any crisp set is 0, its fuzziness should 
also be 0. And since maximum ambiguity occurs for a 0.5 membership value, the 
set S with maximum fuzziness is one for which ~s(X) = 0.5 V x. As membership 
values move away from 0.5 toward 0 or 1, ambiguity (and therefore fuzziness) 
decreases. 
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One way of describing decreasing ambiguity is to define a sharpened set. A set S* is 
said to be a sharpened version of S when Us* (x) <_ Us(X) if Us(X) <_ 0.5, and Us* (x) >_ 
Us(X) if Us(X) >_ 0.5. Since a sharpened set is less ambiguous, it also has a lower 
fuzziness. 

Another attribute is that the fuzziness of a set and its complement should be the 
same. There is equal ambiguity in "tall" and "not-tall," for example. 

Partially based on these attributes, a number of requirements, or conditions, have 
been developed that measures of fuzziness should satisfy. We use the word "should" 
because various authors do not agree on the minimum requirements. Five require- 
ments proposed by Ebanks (1983) are listed below. The first three were originally 
suggested by DeLuca and Termini (1972). A sixth was also proposed by Ebanks, but it 
is generally not considered because of its difficulty of interpretation (Pal and Bezdek 
1994). In the following requirements P1 to P5, A and B are fuzzy sets over a domain 
X, and H(A) and H(B) are fuzziness measures for the sets. 

P 1, sharpness: H(A) = 0 if A is a crisp set; that is, UA (x) -- 0 or 1 V x ~ X. 

P2, maximality: H(A) is maximum for UA (x) = 0.5 V x ~ X. 

P3, resolution: H(A) >_ H(A*), where A* is a sharpened version of A. 

P4, symmetry: H(A) = H(1-A) ,  where Ul-A (x) = 1 -- UA (X) X~ X ~ X. 

V5, valuation: H(AUB) + H(AnB) = H(A) + H(B). 

As stated earlier, authors disagree about which of the conditions are sufficient for 
a fuzziness measure. For example, Yager and Filev (1994) believe that the first three 
(P1-P3) are sufficient, while Pal and Bezdek (1994) assert that all five (P1-P5) are 
required. 

The first four seem intuitive relative to the fifth. P5 derives from crisp sets, where 
the number of elements in the union oftwo sets plus the number in their intersection 
equals the sum of the number of elements in each set. It is not clear that this condi- 
tion is necessary for all fuzzy applications. The three measures of fuzziness discussed 
next adhere at least to P 1 to P4, and two of them adhere to all five requirements. 

The first fuzziness measure presented is that developed by DeLuca and Termini 
(1972). Their entropy measure, linT, is of the same form as Shannon's entropy mea- 
sure. Equation 7.3 presents the measure, where Kis a constant of normalization. This 
fuzziness measure adheres to all five conditions (P1-P5). 

n 

HDT(A) = - K  Z (Pi log~i + (1 - ~i) log(1 - I~i)) 
i=1 

(7.3) 

Remember that we are working with discrete fuzzy sets, so each n value of the sub- 
script i corresponds to one of the n discrete values of x over the domain X. 
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The second fuzziness measure was developed by Pal and Pal (1989). It is based on 
a measure they developed for probabilistic entropy that incorporates an exponential 
gain function. Equation 7.4 presents the Pal and Pal entropy measure Hpp, where 
e = 2.718.. . ,  and K is again a normalization constant, which, when set properly, 
allows Hpp to satisfy all five conditions P 1 to P5. 

n 

Hpp(A) = K Z gie(1-]/i) .+. (1 - gi) e#~ 
i=1 

(7.4) 

The third fuzziness measure was developed by Kosko (1986). This measure 
requires the definition of the distance dq(A, Anear) between a fuzzy set A and the 
crisp set Anear nearest to A, and the distance dq (A, Afar) between A and the crisp set 
Afar farthest from A. 

Membership values for Anear and Afar are 

( .  

(x)= ~ 1  if #A (X) > 0. 5 
gAnear [ 0 otherwise 

= f 1 if PA (X) ~ 0.5 (x) I.tAfar [ 0 otherwise 

Now, 

n ] 1/q 
dq(A, Anear) = E I gA,i- gAnear, i [ q 

i=1 

in dq(A, Afar) = E l #A,i -- gAfar, i l q 
i=1 

and 

The distances are called the linear (Hamming) or quadratic (Euclidean) distances for 
q = 1 or 2, respectively. 

The entropy measure defined by Kosko, HK, is the ratio of the distance between a 
fuzzy set A and Anear t o  the distance between A and Afar, as illustrated in equation 7.5. 
Either the Hamming or the Euclidean distances may be used (the same value of q 
must be used in the numerator and denominator). Hr satisfies conditions P 1 to P4, 
but doesn't always satisfy P5. 

HK(q,A) = dq(A, Anear) 
a (A,A ar) (7.5) 
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Note that for practical systems, HDT and Hpp a r e  often normalized so that they 
produce values between 0 and 1, HK is inherently normalized. Also note that higher 
values of fuzziness are not necessarily "better" in an application. Remember that 
maximum fuzziness is represented by a membership function with a membership 
value of 0.5 over its entire domain (which is almost certainly useless). 

Fuzziness measures are often used to measure the relative fuzziness of various 
models, selecting the model to "harden" that is least fuzzy. For example, in the case 
of cluster validity functions, the partition of the data that has the minimum fuzziness 
is chosen as "best." 

If one of the three measures of fuzziness described here doesn't meet your needs 
in an application, refer to Pal and Bezdek (1994) for others you can evaluate. Or you 
can create your own. 

Now that we've completed our initial look at approximate reasoning, including 
an example of the process of fuzzification, fuzzy rule firing, and defuzzification, and 
our look at measures of fuzziness, let's review an example a common application of 
fuzzy logic: fuzzy control. 

Developing a Fuzzy Controller 

Fuzzy logic is studied by researchers in many fields, including not only engineering 
and computer science but also psychology, business and management, linguistics, 
philosophy, and mathematics. Not surprisingly, developments in the field have been 
diverse in their interpretation and applications, ranging from the ethereally philo- 
sophical to nuts-and-bolts arguments about the best way to defuzzify a particular 
system. The topics introduced in this section have implications for a wide range of 
fuzzy implementations. 

One of the largest applications of fuzzy logic is in the area of control engineering. 
The use of fuzzy logic for control was first presented by Mamdani and his colleagues 
in the early 1970s (Mamdani and Assilian 1975) and grew to the point that there were 
thousands of industrial applications of this technology by the mid-1990s (Hirota 
1995). 

Why Fuzzy Control 
There are several reasons why fuzzy control has gained such popularity. From an 
operational perspective, fuzzy controllers provide a systematic and efficient frame- 
work for incorporating linguistic information from human experts. Fuzzy control is 
a nonparametric approach that does not require a mathematical model of the sys- 
tem under control. Fuzzy control also produces nonlinear controllers, which extend 
their utility to a wide range of applications. 
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From a practical perspective, assuming you have sufficient knowledge about 
system behavior, fuzzy controllers are relatively easy to design, making them less 
expensive than alternative approaches. In addition, fuzzy controller concepts are rel- 
atively easy to understand because they are based on rules and their interactions. 

A Fuzzy Controller 
One general approach to fuzzy control is shown in Figure 7.5. The system being 
controlled, the plant, has its state changed by inputs. The change in the plant's state 
produces a different plant response (output). The fuzzy controller's job is to pro- 
vide a set of inputs that produce the desirable output from the system. The fuzzy 
controller interacts with the plant through an action interface (defuzzifier) for plant 
inputs and a condition interface (fuzzifier) that accepts plant outputs. 

A rule base defines the actions of the fuzzy controller. There are five steps in 
constructing this fuzzy rule base: 

1. Identify and name the input variables and their ranges. 

2. Identify and name the output variables and their ranges. 

3. Define a set of fuzzy membership functions for each input and each output 
variable. 

4. Construct the rule base that will govern the controller's operation. 

5. Determine how the control actions will be combined to form the executed 
action. 

This rule base construction process is illustrated in the next section with an ideal- 
ized problem. In this example we use an approach that was pioneered by Mamdani 
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T 
Figure 7.5 Fuzzy controller overview. 
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(Mamdani and Assiliani 1975). We use an approach developed by Takagi and Sugeno 
(1985) later. 

Building a Mamdani-type Fuzzy Controller 
To illustrate the construction of a rule base, we use the problem of controlling the 
speed of a train. The objective of the controller is to smoothly slow and stop a train 
that is traveling at any speed and is any distance from the station. 

Step 1: Identify and name the input linguistic variables 
and their numerical ranges 
Two input variables have been identified: train speed and distance to the station. 
There are five ranges of speed: 

Table 7.1 Speed (km/hr) 

Fast 26.5 70 

Medium fast 6.5 46.5 

Slow 2.5 10.5 

Very slow 1 4 

Stopped 0 2 

There are also five ranges of distance: 

Table 7.2 Distance (meters) 

Far 1,500 oo 

Medium far 100 3,000 

Near 3 200 

Very near 1 5 

At 0 2 
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Step 2: Identify and name the linguistic output variables 
and their numerical ranges 
There are two output variables that have been identified: train throttle and train 
brake. There are five ranges of throttle (%): 

Table 7.3 Throttle 

Full 60 100 

Medium 20 80 

Slight 3 30 

Very slight 1 5 

No 0 2 

There are also five ranges of brake (%): 

Table 7.4 Brake 

Full 98 100 

Medium 95 99 

Slight 70 97 

Very slight 20 80 

No 0 40 

Step 3: Define a set of fuzzy membership functions 
for each input variable 
In this example, we use triangular (including left- and right-triangular) member- 
ship functions. Each range of input and output variables is defined to associate 
with a fuzzy set that has the same name as the range. Therefore, there are five 
fuzzy sets defined for each input and output variable. The low and high values 
of each range are used to define its associated fuzzy set's triangular membership 



Developing a Fuzzy Controller 

functions. The membership functions for speed and distance are shown in 
Figures 7.6 and 7.7, respectively. The membership functions for throttle and brake 
are shown in Figures 7.8 and 7.9, respectively. Note that the height of each function 
is 1.0 and the function bounds do not exceed the high and low ranges listed above 
for each range. Note also that the horizontal scales are not linear. They are drawn 
so that they fit on the page, but emphasize those portions with which we are most 
concerned in our example. 

Stopped 
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Figure 7.6 Fuzzy membership functions for speed. 
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Figure 7.7 Fuzzy membership functions for distance. 
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Figure 7.8 Fuzzy membership functions for throttle. 
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Figure 7.9 Fuzzy membership functions for brake. 

Step 4: Construct the rule base that will govern 
the controller's operation 
A rule base is represented as a matrix of combinations of a fuzzy set of each input 
variable. At each matrix position is one fuzzy set of each output variable related to 
the input variables. (Note that for each set of inputs, two fuzzy sets are specified for 
the two output variables, respectively.) The rule base matrix in Figure 7.10 for our 
idealized problem has only 12 rules that describe the interaction between inputs and 
outputs. In this example, the columns are distance fuzzy sets and the rows are speed 
fuzzy sets. Note that if there is a fuzzy set specified for one output variable, all output 
variables must have fuzzy sets specified. 
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Figure 7.10 Fuzzy rule base matrix. 

Each entry in the rule base is defined by ANDing the inputs to produce individual 
output responses. As an example, the shaded matrix entry in Figure 7.10 means 

IF (speed) IS (stopped) AND IF (distance) IS (at) 

THEN (full brake) AND (no throttle) 

Each of the matrix entries uses the same rule combination process. 

Step 5: Determine how the control actions will be combined 
to form the executed action at the action interface 
To illustrate how the control actions are combined to produce the executed action 
at the action interface, consider the inputs 

speed = 3km/hr 

distance = 1.8 m 

The first step is to determine which membership functions are activated and to 
what degree. Four fuzzy sets are activated: the distance fuzzy sets At and Very Near 
and the speed fuzzy sets Very Slow and Slow. The membership ofthe speed of 3 km/hr 
for the fuzzy set Very Slow is 0.667 and the membership of 3 km/hr for the fuzzy set 
Slow is 0.125. Mathematically these are denoted as 

g Very Slow (3) = 0.667 

#Slow(3) = 0.125 

These membership function values are graphically illustrated in Figure 7.11. 
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Figure 7.11 A speed of 3 km/hr activates two fuzzy membership functions, Very Slow and 
Slow. 

Similarly, the membership values for the distance of 1.8 m in the fuzzy sets for At 
and Very Near are 

l~Very Near( 1.8) - 0.4 

~At(1.8) -- 0.1 

These fuzzy membership values are shown in Figure 7.12. This results in four rules 
firing in the rule base matrix, as shown in Figure 7.13 (rule numbers, arbitrarily 
assigned, are shown in the lower right corner of the matrix entry). 

Next, we combine the membership values using the AND (min) operator for 
each rule combination: 

Rule 1: UVery Slow AND l lA t  ---- l.lVery S l o w N A t  - -  min(0.667,0.1) = 0.1 

Rule 2: USlow AND UAt = I I S l o w A A t  " - -  min(0.125,0.1) = 0.1 

Rule 3: UVery Slow AND UVery Near = UVery Slown Very Near = min(0.667,0.4) - 0.4 

Rule 4: USlow AND UVery Near --- l ' tSlowA Very Near = min(0.125,0.4) = 0.125 

The values 0.1, 0.1, 0.4, and 0.125 are the firing strengths of rules I through 4, respec- 
tively, for the input (3, 1.8). 

Let's compute the output value for Brake first. We determine the membership 
value for each fuzzy set ofthe output variable Brake. Rules I and 2 are associated with 
the fuzzy set Full Brake. Rules 3 and 4 are associated with the fuzzy set Medium Brake. 
The fuzzy set Full Brake is activated with membership values 0.1 and 0.1. The fuzzy 
set Medium Brake is activated with membership values 0.4 and 0.125. Therefore, the 
fuzzy set Full Brake has membership value 0.1 and the fuzzy set Medium Brake has 
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Figure 7.12 A distance of  1.8 m activates two  fuzzy sets, At and Very Near, wi th  membership 
values of 0.1 and 0.4, respectively. 
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Figure 7.13 Four rules are activated w i th  the inputs speed = 3 and distance = 1.5. 

membership value 0.4 by taking the maximum of the two activated membership 
values for each fuzzy set, respectively. 

The centroid defuzzification with overlap, described earlier, is used here to obtain 
the output value. The resulting centroid is shown in Figure 7.14. The horizontal 
coordinate of the centroid along the x-axis yields an output value of 97.01 percent 
application of the brake. 

The same methodology is used to determine the output value for the percentage 
of throttle, which is left as an exercise (Exercise 5) for the student. The construction 
of the fuzzy controller is now complete. 
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Figure 7.14 Extrapolation of the centroid to the percentage of brake. 

Fuzzy Controller Operation 
During operation, input values are continually sampled and presented to the fuzzy 
controller. The fuzzy controller then repeats the process described earlier in step 5: 

= Determine the fuzzy membership values activated by the inputs (illustrated 
by Figures 7.11 and 7.12). 

m Determine which rules are activated in the rule base matrix (illustrated by 
Figure 7.13). 

m Combine the membership values for the activated rules using the AND 
operator (illustrated by computing rules I through 4). 

[] Combine the activated membership values for each fuzzy set of an output 
variable. 

Use centroid defuzzification to determine the value for each output variable 
(illustrated by Figure 7.14). 

Takagi-Sugeno-Kang Method 
Another methodology for modeling and control is the Takagi-Sugeno-Kang (TSK) 
fuzzy reasoning method (Sugeno and Kang 1986; Takagi and Sugeno 1985), which 
yields Quasilinear Fuzzy Models (Yager and Filer 1994). The main difference 
between the TSK method and that of Mamdani is that rather than having a fuzzy 
consequent, each rule's consequent is a mathematical function. This function cal- 
culates an output value as a function of one or more of the set of input variables; 
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some or all of these same input variables are used in the fuzzy antecedents of the 
rules. As developed by Takagi, Sugeno, and Kang, the function is affine (the output 
is a linear plus a constant function of the inputs), but the method has been extended 
to nonlinear functions. 

The general form of a fuzzy rule in a TSK model, then, is 

IfXl is S1 a n d , . . . ,  and Xk is Sk then y = U ( X l , . . . ,  Xk) -- ao + a l X l  

+ a2x2 + " "  + akXk 
(7.6) 

where y is the consequent (output) variable whose value is inferred, each xi is an 
input variable (an antecedent) that may also appear in the consequent part of the 
rule, each Si is a fuzzy set represented by a membership function, and U ( X l , . . . ,  Xk) 

is a specified function, u • ~R k -~ ~R. L inear  membersh ip  f unc t ions  over each input 
variable are linear functions that monotonically increase (or decrease) over their 
domain. Linear membership functions were used by Takagi and Sugeno, but their 
method is routinely used with other kinds of membership functions, including sig- 
moidal and Gaussian. 

Variables that are not input variables (Xk+ 1, etc.) that are important for obtaining 
the output estimation can also be included in the consequent (conclusion) func- 
tion on the right of equation 7.6. For example, in our furnace gas flow example 
discussed earlier, we might add the current (total) gas flow (CurFlow)  as a variable 
to be included in the consequent function. 

A complete model, or system, then, is defined by n fuzzy rules Ri for i = 1 , . . .  ,n, 
as follows: 

IfXli is Sl i  a n d , . . . ,  and Xki is Ski, then yi = u i ( x l i , .  • • ,Xki )  

Calculating the output of the system involves finding the intersection, usually the 
minimum or product, of the fuzzy membership values of the antecedents. That is, 

a(y i )  = min {laSli(Xli) , .  . . ,  laSki(Xki)} o r  

a(yi)  = rI {laSli(Xli) , .  . . , laSki(Xki)} 

where a(yi) is the firing strength, or truth (membership) value, of rule i. 
Then the system output y resulting from all n rules is calculated as shown in 

equation 7.7 

a(yi) Yi ~ t l(yi)  
n n 

i=1 2 ,=l 2 
j - 1  j - 1  

ui(x l i  , . . . , Xki) (7.7) 
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Figure 7.15 Fuzzy membership functions for the Takagi-Sugeno-Kang example. 

The system output y is thus a weighted average of the individual subsystem 
outputs Yi. 

The following simple example illustrates implementation of the Takagi-Sugeno- 
Kang method. Assume that we have a system with fuzzy membership functions over 
the input domains, as shown in Figure 7.15. Also assume that there are two rules, as 
follows: 

Rule 1" If Ul is Sl_low and u2 is S2_low, then )'1 = 0.5Ul -b 0.2u2 

Rule 2: If Ul is Sl_high and u2 is S2_high, then y2 = Ul + u2 

Now suppose that Ul "- 8 and u2 = 4. Then PSl_low(Ul) = 0.2 and ltS2_low(U2) ---- 
0.5, so the first rule results in a(Yl) = 0.2. Likewise, s i n c e  i.lSl_high(Ul) - -  0 . 8 ,  and 
blS2_high(U2) = 0.33, the second rule results in a(y2) = 0.33. 

Since yl = 4.8 and y2 = 12, the crisp output value inferred by the two rules is 

y __ 0.2(4.8) + 0.33(12) _~ 9.36 
0.2 + 0.33 

The determination of system structure and parameters is discussed in detail in 
Takagi and Sugeno (1985). Methods for determination of the parameters a0, a l , . . . ,  
for the consequent function (see equation 7.6), for example, include the least mean 
squares technique. Data taken during successful operation by a skilled operator can 
be used to develop the "learning model" for the parameters. With respect to this 
learning model, Terano, Asai, and Sugeno (1989) say, "It is not too much to say that 
it is indispensable." System structure design and parameter identification can also 
be accomplished using evolutionary computing methods similar to those described 
in Chapter 8 for the evolutionary fuzzy rule system. 

The TSK method is particularly useful for modeling very complex systems. The 
method's fuzzy techniques facilitate the decomposition of the state spaces of these 
systems into relatively simple subsystems. The TSK methodology is used to smoothly 
interpolate system dynamics among the multiple regions to which an operating 
point may belong. 

The TSK method allows objective system performance data, in the form of 
either system equations or actual operating data, to be explicitly incorporated into 
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the system model. This can be done while incorporating expert knowledge in the 
formulation of the fuzzy rules. 

Summary 

Evolutionary computation and neural networks are attempts to mimic or 
simulate emergent natural processes that have proved effective information- 
processing methods "in the wild." Logic, on the other hand, is an artificial method 
devised by humans. Although one could argue that the capacity for reasoning 
evolved through natural adaptation, it is clear that the calculus of symbolic logic 
has only been invented through millennia of investigation, and only in certain 
societies on earth. More likely one would say that what has evolved is actually the 
ability to use language, which is primarily communicative but can be exploited to 
encode inferential relations among symbols. 

Western society has always trusted that Aristotelian logic would eventually be 
used to explain all kinds of causal and implicative relations. But with the inven- 
tion of fast electronic computers, it became apparent very quickly that binary logic 
was adequate for explaining very few real-world logical relations. It was too precise, 
especially in assuming that objects in the world really do belong to crisp taxonomic 
classes. 

Zadeh's revolution, however, has opened the possibility that reasoning can 
explain a great amount about the world, with some fundamental adjustments. 
First, the distinction between A and not-A has been weakened, so that an element 
can belong to a set (class or category) and also not belong to that set. The element 
can even belong to a set and to its opposite. 

Second, in fuzzy expert systems all rules fire at once, at least theoretically. Prac- 
tically, this means that the system always produces an answer. Traditional expert 
systems can get "stuck," a situation that arises from the rules firing sequentially, 
when the answer to a question leads to a condition from which it is not possible to 
proceed. The importance of this aspect of the fuzzy revolution can hardly be over- 
stated. Fuzzy logic asks all the questions simultaneously and blends the answers 
in parallel to form an answer from the whole. 

This parallelism constitutes a step back from the artificiality of binary logic, 
toward the more natural implementation of massive neural parallelism. If the com- 
putational intelligence perspective is seen as a tendency to focus on the emergence 
of solutions within a computer program, as opposed to the imposition of solu- 
tions through rules and constraints, then fuzzy logic belongs here. A strength of 
the fuzzy method is that the rules encoded in a fuzzy system allow unanticipated 
solutions; solutions can emerge that were not imposed by a knowledge engineer 
or programmer. This is computational intelligence. 
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E x e r c i s e s  .............................................................................................. 

1. Given that we are working with the domain of "age" of a population of people, 
define a set of fuzzy membership functions over the domain that might be 
appropriate for use by an insurance company determining risk of Alzheimer's 
disease, which affects mainly older people. Repeat the exercise for use by a 
medical organization for diagnosing appendicitis, which is assumed for this 
exercise to affect people regardless of age. Justify the number and distribution 
of fuzzy sets. 

2. Fuzzy sets V and W are defined on the same universe of five individuals as follows: 

V {1.0 0.8 0.6 0.20 O} 
= ----+ + + + -  

q r s t u 

{1.0  0.6 0.45 0.15 O} 
W= + - - - +  + + -  

q r s t u 

For Vand W, find: (a) VA W, (b)Vu W, (c)V, (d)W, (e)Vn W, (f)Vu W. 

3. For each of the three measures of fuzziness defined in the chapter (equations 
7.2, 7.3, and 7.4), calculate the fuzzy entropy of one of the fuzzy membership 
functions you defined in exercise 1. (Remember that the membership function 
is defined over the entire age domain.) 

4. Using the fuzzy membership functions defined in the chapter for the slowing of 
a train near a station, determine the percent of braking applied when the train 
is moving 3 km/hr and is 8 m from the station. 

5. Determine the percent of throttle applied for the conditions described in 
exercise 4. 

6. Use the centroid with overlap defuzzification method to calculate the output value 
of the output variable FlowChange as shown in Figure 7.3. 

7. Implement the center of maximum method of defuzzification in the fuzzy 
source code. 

8. What are the advantages of using fuzzy controllers? 

9. Following the five steps discussed in this chapter, design a fuzzy room 
temperature controller. 



chapter 
e l  {2 

Fuzzy Systems Implementations 

In the last chapter, we discussed the basic 
concepts of fuzzy logic and fuzzy sys- 
tems. Now we are ready to apply what we 
learned. This chapter presents two imple- 
mentations of fuzzy systems: fuzzy rule sys- 
tems and evolutionary fuzzy rule systems. 
First, we discuss common issues, such as 
how to represent fuzzy rules, related to 
fuzzy rule system and evolutionary fuzzy 
rule system implementations. Then we pro- 
vide the detailed descriptions of the sys- 
tem implementations. The executable code 
and source code are available at the book's 
web site. 

Similarly to previous chapters on imple- 
mentation (Chapters 4 and 6), we have 

included code listings such as class defini- 
tions and operator definitions. If you are 
not interested in the details of program- 
ming, you may want to skim these listings, 
noting what is included and what is accom- 
plished by the code in each listing. 

The source code is being distributed as 
shareware. You are welcome to download 
it and use it for classroom or personal learn- 
ing experiences in conjunction with the 
textbook at no cost. If you use it, either as 
is or with modification, for a project out- 
side of your classroom (or learning on your 
own), please submit a payment in accor- 
dance with the shareware payment instruc- 
tions on the Internet site for the book. m 
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Implementation Issues 

Before we get to the specific implementations, it is a good idea to address the main 
issues common to the implementations of fuzzy rule systems and evolutionary fuzzy 
rule systems. We do that in this section. These issues include the representation of 
fuzzy rules, evolutionary design of fuzzy rule systems, and the programming lang- 
uage to be used for implementations of fuzzy systems. 

Fuzzy Rule Representation 
In this chapter, a fuzzy rule system with Mamdani-type fuzzy rules is implemented. 
(Mamdani fuzzy systems are described in Chapter 7.) Theoretically, each fuzzy vari- 
able can have any number of fuzzy sets, but 3, 5, 7, or 9 fuzzy sets are common 
for each fuzzy variable. (An odd number of fuzzy sets is almost always used. There 
seems to be no particular reason for this other than the resulting symmetry about the 
center of the variable range.) Each fuzzy rule can be easily described in linguistic 
terms. For example, a one-input-one-output fuzzy rule can be described as 

if input is Low, then output is Medium 

This linguistic representation is favored by human beings but not by digital 
computers, which use numbers as the medium for computation. To represent the 
language of a computer better, in the following implementation numbers represent 
the fuzzy rules. For example, for a fuzzy variable with 3 fuzzy sets (Low, Medium, 
High),  four integer numbers (0,1,2,3) can be used to represent these fuzzy sets: 
0 represents don '  t c a r e ,  and 1, 2, and 3 represent Low, Medium, and High, 
respectively. For a fuzzy variable with 5 fuzzy sets (Very Low, Low, Medium, Hi gh, 
Very High), six numbers (0,1,2,3,4,5) can be used to represent these fuzzy sets: 
0 again represents don '  t c a r e  and 1, 2, 3, 4, and 5 represent Very Low, Low, 
Medium, High, Very High, respectively. With this in mind, the above one-input- 
one-output rule can be represented as 1 2, assuming that three fuzzy sets exist for 
each variable. 

For a fuzzy rule with the modifier no t  before its fuzzy set, the rule can be 
numerically represented by adding a minus sign (-) before the corresponding 
number. For example, if the above rule is changed to 

if input is not Low, then output is Medium 

its numerical representation is accordingly changed to -1 2. 
To illustrate further, here are two fuzzy rules for a two-input-one-output fuzzy 

rule system, with each fuzzy variable having three fuzzy sets: 

if input_l is not Low, and input_2 is High, then output is Medium 
if input_2 is Low, then output is High 
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These two rules can be represented numerically as -1 3 2 and 0 1 3 (remem- 
ber that 0 means "don't care"). 

Evolutionary Design of a Fuzzy Rule System 
One common approach to designing fuzzy rule systems uses human experts' expe- 
rience and a trial-and-error approach. This may work well for some simple appli- 
cations, especially with only a few variables. When human expertise is not available 
and/or the system is complicated, however, automated approaches are preferable for 
developing fuzzy rule systems. 

A straightforward approach is to use clustering algorithms to divide the problem 
space into many subspaces with or without overlaps. Each subspace is transformed 
into a rule by mapping its center according to the definitions of fuzzy variables. The 
obtained rules are generally adjusted by, for example, tuning the membership func- 
tions or selecting fuzzification and defuzzification methods. 

In this chapter, we describe an implementation of an evolutionary fuzzy sys- 
tem using a genetic algorithm (GA). The design of a fuzzy rule system can be 
looked at as a search problem in a multidimensional space that is infinitely large, 
nondifferentiable, complex, noisy, multimodal, and deceptive (Shi, Eberhart, and 
Chen 1999). Evolutionary algorithms have been shown to be superior to traditional 
design approaches in finding optimal and near-optimal solutions in this complex 
high-dimensional search space. 

To design fuzzy rule systems using GAs, several issues need to be addressed, as 
follows: 

m What parts of the system are being evolved? 

m How are system elements best represented? 

[] How should the population be initialized? 

m How are individual fitnesses evaluated? 

m What genetic operators should be used? 

We now look at each of these issues in turn. 
The first issue is to decide what parts of the system are being evolved. The 

performance of a fuzzy rule system is completely determined by its fuzzy rules 
and membership functions, and its fuzzification and defuzzification approaches. 
Which of these parts are to be evolved depends on the problem to be solved. Each 
part can be evolved with other parts fixed, or a combination of several parts, or 
even the whole system, can be evolved simultaneously. In our implementation, 
we focus on the evolution of the fuzzy rule set (including the number of rules 
in the fuzzy rule set) and the membership functions (including the membership 
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function location and the membership function type~for example, triangle, 
sigmoid, etc.). 

The next issue to consider is how to represent the system elements. Similar to 
evolutionary neural networks, the fuzzy rule system to be evolved needs to be 
represented as individuals for an evolutionary algorithm to work on. Various rep- 
resentations can be used. Binary representations were originally used in genetic 
algorithms. It is natural to represent fuzzy rules using binary strings. For a fuzzy 
variable with three fuzzy sets (Low, Medium, and High), a string of three bits can 
be used to represent which fuzzy set(s) is (are) included in the rule. For example, 
101 means that the Low and High fuzzy sets for this fuzzy variable are included but 
the Medium fuzzy set is not. For a fuzzy system with two input fuzzy variables and 
one output fuzzy variable, if each variable has three fuzzy sets, then a binary string 
ofthe nine bits 101 001 100 represents the fuzzy rule: i f  i n p u t  one  i s  Low or  
High and input two is High, then the output is Low. 

A feature of this representation is that it can represent rules with the OR opera- 
tion. Another way to represent the fuzzy rules is through using 1 and 0 to represent 
whether a fuzzy rule exists or not. This approach can only represent AND operations 
among the variables in the antecedent part. For example, for the above fuzzy system, 
the total number of possible fuzzy rules is 3 × 3 × 3 = 2 7, so a binary string 
of 2 7 bits can completely represent the fuzzy rule set with the position index of the 
bit representing the content of the rule and the position value 0 or 1 representing 
whether this rule exists or not. 

Fuzzy membership functions can also be represented by binary bits. For example, 
each parameter of a membership function can be represented by a string of binary 
bits, say 7 bits (Karr and Gentry 1993). The disadvantage of this kind of representa- 
tion is that the length of the chromosome will be extremely long when the number 
of variables and the number of fuzzy sets for each variable are large. Also, inaccu- 
racy is brought in when binary strings represent the real-valued parameters of the 
membership functions. The advantage of the binary representation is its simplicity 
and generality. 

For the representation of fuzzy rules, perhaps a more natural way is to use 
integer representation. For the above fuzzy rule system, the number of possible 
combinations of the antecedent part is 3 x 3 - 9, then, provided that integers 
{0,1,2,3} are used to represent symbols { d o n ' t  c a r e ,  Low, Medium, High}, 
a string of 9 integers can be used to completely represent the fuzzy rule set with 
the position index representing the antecedent part and the position integer value 
representing the consequent part (Hwang and Thompson 1994). The real-valued 
parameters of fuzzy membership functions can also be represented by integers 
but, as with binary representations, inaccuracies are introduced (Shi, Eberhart, 
and Chen 1999). The advantage of this kind of representation is that the length 
of the chromosome is reduced compared with that of the binary representation. 
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To overcome the inaccuracy introduced by binary and integer representations 
for encoding the real-valued parameters of the membership functions, a real-valued 
representation can be used (Herrera, Lozano, and Verdegay 1995). The use of a 
real-valued representation makes it possible to use large domains (even unknown 
domains) for the variables, which is difficult to achieve with binary and integer rep- 
resentations. The disadvantage of this representation is that the fuzzy rules can't be 
represented easily. So it is better to use real-valued representations when only fuzzy 
membership functions are to be evolved. 

Another issue is how to initialize the population. Generally, the population 
is randomly initialized. Each possible individual is given the same priority. But 
for some applications, existing experience and knowledge may be helpful in the 
automatic design of the fuzzy rule system. This kind of experience and knowledge 
can be incorporated into the initialization of the population. The drawback is that 
this experience and knowledge may quickly become dominant in the population 
and therefore trap the system in a local optimum. If sufficient computation time 
is allowed, the authors always try to run evolutionary fuzzy rule systems with 
completely random initializations. 

The next issue to consider is how to evaluate the fitness of an individual. The 
method used to evaluate the fitness of an individual depends on the problem to be 
solved and your objective. Having a good evaluation function for the fuzzy rule sys- 
tem can make it easier for the GA to evolve a good fuzzy rule system more efficiently 
and effectively. 

For classification problems, it is natural to choose the number of correctly 
and/or wrongly classified training patterns as fitness. Other common fitness func- 
tions are the mean-square error (or absolute difference error) function if you prefer 
your system to have a bigger tolerance, and the relative difference error function if 
you prefer your system to have similar accuracy for any target output value. Other 
requirements for the system can also be encoded into the fitness function. For 
example, if a simple system is preferred, then a measure of the complexity of the 
fuzzy system (such as the number of rules evolved) should be included in the fitness 
function. Performance metrics for computational intelligence systems are discussed 
in Chapter 10. 

The final issue we consider is the selection of the genetic operators to be used. 
What kind of genetic operators to adopt depends on the representation approach. 
For a binary representation, the genetic operators have been studied extensively and 
applied. Some widely used operators can be adopted without modification. For inte- 
ger and real-valued representations, some new operators or modifications of existing 
operators generally are recommended. For example, for an integer representation 
of a fuzzy rule system (Shi, Eberhart, and Chen 1999), a position-based mutation 
operator is used because each element in an individual represents a different integer 
range. 
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An Object-oriented Language: C++ 
In the previous implementations, we used s truct in C to group related data 
variables and t y p e d e f  to define new data types. A new data type can be looked 
at as an object, which is accessible in its own module. All the modules are designed 
to be as independent as possible. Therefore, each module can be as reusable as 
possible. Programming is focused on the newly defined objects. The program- 
ming can be considered object-based programming but not strictly object-oriented 
programming. 

To make the source code more reuseable, C++ is used in the implementa- 
tions discussed in this chapter and the next. C++ is a language designed to be 
object oriented like lava and Smalltalk. It can be considered as an extension of the 
C language. Almost all the features in C can be used in C++, and C++ has its own 
features--for example, data abstraction, inheritance, and dynamic binding. (Please 
refer to a C++ programming book for details.) Certainly, to some extent, C can 
also be programmed to have these features, but it is not designed to have them. 
C++ is not perfect, but it is a useful and practical language for real-world problem 
solving. Please note: we are not here to argue which language is better. 

Fuzzy Rule System Implementation 

Now that we've looked at some of the issues related to implementation, this sec- 
tion discusses the implementation of a fuzzy rule system. We focus on the use of 
the implementation for classification. The implementation is a flexible tool that is 
capable of solving a wide variety of classification and diagnostic problems. 

Programming Fuzzy Rule Systems 
In contrast to the previous implementations in this book, the implementation of 
fuzzy rule systems and all other implementations to be discussed are written in C++. 
In C, a s t  r u c t  data structure is defined to include all the related data and even some 
methods (functions); in C++, a new class is defined that binds the data and meth- 
ods together. The new classes to be defined in this section for the implementation of 
fuzzy rule systems are shown in Figure 8.1. The class Fuz zyMember is the funda- 
mental class, which defines an object class of membership function associated with a 
fuzzy set. The class Fu z z yVar i ab 1 e defines an object class of fuzzy variable, which 
consists of several fuzzy sets (Fu z z yMembe r s). The class Fu z z yRu 1 e defines an 
object class of fuzzy rule, which is composed of F u z z y V a r i a b l e  classes and an 
integer vector class, which is a template class o f v e c t  o r. The class Fuz zyRul  e S e t  
defines an object class of fuzzy rule set, which is composed of Fuz zyRu le  classes. 
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FuzzyRuleSet 

Fuzz~rRule 

I 
FuzzyVariable Vector<int> MyString 

FuzzyMember Template <class T ~ 

Figure 8.1 Class tree in the implementation of the fuzzy rule system. 

lpe> class vector 

First, let us start with a discussion of the classes. The class v e c t  or is defined 
as a template class ( t e m p l a t e  < c l a s s  Type>) so that one class definition can 
be used for the declaration of different kinds of vector. For example, integer vector 
v e c t _ i  and float vector v e c t _ f  can be declared as 

vector<int> vect_i; 
vector<float> vect_f; 

The class v e c t o r  is shown in Listing 8.1. The v e c t o r  class has two private 
data members. The row ( i n t )  defines the length ofthe vector, and the a r r  (Type) 
defines a pointer to the vector of data with type Type. The descriptor "private" pro- 
tects these two data members from being accessed by other classes directly. Private 

Listing 8.1 Definition of template class v e c t  o r. 

template <class Type> 
class vector 
{ 

private: 
int row; 
Type *arr; 

public: 
//constructors 
vector():row(O),arr(O) {} 



}; 
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vector(int a); 
vector(const vector<Type>& a); 
vector(int a, Type* b); 
~vector(){delete []arr;} 
//operators 
vector<Type>& operator =(const vector<Type>& a); 
vector<Type>& operator +=(const vector<Type>& a); 
int operator !=(const vector<Type>& a) const; 
int operator <(const vector<Type>& a) const {return (row<a.row);} 
Type& operator [] (int i) const {assert(i>=0&&i<row); return arr[i];} 

//member functions 
int len() const {return row;} 
Type sum() const; 
int maximum_index() const; 
vector<Type>& changeSize(const int& a); 
Type minimum() const; 

friend vector<Type> operator I (const vector<Type>& a, const 
vector<Type>& b); 

friend istream& operator >> (istream& is,vector<Type>& a); 
friend ostream& operator << (ostream& os, const vector<Type>& a); 

data members can be accessed from outside of the class only through the class's 
public methods (functions). 

The public constructors provide ways to declare vectors. For example, 
vector<int> vect_i declares an integer vector with zero elements; 
v e c t o r < f l o a t >  v e c t _ f  (2) declares a f l o a t  type vector of length 2; 
v e c t o r < f l o a t >  v e c t  f 2 ( v e c t _ f )  declares a new f l o a t  type vector that 
is a copy of float type vector v e c t _ f .  

The public operators define overloaded operators for the operation of vectors. 
For example, assume that v l ,  v2 are two f l o a t  type vectors with the same length. 
Then v 1 = v2 copies v2 to v 1; v2 += v 1 means that v 1 and v2 are first added 
and then the summation is assigned to v2; and v2 l= v l  returns 0 if v2 equals 
v l ;  otherwise, it returns 1. 

The public member methods provide ways to operate on the data members of 
the class. The l e n  ( ) method returns the length of the vector; the sum ( ) method 
returns the summation of all the vector elements; the maximum_index ( ) method 
returns the index of the vector element that has the maximum value; and the 
minimum () method returns the minimum value of vector elements. 

The f r i e n d  o p e r a t o r s  << and >> provide methods for vector input and 
output. For example, assume that i n D a t a F i l e  is an opened object with data 
type ifstream and vect_f is of vector<float> data type; then 
inDataFile >> vect_f win input data ~om inDataFile to vect_f. 

The class My string is shown in Listing 8.2. It has three private data mem- 
bers. Data member s t r i n g s i z e  defines the length of the string, s t r i n g P t r  is a 
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Listing 8.2 Definition of  class My s t r i ng.  

class MyString 
{ 

private: 
int stringSize; 
char *stringPtr; 
int currentPosition; 

public: 
//constructors 
MyString () : stringSize (0), stringPtr (0), currentPosition (0) 
MyString (int a) ; 
MyString(char * str); 
MyString(const MyString& a); 

//destructor 
~MyString() {delete []stringPtr; } 

//member functions 
int get_stringSize() const {return stringSize; } 
int get_currentPosition() const {return currentPosition; } 
char* get_stringPtr() const {return stringPtr; } 
MyString& change_stringSize(const int& a); 
MyString& change_currentPosition(const int& a); 
MyString& change_stringContent(char *str); 
int findNextF(char ch) const; 
int findNextB(char ch) const; 
int totalNumberF(char ch) const; 
int totalNumberB(char ch) const; 
MyString get_subString(const int& a); //a: size of subString 

//from current position 

// operators 
char& operator [] (int i) const; 
MyString& operator =(const MyString& a); 
int operator ==(const MyString& a) const; 

//friend I/O operators 
friend ostream& operator <<(ostream& os, const MyString& a); 
friend istream& operator >>(istream& is, MyString& a); 

pointer to the string, and cu r r e n t  P o s i t  i on is the index of the character within 
the string being manipulated. 

The public constructors provide ways to declare a M y s t r i n g  type variable. For 
example, M y s t r i n g  s l  declares an empty M y s t r i n g  variable s l ;  
M y s t r i n g  s 2 ( 3 )  declares a M y s t r i n g  variable s2 with length 3; 
M y s t r i n g  s3 ( " T r i a n g l e " )  declares a M y s t r i n g  variable s3 that has 
length 8 and s t  r i n g V t  r pointing to a memory space (8 bytes total) with the values 
" T r i a n g l e "  stored in them; M y s t r i n g  s4 ( s3 ) declares a M y s t r i n g  variable 
s 4 that is a copy of s 3. 
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The public get_stringSize (), get_currentPosition (), and 
ge t _ s  t r i n gP t r ( ) member methods provide interfaces to obtain the private data 
members from the outside the My s t r i n g  class. 

The public c h a n g e _ s t r i n g S i z e  (), c h a n g e _ c u r r e n t P o s i t i o n  (), and 
c h a n g e _ s t r i n g C o n t e n t  ( ) member methods provide interfaces to modify the 
M y s t r i n g  class private data members from outside M y s t r i n g  class. 

The public method f i n d N e x t F  ( c h a r  ch) provides a way to find the next 
character ch in the M y s t r i n g  variable starting from the c u r r e n t P o s i t i o n  to 
the end; the method f i n d N e x t B  ( c h a r  ch) provides a way to find the next 
character ch going backward from the c u r r e n t P o s i t i o n  to the beginning of 
the string; the method t o t a l N u m b e r F  ( c h a r  ch) obtains the total number of 
c h a r  ch in the string from the c u r r e n t P o s i t i o n  to the end; the method 
t o t a l N u m b e r B  ( c h a r  ch) obtains the total number of c h a r  ch in the string 
from the c u r r e n t P o s i t i o n  backward to the beginning; the method g e t _  
sub  S t r i ng (n) returns a new My s t r i n g data structure with length n and its 
s t r i n g P t r  pointing to a string that has n characters copied from the original 
string starting from the c u r r e n t P o s i t i o n .  

The public operator [ ] provides a way to obtain a character from a My s t r i ng 
variable. For example, assume s l is a M y s t r i n g  variable with l e n g t h  10; 
then s 1 [2] returns the third character in the string pointed to by s t  r i n g P t  r. 
The public operator = assigns one M y s t r i n g  variable to another one. For exam- 
ple, s2 = s l means that the M y s t r i n g  variable s l is assigned (copied) to the 
M y s t r i n g  variable s2. The operator == compares two M y s t r i n g  

variables. It returns 1 (true) if the two are equal; otherwise, it returns 0 
(false). 

The friend operators < < and > > provide ways for getting input and output for 
the My s t r i n g  variable, respectively. 

The class FuzzyMember  is shown in Listing 8.3. FuzzyMember  provides 
a way to declare and manipulate a data type variable for a membership function. 

Listing 8.3 Definition of class Fu z z yMembe r. 

Class FuzzyMember 
{ 

private: 
float startPoint; 
float endpoint; 
char *functionType; 

public : 
//constructor 
FuzzyMember () : startPoint (0), endpoint (0), functionType (0) { } 
FuzzyMember(float a, float b, char *str); 
FuzzyMember(const FuzzyMember& a); 
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//destructor 
~FuzzyMember() {delete []functionType; } 

//member function 
float memberFunction(const float& a) const; 
float not(const float& a) const; 
vector<float> membership2input(const float& a) const; 
float get_startPoint() const {return startPoint;} 
float get_endpoint() const {return endpoint;} 
char* get_functionType() const {return functionType;} 
int member_flag(const float& a) const; 
int setTypeFlag() const; 

FuzzyMember& change_member(const float& a, const float& b, char *str); 

vector<float> centroid(const float& a, const float& b) const; 

//operators 
FuzzyMember& operator =(const FuzzyMember& a); 
int operator ==(const FuzzyMember& a) const; 
int operator < (const FuzzyMember& a) const; 

//the FuzzyMember is left of a); 
int operator > (const FuzzyMember& a) const; 

//the FuzzyMember is right of a); 

//friend operator I/O 
friend istream& operator >> (istream& is,FuzzyMember& a); 
friend ostream& operator << (ostream& os,const FuzzyMember& a); 

Since a membership function is tightly associated with a fuzzy set, we use a member- 
ship function and a fuzzy set interchangeably. In the implementation, six 
functions are adopted as candidate choices for membership functions. These six func- 
tions are left_triangle, right_triangle, triangle, Gaussian, 
sigmoid, and reverse_sigmoid. Other definitions are possible, of course, but 
the authors have found these to be sufficient for a variety of problems. The definitions 
of these functions are shown in Figure 8.2. From the definitions, it can be seen that 
each membership function is determined by three values: the s t a r t _ p o i n t  xl ,  
the e n d _ p o i n t  x2, and the function type (one of the six defined functions shown 
in Figure 8.2). 

The class FuzzyMember has three private data members. They are the f l o a t  
type variables s t a r t p o i n t  and e n d P o i n t ,  which correspond to the s t a r t _  
p o i n t  Xl and the e n d _ p o i n t  x2, respectively, and a char  pointer f u n c t i o n  
Type, which points to a string of characters to specify which of the six possible func- 
tions it is. The f u n c t  i onType variable records the exact name ofthe membership 
function. For example, if the membership function is a triangle function, then the 
f u n c t i o n T y p e  points to the string of characters " T r i a n g l e " .  An alternative 
way is to define an enumeration data type, say Member_Funct ion_Type ,  
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Left tr iangle membership function: 

1 

xz - x . ¢  

'left_triangle = X2 - -  Xl 

0 

if x < x  1 

i f x  1 < x < x 2 

i f x > x  z 

Right triangle membership function: 

0 

fright_triangle = 

1 

X -- X 1 

2( 2 - x 1 

i f x < x  1 

i f x  1 <_X <_X 2 

i f x > x  2 

Triangle membership function: 

0 

ftriangle(X) = 

2 

0 

i f x < x l  

x - x 1 x 2 + x 1 
2 . . . .  i f x l  < x <  , 

x2 - xl 2 

x 2 - x  if x2 + x l  
, ,, < x < x  2 

x;_ xl  2 

i f x > x  2 

Gaussian membership function: 

fGaussian(X) = e - ° ' s y 2  w h e r e y  = ~ 
8 ( x -  x l )  

x 2 - x i 
- 4  

Sigmoid membership function: 

1 12(X -- X 1) 
fsigm°id(X)= 1 +  e (-y+6) w h e r e y =  xz_x-------- ~ 

Reverse sigmoid membership function: 

freverse_sigmoid(X ) = 1 -- fsigmoid (X ) 

Figure 8.2 Definitions of the six membership functions. 
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which includes all six functions, and replace the char *functionType with 
Member_Func t ion_Type  f u n c t i o n _ t y p e .  This could be a better way from 
the perspective of good programming practice, but it makes the rule file less read- 
able. The rule file specifies the fuzzy rule system and is read in to define it. The details 
of the rule file will be explained later. 

The public constructors provide ways for declaring Fuz z yMember variables. 
For example, F u  z z y M e m b e r  f 1 declares an empty variable; F u  z z y M e m b e  r 

f2 (1 .0 ,  2 . 5 ,  " T r i a n g l e " )  declares a FuzzyMember variable f2 that has 
s t a r t P o i n t  equal to 1 .0,  e n d P o i n t  equal to 2 .5 ,  and the f u n c t i o n T y p e  is 
" T r i a n g l e "  function; FuzzyMember f3 (f2) declares a FuzzyMember vari- 
able f 3 that is a copy of f 2. 

The public member methods g e t _ s t a r t P o i n t  (), g e t _ e n d P o i n t  (), 
and g e t _ f u n c t i o n T y p e  () are methods to obtain private data member values 
from outside the class. The method membe r _ f  1 ag (f_v) determines whether 
f l o a t  value f_v  is within the dynamic range of the membership function. It 
returns 1 if it is; otherwise, it returns 0. The s e t T y p e F l a g  () method returns 
which of the six defined functions is the membership function. Magic numbers 1 
through 6 have been used to encode the six functions. As mentioned, an enumera- 
tion data type Membe r _ F u n c t  i on_Type should be defined to eliminate the magic 
numbers in the source code as much as possible. This is left as an exercise for readers. 

The change_member (const float& a, const float& b, char *str) 

public method provides a way to modify the membership function in which the 
s t a r t p o i n t  is changed to be f l o a t  value a, the e n d P o i n t  is changed to be b, 
and the new f u n c t i o n T y p e  is changed to be s i r .  

The public method memberFunct  ion  ( c o n s :  f l o a t &  f_v) calculates the 
membership value with which the input value f v belongs to the fuzzy set. The 
method is shown in Listing 8.4 for clarification. Please note that the magic 

Listing 8.4 Implementation of method memberFunct ion (). 

float FuzzyMember::memberFunction(const float& a) const 
{ 

float tmp; 

switch (this->setTypeFlag ( ) ) 
{ 

case 1 : 
tmp=LeftTriangle (a, startPoint, endPoint ) ; 
break; 

case 2 : 

tmp=RightTriangle (a, startPoint, endPoint) ; 
break; 

case 3 : 
tmp=Triangle (a, startPoint, endPoint) ; 
break; 

case 4 : 
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tmp=Sigmoid (a, startPoint, endPoint ) ; 
break; 

case 5 : 
tmp=reverseSigmoid (a, startPoint, endPoint ) ; 
break; 

case 6 : 
tmp=Gaussian (a, startPoint, endPoint) ; 
break; 
default : 
cout<<"unknown fuzzySet type"<<endl; 
exit (i) ; 

} 
return tmp; 

numbers should be replaced by the corresponding elements included in the data 
type Member_Function_Type if it is defined. 

The public method m e m b e r s h i p 2  i n p u t  ( c o n s t  f l o a t &  re_v) returns two 
values that, when applied to the membership function as input, have their member- 
ship values set to be m_v. The method n o t  ( c o n s t  f 1 o a t  & f_v)  returns the mem- 
bership value with which input f _v  does not belong to this fuzzy set. The method 
centroid (const float&m_v, const float& s_s) calculates the c e n t r o i d  
of the membership function by giving the membership value m_v and step size 
value s_s .  The smaller the step size value is, the more accurate the c e n t r o i d  
calculation is. 

The public overloaded operators - ,  -=,  <, and > provide ways to operate on 
FuzzyMember variables intuitively. For example, f_ml = f_m2 assigns 
FuzzyMember variable f_m2 to FuzzyMember variable f_ml; f__ml == f_m2 

compares f_ml with f_m2; it returns 1 if f_ml equals f_m2; otherwise, it returns 
O; f_ml  < f_m2 checks whether f_ml is on the left side of g_m2. If it is, it returns 
1; otherwise, it returns O; accordingly, f_ml > f_m2 checks whether f._ml is 
on the right side of g_m2. For illustration, the definition of one of the public 
o p e r a t o r s  -=  is shown in Listing 8.5. 

Listing 8.5 Definition of public operator == in class Fuz zyMember. 

int FuzzyMember::operator ==(const FuzzyMember& a) const 
{ 

int tmp=l; 
if ((&a)==this) return I; 

MyString strl(functionType); 
MyString str2(a.functionType); 

if (strl==str2) 
{ 

if (startPoint !=a.startPoint) 
tmp=0; 
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if (endPoint !=a.endPoint) 
tmp=0 ; 

} 

else 
return 0 ; 

return tmp; 

The friend operators << and >> provide ways for input and output of 
Fu z z yMembe r variables, respectively. 

The class F u z z y V a r i a b l e  defines a new data type for fuzzy variables, as 
shown in Listing 8.6. The Fu z z yVa r i ab i e data type has five private data members. 
The data member s e t s i z e ( i  n t )  records the number of fuzzy sets defined/included 

Listing 8.6 Definition of class FuzzyVariable. 

class FuzzyVariable 
{ 

private: 
int setSize; 
float startPoint; 

float endpoint; 
char *variableName; 
FuzzyMember *fuzzySet; 

public : 

//constructors 
FuzzyVariable () : setSize (0) , startPoint (0) , endpoint (0), 

variableName (0) , fuzzySet (0) { } 
FuzzyVariable (int a, float b, float c) ; 
FuzzyVariable(int a, float b, float c, char *str) ; 
FuzzyVariable (const FuzzyVariable& a) ; 

//destructor 

~FuzzyVariable() {delete []fuzzySet;delete []variableName; } 

//member functions 

FuzzyVariable& standardVariable() ; 

char* get_variableName() const {return variableName; } 

int get_setSize() const {return setSize; } 

float get_startPoint() const {return startPoint; } 

float get_endPoint() const {return endPoint; } 
FuzzyVariable& change_setSize (const int& a); 

FuzzyVariable& change_startPoint(const float& a); 
FuzzyVariable& change_endPoint(const float& a); 
FuzzyVariable& change_variableName (char *str); 

char* setMeaning(const int& a, const int& b) const; 
vector<int> setFireFlag(const float& a) const ; 

float output(const float& a, const int& b) const; 
float defuzzifyMax(const int& a, const vector<float>& b) const; 

int defuzzyMax_index(const int& a, const vector<float>& b) const; 
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float defuzzyCentroid_add(const int& a, const vector<float>& b) const; 
float defuzzyCentroid(const int& a, const vector<float>& b) const; 

//operators 

FuzzyMember& operator [] (int i) const; 
FuzzyVariable& operator = (const FuzzyVariable& a); 

//friend operator I/O 

friend istream& operator >> (istream& is,FuzzyVariable& a); 

friend ostream& operator << (ostream& os,const FuzzyVariable& a); 

in this fuzzy variable; data member fuz zySet (Fuz zyMember* ) is a pointer to the 
s e t S i z e  number of fuzzy membership functions; data members s t a r t P o i n t  
( f l o a t )  and e n d P o i n t  ( f l o a t )  define the dynamic range of this fuzzy variable; 
the v a r i a b l e N a m e  ( cha r  *) stores the name ofthe fuzzy variable. It makes much 
more sense to use the c h a r  * data type than that in the Fuz zyMember class for data 
member f u n c t  ionType  since the number ofpossible variable names is unlimited, 
and actually they can be anything. The purpose of data member v a r i a b l e N a m e  
is to provide the user with the capability to get a verbal description of the fuzzy 
rules. 

The public constructors provide ways to declare the F u z z y V a r i a b l e  vari- 
ables. For example, F u z z y V a r i a b l e  f _ v l  declares an empty F u z z y V a r i a b l e  
type variable f_v l ;  F u z z y V a r i a b l e  f_v2 (3, - 1 . 0 ,  2 .3 )  declares a 
F u z z yVa r i a b 1 e variable f_v  2 that has 3 ( s e t s i z e) fuzzy sets and its start point 
and end point values are - 1 . 0  ( s t a r t P o i n t )  and 2 .3  ( endPo in t ) ,  respec- 

- " t e m p e r a t u r e " )  declares a tively; F u z z y V a r i a b l e  f_v3 (3, 1 .0 ,  2 . 3 ,  
Fuz z y V a r i a b l e  variable f_v3 almost the same as f_v2 except that it has a vari- 
able name t e m p e r a t u r e  (va r i ab leName) ;  F u z z y V a r i a b l e  f_v4 (f_v3) 
declares a F u z z y V a r i a b l e  variable f_v4 that is a copy of f_v3. 

The get_variableName (), get_setSize (), get_startPoint (), and 
get_endPoint () public methods return the variableName, setSize, 
s t a r t P o i n t ,  and e n d P o i n t ,  respectively. The public methods c h a n g e _  
setSize(const int& a), change_startPoint (const float& a), 
change_endPoint (const float& a), and change_variableName 
(char * str) set the sets i ze, startPoint, endPoint, and variableName, 

to new values, respectively. 
The public method s t a n d a r d V a r i a b l e  ()provides a way to define the 

s e t S i z e  number of fuzzy sets over the variable's dynamic range (from 
s t a r t P o i n t  to e n d P o i n t  ) uniformly. 

The public method s e t M e a n i n g  () provides a way to get the verbal mean- 
ing for a fuzzy set. For example, for a variable with 3 fuzzy sets, the fuzzy sets 
have verbal descriptions Low, Medium, and High.  The purpose of this method is 
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to convert fuzzy rules represented by numbers to fuzzy rules described by verbal 
descriptions for users. This is explained later. It is not involved in the mathematical 
operations of the fuzzy rule system. 

The public method s e t F i r e F l a g ( c o n s t  f l o a t &  f_v)checks which 
fuzzy sets are activated by the input value f_v.  Since the fuzzy sets are overlapped, 
more than one fuzzy set for a given input value will generally be activated. That is 
what makes the fuzzy rule system powerful. 

The public method output(const float& f_i, const int& s_i) 
returns the membership value for fuzzy set s_i with input value f i. 

The defuzzifyMax (), defuzzyCentroid (), and defuzzy 
Centroid_add() public methods provide three ways to defuzzify. The 
c i e f u z z i f y M a x  () returns the median value of the range of the fuzzy set, the 
index of which is the largest fuzzy set activated (having membership value > 0). The 
d e f u z z y C e n t r o i d  () returns the centroid value of all the fuzzy sets activated. 
The defuzzyCentroid_add () is the same as the defuzzyCentroid() 
except that the overlapped areas are involved in the calculation as many times as 
the number of activated fuzzy sets overlapped in this area. For details of these three 
methods, please refer to Chapter 7. 

The o p e r a t o r  [ ] provides a way to get an indexed FuzzyMember member 
from the F u z z y V a r i a b l e  variable. For example, if f v is a F u z z y V a r i a b l e  
type variable with three fuzzy sets, f _ v [ 1 ]  returns the second FuzzyMember 
type data fuz  z y S e t  [ 1 ]. The o p e r a t o r  = assigns one Fuz z y V a r i a b l e  variable 
to another F u z z y V a r i a b l e  variable. 

The friend operators < < and > > provide ways for getting input and output for 
Fu z z yVa r i ab 1 e variables, respectively. 

The class FuzzyRu le  is shown in Listing 8.7. F u z z y R u l e  has seven private 
data members. The v a r i a b l e S i z e  ( i n t )  records the number of input 

Listing 8.7 Definition of class FuzzyRule. 

class FuzzyRule 
{ 
private: 

int 

int 

vector<int> 

vector<int> 

variableSize; //number of variables in a rule 

outputSize; //number of outputs in a rule 

inputSetFlag; //which set is activated for each variable 

outputSetFlag; //which set is activated for each variable; 

FuzzyVariable *inputVariable; //pointers to the input variables 

FuzzyVariable *outputVariable; //pointers to the output variables 
char *ruleContent; 

public: 

FuzzyRule () :variableSize (0) , outputSize (0) , ruleContent (0) , 

inputVariable (0) , outputVariable (0) 
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{ 
vector<int> vec; 
input SetFlag=ve c; 
output Set F lag=vec; 

} 
FuzzyRule (int a, int b, vector<int> c,vector<int> d); 
FuzzyRule (int a, int b, vector<int> c,vector<int> d, char* str) ; 

FuzzyRule(const FuzzyRule& a); 

~FuzzyRule(){delete []ruleContent; 
delete []inputVariable;delete []outputVariable;} 

//member functions 

int get_variableSize() const {return variableSize;} 
int get_outputSize() const {return outputSize;} 
vector<int> get_inputSetFlag()const {return inputSetFlag;} 
vector<int> get_outputSetFlag() const {return outputSetFlag;} 
char* get_ruleContent() const {return ruleContent;} 

FuzzyRule& change_inputSetFlag(const vector<int>& a); 
FuzzyRule& change_outputSetFlag(const vector<int>& a); 
FuzzyRule& change_variableSize(const int& a); 
FuzzyRule& change_outputSize(const int& a); 
FuzzyRule& change_ruleContent(char* str); 
FuzzyRule& form_ruleContent(); 

FuzzyRule& change_outputVariable(const FuzzyVariable& a, const int& b); 
//both outputVariable change to a 

int checkRuleActive(const vector<float>& a) const; 
//check whether this rule is activated via input a or not 

vector<float> FuzzyOutput(const vector<float>& a) const; 
//calculate the fuzzy output vector 

vector<float> FuzzyOutput_average(const vector<float>& a) const; 
FuzzyVariable& get_outputVariable(const int& a) const; 
vector<int> formRange(const int& a) const; 

//a: maximum rules; get possible maximum fuzzy set no. for each 
variable 

//operator 
FuzzyVariable& operator [] (int I) const; 
FuzzyRule& operator =(const FuzzyRule& a); 

//I/O operators 

friend istream& operator >>(istream& is, FuzzyRule& a); 
friend ostream& operator <<(ostream& os,const FuzzyRule& a); 

variables in the antecedent (if) part of a fuzzy rule; the outputSize (int) 
records the number of output variables in the consequent (then) part of a fuzzy 
rule; the i n p u t V a r i a b l e  (FuzzyVariable*)  is a pointer pointing to the 
v a r i a b l e S i z e  number of input fuzzy variables; the o u t p u t V a r i a b l e  
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(Fuz zyVariable*) is a pointer pointing to the outputSize number of output 
fuzzy variables; the i n p u t S e t F l a g  ( v e c t o r < i n t > )  records which fuzzy set for 
each input fuzzy variable is involved in the fuzzy rule. 

For example, i n p u t S e t F l a g [ 0 ]  : 1 means that the first fuzzy set of the 
first input variable is involved in this rule. Assume that the first variable tem- 
perature has three fuzzy sets (Low, Medium, and High); then the fuzzy rule 
involved could be i f  t e m p e r a t u r e  i s  L o w , . . . ,  . . . ,  t h e n  . . . .  The 
o u t p u t S e t F l a g  records which fuzzy set for each output fuzzy variable has been 
activated if the fuzzy rule is fired by the current input; the r u l  eCont  e n t  ( cha r  * ), 
like v a r i a b l e N a m e  in F u z z y V a r i a b l e ,  is used to record the fuzzy rule in 
words instead of numbers to enhance the readability of fuzzy rules. 

The public constructors provide ways to declare the FuzzyRu le  variables. 
For example, assume that the fuzzy rule has two inputs and one output and each 
variable has three fuzzy sets (Low, Medium, and High). Further assume that 
v e c _ l  is a v e c t o r < i n t >  type vector with length 2 and the two elements are 
1 (Low) and 2 (Medium); v e c t _ 2  is also a v e c t o r < i n t >  type vector with 
length 1 and the one element is 3 (High).  Then FuzzyRu le  f _ r l  declares an 
empty FuzzyRule variable f_rl; FuzzyRule f_r2 (2, i, vec_l, vec_2) 
declares a Fuzzymule variable f_r2 and this rule, in verbal description, is if 
input_l is Low, input_2 is Medium, then output_l is High. The 
FuzzyRule f_r3 (f_r2) declares a FuzzyRule variable f_r3 that is a copy 
of variable f r2. 

The get_variableSize (), get_outputSize (), get_input 
SetFlag (), get_outputSetFlag (), and get_ruleContent () public 
methods provide ways to obtain variableSize, outputSize, 
inputSetFlag, outputSetFlag, and ruleContent, respectively, from out- 
side the FuzzyRule class. The public methods change_variableSize (), 
change_ outputSize(), change_inputSetFlag(), change_output 
SetFlag (), and change_ruleContent () provide ways to change 
variableSize, outputSize, inputSetFlag, outputSetFlag, and 
ruleContent, respectively, from outside the FuzzyRule class. The public 
method f o r m _ r u l e C o n t e n t  () is used to form the verbal description 
( r u l e C o n t e n t )  of the fuzzy rule from its v e c t o r < i n t >  i n p u t S e t F l a g ,  
outputSetFlag. The public method get_ outputVariable (const int& 
idx)  returns the o u t p u t V a r i a b l e  [ idx]  to provide a wayto obtain the output 
variable from outside the class. 

The c h e c k R u l e A c t i v e  ( c o n s t  v e c t o r < f l o a t > &  v e t _ i n )  public 
method checks whether the fuzzy rule is fired by the input v e t _ i n .  For the 
fuzzy set of each variable involved in this rule, it checks to see whether this fuzzy 
set is activated by the corresponding input. More than one fuzzy set can be acti- 
vated, but we only need to check whether the fuzzy set involved in the rule is 



Chapter EightmFuzzy Systems Implementations 

activated. If the variable i is not involved in the rule (inputSetFlag [i] ==0), 
then no check is required for this variable. The rule is fired if all the variables 
involved in the rule are activated by the input. The method returns 1 if the 
rule is fired; otherwise, it returns 0. For clarification, this method is shown in 
Listing 8.8. 

Listing 8.8 Implementation of method c h e c k R u l e A c t i v e  () in class FuzzyRule .  

int FuzzyRule: :checkRuleActive(const vector<float>& a) const 
{//check whether this has been activated 

assert (a. fen () ==variableSize) ; 

vector<int>* vec; 

vec= new vector<int>[variableSize]; 

int sum=0; 
for (int i=0; i<variableSize; i++) 
{ 

if (inputSetFlag [i] ==0) 
sum++; 

else 
{ 

vec [i] =inputVariable [i] . setFireFlag (a [i] ) ; 
int ind=abs (inputSetFlag [i] ) -I; 
if (vec[i] [ind]==l) 

sum++; 
} 

delete []vec; 

if (sum==variableSize) 
return 1; 

else 
return 0 ; 

The public methods FuzzyOutput (const vector<float>& a) and 
Fuz zyOutput_average (const vector<float>& a) provide ways to obtain 
the membership values for the output variables when input a is presented to the 
rule. The Fuz zyOutput  () method takes the minimum values of the membership 
values of all activated fuzzy variables as the activation strength of its i f part, and 
the FuzzyOutput  a v e r a g e  () method takes the average of the membership 
values of all activated fuzzy variables as the activation strength of its i f part. If an 
output variable has a modifier not  before it, its membership value is calculated by 
subtracting the activation strength from 1.0;  otherwise, its membership value is 
equal to the activation strength. For clarification, the method FuzzyOutput  () 
is shown in Listing 8.9. 
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Listing 8.9 Implementation of method F u z z y O u t p u t  ( ) in class F u z z y R u l e .  

vector<float> FuzzyRule: :FuzzyOutput (const vector<float>& a) const 
{ 

//check the input dimension 
assert (a. fen () ==variableSize) ; 
//check whether the rule is activated 
if (checkRuleActive(a) !=I) 
{ 

fprintf (stderr, "try to use unactivated rule\n"); 

exit (i) ; 
} 

float min=l. 0, tmp; 
for (int i=0; i<variableSize; i++) 
{ 

if (inputSetFlag[i] !=0) 
{ 

tmp=inputVariable [i] .output (a [i], inputSetFlag [i] ) ; 

if (min>tmp) 
min=tmp; //get the minimum value 

} 
} 

vector<float> tmpout (outputSize) ; 
for (i=0; i<outputSize; i++) 
{ 

if (outputSetFlag[i] ==0) 
tmpout [i] =0.0; 

else 
{ 

if (outputSetFlag [i] >0) 
tmpout [i] =min; 

else 
{ 

if (min>=0.9999) 
tmpout [i] =0. 0001; 

else 
tmpout [i] =l-min; 

} 
} 

} 

return tmpout; 

The public operator [ ] provides a way to return an indexed input fuzzy variable. 
For example, g_r3 [1] returns the second input V u z z y V a r i a b l e ,  
i n p u t V a r i a b l e  [ 1 ] of the VuzzyRule  variable f_r3 .  The public operator = 
provides a way to copy one VuzzyRule  variable to another r u z z y R u l e  variable. 
The friend operators << and >> provide ways to input and output r u z z y R u l e  
variables, respectively. 

The class FuzzyRuleSet  is shown in Listing 8.10. It has two private data 
members. The member r u l e S e t S i z e  ( i n t )  stores the number of fuzzy rules in 
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the fuzzy rule set of the fuzzy rule system. The member r u l e s  (FuzzyRule*) is 
a pointer pointing to the set of fuzzy rules. 

Listing 8.10 Definition of class FuzzyRuleSet. 

class FuzzyRuleSet 
{ 

private : 
int ruleSetSize; 
FuzzyRule *rules; 

//how many rules in the set 
//pointers to the fuzzy rule set 

public: 
FuzzyRuleSet():ruleSetSize(0),rules(0) {} 
FuzzyRuleSet(int a); 
FuzzyRuleSet(int a, FuzzyRule *b); 
FuzzyRuleSet(const FuzzyRuleSet& a); 

~FuzzyRuleSet() {delete []rules;} 

//member functions 
int get_ruleSetSize() const {return ruleSetSize;} 
FuzzyRuleSet& addRuleB(const FuzzyRule& a, const int& b); 

//add rule a at position b 
FuzzyRuleSet& addRule(const FuzzyRule& a); 

//add rule a at the end of set 
FuzzyRuleSet& deleteRule(const int& a); 

//delete the 'a'th rule 
vector< vector<float> > fuzzyOutputValue_max(const vector<float>& a, 

const int& b) const; 
vector< vector<float> > fuzzyOutputValue_add(const vector<float>& a, 

const int& b) const; 
//a:input vector, 
//b: mode for antecedent-0:min l:aver, 

vector<float> defuzzify(const vector< vector<float> >& a, 
const int& b) const; 

//b: mode for defuzzyfy-0:max l:centroid without overlap 
//2: with overlap; 
//a: fuzzy output values 

vector<float> output(const vector<float>& a, const int& b, 
const int& c, const int& d) const; 

//a: input b:add/max c:min/aver d:max/without/with overlap 

//return the value after defuzzify 

vector<float> output_new(const vector<float>& a, const int& b, 
const int& c, const int& d) const; 

FuzzyVariable& get_outputVariable(const int& a) const; 

int checkRuleSetFired(const vector<float>& a) const; 
//check this rule set is fired or not due to 'a' 

//operators 
FuzzyRule& operator [] (int I) const; 
FuzzyRuleSet& operator = (const FuzzyRuleSet& a); 

//I/O operators 
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friend istream& operator>>(istream& is, FuzzyRuleSet& a); 
friend ostream& operator<<(ostream& os, const FuzzyRuleSet& a); 

The public constructors provide ways to declare Fuz zyRuleSet variables. For 
example, F u z z y R u l e S e t  f r s l  declares an empty fuzzy rule set; 
F u z z y R u l e S e t  f r s2 (3, f r) declares a fuzzy rule set with three fuzzy rules, 
and the three fuzzy rules are obtained from the FuzzyRu le  pointer f_ r ,  which 
points to a memory space where it has more than three FuzzyRu le  data stored. 
F u z z y R u l e S e t  f r s 3 ( f  r s2) declares a F u z z y R u l e S e t  variable 
f r s 3 that is a copy of variable f r s2. 

The public method g e t _ r u l e S e t _ S i z e  () provides an interface to obtain 
the number of rules in the rule set from outside the class. 

The public method a d d R u l e ( c o n s t  FuzzyRule& f_ r )  adds a new 
FuzzyRule  f _ r  at the end of the fuzzy rule set. The public method addRuleB 
(const FuzzyRule& f_r, const int& idx) i n se r t s  a n e w  FuzzyRule f_r 

at position idx, which must be within the range [ 0, ruleSetSize ]. The public 
method deleteRule (const int& idx) deletes the fuzzy rule idx from the 

fuzzy rule set. 
The public method checkRuleSetFired (const vector<float>& a) 

returns the number of rules fired in the fuzzy rule set when presented with input a. 
The operator [] provides a way to obtain an indexed fuzzy rule from the 

fuzzy rule set. For example, r u l e s [ 2 ]  returns the third rule in the rule set. 
The operator = assigns one F u z z y R u l e S e t  variable to another F u z z y R u l e S e t  
variable. 

The public methods v e c t o r <  v e c t o r < f l o a t >  > f u z z y O u t p u t V a l u e  
max (const vector<float>& in, const int& a_s) and vector 

< vector<float> > fuzzyOutputValue_add (const vector<float>& 

in, const int& a_s) return the output membership values of 
all output variables. The float vector i n  is the input to the fuzzy rule system, 
and the integer a_s  indicates which method is used to calculate the activation 
strength value of the antecedent part. If a_s  is 0, F u z z y O u t p u t  () 
defined in the FuzzyRu le  class (minimum approach) is called; if a_s  is 1 
F u z z y O u t p u t _ a v e r a g e  defined in the FuzzyRu le  class (average approach) is 
called. 

An enumeration data type can be defined to avoid magic numbers with respect 
to a s .  This is left as an exercise for the reader. The fuz zyOutputValue__max () 
calculates the output values by taking maximum activation strength out of all fired 
fuzzy rules for each fuzz), variable. The method f u z z y O u t p u t V a l u e _ a d d  () 
calculates the output values by adding together the activation strength values of all 
fired rules for each variable. If the summation is greater than 1, then it is assigned to 
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be 1 since membership values are limited to [ O, 1 ]. For clarification, the method 
f u z z y o u t p u t V a l u e _ m a x  () is shown in Listing 8.11. 

Listing 8.11 Implementation of method fuzzyOutputValue_max () in class 
FuzzyRuleSet. 

Vector< vector<float> > 
FuzzyRuleSet : : fuzzyOutputValue_max (const vector<float>& a, 

const int& b) const 
{ 

if (a.len() !=rules[0].get_variableSize()) 
{ 

fprintf (stderr, "input dim doesn't match 
the inputVariable no. of the rule"); 

exit (i) ; 
} 
int outVarDim=rules [ 0 ] . get_outputSize ( ) ; 

vector< vector<float> > result (outVarDim) ; 
vector<int> varDim (outVarDim) ; 
for (int i=0;i<outVarDim; i++) 
{ 

varDim [ i ] =rules [ 0 ] . get_outputVariable (i) . get_setSize ( ) ; 

result [i] . changeSize (varDim[i]) ; 
} 

//initialization of result 
for (i=0; i<outVarDim; i++) 

for (int j=0;j<varDim[i];j++) 
result[i] [j]=0; 

vector<float> tmpres (outVarDim) ; 
for (i=0;i<ruleSetSize; i++) 
{ 

int ter=rules [i] . checkRuleActive (a) ; 

if (ter==l) 
{ 

vector<int> tmpvec=rules [ i ] . get_outputSetFlag ( ) ; 

if (b==l) 
tmpres=rules [ i ] . FuzzyOutput_average (a) ; 

else 
tmpres=rules [ i ] .FuzzyOutput (a) ; 

for (int j=0;j<outVarDim;j++) 
{ 

if (tmpvec[j] !=0) 
result[j] [abs(tmpvec[j])-l] = 

max(result[j] [abs(tmpvec[j])-l],tmpres[j]); 

return result; 
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The vector<float> defuzzify (const vector< vector<float> > 

& m_o, c o n s t  i n t  & d_a ) public method provides a way to defuzzify output vari- 
ables. The variable m_o is the returned variable from fuz zyOutpu tVa lue_max  ( ) 
or f u z z y O u t p u t V a l u e _ a d d  (). The integer d__a indicates which defuzzifica- 
tion approach described in the F u z z y V a r i a b l e  class is called. For clarification, 
the d e f u z z i f y  () method is shown in Listing 8.12. 

Listing 8.12 Implementation of method d e f u z z i f y  () in class FuzzyRuleSet .  

vector<float> 

FuzzyRuleSet : :defuzzify (const vector< vector<float> >& a, 

const int& b) const 
{ 

//get output variables in a rule 

int outVarDim=rules [0] .get_outputSize () ; 
vector<float> tmp (outVarDim) ; 
vector<int> varDim (outVarDim) ; 

for (int i=0;i<outVarDim;i++) 
{ 

//fuzzy set no. in output variable i 

varDim [ i ] =this->get_outputVariable ( i ) . get_set Size ( ) ; 
//defuzzify for output variable i 

if (b==0) 

tmp [ i ] =this->get_outputVariable ( i ) . defuzzifyMax 
(varDim[i],a[i]); 

else if (b==l) 

tmp [ i ] =this->get_outputVariable ( i ) . defuzzyCentroid 
(varDim[i],a[i]) ; 

else 

trap [ i ] =this->get_outputVariable ( i ) . 

defuzzyCentroid_add (varDim[i], a [i] ) ; 
) 

return tmp; 

The method vector<float> output(const vector<float>& a, 

const int & b, const int & c, const int & d) provides a one-step approach to 

calculate the output from the input. This method combines the methods discussed 
earlier to obtain the output from the input within one method, where vector a 
is the input, integer b is the selection of the approaches for calculating activation 
strength, integer c is the selection of the way to calculate the membership values 
for the output variables, and integer d is the choice for defuzzifying the output 
variables to obtain the output values for each output variable. As mentioned, it 
would be better if integers b, c, and d had enumeration data types defined for them 
to avoid using the magic numbers in the source code. For clarification, Listing 8.13 
shows the o u t p u t  () method in the F u z z y R u l e S e t  class. 
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Listing 8.13 Implementation of method o u t p u t  () in class FuzzyRu leSe t .  

vector<float> FuzzyRuleSet::output(const vector<float>& a, const int& b, 
const int& c, const int& d) const 

{ //a: input b:add/max c:min/aver d:max/without/with overlap 
// return the value after defuzzify 

if (a.len() !=rules[0] .get_variableSize()) 
{ 

fprintf (stderr, "input dim doesn't match 
the inputVariable no. of the rule"); 

exit(l); 
} 

int outVarDim=rules[0].get_outputSize(); 
//outputVariable no.in rules 

vector< vector<float> > result(outVarDim); 

vector<int> varDim (outVarDim) ; 

for (int i=0; i<outVarDim; i++) 
{ 

varDim[i] =rules [0] .get_outputVariable (i) .get_setSize () ; 
result [i] .changeSize (varDim[i]) ; 

} //allocate memory for result 

if (b==l) 

result=this->fuzzyOutputValue_max (a, c) ; 
else 

result= this->fuzzyOutputValue_add (a, c) ; 

vector<float> tmp(outVarDim); 
tmp=this->defuzzify(result,d); 

return tmp; 

The friend operators << and >> provide mechanisms for input and output, 
respectively, of F u z z y R u l e S e t  variables. The methods are shown in Listing 8.14 
for clarification, By using the operators < < and > >, the fuzzy rule set can be read in 
from a rule file or written to a rule file, respectively. These operations will be made 
more clear in the discussion of the main () function, shown in Listing 8.15. 

Listing 8.14 Definition of operators << and >> in FuzzyRuleSet  class. 

istream& operator>>(istream& is, FuzzyRuleSet& a) 
{ 

is>>a, ruleSetSize; 
if (a.rules !=0) 

delete []a,rules; 

a. rules =new FuzzyRule [a. ruleSetSize] ; 
is>>a, rules [0] ; 
vector<int> vecin (a. rules [0] . get_variableSize ()) ; 
Vector<int> vecout (a. rules [0] .get_outputSize ()) ; 
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for (int i=l;i<a.ruleSetSize;i++) 
{ 

a. rules [i] =a. rules [0] ; 

is>>vecin; 
a. rules [i] . change_inputSetFlag (vecin) ; 

is>>vecout; 

a. rules [i] . change_outputSetFlag (vecout) ; 

a. rules [i] . form_ruleContent () ; 
) 

return is; 

ostream& operator<<(ostream& os, const FuzzyRuleSet& a) 
{ 

assert(a.ruleSetSize !=0); 

os<<a, ruleSetSize<<endl; 

os<<a [ 0 ] ; 

for (int i=l;i<a.ruleSetSize;i++) 

os<< (a [i] . get_inputSetFlag () l a [i] . get_outputSetFlag ()) ; 

return os; 

Listing 8.15 Implementation of main (). 

void main (int argc, char *argv[] ) 
{ 

extern void fl (char *) ; 

if (argc !=2) 
{ 

fprintf(stderr,"usuage: fl run_file_name\n") ; 

exit ( 1 ) ; 
} 

fl(argv[l]); 

Next, we discuss the main () and f l  () routines. The main () routine does 
nothing except call the f l  () routine shown in Listing 8.16. In the f l  () routine, 
first the r e a d _ f l _ r u n f i l e  () routine, shown in Listing 8.17, is called to read 
in the following parameters: the name of file where the fuzzy rules are stored 
( r u l e  InName), the name of file where the data patterns to be classified are stored 

Listing 8.16 Implementation of f 1 (). 

void fl (char *dataFile) 
{ 

read_fl_runfile (dataFile) ; 

read_fl_rulefile () ; 

write_fl_rules () ; 
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ifstream dFile; 
dFile, open (dataFileName, ios : : in) ; 
if ( ! dFile) 
{ 

cerr<<"can't open file "<<dataFileName<<" for input"<<endl; 
exit ( 1 ) ; 

} 

int indim, outdim; //input dim and output dim 
dFile>>indim>>outdim; 
vector<float> invec(indim); 
vector<int> outvec(outdim); 

vector<int> classN(outdim); //store class no. for each output 
dFile>>classN; 

int outVarDim=ruleSet [ 0 ] . get_outputSize ( ) ; 
if (outdim !=outVarDim) 
{ 

cout<<"dim of data outputs isn't equal to dim of 
output variables in rules"<<endl; 

exit ( 1 ) ; 
} 

ofstream rFile; 
rFile.open(resultFileName, ios::out); 
if (!rFile) 
{ 

cerr<<"can't open file " <<resultFileName<< " for output\n"<<endl; 
exit(l); 

) 

rFi le<<" index\t "<<"Wrong? \t "<< "Target \t "<<"Obtained" <<endl; 

int in_order=0; 
int misclassify=0; 
vector<int> cla (outVarDim) ; 
vector<float> tmp (outVarDim) ; 

while (dFile>>invec) 
{ 

dFile>>outvec;  
in_order++; 
rFile<<in_order<<" \t" ; 
if (ruleSet. checkRuleSetFired (invec) ==i) 
{ 

tmp=ruleSet, output (invec, ruleEffectFlag, fuzzyFlag, defuzzyFlag) ; 

//get output class 
for (int idx=0; idx<outVarDim; idx++) 

cla[idx]=(int) (tmp[idx]*classN[idx]); 

//output data dim equal to outputVariable dim 
if (cla !=outvec) 
{ 

rFile<<"wrong\t" ; 
misclassify++; 

} 
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else 
rFile<<"\t"; 

rFile<<(outveclcla); 
} 
else 
{ 

rFile<<"rule set not fired"<<endl; 

misclassify++; 
} 

} 

dFile, close () ; 

rFile<<"total misclassification is :"<<misclassify<<endl; 

rFile, close () ; 

Listing 8.17 Implementation of read_fl_runfile (). 

static void read_fl_runfile (char *dataFile) 
{ 

int true; 

char Msg [NAME_MAX] ; 

strcpy (Msg, "edit ") ; 

strcat (Msg, dataFile) ; 

ifstream runFile; 

do 
{ 

runFile, open (dataFile, ios : : in) ; 
if (!runFile) 
{ 

cerr<<"can't open file "<<dataFile<<" for input"<<endl; 

exit (i) ; 
} 
runFi le>> rule I nName > >dat aFi leName > > ru i eName > > result Fi i eName; 

runFile>> fuz zyFlag>>de fu z zyFlag>>ruleE f fectFlag; 

runFile, close () ; 

cout <<ruleInName<<endl; 

cout <<dat aFileName<<endl; 

cout<<ruleName<<endl; 

cout <<resultFileName<<endl; 

cout<<fuzzyFlag<<" 0 :minimum 1 : average" <<endl; 

cout<<defuzzyFlag<<" 0 :maximum 1 :without overlap 2 :with 

overlap" <<endl; 

cout <<ruleEf fectFlag<< 

"i: maximum of output values from each rule 0:add"<<endl; 

cout<<"(C)ontinue, (Q)uit, (M)odify runfile "; 

char condition; 

cin>>condition; 

switch (condition) 
{ 

case 'c' : true=0; 
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break; 

case 'C' : true=0; 

break; 

case 'q' : exit(1) ; 

case 'Q' : exit(1) ; 

case 'm' : true=l; 

system (Msg) ; 

break; 

case 'M' : true=l; 

system (Msg) ; 

break; 

default : 

true=l; 

break; 
} 

} while (true==l); 

(dat  aF i 1 eName), the name of file where the verbal descriptions of the fuzzy rules 
are written (ruleName),  the name of file where the classification results will be 
stored ( r e s u l t F i l e N a m e ) ,  the choice of reasoning approaches ( f u z z y F l a g ) ,  
the choice of defuzzification approaches ( d e f u z z y F l a g ) ,  and the choice of rule 
output combination approaches ( r u l e E f f e c t F l a g ) .  The d o - w h i l e  loop is for 
the user to view and modify the contents of the run file. 

Second, the r e a d _ f l _ r u l e f i l e  () routine, shown in Listing 8.18, is called 
to read in the fuzzy rule set from the rule file (ruleInName) .  It is as simple as 
iFile>>ruleSet, where iFile is an object of ifstream class and ruleSet 
is an object of FuzzyRuleSet class. 

Then the w r i t e _ f l _ r u l e s  ( ) routine, shown in Listing 8.19, is called to gen- 
erate a verbal description of the fuzzy rule set and write the verbal rules to an output 
file (ruleName). 

Listing 8.18 Implementation of read_fl_rulefile (). 

static void read_fl_rulefile (void) 
{ 

// FuzzyRule 

ifstream iFile; 

iFile, open (ruleInName, ios : : in) ; 

if (!iFile) 
{ 

cerr<<"can't open file "<<ruleInName<<" for input"<<endl; 

exit (i) ; 
} 
iFile>>ruleSet ; 

iFile, close () ; 
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Listing 8.19 Implementation of write_fl_rules (). 

static void write_fl_rules (void) 
{ 

//output formed rules 

ofstream oFile; 
oFile, open (ruleName, los : : out) ; 

if (!oFile) 
{ 

cerr<<"can't open file "<<ruleName<<" for output"<<endl; 

exit ( 1 ) ; 
} 
for (int i=0; i<ruleSet.get_ruleSetSize () ; i++) 

oFile<<i<<"th rule: "<<ruleSet[i] .get_ruleContent ()<<endl; 

oFile, close () ; 

Finally, each input/output pattern pair is read in. The input invec is then 
checked to see what can be fired within the rule set by performing 
the r u l e S e t ,  c h e c k R u l e S e t F i r e d  ( i nvec )  routine. If the rule set is fired, 
then the output of the fuzzy rules under the input i n v e c  is obtained by calling the 
ruleSet, output (invec, ruleEffectFlag, fuzzyFlag, defuzzyFlag) 

routine. The output values are then converted to the class to which each output 
variable belongs. The classification result is finally recorded into an output file 
( r e s u l t F i l e N a m e ) .  This process is repeated until all the input/output pairs in 
the data pattern file have been read in and classified. 

All the routines discussed are here for clarification. (See Listings 8.15, 8.16, 8.17, 
8.18, and 8.19.) 

Running the Fuzzy Rule System 
The fuzzy rule system implementation is a flexible tool that is capable of solving 
a wide variety of classification and diagnostic problems. It utilizes user-defined 
triangular and/or nonlinear membership functions. The executable code for the 
system is in the file f l .  exe,  and the specifications of files and other parameters 
appear in a run file, f i l e n a m e ,  run. To run the system, at the system prompt 
type f l f i l e n a m e ,  run,  making sure that the run file is in the same directory 
as the executable. 

To begin to understand how the system functions, we examine the contents of the 
run file. We use the Iris dataset, described at the beginning of Chapter 6 (Anderson 
1935; Fisher 1936). A typical run file for the Iris dataset example is as follows: 

iris.rul 

iris.dat 

rules.out 
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results.out 

1 

1 

0 

Two of the files contain input information for the system and must be present 
at run time. They are i r i s .  r u l  and i r i s .  da t .  Two files are output at the end 
of a run, They are r u l e s ,  ou t  and r e s u l t s ,  out .  Following the list of files are 
three input parameters: The first specifies how the antecedents of rules are handled, 
and the second and third affect how defuzzification is accomplished. 

The first input file (the second file in the list) is i r i s .  da t ,  the input data file. A 
fuzzy rule system can be developed to classify or diagnose practically any data. The 
data file contains values for input variables and associated output variable(s). The 
first line of the data file contains the number of input variables (4) and the number 
of output variables (1) in the data file followed by the number of classes (3) to 
which the data can belong. Any number of input and output variables can be used. 
The remaining lines of the data file contain input/output patterns: Inputs followed 
by one or more outputs. Each output specifies the classification or diagnosis for 
the corresponding inputs. This file is similar to the data files used by the neural 
networks discussed earlier in this book except that here only one output variable 
specifies the class to which this data pattern belongs. Following are the first four 
lines of the fuzzy logic system data file (on the book's web site) for the Iris dataset. 
The output variable in this file is 0, 1, or 2, which, depending on the Iris class, 
indicates that this data pattern belongs to class 1, 2, or 3, respectively. 
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0.6375 0.4375 0.1750 0.0250 0 

0.8750 0.4000 0.5875 0.1750 1 

0.7875 0.4125 0.7500 0.3125 2 

. . ,  

The first file listed in the run file list, i r i s .  r u l ,  called the "rules file," contains 
the fuzzy rules and the definitions for the fuzzy membership functions for both 
the input and output variables. It is necessary to understand the contents of the 
rules file thoroughly in order to use the fuzzy rule system successfully. Conversely, 
knowing all about the rules file provides an understanding of how the fuzzy rule 
system works. Because of its central importance to the fuzzy rule system, the com- 
plete listing of a rules file for classifying the Iris dataset appears as Listing 8.20. 

Listing 8.20 Example of a rules file for the fuzzy rule system. 

16 

4 1 

sepalLength 3 0.4 1.0 

reverseSigmoid 0.4 0.8 

Gaussian 0.4 1.0 



Sigmoid 0.6 1.0 

sepalWidth 3 0.0 0.6 
leftTriangle 0.0 0.3 
Triangle 0.15 0.45 

rightTriangle 0.3 0.6 

petalLength 3 0.0 1.0 
leftTriangle 0.0 0.4 
Triangle 0.2 0.7 
rightTriangle 0.4 1.0 

petalWidth 3 0.0 0.4 
leftTriangle 0.0 0.2 

Triangle 0.i 0.3 
rightTriangle 0.2 0.4 

output 3 0.0 1.0 
reverseSigmoid 0.0 0.4 
Gaussian 0.3 0.7 
rightTriangle 0.5 1.0 

2 I 2 2 i 

3 3 3 3 3 

i 3 i I i 

i I 2 2 3 

2 I 3 3 3 

i 3 i i i 

2 2 3 3 2 

3 1 3 3 3 

1 3 1 1 1 

3 2 3 2 2 

2 1 2 2 2 

1 2 1 1 1 

2 2 3 3 3 

3 2 3 3 3 

1 1 1 1 1 

1 1 2 2 2 

Fuzzy Rule System Implementation 

The first line in the rules file contains the number of rules listed in the file, in this 
case 16. The next line contains the number of input fuzzy variables followed by the 
number of output fuzzy variables, in this case 4 and 1, respectively. Note that there 
is only one fuzzy output variable, while there are three classifications in the dataset. 
Each classification has been mapped to one fuzzy set on the domain of the output 
variable. 

Next, the fuzzy sets for all input and output variables are defined. In accor- 
dance with the second line of the rules file, we define 4 input and 1 output fuzzy 
variable. The next line, s e p a l L e n g t h  3 0 . 4  1 .0 ,  defines the first fuzzy input vari- 
able's name as sepalLength, specifies the variable's domain to have three fuzzy sets, 
and defines the variable's dynamic range (domain) to be 0.4 to 1.0. The variable 
name is chosen by the user, as is the number of fuzzy sets in the variable's domain. 
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The numbers 0 .4  and 1 .0  define the dynamic range of the input variable; they 
specify where the leftmost fuzzy membership function assumes a value of I and 
the rightmost assumes a value of 1, respectively. They are generally equal to (and 
at least related to) the variable's minimum and maximum values, respectively, in 
the dataset. Because three fuzzy sets have been specified, the next three lines in the 
rules file each define one fuzzy set for the variable sepalLength. 

Two main kinds of membership function are available: nonlinear and linear. The 
variable s e p a l L e n g t h  is represented by the nonlinear fuzzy membership func- 
tions r e v e r s e S i g m o i d ,  G a u s s i a n ,  and S igmoid  (it could also be represented 
by linear functions). 

The second fuzzy input variable is named s e p a l W i d t h  and also has three 
fuzzy membership functions specified. Note that sepal width's dynamic range 
is from 0.0 to 0.6. This time, the family of linear membership functions is 
specified. 

From Listing 8.20, we can see that the other two fuzzy input variables, 
p e t a l L e n g t h  and p e t a l W i  d th ,  use three linear (triangular) membership func- 
tions each, defined over their respective dynamic ranges. Depending on the prob- 
lem being solved, the number of membership functions defined for each variable 
can vary, and all variables do not have to have the same number of functions. For 
example, for some particular problem, one input variable might have three fuzzy 
membership functions defined over its domain, while another has five, and still 
another has seven. 

We are now ready to examine the output of our fuzzy rule system. From the 
rules file, we see that the output variable is named o u t p u t  and is defined by 
three fuzzy membership functions over the domain [0,1]. We have thus chosen, 
in this case, to represent each of the three output classifications with one fuzzy 
membership function (a fuzzy set) over the domain of one output variable. It can 
be seen from the definitions of the three fuzzy sets constituting the output that 
we can "mix and match" linear and nonlinear fuzzy membership functions. The 
membership functions representing classes 1 and 2 are nonlinear (reverse sigmoid 
and Gaussian, respectively), while class 3 is represented by a linear membership 
function (right triangle). 

The next line, 2 1 2 2 1, is the first rule in the fuzzy rule set. Based on the fuzzy 
set definitions, we see that the rule states, "If sepal length is medium and sepal 
width is low and petal length is medium and petal width is medium, then output 
is low (output is class 1 of 3)." Finally, the remaining fuzzy rules are listed. Their 
meanings are also clear from the definitions listed above them. In this case, an addi- 
tional 15 rules are listed. The maximum absolute value that any rule variable can 
assume is the number of fuzzy membership functions defined over that variable's 
domain. 

Note that there are three occurrences of the same rule: 1 3 1 1 1 (if sepal length 
is low and sepal width is high and petal length is low and petal width is low, then 
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class is low: class 1 of 3). The reason for this is explained later in the discussion of the 
Iris dataset application. Also note that there are three sets of rules with "conflicts." 
One example is rule 1" 2 1 2 2 1, and rule 11:2 1 2 2 2. These two rules have the 
same antecedents but different consequents. For the same conditions, rule 1 says 
the output class is low (class 1 of 3), while rule 11 says that it is medium (class 2 
of 3). Such conflicts are "legal" in fuzzy rule systems; they are, in fact, not unusual. 
Such conflicts, of course, are not permissible in traditional rule systems. 

In the case of multiple occurrences of the same rule, all but one can be eliminated. 
This is permissible because of the kinds of defuzzification defined with this rule 
system. Even with the overlap version of defuzzification selected, overlap within a 
membership function is ignored. By eliminating two of the three 1 3 1 1 1 rules, 
we are left with 14 rules. 

It is acceptable to use a zero (0) at any antecedent location in a rule. A zero 
signifies that the corresponding antecedent is ignored. Some situations may call for 
writing a rule with a 0 at one or more locations. Another way to use a 0 is illustrated by 
the rule set in Listing 8.20. Rules 3, 12, and 15 are i 3 1 1 1, 1 2 1 1 1, and 1 1 1 1 1, 
respectively. These three rules can be collapsed into one rule: 1 0 1 1 1. Likewise, 
rules 2, 8, and 14 can be collapsed into 3 0 3 3 3. We are now left with only the 
10 rules in Listing 8.21. 

Listing 8.21 Final minimal rule set for Iris dataset classification. 

2 1 2 2 1  

3 0 3 3 3  

1 0 1 1 1 

1 1 2 2 3  

2 1 333 

2 2 3 3 2  

3 2 3 2 2  

2 1 222 

2 2 3 3 3  

1 1 2 2 2  

It is also acceptable to use negative integers in rules. Thus, - 2  would mean 
"not medium" in this case. Negative numbers can be used for either antecedents 
or consequents. Thus, 1 -2  3 2 -1  would represent "If low and not medium and 
high and medium, then not low." Care should be exercised when collapsing rules, 
however. It might be tempting to collapse 1 1 2 2 2 and 1 1 2 2 3 into 1 1 2 2 -1 ,  but 
this would not give the same results because of the way negatives are defuzzified. 
A negative such as - 2  (not 2) is defuzzified as the fuzzy complement: Ux (2) = 

1 - ~x  ( - 2 ) .  

It is possible to have more than one output fuzzy variable. The fuzzy sets for 
each output variable, of course, must be defined in the rules file. Each rule must 
specify the antecedents and consequents for each input and output variable. So, if 
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we have four fuzzy input variables and two fuzzy output variables, a rule might 
be 1 2 3 2 0 1. This would mean that we "don't care" about the first of the two 
outputs, but the rule fires the fuzzy set corresponding to "1" in the second output. 
A rule can fire more than one output simultaneously, but the defuzzification of each 
output variable is done independently in this implementation. Rules 1 2 3 2 0 1 
and 1 2 3 2 1 0 can thus be collapsed into the single rule 1 2 3 2 1 1. 

We now discuss the output files. Two of the filenames in the run file refer to 
output files that are written on completion of a program run. The third file listed 
in the run file, r u l e s ,  ou t ,  is the rule output file, which contains a list of the rules 
in words. For example, the fifth rule, which is listed in the rules file as 2 1 3 3 3, 
is written out in the rule output file a s  if_sepalLength_is_Medium_and_ 
s epa 1 W i dt h_i s_Low_an d_pe t a i Len gt h_i s_Hi gh_a n d_p e t a 1 W i dt h_ 

i s_Hi gh_t hen_out put_i s_Hi gh. 

It is easier to write the rules using numbers (typographical errors are much less 
likely), but it is helpful to have a written listing of the rules so that they can be 
checked for accuracy. 

The other output file, the results file r e s u l t s ,  ou t ,  contains a listing of the 
correct classifications for the input patterns in the data file, with a listing of the 
classification made by the fuzzy rule system. Errors are identified, and an error total 
appears at the end of the list. 

Three input parameters follow the list of files in the run file. The first specifies 
how the antecedents of rules are handled, and the second and third specify how 
defuzzification is to be done. 

The first input parameter is the averaging flag. When it is set to 0, the AND 
statements in the antecedents are treated as is usual in fuzzy logic systems: The 
minimum membership value is output. When the averaging flag is set to 1, the 
average of the membership values ANDed together is output. In the case of 
the Iris dataset example, the average of the four fuzzy membership values is used. 

The second input parameter is the defuzzification parameter. It can take one of 
three possible values: 0, 1, or 2. When it is 0, the centroid of the fuzzy membership 
function with the highest value is used for the defuzzified output scalar. When it 
is 1, the "no overlap" method of defuzzification is used. When it is 2, the over- 
lap of different membership functions is included in the centroid calculation (the 
overlap within a membership function is not considered). See Chapter 7 for more 
information on defuzzification. 

The third input parameter is the summation flag. Its value specifies how output 
fuzzy membership values are formed prior to defuzzification. In other words, this 
flag takes effect before the defuzzification parameter, discussed previously, does. If 
the summation flag is set to 1, and a number of rules fire the same output fuzzy 
membership function, the maximum value caused by any one rule is selected as 
the value to be passed on to the defuzzification step. For example, if a triangular 
membership function is fired and the maximum value arising from any single rule 
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is 0.5, then the triangular function is truncated at the 0.5 level, and the resulting 
trapezoidal shape participates in defuzzification. 

If the summation flag is set to 0, the sum of all values caused by the rules firing 
(up to a maximum summed value of 1) is computed as the value to be passed 
to defuzzification. For example, if three rules fire that activate a particular output 
fuzzy membership function with the values of 0.3, 0.5, and 0.1, respectively, then 
the membership value established for defuzzification is 0.5 if the summation flag is 
1 and 0.9 if the flag is set to 0. As another example, if three rules fire, each activating 
a certain output fuzzy membership function at the 0.5 level, then its membership 
value is set to 0.5 if the flag is set to 1. If the flag is set to 0, the membership value 
is set to 1. 

It can be seen that this option amounts to something between a "no overlap" 
situation and a "full overlap" case (not available in this fuzzy expert system imple- 
mentation), where overlap is computed even within a membership function. 

Iris Dataset Application 
The fuzzy rule system implemented in the book has been used to build a classifier for 
the Iris dataset, as can be seen from the run file discussed previously. Several of the 
system's special features were used. In this section, we summarize the application. 

Among the first issues that must be resolved when developing a fuzzy rule system 
for classification are how to formulate the rules and how to define the fuzzy member- 
ship functions. Examining the data in the data file reveals that the dynamic ranges of 
the four input variables are 0.53 to 0.98, 0.25 to 0.45, 0.13 to 0.82, and 0.01 to 0.31, 
respectively. It would have been possible to scale these values so that each range was 
[0,1], but it is sometimes desirable to be able to work with data just the way we get 
them. Therefore, the data were not scaled, but the domains of the fuzzy membership 
functions were adjusted to reflect the dynamic ranges. Thus, the domain of sepal 
length was set to [0.4,1.0], sepal width to [0.0,0.6], petal length to [0.0,1.0], and petal 
width to [0.0,0.4]. These values are listed in the rules file. Initially, three triangular 
membership functions were defined over each input and output variable domain. 
Although the domain location and membership type were in some cases adjusted 
during system development, the final system configuration comprises three fuzzy 
membership functions for each fuzzy input and output variable. 

The formulation of rules from raw data can be problematic for any rule system, 
fuzzy or crisp. How, then, were the fuzzy rules formulated? It would be possible, at 
least theoretically, to form a fuzzy rule from each pattern. Such an approach would 
be tedious at best and, with a pattern file of any significant size, infeasible. It was 
decided in this case to use an LVQ neural network to cluster the Iris data and to use 
the weight vector (centroid) for each cluster to form a fuzzy rule. 

Since the number of clusters formed is a user-defined parameter (see the dis- 
cussion of LVQ in Chapter 6), the user can specify the number of fuzzy rules for the 
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system. The number of clusters was set to 16, which resulted in the 16 rules listed 
in the rules file (refer to Listing 8.20). Recall that three rules in Listing 8.20 are 
identical; this reflects three clusters generating identical rules. All three rules were 
left in the list for completeness. Having identical rules in the rule set does not affect 
the scalar output for any of the defuzzification techniques used in the fuzzy expert 
system described here, unless the summation flag is set to 0, which may or may 
not affect the results. The duplicate rules should generally be removed to conserve 
computing time. 

Each cluster center (input) vector was fuzzified using the membership functions, 
then (since the averaging flag was set to 1) the average of the four fuzzy membership 
values was used for activating the output variable fuzzy set. The summation flag 
was set to 0, so that the contributions from all rules that fired were summed (to a 
maximum value of 1) to determine the value to be defuzzified for each variable. The 
specific output fuzzy set used was, of course, that corresponding to the classification 
in the data file for each pattern. The defuzzification parameter was set to 1, resulting 
in the "no overlap" method of defuzzification. 

Good results were obtained by using nonlinear functions for classes I and 2 and 
a triangular function for class 3. The triangular membership function has the effect 
of emphasizing class 3 values near the class 2 boundary~a feature that facilitates 
the system performance demonstrated. 

After the adjustments just described are made, the fuzzy rule system is able 
to classify all but 7 of the 150 Iris dataset patterns correctly. This is acceptable 
performance for this dataset, matching the performance by some neural network 
classifiers. It exceeds the performance of other rule systems known to the authors 
except for the system described below that classifies all but 4 patterns correctly. 
Other system parameter combinations also gave good results. For example, with 
the summation flag set to 0, the same result (7 mistakes) was obtained using only 
linear (triangular) membership functions. 

The adjustments of fuzzy membership types and locations on the domain axis 
were done manually by the authors. An evolutionary algorithm can be employed 
instead, and it is discussed in the next section. As the automated system is now 
envisioned, the pattern set will be presented to an LVQ neural net or a GA. The LVQ 
net or GA will be told how many patterns with how many inputs and outputs are 
present, and the maximum number of clusters will be specified. A fuzzy rule system 
will either be developed using each cluster centroid from the LVQ to form a fuzzy rule 
or will use rules evolved by a GA, after defining fuzzy membership functions over 
the domains of the fuzzy input and output variables. Fuzzy membership functions 
can also be evolved using evolutionary algorithms. Membership functions can be 
evolved much like a neural network. 

In summary, all that will need to be specified are the numbers of patterns, inputs 
and outputs; the number of clusters; (perhaps) the number ofmembership functions 
for each fuzzy variable; and the level of system performance that is acceptable. 
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An LVQ neural network or GA, fuzzy rule system, and evolutionary algorithm will do 
the rest. All of it. And by keeping track of which fuzzy rules fired for any decision and 
what the contribution of each was, an explanation facility can be provided as well. 

The "next step" on the path to a completely automated classification tool is 
described in the next section. An implementation comprising a GA preprocessing 
(rule and membership function evolution) system and a fuzzy rule system classifier 
is described that can evolve a fuzzy rule set of only four rules that classifies the Fisher 
Iris dataset with only 4 out of 150 misclassifications. The software for this system 
is available on the book's web site. 

Evolving Fuzzy Rule Systems 

This section discusses the implementation of an evolutionary fuzzy rule system. An 
integer version of a genetic algorithm is implemented to evolve the fuzzy rule system. 
The links between the two systems presented in this chapter are the representation 
and the fitness. By representation, we mean the part of a fuzzy system that is encoded 
into the individual of the genetic algorithm; by fitness, we mean how to evaluate each 
individual in the population. This evaluation involves decoding each individual into 
a fuzzy rule system and then using this system on the problem to be solved to see 
how well this fuzzy system works for solving the problem. In our implementation, 
both the fuzzy rule set and the fuzzy membership functions can be evolved. The 
primary reason we use an integer representation of a genetic algorithm is that we 
used integers to represent the fuzzy rules and types of membership functions in the 
implementation of our fuzzy rule system in the previous section. 

Programming the Evolutionary Fuzzy Rule System 
To implement the evolutionary fuzzy rule system, we have to implement both the 
fuzzy rule system and an evolutionary algorithm (a genetic algorithm here). The 
fuzzy rule system implemented in the previous section will be adopted here. Since 
an integer version of the genetic algorithm is used here, we will focus on the imple- 
mentation of the genetic algorithm in C++. The genetic operators are quite similar 
to those in the binary version of the genetic algorithm discussed in the Chapter 4 
except for the mutation operator, which is explained later in this section. 

As in evolutionary neural networks, the individual representation of the evolu- 
tionary fuzzy rule system serves as the bridge between the genetic algorithm and 
the fuzzy rule system to be evolved. On the genetic algorithm side, the individual 
represents the parts of the fuzzy system to be designed (adapted). It can theoretically 
be any part of, or the entire, fuzzy rule system. On the fuzzy system side, each GA 
individual is decoded into a fuzzy rule system. The fuzzy system is then presented 
with training patterns (the Iris dataset in our implementation) to be evaluated. The 
evaluation is then fed back to the genetic algorithm as the fitness of the individual. 
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Populationlnt Array 

Individuallnt Template < class Type > class vector 

Figure 8.3 Class tree in the implementation of the genetic algorithm. 

In the following discussion, we discuss the individual representation first, fol- 
lowed by a discussion of the C++ classes defined in the implementation. The new 
classes to be defined in this section for the implementation of the GA are shown in 
Figure 8.3. The class I n d i v i d u a l I n t  is the fundamental class, which defines an 
object class of individual integer representation in the genetic algorithm. The class 
? o p u l a t i o n I n t  defines an object class of population in the genetic algorithm, 
which consists of a set of IndividualInt classes. 

For our discussion of the individual representation, assume that we are design- 
ing a fuzzy system with four input variables and one output variable, and that 
each variable has three fuzzy sets representing the linguistic descriptions low, 
medium, and h i g h .  As in the implementation of the fuzzy rule system, the 
three fuzzy sets are represented by the integers 1 to 3. The integer 0 represents 
the absence of a fuzzy set. The minus sign, -, encodes the modifier not .  There- 
fore, a fuzzy rule can be completely encoded by five integers. For example, the 
rule if input_l is not low, input_2 is not medium, and input_4 

is high, then output is high can be encoded as -i -2 0 3 3. If the 

rule set contains 20 rules, then an integer string of length 100 (5 × 2 0) can 
represent the rule set completely. (We may not use all 20 rules. That is dealt with 
later.) 

A membership function as explained before is completely determined by three 
values: the s t a r t _ p o i n t  xz, the e n d _ p o i n t  x2, and its function type value. In 
the implementation of our fuzzy rule system, a total of six types of function (defined 
in the preceding section) are defined to be possible candidates for the membership 
functions. As discussed previously, each is represented by an integer from 1 to 6. 
In order to have a homogeneous chromosome, integers are chosen to represent 
the s t a r t _ p o i n t  x~ and the e n d _ p o i n t  x2 instead of real values. Assume for 
the variable x that its dynamic range is [ a ,  b ] and that it has n fuzzy sets. If the 
fuzzy membership functions are distributed over the range with halfway overlap, as 
shown in Figure 8.4, then the center point c~ ( i = l , . . . ,  n) ofthe ith membership 
function is located at 

ci = a + i*  step i = 1 , . . . ,  n, where step = 
b - a  

n + l  
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Figure 8.4 Three overlapping membership functions. 

; of the ith membership function to vary We constrain the start_point xz 
of the ith membership function onlybetween ci-~ and ci ,  and the e n d _ p o i n t  x 2 

can vary only between ci  and ci+~. Assume an integer s ( s = 0 , . . .  , 10 ) is 
i and i i and i used to "tune" x~ x2; then x~ x 2 can be calculated from the integer s 

using the following formula: 

xli -- i *S tep  -- step 2~i-0*(10+Sil) -[--a 

x2i _ i * S tep  -b step 2 (10+si2) -~- a i =  1 , . . - ,  n 

For an unknown fuzzy system, we generally have little or no idea how many 
rules should be included in the rule set before the system is designed. A maxi- 
mum acceptable number can be guessed and/or given, however. Within the max- 
imum number constraint, the number of fuzzy rules in the rule set can also be 
evolved. Assume for our example system that the maximum acceptable number 
is 2 0; then if both fuzzy rule set and membership functions (shape and type) are 
to be evolved, the total length (in integers) of the chromosome representing the 
system is 

1 + 5 * (3 *(2 + i))+ 5 * 20 = 1 46 

and the system can be represented as 

Sl S 2 S 3 S4 ...... S14 S15 SI6 SI7 ........ S46 S47 

S48 S49 S50 S51 ...... S142 S143 S144 S145 S146 
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where s~ represents the number of rules varying between 1 and 20, s2 and s3 
represent the start point and end point for the first fuzzy set of the first input 
variable and can vary between 0 and 1 0, s4 represents the membership function 
type for the first fuzzy set of the first input variable and can vary between 1 and 
6, s5 to s46 encode the remaining fuzzy membership functions (start point, end 
point, type), s47 to ss~ represent the first fuzzy rule, and s~42 to s~46 represent the 
last possible rule. Since s~ specifies how many possible rules are encoded in the 
chromosome, only the first s~ rules are used to form the rule set, but every rule 
may or may not be feasible. Therefore, each possible rule is checked to see whether it 
represents a feasible rule or not. A rule without a nonzero antecedent or consequent 
part is not a feasible rule, and it will not be included in the rule set. 

For example, assume we have a rule encoded as 12 3 2 0. This has no nonzero 
consequent part, so it will not be included in the rule set as a rule, and the number 
of feasible rules will be s~ - l .  If all s~ possible rules are infeasible (this mostly 
happens at the beginning of the GA run), then this chromosome contains no 
feasible rules, doesn't form a usable fuzzy system, and is assigned a very small 
(around 0 . 0  0 0 1) positive random value as its fitness value. If the fuzzy rule set 
contains feasible fuzzy rules, the individual is decoded into a fuzzy rule system, 
which is then presented with the testing patterns to obtain the fitness for this 
individual. 

The class a r r a y  is defined to handle a two-dimensional array. The class a r r ay 
is shown in Listing 8.22. It has three private elements: the number of rows 
( i n t  row), the number of columns ( i n t  c o l ) ,  and a float pointer to the array 
(float* arr). 

The public constructors provide ways to declare a r r a y - t y p e  variables. For 
example, a r r a y  a 1 declares an empty a r r a y  variable a 1; a r r a y  a 2 ( ~., 3 ) 

Listing 8.22 Definition of class a r r a y .  

class array 
{ 

private: 
int row; 
int col; 
float* arr; 

public: 
array():row(O),col(O),arr(O) {} 
array(int a, int b); 
array(const array& a); 
~array(){delete []arr;} 

array& operator =(const array&a); 
array& operator =(const float& a); 
array& operator =(const vector<float>& a); 
float* operator [] (int i) const; 
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int len() const {return row; } 

int wid() const {return col; } 

float* poi() const {return arr; } 

vector<int> max_index() const; 

float sum() const; 

array noise(const float& a, const float& b) const; 

array square() const; 

array t() const; 

array map (float (*f) (float)) const; 

//arithmetic operation 

array& operator += (const array& a); 

array& operator-= (const array& a); 

array& operator *= (const array& a); 

array& operator *=(const float& a); 

friend array operator * (const float& a, const array& b); 

friend array operator * (const array& a, const float& b); 

friend array operator * (const array& a, const array& b); 

friend array operator % (const array& a, const array& b); 

friend array operator + (const array& a, const array& b); 

friend array operator - (const array& a, const array& b) ; 

friend array operator - (const float& a, const array& b) ; 

friend array operator - (const array& a, const float& b); 

friend istream& operator >> (istream& is,array& a); 

friend ostream& operator << (ostream& os,const array& a); 

declares an a r r a y  variable a2 with 2 rows and 3 columns and all elements 
(2 x 3 = 6) initialized to be zeros; a r r a y  s3  ( s2 )  declares an a r r a y  variable 
s3 ,  which is a copy of a r r a y  variable s2.  

The public member functions l e n  ( ) ,  w i d  ( ) ,  and p o i  () provide an interface 
to obtain the private data members row,  c o l  and a r t ,  respectively, from outside 
of the a r r ay class. 

The public member function m a x _ i n d e x  () returns the index of the element 
that has the maximum value among all a r r a y  elements. The member func- 
tion sum () returns the summation of all element values. The member function 
n o i s e  ( a , b )  returns an array with each of its elements having a random value 
with the range [b,  b+a ]. The member function s q u a r e  ( ) returns a new a r r a y  
with each new element equal to the square of its corresponding old element. The 
member function t () returns a new a r r a y  that is a transposition of the orig- 
inal a r r a y .  The member function map ( f l o a t  (* f )  ( f l o a t ) )  returns a new 
a r r a y  with each element equal to the return value of function f ( x ) ,  where x is 
the corresponding element in the original a r r ay. 

The public operator = ( c o n s t  array& a) returns a new a r r a y  that is a 
copy of the original one. The public o p e r a t o r  = ( c o n s t  f l o a t &  a) returns 
a new a r r a y ,  each element of which equals f l o a t  value a. The public 
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operator = (const vector<float>& a) converts (vector<float> a) 

into an array variable with one column and the number of rows equal to the 

length of the vector a. 
The public operators + = , - = ,  * = ,  + , - ,  *, and % provide operations for 

the array variables. For example, assume a ( r ,  c) represents an a r r a y  variable 
a with row = r and c o l  = c. Then we can have a r r a y  operations such as 
a 1 ( 2 , 3 )  += a 2 ( 2 , 3 ) ;  a 1 ( 2 , 3 )  *= a 2 ( 3 , 2 ) ;  a 1 ( 2 , 3 )  = a 2 ( 2 , 3 )  + 
s3  (2 ,  3) ; and a l  (2,  3) = a 4 ( 2 , 4 )  * a 5 ( 4 , 3 ) .  

The friend operators < < and > > provide methods for input and output, respec- 
tively, of an array variable. 

The class I n d i v i  d u a l  I n t  is shown in Listing 8.23. This class is defined for the 
individual ofthe integer version ofthe genetic algorithm. All the data variables related 

Listing 8.23 Definition of class IndividualInt. 

class IndividualInt 
{ 
private: 

int length; //length of the individual 
int* ptr; //pointer to the individual 
float m_rate; //mutation rate 

public: 

IndividualInt():length(0),ptr(0),m_rate(0) {} 
IndividualInt(int a, float b); 
IndividualInt(int a, int* b, float c); 
IndividualInt(vector<int> a, float b); 
IndividualInt(const IndividualInt& a); 

~IndividualInt() {delete []ptr; } 

//member function 
int get_length() const {return length; } 
float get_mrate() const {return m_rate; } 

IndividualInt& change_mrate (const float& a); 
IndividualInt& change_length (const int& a); 

IndividualInt& initialize (const int& a, const int& b); 
IndividualInt& initialize_range(const IndividualInt& a); 
IndividualInt& initialize_range_RM(const IndividualInt& a); 
IndividualInt& initialize_range_RMT (const IndividualInt& a); 

FuzzyRuleSet formRuleSet(const FuzzyRule& a) const; 
FuzzyRuleSet formRuleSet_RM(const FuzzyRule& a, const 

IndividualInt& b) const; 
FuzzyRuleSet formRuleSet_RMT(const FuzzyRule& a, const 

IndividualInt& b) const; 
float fitness(const FuzzyRule& a, const array& b, const 

vector<int>& cn, const int&c, const int& d, const int&e) const; 
float fitness_RM(const FuzzyRule& a, const array& b, const 

vector<int>& cn, const int&c, const int& d, const int& e, const 
IndividualInt& f) const; 

float fitness_RMT(const FuzzyRule& a, const array& b, const 
vector<int>& cn, const int&c, const int& d, const int& e, const 
IndividualInt& f) const; 
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IndividualInt& mutate_one(const IndividualInt& a); 
IndividualInt& mutate_one_RM(const IndividualInt& a); 

IndividualInt& mutate_one_RMT(const IndividualInt& a); 

friend void crossoverOP (IndividualInt& a, IndividualInt& b) ; 

friend void crossoverTP (IndividualInt& a, IndividualInt& b) ; 

friend void crossoverUniform(IndividualInt& a, IndividualInt& b) ; 

//operators 

int& operator [] (int i) const; 

IndividualInt& operator =(const IndividualInt& a); 

//I/O operators 

friend istream& operator >> (istream& is, IndividualInt& a); 

friend ostream& operator <<(ostream& os,const IndividualInt& a); 

to the individuals and all the functions performed on the individuals are bound 
here and defined in the class I n d i v i d u a l I n t .  

The class I n d i v i d u a l I n t  has three private data members. The data member 
i e n g t  h ( i  n t )  records the length of the individual. The integer pointer p t  r points 
to the individual. The data member m _ r a t e  ( g l o a t )  records the mutation rate 
for the individual. Other parameters can be put here, for example, the crossover 
rate, but we prefer to put the crossover rate at the population level since it involves 
two individuals instead of one, as is the case for mutation. 

Public constructors provide ways to declare an Individuallnt variable. 
For example, I n d i v i d u a l I n t  i l  declares an empty I n d i v i d u a l I n t  
variable i l ;  I n d i v i d u a l I n t  i2  (4, 0 .1 )  declares an I n d i v i d u a l I n t  vari- 
able i2  with a length of 4 and the r e _ r a t e  of 0 .1 ;  and I n d i v i d u a l I n t  i3  ( i2)  
declares an I n d i v i d u a l I n t  variable i3  that is a copy of I n d i v i d u a l I n t  vari- 
able i2 .  Assume v l  is a class v e c t o r < f l o a t >  variable with 5 elements; then 
I n d i v i d u a l I n t  i4  ( v l ,  0 .05 )  declares an I n d i v i d u a l I n t  variable i4  that 
has a l e n g t h  of 5, with 5 elements copied from the variable v l  and r e _ r a t e  of 
0 . 0 5 .  

The public operator [] provides a way to access an element. The public 
o p e r a t o r  - provides a way to copy one I n d i v i d u a l I n t  variable to another. 

The public member functions g e t  l e n g t h  ()and g e t _ m r a t e  () provide 
ways to obtain l e n g t h  and m _ r a t e  from outside the I n d i v i d u a l I n t  vari- 
able. The public member functions c h a n g e  l e n g t h  () and c h a n g e _ m r a t e  () 
provide ways to change the l e n g t h  and m _ r a t e  from outside the 
I n d i v i d u a l I n t  variable. 

As mentioned previously, the implementation can be used to evolve the fuzzy 
rule set and fuzzy membership functions. In the following discussion, if a function's 
name has the extension RM, it means that both the rule set and the membership 
function's shape are evolved. If its name has extension P ~ T ,  it means that the rule 
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set together with the membership functions' shape and type are evolved; if its name 
does not has these extensions, it means that only the rule set is evolved. 

The public member function i n i t i a l  i ze ( ) initializes each individual 
uniformly, randomly for all its elements. The member functions i n i t i a l i z e _  
range (), initialize_range_RM (), and initialize_range_RMT () ini- 

tialize the individuals according to an IndividualInt variable range. Each 

element in the individual may have a different range. For example, if one variable 
has five fuzzy sets, then its corresponding elements in the individual representa- 
tion have the integer range { 0, 1, 2, 3, 4, 5 } ; if another variable has three 
fuzzy sets, then the integer range will be { 0, 1, 2, 3 }. For the function types, 
since six functions are implemented in the fuzzy rule system, the integer range 
for the function type element has the integer range { 1, 2, 3, 4, 5, 6 }. The 
IndividualInt variable range is built to record the dynamic integer ranges 
for each element. This is extremely useful for initialization of the individuals and 
the mutation operation since an element can't have an integer value out of its 
range. For example, if an element for function type has a value of 8, then the cor- 
responding fuzzy system will issue a error since it can't find the right membership 
function to obtain a membership value. 

The public member functions f o r m R u l e S e t  (), formRuleSet_RM (), and 
formRuleSet_RMT () return a fuzzy rule system by constructing the fuzzy rule 
system from the individual. 

The public member functions m u t a t e _ o n e  (), muta te_one_RM (), and 
mutate_one_RMT ()perform mutation on the individual. Each element is ran- 
domly chosen to undergo mutation according to the mutation rate (re_rate) .  If 
this element is selected for mutation, its integer value is increased or decreased 
by one randomly. If the mutated value is out of range, it is wrapped around. For 
example, for an element representing a fuzzy variable with 5 fuzzy sets, if its cur- 
rent value is 5, then increasing by one means its mutated value will be - 5  (the no t  
modifier is implemented here). For an element representing a function type, if its 
current value is 1, decreasing by one means the mutated value will be 6 (remember 
that the function type can't be 0). 

The public functions fitness (), fitness_RM (), and fitness_RMT () 
provide ways to evaluate the individual. Each first decodes the individual into a 
fuzzy rule system, then runs the fuzzy system to get the fitness value. 

The crossoverOP (), crossoverTP (), and crossoverUniform () 

friend functions perform one-point, two-point, and uniform crossover operations, 
respectively. 

The friend operators < < and > > provide methods for input and output, respec- 
tively, of I n d i v i d u a l I n t  variables. 

The class P o pu 1 a t  i on I n t  is shown in Listing 8.24. It is defined for the popula- 
tion of the integer version of the genetic algorithm. It has five private data 
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Listing 8.24 Definition of class PopulationInt. 

class PopulationInt 
{ 

private: 
int length; //population size 
int width; //individual length 
IndividualInt* ptr; //pointer to the individual 
float c_rate; //crossover rate 

float m_rate; //mutation rate 

public: 
Populationlnt () :length (0) ,width (0) ,ptr (0) , c_rate (0) ,m_rate (0) { } 

PopulationInt (int a, int b) ; 
PopulationInt (int a, int b, float c, float d) ; 

PopulationInt (const PopulationInt& a) ; 

//member function 
int get_length() const {return length; } 
int get_width() const {return width; } 
float get_crate() const {return c_rate; } 
float get_mrate() const {return m_rate; } 

PopulationInt& change_crate(const float& a) 
{assert(a>=0&&a<=l); c_rate=a; return *this; } 

PopulationInt& change_mrate(const float& a); 
PopulationInt& initialize_range(const IndividualInt& a); 

//a: rule range, for evolving rule set only 
PopulationInt& initialize_range_RM(const IndividualInt& a); 

//a: rule range, for evolving rule set and tuning membership 
functions 

PopulationInt& initialize_range_RMT(const IndividualInt& a); 
//a: rule range, for evolving rule set and tuning membership 

functions 
PopulationInt& mutate_one(const IndividualInt& a, const int& b); 

//a: rule range b: best fitness index 
//for rule set only 

PopulationInt& mutate_one_RM(const IndividualInt& a, const int& b); 
//a: rule range b: best fitness index 
//for rule set and membership functions 

PopulationInt& mutate_one_RMT(const IndividualInt& a, const int& b); 
//a: rule range b: best fitness index 
//for rule set and membership functions and type 

PopulationInt& crossover(const int& a, const int& b); 

//a: crossover flag 

//0:uniform l:one point 2" two point b: best individual index 

PopulationInt& selection(const vector<float>& a, const int& b, 
const int& c); 

//a" fitness vector b: best individ, index c: shift flag 

(I: yes, 0" no) 

vector<float> fitness (const FuzzyRule& a, const array& b, const 
vector<int>& cn, 

const int& c, const int& d, const int&e) const; 

//a:base rule, b:input array c:ruleEffectFlag 
//d'fuzzyFlag e:defuzzyFlag cn:class no. for output 
//for evolving rule set only 

vector<float> fitness_RM(const FuzzyRule& a, const array& b, 
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const vector<int>& cn, 

const int& c, const int& d, const int& e, const IndividualInt& f) 
const; 

//a:base rule, b:input array c:ruleEffectFlag 

//d:fuzzyFlag e:defuzzyFlag cn:class no. for output 
//f : range individual 

//for evolving rule set and membership functions 

vector<float> fitness_RMT (const FuzzyRule& a, const array& b, 

const vector<int>& cn, const int& c, const int& d, const int& e, 
const IndividualInt& f) const; 

//a:base rule, b:input array c:ruleEffectFlag 
//d:fuzzyFlag e:defuzzyFlag cn:class no. for output 
//f : range individual 

//for evolving rule set and membership functions 

//operators 

IndividualInt& operator [] (int i) const 

{assert(i>=0&&i<length); return ptr[i]; } 

//I/O operators 

friend ostream& operator<< (ostream& os, const PopulationInt& a); 
friend istream& operator>> (istream& is,PopulationInt& a); 

members: the population size (int length), the length of the individual 
( i n t w i d t  h), the population-level crossover rate ( f i o a t c_ r  a t e ), the population- 
level mutation rate (m_rate) ,  and the pointer to the individuals 
( I n d i v i d u a l I n t *  p t r ) .  The purpose of defining the mutation rate in both 
class I n d i v i d u a l I n t  and class P o p u l a t i o n I n t  is to have the capability to 
implement a genetic algorithm with one unique mutation rate for the whole pop- 
ulation, or to give each individual its own mutation rate. 

The public constructors provide ways to declare the P o p u l a t i o n I n t  type 
variable. For example, P o p u l a t i o n I n t  p l  declares an empty P o p u l a t i o n I n t  
variable p l ;  P o p u l a t i o n I n t  p2 (20, 30) declares a P o p u l a t i o n I n t  vari- 
able p2 with population size 20 and individual length 30; P o p u l a t i o n I n t  
p3 (20, 30, 0 . 7 ,  0 .1)  declares a P o p u l a t i o n I n t  variable p3 with popula- 
tion size 20, individual length 30, crossover rate 0 .7 ,  and mutation rate 0 .1 .  
P o p u l a t i o n I n t  p4 (p3) declares a P o p u l a t i o n I n t  variable p4 that is a copy 
of P o p u l a t i o n I n t  variable p3. 

The public member functions g e t _ l e n g t h ( ) ,  g e t _ w i d t h ( ) ,  g e t _  
c r a t e  (), and g e t _ m r a t e  () provide ways to access the private data mem- 
bers from outside the P o p u l a t i o n I n t  variable. The public member functions 
c h a n g e _ c r a t e  () and c h a n g e _ m r a t e  () provide ways to change the crossover 
rate and mutation rate from outside the P o p u l a t i o n I n t  variable. 

The public member functions i n i t i a l i z e _ r a n g e ( ) ,  i n i t i a l i z e _  
range_RM (), and i n i t i a l i z e _ r a n g e _ R M T  ()provide ways to initialize the 
population by calling its individuals' initialization routines accordingly. 
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The public member functions m u t a t e _ o n e  (), muta te_one_RN (), and 
mutate_one_RMT ()provide ways to perform mutation over the population by 
calling each individual's mutation routine accordingly. 

The public member function c r o s s o v e r  ( c o n s t  int& c o _ t y p e ,  c o n s t  
int& b e s t _ i n d e x )  performs a crossover operation on the population accord- 
ing to the crossover rate. The best individual with index b e s t _ i n d e x  will not 
undergo the crossover operation. The type of crossover operation is based on the 
crossover operation type c o _ t y p e  (one-point, two-point or uniform crossover). 
The crossover operation is similar to that in the binary GA implementation dis- 
cussed in Chapter 4. The public member s e l e c t i o n  () performs selection on the 
population and is similar to that in the binary GA implementation discussed in 
Chapter 4. 

The public functions f i t n e s s  ( ), f i t n e s s _ R M  ( ), and f i tness_RMT () 
return fitness vectors of all individuals by calling their corresponding individual's 
fitness routine. The public o p e r a t o r  [] provides a way to access its element 
( I n d i v i d u a l I n t ) .  

The friend operators < < and > > provide methods for input and output, respec- 
tively, of the P o p u l a t i o n I n t  variable. 

We now examine the main () and ga () routines. The main () routine does 
nothing except implement the choice of system you want to run--the fuzzy rule sys- 
tem or the evolving fuzzy rule system. The main () routine is shown in 
Listing 8.25 for clearness. It firsts reads in the run files for both the fuzzy rule 
system and the genetic algorithm and then provides you with an option. The fuzzy 
rule system will be run if you input "c" or "C." The genetic algorithm will be run 
if you input "g" or "G." 

L i s t i n g  8.25 The m a i n  ( ) routine. 

void main (int argc, char *argv [ ] ) 
{ 

char gaName [80] , fileName [80] ; 

char Msg[80] ; 

char condition; 

int true=l; 

ifstream runFile ; 

runFile.open(argv[l],ios: :in) ; 

if (!runFile) 
{ 

cerr<<"can't open file "<<argv[l]<<" for input"<<endl; 

exit ( 1 ) ; 
} 

runFi I e > >gaName > > f iName; 

runFile.close() ; 

do 
{ 
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clrscr ( ) ; 

cout<<"G: generating rules"<<endl; 

cout<<"C: classification"<<endl; 

cout<<"other Keys: quit"<<endl; 

cout<<"your choice? "; 

cin>>condition; 

switch (condition) 

case ' g' : 

case ' G' : 

ga (gaName) ; 

break; 

case ' c' : 

case ' C' : 

fl (flName) ; 

break; 

default : 

true=0; 
} 

} while (true==l) ; 

The fuzzy rule system is used to test the fuzzy system designed by the genetic 
algorithm. It is the same as the one previously discussed in the section on the 
implementation of the fuzzy rule system. If you choose to run the genetic algorithm, 
it calls the ga ( g a _ r u n _ f i l e _ n a m e )  routine. The ga () routine is the core part 
of the implementation of the evolutionary fuzzy rule system. The g a ( ) routine is 
shown in Listing 8.26. First, several variables are defined at the file level in which 
the g a () routine is defined. 

FuzzyRule baseRule; 

vector<int> rangeint; 

PopulationInt popu; 

vector<float> fitvec; 

int inLen, outLen; 

array arrayPat; 

vector<int> classN; 

The FuzzyRule variable baseRule is defined to store the rule specification~ 
that is, the format of a fuzzy rule in the fuzzy rule system to be evolved. 
The v e c t o r < i n t >  variable r a n g e i n t  stores the vector of range values for 
each element in the individual representation. The P o p u l a t i o n I n t  variable 
popu stores the population of the genetic algorithm. The v e c t o r < f l o a t >  vari- 
able f i t v e c  records the fitness values of the individuals. The i n t  variables 
inLen ,  outLen store the numbers of input and output dimensions, respec- 
tively. The a r r a y  variable a r r a y P a t  stores the training/testing patterns. The 
v e c t o r < i n t >  variable c l a s s N  stores the number of classes for each output 
variable. 
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Listing 8.26 Definition of the g a () routine. 

void ga (char *dataFile) 
{ 

read_ga_runfile (dataFile) ; 
read_fuz zy_base_rule ( ) ; 
read_ga_training_patterns ( ) ; 
form_range_vector ( ) ; 
IndividualInt range (rangeint, O) ; 
int tmplen = get_population_length () ; 
update_popu (p_size, tmplen, c_rate, m_rate) ; 

popu_initialize (range) ; 

fitvec, changeSize (p_size) ; 

int bestfit ; 
for (int idx = O; idx < generation; idx++) 
{ 

calculate_fitness (range) ; 
bestfit=fitvec, maximum_index ( ) ; 

if (fitvec[bestfit]>criterion) 

break; 

if (idx != (generation-I)) 
{ //not the last generation 

popu.selection(fitvec,bestfit, shift); //l:sfite 
popu. crossover (flag_c, bestfit) ; 
popu_mutate (range, bestfit) ; 

} 
} 
write_ga_fuzzy_rules(idx, range, bestfit) ; 

The q a () routine first reads in parameters from the input files and initializes all 
the file level variables to prepare for running the GA. The r e a d _ q a _ r u n f i l e  () 
reads in the parameters from the GA run file. The r e a d _ f u z z y _ b a s e _ r u l e  () 
routine reads in the variable b a s e R u l e  from the base rule file specified in the run 
file. The r e a d _ q a _ t r a i n i n q _ p a t t e r n  () routine reads in the training patterns 
from the pattern data file specified in the run file. The f o r m _ r a n g e _ v e c t o r  () 
routine forms the variable r a n q e i n ¢ ,  which is used to declare the 
IndividualInt variable range. The get_population_length () routine 
is called to calculate the length of the population depending on what elements of 
the fuzzy rule system are to be evolved. The variable popu is rescaled by calling the 
u p d a t e _ p o p u  () routine. The rescaled variable popu is then initialized by call- 
ing popu.  i n i t i a l i z e  () followed by rescaling the variable f i t v e c  by calling 
fitvec, changeSize (). 

In each generation, the GA first calculates individual fitnesses by calling the 
c a l c u l a t e _ f i t n e s s  () routine; then the selection, crossover, and mutation 
operations are performed in sequence by calling popu.  s e l e c t i o n  (), popu.  
c r o s s o v e r  (), and p o p u _ m u t a t e  (), respectively. This process is repeated until 
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either the termination criterion has been met ( f i t v e  c [ b e  s t f i t ] > c r i t e r i o n ,  

where be s t f i t is the index of the individual with the best fitness value obtained by 
calling f i t vec .max imum__index  ()) or the maximum number of generations, 
specified in the GA run file, has been reached. 

Finally, the fuzzy rule system decoded from the best individual is written to 
the output rule f i le  specified in the GA run file by calling the 
w r i t e  ga f u z z y  r u l e s ( )  routine. 

Running the Evolutionary Fuzzy Rule System 
To run the program, within the appropriate subdirectory, enter 

flga flga.run 

The main run file f i ga .  run  contains only two items: the name of the GA run file 
and the name of the fuzzy rule system run file. An example of the contents of the 
main run file is 

ga.run 
fl.run 

As indicated by the listing of two additional run files within the main run file, 
the evolutionary fuzzy rule system is run in two stages. The first stage, using a GA, 
generates (evolves) the rules (and perhaps the membership functions) to be used by 
the fuzzy rule system. The second, using the fuzzy rule system, classifies the patterns 
in a pattern file using the fuzzy rules (and perhaps the membership functions) stored 
in a rules file. 

When the f lga. exe program is run, you are given the choice of generating 
(evolving) rules, classifying patterns, or modifying the run file. If you choose to 
modify the run file by typing m, the DOS text editor is called, allowing you to make 
changes in the main run file. 

If you choose to generate (evolve) a rule set by typing g, a set of rules will be 
evolved using the contents of the GA run file ga .  run. An example of this run file 
appears in Listing 8.27. 

Listing 8.27 Example of run file for rule generation (evolution). 

iris.dat 

base.rul 
result_4.rul 

1 

2 
0.75 

0.01 

0 
300 



50 
20 
I0 

150 
0.965 
1 
1 
1 
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The first entry in this run file is the GA input data file, in this case i r i s. dat. 
The GA data file is in a format similar to that used previously for the fuzzy rule 
system. The first two lines are 

413 
.6375 .437s .~Tso .0250 o 

The first line in the GA input data file specifies the number of inputs, outputs, and 
classes. The second line is the first pattern in the file with its output classification. 
These two lines are followed by the remaining patterns in the pattern file with their 
classifications. 

The second file in the GA run file is the rule specification file, in this case 
base. rul. A typical rule specification file for evolving rules to classify the Iris 
dataset appears in Listing 8.28. 

The first line in the rule specification file defines the number of fuzzy input vari- 
ables (4) and fuzzy output variable(s) (1). Then the domain and fuzzy sets for each 

Listing 8.28 Example of a rule specification file for evolving rules. 

41 

sepalLength 3 0.4 1.0 
leftTriangle 0.4 0.8 
Triangle 0.5 0.9 
rightTriangle 0.6 1.0 

sepalWidth 3 0.0 0.6 

leftTriangle 0.0 0.3 

Triangle 0.15 0.45 

rightTriangle 0.3 0.6 

petalLength 3 0.0 1.0 

leftTriangle 0.0 0.4 

Triangle 0.2 0.7 

rightTriangle 0.4 1.0 

petalWidth 3 0.0 0.4 

leftTriangle 0.0 0.2 
Triangle 0.I 0.3 
rightTriangle 0.2 0.4 
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output 3 0.0 1.0 
leftTriangle 0.0 0.4 
Triangle 0.3 0.7 
rightTriangle 0.5 1.0 

iiiii 

fuzzy variable are defined, in the same way described in the description of the fuzzy 
rule system implementation. The final line in the file comprises a "template," or 
example, for a rule. In this case, with four inputs and one output, any five digits 
can appear, such as0  0 0 0 0 o r l  2 3 2  1. 

The third file in the GA run file is the output rule file, in this case 
r e s u l t _ 4 ,  r u l .  This file is the main product of running the rule generation 
(evolution) stage of the evolutionary fuzzy rule system. A listing of r e s u l t _ 4 ,  r u l  
appears as Listing 8.29, which is the result of an actual rule generation run for evolv- 
ing a rule set only. 

Listing 8.29 Example of an output rule file from rule generation (evolution) stage. 

4 

4 1 

sepalLength 3 0.4 1.0 
leftTriangle 0.4 0.8 

Triangle 0.5 0.9 
rightTriangle 0.6 1.0 

sepalWidth 3 0.0 0.6 
leftTriangle 0.0 0.3 
Triangle 0.15 0.45 
rightTriangle 0.3 0.6 

petalLength 3 0.0 1.0 
leftTriangle 0.0 0.4 
Triangle 0.2 0.7 

rightTriangle 0.4 1.0 

petalWidth 3 0.0 0.4 
leftTriangle 0.0 0.2 

Triangle 0.I 0.3 

rightTriangle 0.2 0.4 

output 3 0.0 1.0 
leftTriangle 0.0 0.4 

Triangle 0.3 0.7 
rightTriangle 0.5 1.0 

1 0 -i -I -i 
-2 -i -I -I -2 
-3-2 2 0 2 
303-3-3 

generation: 42 

fitness=0.973333 
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The first line in the file contains the number 4, which indicates that the 
system found a rule set comprising just four rules that classifies the Iris dataset. 
We will see how well the evolved rules work when we run the classification stage 
of the evolutionary fuzzy rule system. The next line (4 1) confirms that four input 
fuzzy variables and one output were used. The domain and fuzzy sets for each 
variable are then listed, and they are the same as in the rule specification file since 
only the fuzzy rule set is specified to be evolved here (this is explained later). 

Next, the rules are listed. Note that negative integers appear. The evolved rules 
can contain integers, positive or negative, with the maximum absolute value equal 
to the number of fuzzy sets specified for each variable. Also note that the only 
rule relating to (firing) classification number 1 has a negative consequent (-1).  
This is also true for classification number 3. This is "legal" because of the way 
defuzzification is done: The fuzzy complement of the fuzzy value for consequent 
1 is defuzzified when this rule is fired. The last items in the output rule file in 
Listing 8.29 are the generation at which the rule list was evolved and the fitness 
value. We see that in this case the rule set listed in the file evolved in the 42nd 
generation. The fitness value indicates that only 4 errors were made out of the 150 
training patterns. 

Going back to the GA run file (Listing 8.27), we see a list of parameter values 
after the name of the GA adaptation rule file. The first value (1) is the value of the 
fitness shift flag. When set to 1, all fitness values are shifted so that the minimum 
value is 0.1; the min_value to max_value fitness range is preserved. The next 
value (2) specifies that two-point crossover be used. The next two values (. 7 5 and 
• 01) are the crossover and mutation rates, respectively. 

The next value (0) specifies which part of the fuzzy rule system is to be evolved. 
If it is 0, only the fuzzy rule set is evolved; if it is 1, the fuzzy rule set plus the 
membership function's s t a r t _ p o i n t s  and e n d _ p o i n t s  are evolved while the 
membership function's types are fixed; if it is 2, the membership function's types 
also undergo evolution. 

The next value (3 0 0) is the maximum number of generations to be allowed, 
while the population size is set at 50. Next, the maximum allowable number of 
rules is specified (2 0), followed by number of divisions (10) for each membership 
function's start point and end point. The number of divisions defines the range 
for the membership function's start point and end points. Next is the number of 
patterns in the input data file to use for rule generation (150). Next, the accept- 
able fitness value to terminate the run (. 9 6 5) appears. Note that achievement of 
this fitness value for the Iris dataset requires that no more than 5 errors be made 
for 150 patterns. All of the parameters (except for the maximum number of rules 
allowed and the number of divisions) are discussed in detail in the GA section of 
Chapter 4. 

The last three parameters in the GA run file are related to the fuzzy rule system. 
The first (1) is the value of the averaging flag. When the averaging flag is set to 1, 
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the average of the membership values ANDed together is output. The second (1) is 
the defuzzification parameter. When it is 1, the "no overlap" method of defuzzifi- 
cation is used. Third is the summation flag (1). Its value specifies how output fuzzy 
membership values are formed prior to defuzzification. When the summation flag 
is set to 1, the maximum value caused by any one rule firing is the value passed 
to defuzzification. These parameters are discussed in detail in the discussion of the 
fuzzy rule system implementation. 

The rule generation stage of the evolutionary fuzzy expert system is now com- 
plete. You are next given the opportunity to run the classification stage by typing e. 
If you choose to classify a pattern set according to a rule set previously generated, 
the contents of the FL run file f l .  run  will be used. An example of this run file 
appears in Listing 8.30. 

Listing 8.30 Example of a fuzzy logic run file for the evolutionary fuzzy expert system. 

result.rul 

iris.dat 

iris.out 

result_4.out 

1 

1 

1 

Four file names and three parameters appear in this run file. The first two files 
contain input necessary to run the classification stage, and the last two comprise 
the output. The first file listed is the rule file, which will be used by the fuzzy rule 
system to classify the patterns. The contents of this file, the output rule file from 
the GA stage, are discussed above. The second file listed is the fuzzy logic input 
data file. It is identical in format and contents to the GA input data file, described 
above. 

The third file listed is the rule output file, which contains a list of the rules 
in words, in this case i r i s .  ou t .  Since the rule set produced by the rule gen- 
eration stage was listed only in numbers in r e s u l t ,  r u l ,  it is helpful to have 
this listing, which can be more easily understood. The fourth file is the output file, 
r e s u l t ,  o u t .  It contains a listing of the correct classifications for the input pat- 
terns in the data file, with a listing of the classification made by the fuzzy expert 
system. Errors are identified, and an error total appears at the end of the list. 

The results file result_4, out, by using the fuzzy rule system shown in List- 
ing 8.29, contains the listing for the Iris dataset, showing that the evolutionary fuzzy 
rule system made only 4 errors out of 150 patterns classified. This is a very good 
result, given that only four rules were needed! Two of the errors were misclassifica- 
tions, and two, for patterns 84 and 135, state r u l e  s e t  n o t  f i r e d .  This indicates 
that for those two input patterns, none of the rules was fired. 
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The three parameters listed at the end of the file are the averaging flag, the 
defuzzification parameter, and the summation flag. When the averaging flag is set 
to 1, the average of the input membership values ANDed together is output. When 
the defuzzification parameter is 1, the "no overlap" method of defuzzification is 
used. When the summation flag is set to 1, the maximum value caused by any one 
rule firing is the value passed to defuzzification. These three parameters are the 
same as those used in the rule generation stage. 

The evolutionary fuzzy rule system is a powerful tool for evolving rules and 
developing a fuzzy rule system for classification and/or diagnosis. You should now 
be able to use the software at the book's web site to solve real-world applications. 
We encourage you to experiment with the membership functions, and so on, to 
gain a deeper understanding of the potentials for the software. 

Summary 

In this chapter, we look at implementation issues for fuzzy rule systems, including 
fuzzy rule representation, the evolutionary design of a fuzzy rule system, and the 
programming language to be used. We then discuss two fuzzy system implementa- 
tions: a fuzzy rule system and an evolutionary fuzzy rule system. The code for these 
implementations is on the web site for the book. The source code is distributed as 
shareware, with conditions as discussed on the web site. 

In the next chapter, we discuss implementations of computational intelligence 
systems. By using both an evolutionary algorithm and fuzzy logic, the evolutionary 
fuzzy rule system of this chapter is a kind of computational intelligence system, so 
it provides a bridge to the subject matter of the next chapter. 

Exercises 

1. For a two-input, two-output fuzzy system, assume each variable has three fuzzy 
sets and encode the following rule in a string of bits: If I n p u t _ l  is Medium 
and I n p u t _ 2  is High, then O u t p u t _ l  is High and Ou tpu t_2  is Low. 

2. Define an enumeration data type for the membership functions used in the 
implementation, and illustrate what other changes should be made accordingly. 

3. Define an enumeration data type for the methods to calculate the activation 
strength of the i f part for each rule, and specify the corresponding changes. 

4. Redefine the FuzzyMember class so that it can be used to represent more general 
forms of membership functions such as an asymmetrical triangular function. 

5. Run the evolutionary fuzzy rule system software on the Iris data using three 
membership functions for each input variable. Use all 150 patterns to develop 
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the system. Evolve only the rule system. Set the acceptable performance to 0.949, 
which allows six errors out of the 150-pattern Iris dataset. 

6. Define five membership functions for each input variable and repeat exercise 3. 
Describe the differences in the results. 

7. Repeat exercise 5, evolving both the rule set and the start and end points of each 
membership function. 

8. Repeat exercise 5, evolving everything: the rule set, the start and end points of 
each membership function, and the membership function types. 

9. Repeat exercises 5 and 6, but use only 100 patterns to develop the fuzzy rules; 
then test (classify) all 150 patterns. Describe the differences in the results. 



chapter 
e 

n i n e  
Computational Intelligence 
Implementations 

Chapter 2 discussed the basic concepts 
of computational intelligence. In subse- 
quent chapters we presented the three con- 
stituent methodologies of computational 
intelligence with implementations for each. 
We introduced combinations of the meth- 
ods in the preceding chapters, such as the 
evolutionary fuzzy rule system in Chapter 8, 
that are examples of computational intelli- 
gence. 

This chapter discusses some of the 
issues related to implementations of com- 
putational intelligence. We discuss issues 
related to fuzzy evolutionary fuzzy rule 
system implementations. We present an 
additional implementation of computa- 
tional intelligence: a fuzzy evolutionary 
fuzzy rule system. We provide detailed 
descriptions of the system implementation. 
(The executable code and source code are 

available at the book's web site.) We then 
look at the big picture and consider how 
we go about choosing the best tool(s) for a 
practical problem. We look at the strengths 
and weaknesses of each methodology and 
discuss some practical considerations. 
Finally, we examine a sample application 
of computational intelligence for data min- 
ing. This example shows how the various 
methodologies of computational intelli- 
gence can be combined, and even inter- 
twined. 

Similarly to previous chapters on imple- 
mentation (Chapters 4, 6, and 8), we have 
included code listings such as class defini- 
tions and operator definitions. If you are 
not interested in the details of program- 
ming, you may want to skim these listings, 
noting what is included and what is accom- 
plished by the code in each listing, m 

373 
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Implementation Issues 

Computational intelligence has three core components: artificial neural networks, 
evolutionary computation algorithms, and fuzzy logic systems. Combinations of 
these three components and/or other components comprise a computational intel- 
ligence system. For example, a back-propagation neural network combined with a 
global search algorithm such as a genetic algorithm is a computational intelligence 
system. The neural network is first adapted by the genetic algorithm to find a near- 
optimum global solution, which can then be used as a starting point for the back- 
propagation learning algorithm to fine-tune the solution. 

Several implementations discussed in previous chapters are examples of compu- 
tational intelligence systems. The evolutionary back-propagation neural network in 
Chapter 6 is the combination of a back-propagation neural network and the particle 
swarm optimization algorithm. The evolutionary fuzzy rule system in Chapter 8 
is a combination of a fuzzy rule system and a genetic algorithm. The main issue 
in implementing computational intelligence is how to combine core components 
to solve problems efficiently and effectively. In this chapter, we illustrate common 
issues related to implementing computational intelligence systems with an example 
of an implementation of a fuzzy evolutionary fuzzy rule system. 

The fuzzy evolutionary fuzzy rule system is developed based on the evolutionary 
fuzzy rule system discussed in Chapter 8. We use an additional fuzzy system in the 
evolutionary fuzzy rule system to adapt the parameters of the genetic algorithm 
while the GA is evolving the fuzzy system for problem solving. 

The relationships between the genetic algorithm and the fuzzy rule system in the 
evolutionary fuzzy rule system are shown in Figure 9.1. The individual representa- 
tion of the genetic algorithm represents the fuzzy rule system to be evolved, which 
is decoded into a fuzzy rule system for evaluation. The decoded system performs on 
the training patterns to measure the system's performance, which is then fed back to 

Figure 9.1 
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the genetic algorithm to determine the fitness of the individual. These relationships 
are described and discussed in Chapter 8. In this section, we focus on using a fuzzy 
rule system to adjust the parameters of the genetic algorithm. 

Adaptation of Genetic Algorithms 
The genetic algorithm in the evolutionary fuzzy rule system as discussed in 
Chapter 8 is a static genetic algorithm; that is, its parameters are fixed during the 
course of running the GA. The performance of a genetic algorithm depends on the 
relationship between exploration and exploitation, that is, the selection of its param- 
eters. For example, the crossover operation facilitates exploration (global search) 
and the mutation operation facilitates exploitation (local search). A global search is 
generally favored at the beginning of the search process, and a local search is favored 
at the end. A simple and straightforward approach is to use crossover with a relatively 
large crossover rate and mutation with a relatively small mutation rate at the begin- 
ning of the search process. The crossover (mutation) rate is then linearly decreased 
(increased) over the course of the search process. This strategy can frequently result 
in getting caught in local optima. Ideally, the crossover and mutation rate should be 
nonlinearly, dynamically adjusted to avoid local optima while retaining the ability 
to fine-tune the near-global optimum resolution. 

The adjustment (adaptation) of a genetic algorithm can occur on four levels: 
environment, population, individual, and component (Shi 2000). In environment- 
level adaptation, the environment itself is changed over the course of the search 
process, and the fitness function, which measures how well an individual fits into 
the environment, is adapted to reflect the altered environment. 

Most adaptation is performed by adjusting parameters at the population level. 
For example, if a particular crossover (mutation) rate is used over the entire popu- 
lation, then this crossover (mutation) rate is a candidate to undergo adaptation. In 
some implementations each individual has its own mutation rate, so the adaptation 
of the mutation rate is performed at the individual level. In Back (1992), the adapta- 
tion is performed at the component (element) level. Each element in each individual 
is associated with a mutation rate that is encoded into the individual representation 
to undergo evolution. 

Fuzzy Adaptation 
Little is known about the operation (search) process of genetic algorithms, which is 
highly nonlinear and complicated. It is very difficult, if not impossible, to mathemat- 
ically model this process so that the parameters of genetic algorithms can be dynam- 
ically set to obtain an optimal search process. Fortunately, genetic algorithms have 
been extensively studied and reported in the literature. In addition, a lot of experi- 
ence has been accumulated and some linguistic understanding of the relationships 
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between the search process and the GA parameters is available. This understanding 
and experience make fuzzy systems good candidates for dynamically setting the 
parameters of genetic algorithms. 

The main idea is to design a fuzzy rule system with its inputs based on the per- 
formance measurements of the search process and its outputs being the parameters 
of the genetic algorithms. The fuzzy rule system adjusts the parameters of the gene- 
tic algorithm (output) based on the current performance measurements of the 
genetic algorithm. The relationships between the fuzzy rule system and the genetic 
algorithm are shown in Figure 9.2. The fuzzy rule system obtains input (the per- 
formance measurements) from the genetic algorithm and feeds back output (new 
parameter values) to the genetic algorithm. 

The output from the fuzzy system can be parameters being adapted or changes to 
the parameters being adapted. The parameters normally include the crossover and 
mutation rates, but other parameters of genetic algorithms are also sometimes used. 
The adaptation is usually conducted at the population level because ofthe significant 
increase in computation cost at the individual level or component level. 

The input to the fuzzy rule system is based on the performance measurements, 
which can reflect the parameters of the genetic algorithm directly or indirectly. Some 
common measurements are the measurement of the population diversity, the vari- 
ance of the fitness of all of the individuals, the best performance in the current gen- 
eration, and the measurement of premature convergence. 

When should fuzzy adaptation be used? When a fuzzy rule system is used to adapt 
the parameters of the genetic algorithm, the genetic algorithm, generally speaking, 
can have better performance. Does this mean we should always use a fuzzy rule sys- 
tem (or other adaptive approaches) to adjust parameters of the genetic algorithm? 
Not necessarily. When a genetic algorithm used to search for a solution that is time 
critical and/or the computation cost of the evaluation of individuals is at the same 
magnitude as the computation cost of the fuzzy rule system, it is better not to use 
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Figure 9.2 Relationship between the fuzzy system and the genetic algorithm in fuzzy 
adaption. 
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a fuzzy rule system to adjust the parameters of a genetic algorithm. Fixed parameters 
or a simple and fast parameter adjustment approach should be adopted instead. 
When the computation cost of the evaluation of individuals is much higher than 
that of a fuzzy rule system, however, we suggest that you develop a fuzzy rule sys- 
tem or other adaptive approach to dynamically adjust the parameters of the genetic 
algorithm. 

Knowledge Elicitation 
Fuzzy rules such as those listed in the next section flow from heuristics developed 
from the authors' experience with genetic algorithm implementations. For example, 
our experience with genetic algorithms indicates that when the fitness is low, such as 
occurs at the beginning of the run, lower mutation rates and higher crossover rates 
are productive. Conversely, if the fitness has not changed for a long time and the 
variance of the fitness values is low (a condition that often occurs near the end of a 
run), then a higher mutation rate and lower crossover rate are usually helpful. 

This leads us to a general subject related to traditional expert system development 
known as knowledge acquisition and its most important area: knowledge elicitation. 
The term is usually used to describe the process of extracting knowledge from human 
experts for use in traditional AI-based expert systems. A detailed treatment of 
knowledge elicitation, or knowledge acquisition, is beyond the scope of this book. 
The reader is referred to sources such as Brachman and Levesque (2004). 

Without going into details, it is accurate to characterize knowledge elicitation 
as difficult, time-consuming, complex, and expensive. It involves finding one or 
more experts with the required domain knowledge who are willing and able to share 
their relevant knowledge (and who are willing to do this for the amount of money 
you have in your budget). It is a complex and iterative process of interviews and 
knowledge model development. 

By this point in the book, it should be clear that the ability to evolve major por- 
tions of fuzzy expert systems, such as fuzzy rule sets and fuzzy membership func- 
tions, generally makes knowledge elicitation in the traditional sense unnecessary. 
It is necessary only to identify those input parameters that appear to be important 
in the determination of the system output(s). Although some system knowledge 
may be needed to do this, it can be done with little or no involvement of a domain 
expert. 

We do not contend that knowledge elicitation is never needed. Sometimes, 
as is the case in the formulation of the fuzzy rules in the next section, it can 
facilitate improved system performance. Much of the time, however, computational 
intelligence applications can be developed without it (or with only a small amount 
of it), resulting in cost savings and significantly accelerating successful system 
implementation. 



Chapter Nine--Computational Intelligence Implementations 

Fuzzy Evolutionary Fuzzy Rule System Implementation 

This section discusses the implementation of a fuzzy evolutionary fuzzy rule system, 
which is similar to the implementation of the evolutionary fuzzy rule system dis- 
cussed in Chapter 8. The main difference with the previous system is that a pre- 
designed fuzzy rule system is added to the system to dynamically tune the crossover 
and mutation rates of the genetic algorithm over the course of running the genetic 
algorithm. The purpose is to achieve a better balanced global and local search ability 
and a more effective search process. 

The source code for the implementation is written in C++ and is being dis- 
tributed as shareware. You are welcome to use it for classroom or personal learning 
experiences in conjunction with the textbook at no cost. If you use it, either as is 
or with modification, for a project outside of your classroom (or learning on your 
own), please send us payment in accordance with the shareware payment instruc- 
tions on the web site for the book. 

Programming the Fuzzy Evolutionary Fuzzy Rule System 
The g a () routine contains the only difference between the implementation of the 
fuzzy evolutionary fuzzy rule system and that of the evolutionary fuzzy rule system 
discussed in Chapter 8. The new ga ( ) routine is shown in Listing 9.1, in which the 
differences are in bold type for clarity. 

Listing9.1 The ga ( ) routine in the fuz~ evolutionary fuzz7 rule system implementation. 

void ga(char *dataFile) 
{ 

read_ga_runfile (dataFile) ; 

read_adapt_rule ( ) ; 
vector<float> vecin_m (adaptRuleSet [ 0 ] . get_variableSize ( ) ) ; 
vector<float> vecout_m (adaptRuleSet [ 0 ]. get_outputSize ( ) ) ; 

read_fuzzy_base_rule ( ) ; 
read_ga_training_patterns ( ) ; 
form_range_vector () ; 
IndividualInt range(rangeint,O); 
int tmplen = get_population_length(); 
update_popu (p_size, tmplen, c_rate, m_rate) ; 
popu_initialize (range) ; 
fitvec, changeSize (p_size) ; 
float prebest=O. I; 
float nu=O. O; 
float var; 
float mrate--m_rate; 
float crate=c_rate; 

int bestfit; 
for (int idx=O;i<generation;i++) 
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calculate_fitness (range) ; 
bestfit=fitvec.maximum_index () ; 
var=variance (fitvec, aver) ; 
if (fitvec[bestfit]>criterion) 

break; 

if (idx != (generation-i)) 

{ //not the last generation 

popu. selection (fitvec, bestfit, shift) ; 
if (m_flag==l) 
{ //change mutate/crossover rate 

if (fitvec [bestfit ] =--prebest ) 
nu +=i. 0; 

else 
nu=0.0; 

vecin_m [ 0 ] =fitvec [best fit ] ; 
vecin_m [ 1] =nu; 
vecin_m [ 2 ] =var; 
vecout_m = adaptRuleSet, output (vecin_m, 0, 1, 1) ; 
mrate=vecout_m [ 0 ] ; 
crate=vecout_m [ 1] ; 
prebest=fitvec [bestfit] ; 
popu. change_mrate (mrate) ; 
popu. change_crate (crate) ; 

} 

popu. crossover (flag_c, bestfit) ; 
popu_mutate (range, bestfit) ; 

} 
} 

write_ga_fuzzy_rules (idx, range, bestfit) ; 

In addition to the file-level variables declared in the evolutionary fuzzy rule sys- 
tem implementation, a new file-level Fuz z y R u l e S e t  variable, a d a p t R u l  e S e t ,  
is defined to store the fuzzy rule system that is used to adapt the crossover and 
mutation rates. The r e a d _ a d a p t _ r u l e  () routine is called to read in the 
F u z z y R u l e S e t  variable a d a p t R u l e S e t .  One example of the adaptive fuzzy 
rule system is shown in Listing 9.2. It has three input variables, two output variables, 

Listing 9.2 A fuzzy rule system for genetic algorithm adaptation. 

8 
3 2 

Fitness 3 0.0 1.0 

leftTriangle 0.0 0.7 

Triangle 0.5 0.9 

rightTriangle 0.7 1.0 

Number 3020 

leftTriangle 0 6 
Triangle 3 9 
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rightTriangle 6 12 

Variance 3 0.0 0.2 
leftTriangle 0.0 0.12 

Triangle 0.i 0.14 

rightTriangle 0.12 0.2 

Mrate 3 0.005 0.i 
leftTriangle 0.005 0.015 
Triangle 0.01 0.02 
rightTriangle 0.015 0.I 

Crate 3 0.4 0.9 
leftTriangle 0.48 0.65 
Triangle 0.55 0.75 
rightTriangle 0.65 0.83 

1 0 0 1 3  
2 1 0 1 3  
2 2 0 2 2  
0 3 2 3 1  
3 1 0 1 3  
3 2 0 2 2  
0 3 1 3 1  
0 3 3 1 3  

and eight fuzzy rules. The three input variables are the best fitness of the current 
generation, the number of generations that the best fitness has not improved, and 
the variance of all the individuals' fitnesses in the current generation. The two output 
variables are the new mutation and crossover rates. The linguistic descriptions of 
these eight rules follow. 

m If F i t n e s s is Low, then Mr a t  e is Low and C r a t  e is High. 

[] If F £ t n e  s s is Medium and Number  is Low, then Mr a t  e is Low and 

C r a t e  is High. 

[] If F i t n e  s s is Medium and Number  is Medium, then Mr a t  e is Medium 
and C r a t  e is Medium. 

m I fNumber  is High and V a r i a n c e  is Medium, then M r a t e  is High and 

C r a t e  is Low. 

m If F i t n e s s is High and Number  is Low, then Mr a t  e is Low and C r a t  e 

is High. 

[] If F i t n e s s  is High and Number  is Medium, then M r a t e  is Medium and 

C r a t  e is Medium. 

m I fNumber  is High and V a r i a n c e  is Low, then M r a t e  is High and 

C r a t e  is Low. 

m I fNumber  is High and V a r i a n c e  is High, then M r a t e  is Low and 

C r a t e  is Low. 
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Two vector<float> variables, vectin_m and vectout_m, are declared 
to store the input and output variables of the fuzzy rule system, respectively. Five 
f I oa t - type  variables are declared to store the best fitness ofthe previous generation 
( p r e b e  s t ) ,  the number of generations that the best fitness has not improved (nu), 
the variance of the fitnesses (var ) ,  the new mutation rate ( m r a t e ) ,  and the new 
crossover rate (c r a t  e). 

The mutation and crossover rates are adjusted before calling p o p u .  
c r o s s o v e r ( )  and p o p u . m u t a t e  () to perform crossover and mutation 
operations. The r e _ f l a g  is first checked to see whether it is TRUE or FALSE. The 
r e _ f l a g  is read in from the run file (see next section). When r e _ f l a g  is TRUE, the 
crossover and mutation rates are dynamically adjusted by applying the fuzzy rule 
system. When r e _ f l a g  is FALSE, the fuzzy evolutionary fuzzy rule system is the 
same as the evolutionary fuzzy rule system discussed in Chapter 8. 

When m_f I a g  is TRUE, p r e b e  s t is compared with the best fitness in the 
current generation. If they are equal, the variable n u is increased by 1; other- 
wise, n u is set to 0. Then the best fitness, n u and v a r  are fed into the fuzzy 
rule system, and the output values of the fuzzy rule system are assigned as 
the new mutation and crossover rates. The p o p u . c h a n g e _ m r a t e  () and 
p o p u .  c h a n g e _ c r a t e  () are called to change the population's mutation and 
crossover rates, respectively. 

Running the Fuzzy Evolutionary Fuzzy Rule System 
To run the program, at the DOS prompt within the appropriate subdirectory, enter 

flgafs flgafs.run 

The main run file f l g a f  s .  r u n  contains only two items: the names of the GA run 
file and the fuzzy rule system run file. An example of the contents of the main run 
file is 

ga. run 

fl.run 

The f l .  r u n  file is the same as that in the evolutionary fuzzy rule system, 
and the g a .  r u n  file is almost the same as that in the evolutionary fuzzy rule 
system except that two lines have been added. For illustration, the new g a .  r u n  
file is shown in Listing 9.3. The fourth line contains a file name, g a _ a d a p t ,  r u l ,  
from which the fuzzy rule system for adapting GA parameters is to be read. The 
contents of the g a _ a d a p t ,  r u l  file provided with this software are shown in 
Listing 9.2. The ninth line in Listing 9.3 contains an integer number, 1. It is a flag 
that tells whether the fuzzy adaptation is to be used or not, as explained in the last 
section ( m _ f l a g ) .  The other contents of the g a .  r u n  file are described in detail in 
Chapter 8. 
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Listing 9.3 Example of a run file for rule generation (evolution). 

iris.dat 

base.rul 

result.rul 

ga_adapt.rul 

1 

2 

0.75 

0.01 

1 

2 

I000 

50 

20 

i0 

i00 

0.99 

1 

1 

1 

Choosing the Best Tools 

The main concepts discussed in this book (evolutionary computation, neural net- 
works, and fuzzy logic) can be used individually or in combination to solve a wide 
array of problems. We have given you only the basic information on each concept 
and only a few examples ofhow to combine them into powerful computational intel- 
ligence tools. More information exists in other references, as do more examples of 
computational intelligence. And we are sure that our readers will develop many more 
exciting implementations and applications. 

At this point, we believe it is helpful to step back and look at the big picture. 
What are the strengths and weaknesses of various approaches that might influence 
your choice of computational intelligence tool(s) for a particular problem? What 
practical issues associated with the problem environment might influence your 
choices? 

Strengths and Weaknesses 
We have discussed strengths and weaknesses of various tools throughout the book. 
Here we summarize some of the most general concepts. 

First, consider the individual concepts, or methodologies, and how to choose 
one. All else being equal, in what cases would we choose to use a neural network 
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versus a fuzzy system for a diagnostic system, for example? One important factor 
is the quantity of (presumably high-quality) data available. If a copious amount of 
data that permeates the problem space is provided, we would be inclined to train 
or evolve a neural network. If only a relatively small dataset is available, or the data 
don't cover the problem space to well, it may be better to develop or evolve a fuzzy 
rule-based system. 

A fuzzy system may also be indicated if a significant portion of our data is 
linguistic or imprecise. Fuzzy sets allow us to quantify uncertainty. 

Another factor that can influence our choice of approach is data representation. 
For example, if we have an existing dataset for an optimization system we are devel- 
oping, and the data are in binary format, a genetic algorithm may be a reasonable 
approach. We developed one logistics planning system for which we wanted to apply 
particle swarm optimization, but we couldn't figure out how to represent the data 
so that we could use PSO effectively. The problem lent itself to a genetic algorithm 
representation, so we used a GA. 

What we've said so far primarily applies to choosing an individual methodol- 
ogy. But this book is mainly about computational intelligence. So what about those 
hybrid (computational intelligence) tools that allow us to exploit the strengths of the 
individual tools to solve problems that are intractable (or at least very difficult) for 
any individual approach? 

As we stated at the beginning of the book, our view is that computational intel- 
ligence is built on a foundation of evolutionary computation. We may choose an 
evolutionary computation tool such as particle swarm optimization for an applica- 
tion and use it essentially by itself. But when we include a neural network or fuzzy 
logic, there is almost always an evolutionary computation component. When we use 
a neural network, we usually evolve the network weights and sometimes the network 
structure. When we use fuzzy logic, we usually evolve the rules and sometimes the 
membership functions. 

Whenever feasible, we compare two or more approaches and choose the one that 
gives us the best performance. Although it is true that we have played significant roles 
with Jim Kennedy in developing particle swarm optimization, we try never to bias 
our viewpoint in favor of PSO or any other approach. The best solution to a problem 
usually depends on the problem. 

Modeling and Optimization 
Many applications, such as system identification, can be handled as black-box sys- 
tems: A group of inputs is sent into the box and responses are expected as results. 
In order to solve such a problem, two main steps need to be taken. First, we need to 
establish a model based on the knowledge we have to map the inputs to the outputs; 
this is modeling. Second, we need to adapt the model to tune the outputs' response 
to the inputs; this is optimization. 
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There are many traditional methods to model various simple or complex, linear 
or nonlinear, continuous or discrete systems. A variety of parameter estimation tech- 
niques have been developed and discussed in the literature. Computational intelli- 
gence tools can be applied to both steps to facilitate the problem-solving process. 
Artificial neural networks (ANNs) and fuzzy systems are particularly suitable in the 
modeling process, and evolutionary algorithms are often used in the optimization 
process. 

Fuzzy systems and ANNs provide alternative solutions to model and identify 
systems. In traditional methods, accurate models must be provided to identify a 
system. Furthermore, it is hard to estimate the parameters if the system is highly 
nonlinear. However, for many complex problems, such as chemical reactions and 
biomedical applications, it is nearly impossible to specify an accurate link between 
the inputs and the outputs. Computational intelligence tools may be the only tools 
currently available. 

Fuzzy systems and ANNs have advantages and disadvantages. ANNs are suitable 
for problems with large-scale and well-distributed patterns; fuzzy systems work bet- 
ter when the patterns are not as large or have an uneven distribution. Incomplete and 
imprecise domain knowledge can also be integrated into fuzzy systems, but ANNs 
do not need any domain knowledge. 

Artificial neural networks are fast and simple to implement if sufficient datasets 
are provided. However, it's hard to explain the meaning of neural networks and 
extract domain knowledge from the network structure and weights. On the other 
hand, fuzzy systems consist of a set of fuzzy rules obtained through domain experts 
or from raw data by using an automatic rule generation method such as an evolu- 
tionary algorithm and an artificial neural network. These fuzzy rules generated from 
raw data represent domain knowledge. These automatic rule generation methods 
can be particularly useful approaches for data mining or knowledge discovery. 

Evolutionary algorithms (EAs) are optimization techniques. They can be used 
not only in evolving neural networks or fuzzy systems but also in optimizing param- 
eter sets. The advantages are that they do not need any domain knowledge to do 
the optimization, and they can handle nonlinear, nondifferentiable, noncontinu- 
ous, and large complex systems well. The trade-off is that EAs aren't guaranteed to 
obtain the best (optimal) solution, only a sufficient one. 

Practical Issues 

In an ideal world, you would be able to choose the computational tool for your prob- 
lem with total objectivity by selecting the tool most likely to give you the best solu- 
tion. We do not, however, live in an ideal world. Every project has time, resource, 
and budget constraints. 

It is very unlikely that you will have the luxury of developing the best tool possible 
(assuming you think you know what that is). In most cases, you will develop what we 
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call sufficient solutions. Recall that earlier in the book we defined a sufficient solution 
as one that is good enough, fast enough, and cheap enough. 

There will even be times when your customer practically dictates how you should 
solve the problem. As an example, one of the authors worked on a project to develop 
a diagnostic system for an automotive electrical system application. There was a very 
large amount of data, and a neural network-based system seemed to be the most 
promising approach. The sponsor, however, insisted that the diagnostic system be 
rule-based, in part so that the explanation facility (see Chapter 11) would be an 
inherent part of the system. We thus were persuaded to use a fuzzy rule-based sys- 
tem, even though a neural network would probably have performed a little better. 
On the other side of that coin, in an application for another commercial sponsor, 
we had a fair amount of data but were leaning toward evolving a fuzzy rule-based 
system, minimizing the number of rules as part of our fitness function. In this case, 
the sponsor persuaded us to adapt a neural network because of the relatively lower 
cost of implementing the trained network weight matrix on the custom chip being 
developed for the system. The overall system manufacturing cost thus drove our 
development approach. 

If we develop a sufficient solution using good engineering practices and our cus- 
tomer is happy, we've done our job! 

Applying Computational intelligence to Data Mining 

This section presents an example of applying computational intelligence method- 
ologies to data mining. The example illustrates how the various methodologies of 
computational intelligence can be combined and even intertwined. 

Data mining is the process of using computational algorithms to process large 
databases to find useful patterns and relationships. Traditional computational tools 
include clustering, classification, and rule mining. Data mining is also commonly 
referred to as knowledge discovery in databases (KDD). A comprehensive treatment 
of data mining is beyond the scope of this book. You are referred to books focused 
on data mining such as Han and Kamber (2006). 

Software that simply rearranges data in a database isn't doing data mining. Data 
mining is used to find previously unrecognized patterns or relationships among the 
data that are useful. Depending on the application, the object of data mining may 
include reducing cost, improving performance, and predicting behavior or trends. 
An example of data mining is the detailed analysis of sales data by a large discount 
store chain such as Wal-Mart to discover geographical patterns in customers' buying 
habits. 

In the remainder of this section, we outline one approach using multiple 
computational intelligence methodologies for a data mining system that deals with 
real-time analysis of a large stream of textual data. 



Chapter NinemComputational Intelligence Implementations 

An Example Data Mining System 
In working with a huge amount of streaming textual data, the example system 
described here could discover and display related entities and patterns as they 
appear over time. It could establish associations across textual reports from multiple 
sources. Therefore, in addition to "mining" clusters, the proposed system could 
discover linked activity networks over time, then display the data to analysts using 
state-of-the-art visualization techniques. 

The fitness of the system can be dynamic and knowledge driven, and cluster 
membership could imply fitness relations within hyperplanes that adapt with time. 
The example system could discover and follow the faint trails of data that lead to 
meaningful spatio-temporal clusters. 

The system we have designed incorporates the three main constituent method- 
ologies of computational intelligence: evolutionary computation, neural networks, 
and fuzzy logic. At the core of the system are clustering and classification models, 
such as neural networks, that use both supervised and unsupervised algorithms. 
These models can be evolved using particle swarm optimization (PSO), which is 
capable of handling multimodal, multiple-constraint, nonlinear problems in 
complex and changing environments. 

Wrapped around the system's core is a fuzzy logic shell. The fuzzy rules, member- 
ship function shapes, and fuzzy set locations in the problem domain can be evolved 
using evolutionary computation techniques such as genetic algorithms and PSO. 
This fuzzy shell handles user preferences and rules at the macro level. The system 
is thus capable of adapting to individual users over time. Figure 9.3 illustrates the 
components of the system. 

Figure 9.3 Diagram of the computational intelligence data mining system. 
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As indicated on the system output, it is important to provide users with an 

"explanation facility" for this system and to indicate the confidence level of the 
outputs. The hybrid nature and the complexity of the system make traditional expla- 
nation facilities impossible. However, recently developed techniques using evolu- 
tionary computation described in this book can be used to develop such a facility. 
This facility is also very important in that it would be usable as a prediction system 
to identify and predict new (previously unseen) combinations of parameters and 
events that might be expected to be indicators of interest. 

Summary 

In this chapter, we discuss common implementation issues for fuzzy evolutionary 
fuzzy rule systems. We describe the implementation of the fuzzy evolutionary fuzzy 
rule system. In the system, a genetic algorithm is used to design the fuzzy rule system 
for solving problems, and another fuzzy rule system is employed to adapt the genetic 
algorithm. The relationships among them are shown in Figure 9.4. "How much 
fuzzification is enough?" It would be conceivable to evolve everything we fuzzify and 
to fuzzify everything we evolve, ad infinitum. The optimal extent (depth) of evolu- 
tion and fuzzification is almost certainly problem-specific and is highly dependent 
on what computation cost we can afford. Next, we look at some issues related to 
picking the best tool(s) for a particular job. We discuss both individual methodolo- 
gies and computational intelligence approaches. Finally, we examine an example of 
the computational intelligence approach to data mining. 

In the next chapter we examine methods to measure how well our systems per- 
form. The performance metrics described in the chapter can be used in applications 
both inside and outside the computational intelligence field. 
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Figure 9.4 Relationships among fuzzy systems and genetic algorithms in the fuzzy 
evolutionary fuzzy rule system. 
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E x e r c i s e s  ........................................................................................................................................................................................................................... 

1. List two parameters that can be adapted to improve a GA's performance at the 
levels of environment, population, individual, and component. 

2. Compare the strengths and weaknesses of the four levels of adaptation of genetic 
algorithms: environment, population, individual, and component. 

3. Briefly describe how to use a fuzzy system to adapt the parameters you listed in 
Exercise 1. 

4. If you are asked to use a fuzzy system to adapt the PSO in the implementation of 
the evolutionary neural network discussed in Chapter 6, what will be the input 
and output of the fuzzy system? 

5. Run both the evolutionary fuzzy rule system (m_f l aq  = 0) and the fuzzy 
evolutionary fuzzy rule system (m_f laq  - 1), and compare the results. 

6. Modify the fuzzy rule system in Listing 9.2, and run the software again to see 
whether you can obtain better results. 

7. How generally applicable is the system diagram of Figure 9.3 to other applications 
such as analysis of large video data streams? Identify another application area, 
and draw a diagram analogous to Figure 9.3 for that application. 
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Performance Metrics 

The first nine chapters of this book 
focused on computational intelligence con- 
cepts, paradigms, and implementations. We 
showed you how to design, develop, and 
test your systems. But how, exactly, do you 
measure how well your system is working? 

Measuring how well a system is per- 
forming is relatively straightforward some- 
times. We simply specify the percentage of 
correct answers in a test or operational sit- 
uation and compare that with the speci- 
fication that was established beforehand. 
Another common approach is to measure a 
system's performance with respect to some 
specified tolerance. The situation is seldom 
this simple, however, when we must mea- 
sure the performance of computational 
intelligence implementations and compare 
different system configurations. 

In this chapter, we examine some issues 
related to measuring how well a computa- 
tional intelligence implementation is doing. 
Unfortunately, this subject has not been 

discussed extensively in the literature, so 
in some cases we adapted performance 
measurement techniques that have been 
applied in related areas. 

We first discuss general issues that cut 
across performance metrics. These issues 
include the selection of gold standards; par- 
titioning patterns for training, testing, and 
validation; cross validation; the use and 
interpretation of fitness functions; and the 
use of statistical tools. 

The performance measures that are 
discussed include the relatively simple 
measure of the percent correct, aver- 
age sumsquared error, absolute error, 
normalized error, evolutionary algo- 
rithm effectiveness, the Mann-Whitney U 
statistic, receiver operating characteristic 
(ROC) curve measurements, measurements 
based on ROC curve parameters (recall, 
precision, sensitivity, specificity, etc.), 
confusion matrices, cost functions, and 
the chi-square goodness-of-fit metric. 

389 
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The measure chosen depends on the type of system and on other, somewhat 
more loosely defined parameters, such as the level of technical sophistication of 
the system's end user. [] 

General Issues 

In this section, we discuss a number of general issues related to measuring the per- 
formance of computational intelligence implementations. We call them "general" 
because these issues arise for more than just a single specific performance metric. We 
present issues that relate only to a single performance metric in the section where 
that metric is discussed. 

Examples of general issues are specifying the sizes and numbers of iterations 
for training datasets, and the selection of test datasets, for neural networks. Other 
examples are the selection of the "gold standards" against which performance is 
measured, and the role the decision threshold level of a processing element in a neu- 
ral network can play in determining system performance. Additional issues include 
fitness and fitness functions and the use of parametric and nonparametric statis- 
tics. These are issues that must be addressed regardless of whether the performance 
metric is percent correct or some other metric such as normalized error. 

We first examine the issues of selecting gold standards, selecting test sets, and 
, ,  

selecting training sets for those implementations, such as neural networks, that 
require them. 

Selecting Gold Standards 
At least two issues are associated with the selection of gold standards, for both train- 
ing sets and testing sets. The first is the classification itself, and the second is the 
selection of a representative pattern set. A third issue to be addressed, which encom- 
passes the first two, is selecting the person(s) or process used to designate the gold 
standards. 

Relative to the first issue, in a classification problem it is sometimes straightfor- 
ward to specify the classification of the items, or patterns, in the training and testing 
sets. For example, if the computational intelligence implementation is being used to 
classify printed versions of individual letters of the alphabet, such as A, B, and C, 
there should be no disagreement about which letter is which. On the other hand, 
some classification tasks can be more difficult. For example, in the classification of 
biopotential waveforms, such as electrocardiograms and electroencephalograms, the 
interpretation of waveforms can be a matter of opinion among experts. For exam- 
ple, in the case of a neural network system to detect epileptiform spikes described in 
Eberhart and Dobbins (1990), and summarized as a case study in Chapter 12 of this 
book, the average overlap in identification of individual spike waveforms was only 
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about 60 percent between any two of the six neurologists who evaluated the data 
records. 

It is therefore important to obtain agreement beforehand on the classification 
process and the classifications themselves, and to state both clearly when presenting 
any performance measurement results. In this step, it is extremely important to get 
the active participation of the end users of the system (such as the neurologists in 
the case just mentioned). 

Given that classifications can be made and agreed to, the next job is usually 
the selection of the "representative examples" for the training and testing sets, if 
required. This is an area in which much development work is currently being done. 
It is possible to state guidelines, but few hard rules exist. 

The examples selected for the training and testing sets, in addition to being 
agreed to by the experts as representatives of the class, must be appropriately 
distributed over the class being represented. That is, the examples should not all 
be ideal, or textbook, examples of the pattern class, with pattern vectors "right down 
the middle" of the classification. Rather, they should include patterns that, though 
clearly belonging to the identified class, are somewhat borderline, having attributes 
that place them near a decision hypersurface with another class or classes. This is 
particularly important for cases, such as biopotential waveform analysis, in which 
human perception is involved and opinions, though generally in agreement, may 
vary from expert to expert. Kohonen (1988, 1989) and Rumelhart and McClelland 
(1986) have discussed and demonstrated the need for using training/testing patterns 
near decision boundaries. Their work provides an excellent resource for more 
information on this aspect of pattern selection. 

The selection of the person(s) or process used to identify the gold standard 
training and testing cases is very important. Too often, engineers and program- 
mers working on a project take it upon themselves to do this identification. This 
should be avoided. It is important to involve the end users of the system in this 
process. Although the engineers and programmers can provide the end users with 
information regarding the technical constraints within which the system must oper- 
ate, it should be left to the users, as much as possible, to provide the case data 
selection, or at least the process for the selection. This is particularly important in 
areas such as biomedical engineering: Medicine must drive engineering, not the 
other way around. 

Involving users in the selection of the gold standard data does not relieve the 
engineer or programmer of all responsibility for this data. The quality of the data, 
including potential problems such as noisy data and missing data elements and how 
those will be handled, must be worked out and agreed to by all interested parties. 

Partitioning the Patterns for Training, Testing, and Validation 
It is generally not acceptable to test a computational intelligence implementation 
with the same set of patterns used to train it. A portion of the patterns is used for 
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training, and the remainder, often chosen randomly, is used for testing. Taking this 
one step further, a project sponsor may withhold a portion of the datasets to be used 
for testing after the system is proclaimed to meet specifications. These datasets are 
sometimes referred to as validation datasets. So some datasets have been divided 
into three portions~training, testing, and validation. This idea of testing a system 
on data it has not previously seen is the basis for cross validation, discussed later, 
although cross validation involves more than just dividing patterns into training 
and testing portions. 

Furthermore, it is frequently a good idea to rotate training and testing cases 
through all available cases. That is, a given set of cases can be selected for train- 
ing one time and a different set another time. Likewise, different cases can be used 
for testing at different times. It is desirable to examine the performance of a compu- 
tational intelligence implementation with these changes, if possible. This approach 
begins to look something like cross validation. 

When training some neural networks, especially back-propagation networks, it 
is often a good idea to select a training set with about the same number of patterns 
for each classification. That is, if the network has three output processing elements 
(PEs), each of which becomes active for a particular pattern classification, it is prob- 
ably a good idea to have a training pattern set with about one-third of the patterns 
from each classification. This is, for some people, counterintuitive. 

A more intuitive argument is that the numerical distribution of patterns should 
reflect the probability distribution of the classes. For example, if we are training 
a neural network implementation with two output PEs and if one of the classes 
appears in the real world 20 percent of the time, then it would make sense to some 
people to draw 20 percent of the training cases from this class (and 80 percent from 
the other class). 

Better network performance often results, however, if, in the case just described, 
approximately 50 percent of the training patterns are selected from each class, 
regardless of the probability distribution. In fact, the authors have seen cases in 
which allocating the percentage of classes of training patterns according to prob- 
ability distributions has resulted in a failure to train the network. 

Cross Validation 

Cross validation is a method that allows us to estimate how well a system will per- 
form on data it has not seen previously (during training). It thus predicts how well 
the system can generalize. 

Cross validation starts by partitioning a dataset into subsets for training, test- 
ing, and perhaps validation. Just holding out a subset for testing, by itself, does not 
comprise cross validation since none of the data are "crossed over" (described later). 
There are two main types of cross validation, although the second is just a special 
case of the first: k-fold cross validation and leave-one-out cross validation. 
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For k-fold cross validation, the dataset is partitioned into k subsets. In an iterative 
process, one of the k subsets is used for testing and the remaining k - 1 subsets are 
used for training. This is repeated k times until all k subsets have been used once 
for testing. The results from the k iterations can then be averaged or combined in 
some other way to provide an error estimate. The variance of the result decreases as 
k increases. 

Leave-one-out cross validation takes k-fold cross validation to the limit by itera- 
tively using a single pattern as the test set. Thus, k is the total number of patterns in 
the dataset, and each pattern is used exactly once as the test set. Leave-one-out cross 
validation is computationally intensive for large datasets. 

How k is chosen is more of an art than a science, and it depends on the nature of 
the problem. In the authors' experience, if the total number of patterns is less than 
1 O0 or so, leave-one-out cross validation is probably worth the effort. In very large 
datasets comprising thousands of patterns, a value of k between 10 and 100 is a good 
place to start. 

Note that the cross validation process is applicable across a variety of perfor- 
mance metrics. It can be applied, for example, to neural networks using a percent 
correct metric as well as to fuzzy controllers using an absolute error metric. 

Fitness and Fitness Functions 

The fitness of a solution is a numeric value that provides an indication of how well 
the solution meets the objective(s) of the problem. The concept of fitness is central 
to evolutionary computation (EC) methodology (discussed in Chapters 3 and 4). 

The concept of fitness is applied over a broad spectrum of EC problems. At one 
end of the spectrum are benchmark problems such as the Rastrigin function for 
which an equation exists and the location of the global optimum is known. Fitness in 
such cases is a function of the error with respect to the global optimum. The highest 
fitness is known and is often zero. A solution that is closer to the global optimum 
has a smaller error and a higher fitness than a solution farther away. 

At the other end of the spectrum are problems for which the global optimum 
is unknown. It may not even be known whether or not a global optimum exists, 
and, if it does, whether there are multiple global optima. Most examples of this type 
of problem are NP-hard and the fitness score is a function of the system output(s). 
Furthermore, the fitness score may be a weighted function of output parameters. 
An example is a logistics scheduling problem, where the numbers and types of items 
delivered, the time windows of the deliveries, and priority scores may all be weighted 
and incorporated into fitness values. 

Note that use of the concept of fitness should not be limited to EC implemen- 
tations. If percent correct is being used to measure the fitness of a neural network 
output, then percent correct measurements over a number of cases may be con- 
sidered as fitness values (higher is better). If a fuzzy logic control system output 
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is measured over a number of cases, the output error measurements (number of 
degrees deviation from a thermostat setting, for example) may be treated as fitness 
values (lower is better). 

Recall the three spaces of adaptation discussed in Chapter 2: input parameter 
space, system output space, and fitness space. System output space is the space 
defined by the dynamic range(s) of the output variable(s). The fitness space is the 
space we use to define the "goodness" of the solutions in the output space. We often 
scale fitness to values between 0 and 1, with either 0 or 1 being the optimal value, 
depending on whether we are minimizing or maximizing. Thus, system output 
and fitness generally do not coincide. 

Furthermore, the numerical value of fitness rarely has meaning. We nearly always 
use fitness values to rank solutions. A system configuration with a fitness value of 
0.980 is rarely exactly twice as good as a system configuration with a fitness value of 
0.490. We simply have a rank-ordered list of how good a solution is relative to other 
solutions. 

It is common practice to vary parameters such as crossover rate in a GA and 
attempt to see what value produces a better system. We may, for example, run the 
GA ten times with one crossover rate and ten times with another crossover rate. Due 
to the stochastic nature ofthe algorithm, we may very well get a different fitness value 
each time, although it is possible that a few may be identical due to the precision of 
our computer. 

How do we determine which system configuration is better? If all of the fitness 
values for one crossover rate are better than those for another crossover rate, the 
situation is clear: Use the system configuration that consistently produces the bet- 
ter fitness values. However, the situation is seldom so simple. Especially in the later 
stages of system development, when we are fine-tuning parameters to maximize sys- 
tem performance, we may have situations that are hard to analyze and interpret. 

Parametric and Nonparametric Statistics 
For analysis and interpretation, we turn to the field of statistics. We need to be very 
careful how we use statistics, however. In this section we summarize this approach 
and provide the justification for using nonparametric (also sometimes referred to 
as "distribution-free") statistics tools rather than those of parametric statistics. The 
discussion in this section ignores many issues and details related to the field of statis- 
tics. We encourage you to refer to a text on probability and statistics to fill in the gaps. 
An excellent book written for engineers and scientists is Ross (2004). 

Performance metrics measure how well (or poorly) your system is performing. 
What the performance metrics do not  tell you is whether differences in system per- 
formance as reflected in fitness values are statistically significant. Inferential statistics 
tools can be used to assess statistical significance. However, we must be very cautious 
about which tools we use. 
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You have probably taken a statistics course (or have studied it on your own) 
during your educational process. It is likely that you studied parametric statistics 
tools (such as the Student's t-test and the analysis of variance) almost exclusively. 
For results to be valid using parametric statistics tools, however, the underlying dis- 
tribution of data must be normal, or exponential, or of some other specified form. 

The datasets we deal with in computational intelligence, such as lists of fitnesses, 
usually do not conform to any particular type of distribution. They may be anything. 
Most of the time they are just lists of real numbers. 

This is where nonparametric statistics come in. They do not assume that the 
data are in any particular parametric form. Any nonparametric tool can thus be 
applied without regard to the data distribution form. We discuss two nonparametric 
statistics tools in this chapter: the Mann-Whitney U test and the chi-square test. The 
Mann-Whitney U test provides a powerful tool for analyzing the performance of 
evolutionary algorithms. It is both useful and easy to use. The chi-square test can 
be applied to the analysis of structured sequences or patterns by systems adapted to 
examples. An example is a system that simulates some process, such as a biological 
process, that can be described statistically. 

To learn more about nonparametric statistics, we suggest you refer to the book 
that most people consider the foundation book in the field, Siegel (1956). This book 
is both comprehensive and easy to read. 

Now that we've covered general issues related to performance metrics, we will 
discuss some specific examples. They are not discussed in any particular order. 

Percent Correct 

Because it is, at least on the face of it, the simplest, we describe first the measurement 
of computational intelligence system performance by determining the percent cor- 
rect obtained in a particular situation. This is simply the percentage of all answers 
that were judged to be correct according to some gold standard. A value for percent 
correct is obtained for training, testing, and validation. It should be noted that, for 
some applications, the concept of percent correct is not particularly useful, such as 
in the composition of music and in the simulation of a system; other measures, or 
metrics, are then used. 

Once one has made the selection of training/testing patterns, the selection of 
representative samples, and the selection by expert end users of the process to be 
used in designating the gold standards, the calculation of percent correct is relatively 
straightforward. There is still, however, the issue of how to interpret the different 
values of percent correct obtained for the testing and training sets. (We discuss the 
issue of interpreting error values for training and testing elsewhere in this book, but 
we emphasize here that it is important to use different sets of cases (patterns) for 
training and testing.) 
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Note that neural network implementations often establish ranges within which 
answers are considered correct. For example, if the output can vary from 0 to 1, then 
any output in the range 0.8 to 1.0 might be considered as a 1 and any output in the 
range of 0.0-0.2 might be taken as a 0. In a more extreme case, anything above 0.5 
may be considered a 1 and anything <= 0.5 a 0. Manipulating the percent correct 
metric like this introduces subjectivity, but makes it more useful in a practical sense, 
since we are almost never able to train a network to exactly the target values (and if 
we did, it would be seriously overtrained and unable to generalize). 

Percent correct has limitations as a performanc~ metric, as is illustrated by the 
following example. Suppose that out of a group of 100 stocks, a computational intel- 
ligence tool accurately predicted 90 percent of the time last month which stocks 
would outperform the Dow Jones average on a percentage basis. Stocks that did 
less well than the Dow Jones average were predicted with 60 percent accuracy. This 
month, only 85 percent of the stocks outperforming the Dow Jones average were 
accurately predicted and only 55 percent of the stocks that did less well than the 
Dow Jones average were accurately predicted. Overall ability to predict, however, 
improved. 

To see how this is possible, suppose that half of the stocks last month were in each 
of the two categories. The overall performance was thus (90 * 0.50) + (60 * 0.50) 
- 7 5  percent correct. Further suppose that this month 70 percent of the stocks 
outperformed the Dow Jones average. The performance was thus (85 * 0.70)+ 
(55 * 0 . 30 ) -  76 percent correct. Overall predictive accuracy therefore increased, 
even though the predictive accuracy on the individual metrics decreased. Part of 
this seeming contradiction results because the proportions of instances of the cat- 
egories (i.e., those that outperformed the Dow Jones average) were unequal in the 
two months. 

The example shows that percent correct can be misleading if it is the only method 
of evaluating performance. In the example, we might have chosen a computational 
intelligence system trained on the second set of data over one trained on the first 
set, even though the two systems may have been identical. The following sections 
describe performance metrics that can be used in place of, or in addition to, percent 
correct. 

Average Sum-squared Error 

As is discussed in Chapter 6, the goal of neural network adaptation when using 
the back-propagation algorithm is to minimize the average sum-squared error. The 
average sum-squared error is obtained by computing the difference between the 
output value that an output PE is supposed to have for a pattern k, called bkj, and 
the value the PE actually has as a result of the feedforward calculations, called Zkj. 
This difference is squared, and then the sum of the squares is taken over all output 
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PEs. Finally, the calculation is repeated for each pattern in the testing or training 
set, as applicable. The grand total sum over all PEs and all patterns, multiplied by 
0.5, is the total error Et, as given in equation 10.1. 

05 Z Z (b  -z jt 2 (10.1) 
k j 

The total error is then divided by the number of patterns to yield the average sum- 
squared error. 

There are a few things relative to average sum-squared error that are worth con- 
sidering. They relate to being able to compare results. First, the original definition of 
average sum-squared error made by Rumelhart and McClelland (1986) includes the 
multiplier 0.5, as discussed in Chapter 6. Many implementations ignore this factor 
of 0.5 (it reduces calculation time to eliminate it), but it is important to be aware of 
how the error term is calculated in your neural network implementation and in any 
one with which results are being compared. 

Second, the error term is summed over all output PEs. This is also the way it 
is defined by Rumelhart and McClelland (1986). A potential problem is that if you 
happen to be using various network configurations with different numbers of output 
PEs, the average sum-squared error may not accurately reflect the performance of 
the network. 

It is possible, for example, to train a network with one output PE to a given 
error, then find that the error increases when essentially the same net with several 
output PEs is trained. The performance of the network as measured by percent 
correct may have increased at the same time as the average sum-squared error (per 
pattern) increased. It is therefore important to keep in mind that average sum- 
squared error, as it was originally defined, means that it is averaged by dividing 
by the number of patterns in the training or test set, not that it is averaged on 
a per-PE basis. It will probably be desirable, for many applications, to compute 
the error per PE by dividing the average sum-squared error (per pattern) by the 
number of output PEs. This metric is called the average per PE sum-squared error. 

Because the average per PE sum-squared error is often used in conjunction with 
the neural network back-propagation algorithm, when used as a performance metric 
it is frequently used with a back-propagation implementation. There is no reason, 
however, why it can't be used with other CI paradigm implementations, such as 
learning vector quantization and fuzzy expert systems, as long as the correct values 
of the outputs are known. 

It should be cautioned that the average sum-squared error measure (whether per 
pattern or per PE and per pattern) may not adequately measure the network perfor- 
mance in some instances. For example, depending on the threshold value selected in 
a back-propagation model, the average sum-squared error may not accurately reflect 
the performance of the neural network implementation. 



Chapter Ten--Performance Metrics 

The threshold value is the number, between 0 and 1 for a sigmoid activation 
function in a back-propagation implementation, above which an output PE is 
considered to be on and below which it is off. The most common value selected 
for the threshold is 0.5, but a different value, such as 0.7 or 0.8, may be more 
appropriate for some applications. 

Following are two cases for which the values of the average (per pattern) sum- 
squared error are somewhat misleading. Assume that there is only one output PE 
(so the error is also a per PE error), ten patterns in the set, and a threshold value of 
0.5. Also assume that for five of the patterns the output PE should be on and for the 
other five it should be off. 

If the values of the output PE for the on patterns are always 0.6 and always 0.4 
for the off patterns (the error is always 0.4), then, with the threshold value of 0.5, 
the network is classifying all ten patterns correctly and is thus performing perfectly, 
based on percent correct. The average per pattern (and per PE) sum-squared error 
is [10(0.16)]/10, or 0.16. 

Now consider a case in which the output PE has a value of 0.9 for all on patterns 
and 0.1 for all offpatterns except two, for which it has a value of 0.6. Thus it is getting 
eight of the ten patterns correct, so it is 80 percent correct, which is less than the 
previous case. The average sum-squared error, however, is [8(0.01) + 2(0.36)]/10 
= 0.08, only one-half of the value in the previous example in which the network 
exhibited perfect performance. 

For cases in which the threshold is a value such as 0.5, it may be more appro- 
priate to calculate the average sum-squared error based on values (or a single value) 
other than 0 and 1. With a threshold of 0.5, for example, it may be more meaningful 
to calculate an error value only for those PEs that are on the incorrect side of the 
threshold and to use the threshold as the desired value. 

In the first of these two examples, then, this threshold-based average sum- 
squared error is 0, whereas in the second case it is [2(0.01)]/10, or 0.002. This 
method of error calculation seems to provide a more realistic picture of the network 
performance in these examples. 

Absolute Error 

For many people, average sum-squared error has little meaning at an intuitive level. 
Seldom, if ever, are errors measured and then squared to help a human understand 
a system's performance. 

A more intuitive error measure is the absolute error. One metric incorporating 
the absolute error that is often used is mean absolute error, defined in equation 10.2 
on a per PE per pattern basis, where rn is the number of patterns and q is the num- 
ber of output PEs. Another metric using absolute error is the m a x i m u m  absolute 

error, which is just the maximum value of absolute error for any single pattern in 



Normalized Error 

the test set. As can be seen, absolute error is analogous to sum-squared error, with 
the absolute value of the error replacing the sum-squared term. 

1 m q 

Ema = mq E E I bkJ--YkJ l 
k - l j - 1  

(10.2) 

Normalized Error 

A problem with the average per PE sum-squared error is that it is corrupted by the 
target variances of the output PEs. It is therefore desirable to have some error metric 
that is independent of these variances. 

For those of you who are not statisticians and, like the authors, have forgotten 
most of what little statistics you ever knew, a brief discussion of variance may be 
helpful. For more information, refer to a book on statistics, such as the ones by 
Armitage and Berry (1987) and Ross (2004). 

Variance is the average of the squared deviations from the mean. It is often 
referred to as the mean square. Two slightly different versions of variance exist: 
the population variance and the sample variance. Although there is sometimes 
disagreement about which should be used in descriptive statistics, the authors have 
chosen to work with the population variance. In practical applications of neural 
network tools, there is very little difference between them. 

The population (target) variance for a single output PE zj is represented as a 2, 

and the equation for the target variance is given in equation 10.3, where/~j is the 
population (target) mean, or the average of a given output PE's target values for all 
of the patterns, and m is the number of patterns. The standard deviation, by the way, 
is just the square root of the variance, or the root mean square (rms); therefore, the 
standard (target) deviation for a single output PE is represented as aj. 

m 

( bkj - /~j ) 2 
2 k--1 3) a = (10. 
J m 

An error measure that removes the effects of target variance and yields an error 
value between 0 and i for all networks regardless of configuration was developed by 
Pineda (1988). This error measure involves the calculation of a quantity defined in 
equation 10.4 that Pineda calls Emean, which is the sum of squared deviations of the 
target values about the target mean. Note that for a given training pattern dataset or 
test pattern dataset, Emean remains constant. 
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Emean = 0.5 ~ ~ (bkj-/~j)2 
k j 

(10.4) 

Now, the normalized error, En, (see equation 10.5) is defined as the total e r r o r  Et 
(defined in equation 10.1 ) divided by Emean (defined in equation 10.4). 

Et (10.5) En = Emean 

As Pineda explains, En is particularly useful for back-propagation neural net- 
works because regardless of network topology or the particular application, a back- 
propagation network learns relatively easily the pattern represented by the average 
target values of the output PEs. This is sort of a "worst case," in which the network 
is "guessing" the correct output to be the average target value and results in a value 
of En = 1. As the patterns are learned, the normalized error value moves toward 0. 
The speed of movement depends on the network architecture and the application. 

A word of caution is appropriate here. Think about what would happen if you 
had an output PE in your network that never changed value. Every target value 
would be equal to the mean value ~j, and Emean would be 0, making the normalized 
error "artificially" larger. This situation isn't as farfetched as it may seem. On more 
than one occasion, the authors have trained a network with several output PEs using 
only a partial training set (i.e., one that didn't contain one or more of the output 
classifications). For the missing classifications, of course, the corresponding output 
PE values were 0. We suggest that you remove PEs that don't change value. 

One way to look at the normalized error is that it reflects the proportion of the 
output variance that is due to error rather than the architecture (including the initial 
random weight values) of the network itself. Overall, it is believed that this error 
measure may be, in many cases, the most useful one for back-propagation neural 
network implementations. 

Evolutionary Algorithm Effectiveness Metrics 

Two metrics for the effectiveness of genetic algorithms (GAs) were described by 
De Jong (1975). These metrics, however, are appropriate for any evolutionary comp- 
utation implementation that "evolves" a population of solutions. De Jong named 
these metrics off-line performance and on-line performance. 

When an evolutionary computation system (or any other optimizer) is being 
run off-line, many system configurations can be evaluated (the fitness calculated) 
and the best configuration selected. For on-line work, however, configurations must 
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be evaluated in real time, and therefore the usual goal is to develop an acceptable 
solution as soon as possible. 

The on-line performance, which measures the ongoing performance of a system 

configuration, is defined in equation 10.6, where fs(g) is the average population fit- 
ness for a system configuration s during generation g, and G is the number (index) 
of the latest generation. 

G 
ponline 1 (10.6) 

g=l  

The off-line performance measures convergence of the algorithm and is defined 
in equation 10.7, where ~ (g) is the best fitness of any population member in gen- 
eration g for system configuration s. Off-line (convergence) performance is thus the 
average of the best fitness values from each generation up to the present. 

G 
pomine 1 

= ~ E ~ s ( g  ) (10.7) 
g=l  

Mann-Whitney U Test 

The Mann-Whitney U test is a useful and easy-to-use tool for analyzing the perfor- 
mance of evolutionary algorithms. It is reported to have been developed indepen- 
dently by Mann and Whitney (1947) and by Wilcoxon (1945). It is thus variously 
referred to as the Mann-Whitney-Wilcoxon test or the Wilcoxon rank-sum text. 

The test evaluates whether the medians of two samples of data are the same. 
The null hypothesis is that the medians are equal, and the two samples have the 
same distribution (Siegel 1956). The samples must comprise ordinal or continuous 
measurements so that it is possible to say which of two measurements is greater. 

The number of measurements in each of the two samples, nl and n2, need not 
be the same. Also, results with significance at the 0.05 level (and sometimes even at 
the 0.01 level) can often be obtained with values of nl and n2 of 10 or fewer, thus 
making the test easier to use than tools that require more measurements in order to 
achieve useful significance levels. 

In this section, we describe how to calculate U when n l and n2 are each less than 
20. With larger values for nl and n2, Mann and Whitney (1947) demonstrated that 
the sampling distribution of U approaches a normal distribution. It is unlikely that 
you will need to calculate U for large values of n l and n2, but if you do, please refer 
to a text describing the Mann-Whitney U test such as Siegel (1956). 
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We will illustrate the calculation and interpretation of U two ways. The first 
method is quick and direct and should provide you with an understanding of the 
U statistic. The second uses a formula and will probably be your method of choice 
when using a computer. (Most statistical packages for PCs include the Mann-  
Whitney U test.) 

We consider two samples of best fitness values obtained when running an evo- 
lutionary algorithm with two configurations. Assume that we are running a min- 
imization problem, with an optimum of 0.0. One or more algorithm parameters 
are different for each of the two runs. (Perhaps we have changed the crossover and 
mutation rates for a GA or altered the inertia weight for a swarm.) We call the con- 
figurations, and the samples reflecting those configurations, A and B, where B is our 
"baseline" configuration. Say that we make five runs with configuration A and obtain 
best fitness values of 0.079, 0.062, 0.073, 0.047, and 0.085. With configuration B our 
best fitness values are 0.102, 0.069, 0.055, and 0.049. The values for nl and n2 are 
thus 5 and 4, respectively. 

First, we arrange these measurements in the order of fitness, keeping track of 
which belong to A and which to B: 

0.047 0.049 0.055 0.062 0.069 0.073 0.079 0.085 0.102 

A B B A B A A A B 

We now have a list ranked by fitness, with better fitness values to the left in the table. 
The simple and direct method of calculating U is to count the number of A entries 
that are better than (to the left of) each of the B entries. We thereby obtain a value 
o f U o f l  + 1 + 2 + 5 = 9 .  

You can also calculate the number of B entries that are better than each of the 
A entries and obtain an answer of 0 + 2 + 3 + 3 + 3 - 11. Let's call this result U'. 
The statistic U is the smaller of these two possible calculations. If you are not sure 
whether you've done it the right way, it is helpful to know that U and U' are related 
as follows: U = nl n2 - U' Remember, always choose the smaller of the two. 

To calculate U using a formula, we first arrange the measurements as before. 
Recall that in the preceding table the ranks go from 1 to 9 as you go from left to 
right. We first add up all of the ranks for one of the samples. For A, this sum of ranks 
is 1 + 4 + 6 + 7 + 8 = 26. Since this sum of ranks is associated with nl, we call it R1. 
The total sum of all ranks is N ( N  + 1) / 2, where N = n l + n2, so we can calculate 
the sum of ranks for B as 45 - 26 = 19, which we call R2. (You can also calculate it 
as we did for A: For B, the sum of ranks is 2 + 3 + 5 + 9 - 19.) 

We then calculate U as the smaller of the values obtained as in equations 10.8 
and 10.9. 

nl (hi + 1) 
U = nln2 + - R 1  (10.8) 

2 
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or, alternatively, 

n2 (n2 + 1) 
U = nln2 + - R 2  (10.9) 

2 

Using equation 10.8, we obtain a value for U of 20 + 1 5 -  26 = 9. Using 
equation 10.9, we calculate U as 20 + 10 - 19 = 11. These are the same values 
we obtained by the direct method. We assign the lesser value of 9 to U. 

We now determine whether or not the null hypothesis is rejected at some signif- 
icance level by referring to a table of critical values of U for the combination of nl 
and n2. In Table 10.1, if a calculated U for a pair of samples of sizes nl and n2 is less 
than or equal to the value given in the table, then the null hypothesis may be rejected 
at a significance level of 0.05 for a one-tailed test. (This test is usually configured so 
that the region of rejection is one-tailed and comprises all values of U sufficiently 
small that the probability of their occurrence under the null hypothesis is less than 
or equal to the significance level.) 

In the case we just calculated, the entry in the table for nl of 5 and n2 of 4 is 
2, so the null hypothesis is not rejected. That means that we cannot say that one 
configuration produces fitness values that are significantly higher than the other. 

Table 10.1 Critical Values of the Mann-Whitney U 
for Small Values of nl and n2 

i~ ' :"  " ~ : " ~ * : -  ' t ~ ~ " '  ':: '~..Iz =' : "  ~' ~'::" ~':':':~ ;".~'*" ~-*" .~." '".:~:~":" ::~::"~{ '::':":~::*~"~i '1 ' ~  '~y::~::::":ii~::".~:~'~ ' i i ' ~ :< '~ :~  '-~;'~::.':~~.~::"~""~ ":~":.~:~{~ ~:i~.~ '~::~ ' ~:'.~:"#;~:::~ i~;,~: i =':': ":'~i"~!~:#.~:~:"~i:i.~'~{i::i~=:#~.. 

3 0 0 1 2 2 3 4 4 

4 0 1 2 3 4 5 6 7 

5 1 2 4 5 6 8 9 11 

6 2 3 5 7 8 10 12 14 

7 2 4 6 8 11 13 15 17 

8 3 5 8 10 13 15 18 20 

9 4 6 9 12 15 18 21 24 

10 4 7 11 14 17 20 24 27 
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In our test case, even though one of the runs using configuration A had the highest 
fitness of the nine runs, we cannot say that configuration A is significantly better 
than our baseline configuration B to a significance level of 0.05. 

Now, let's test another configuration of the EC tool. Let's call this configuration 
C. As before, we make five runs using configuration C and compare the fitness values 
with the four baseline cases using configuration B. Ignoring the specific fitness values 
for purposes of this illustration (since the rank is all that matters), we obtain: 

IclclclcIBIBIclBIBr 
Using the simple and direct method of calculating U, we count the number of C 

entries that are better than (to the left of) each of the B entries. We thereby obtain a 
value of U of 4 ÷ 4 + 5 + 5 - 18. Counting the number of B entries that are better 
than each C entry, we obtain an answer of 0 + 0 + 0 + 0 + 2 = 2. Therefore, U 
has the lesser value of 2. The same answer can be obtained using equations 10.8 and 
10.9. In this case, since the value of U is less than or equal to the value in Table 10.1, 
we can say that our new configuration C is statistically better than our baseline con- 
figuration B, and the null hypothesis is rejected at the 0.05 level. 

Note that Table 10.1 is only a partial table of critical values of the Mann-Whitney 
U and is valid only for one-tailed tests at the significance level of 0.05. Tables that are 
valid for values of nl and n2 up to 20, for other significance levels and for two-tailed 
tests are available in statistics texts and on the Internet by searching for "Mann- 
Whitney U test." Remember to refer to a statistics text such as Siegel (1956) if you 
want to use n l or n2 of more than 20, at which point the sampling distribution of U 
is rapidly approaching the normal distribution. 

The Mann-Whitney U test is a powerful tool for evaluating EC implementations. 
It is, of course, also applicable to the analyses of neural network, fuzzy system, and 
computational intelligence systems using a wide variety of fitness measures such as 
percent correct and normalized error. 

Receiver Operating Characteristic Curves 

Another way to measure the performance of a computational intelligence system 
is with receiver operating characteristic (ROC) curves. For some generalized appli- 
cations, these curves are called relative operating characteristic curves. The use of 
these curves dates back to the 1940s for both electronic communications systems 
and the field of psychology. More recently, the use of ROC curves has been described 
as useful for measuring the performance of diagnostic systems, including those that 
use expert systems and neural networks (Adlassnig and Scheithauer 1989; Centor 
and Keightley 1989; Green and Swets 1966; Hanley and McNeil 1983; McClish 1987; 
Meistrell and Spackman 1989; Swets 1964, 1988). 
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ROC curves provide a means to quantify the accuracy of an automated 
diagnostic or classification system by comparing the decisions or classifications of 
the system, such as one that contains a neural network implementation, with a "gold 
standard." ROC curves are particularly valuable tools when they are used with neu- 
ral network and other computational intelligence systems because the results are not 
sensitive to the probability distribution of training or testing cases (patterns) or to 
decision bias. 

The curves can be generated and compared qualitatively with little regard for 
their statistical attributes. The use and interpretation of these statistical attributes 
have, however, become increasingly popular. For example, the calculation of (and 
understanding the meaning of) the area under the ROC curve has become a com- 
mon way of evaluating system performance. 

An ROC curve is generated for, and reflects, the system's performance for one 
given result such as a particular diagnosis or classification. It indicates how well the 
system did, compared with a gold standard, in making a given diagnosis or a given 
decision. The ROC curve thus represents the performance of one output PE in a 
neural network application or one diagnosis or classification in a fuzzy expert sys- 
tem. The discussion that follows focuses on the use of a one-PE curve, but the use 
for multiple-output PE cases is reviewed in the literature (Hanley and McNeil 1983; 
McClish 1987). 

For a given decision, indicated, for example, by a given output PE in a neural 
network implementation, four possible alternatives exist. These are illustrated in 
Table 10.2, which shows the contingency matrix used in the definition and com- 
putation of ROC curves. 

The first alternative is a true positive decision (TP), in which the positive 
diagnosis of the system coincides with a positive diagnosis according to the gold 
standard. For example, the system may have identified a tumor that was also 
identified by an oncologist. The second is a false positive decision (FP), in which 
the system made a positive diagnosis that was not included in the gold standard; 
this would mean that the system identified a tissue mass as a tumor, but the 
oncologist did not. The third possibility is a false negative decision (FN), in which 
the gold standard made a positive diagnosis that was not made by the system. This 

Table 10.2 Contingency Matrix Used in ROC Curve Definition 

Positive 

Negative 

Gold 
Standard 
Diagnosis 

System 
Diagnosis 

Positive 

TP 
(true positive) 

EP 
(false positive) 

Negative 

TN 
(false negative) 

TN 
(true negative) 
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is analogous to the oncologist identifying a tissue mass as a tumor when the system 
failed to do so. The fourth possibility is a true negative decision (TN), in which 
both the gold standard and the system indicate the absence of a positive diagnosis 
(neither the oncologist nor the system identified the tissue mass as a tumor). 

The ROC curve makes use of two ratios involving these four possible decisions. 
The first ratio is TP/(TP + FN), which is generally called the true positive ratio; it 
is also called, for some applications, the sensitivity. The second ratio is FP/(FP + 
TN), generally called the false positive ratio. Because the ratio TN/(FP + TN), gen- 
erally called the true negative ratio, is also called the specificity, it follows that the 
false positive ratio is the same thing as (1 - specificity). Sensitivity and specificity 
are discussed in more detail later. 

The ROC curve is a plot of the true positive ratio versus the false positive ratio. 
When applied to the performance of neural network implementations, the curve 
is usually obtained by plotting points for various values of the PE threshold, then 
connecting the points with either line segments or a smooth curve. A typical way 
to proceed is to plot points for a number of PE threshold values, for example, 0.1, 
0 . 2 , . . . ,  0.9. To plot the points for the true positive ratio versus false positive ratio, 
each of the four possible decisions in the contingency matrix must be calculated for 
each chosen value of the PE threshold. 

Another way to plot the ROC curve is to use actual output PE values obtained for 
a training or test set. A given output PE is typically trained to respond with either a 1 
or a 0, depending on the input pattern. When the set of patterns is actually presented 
to the network, whether it is the last iteration for the training dataset or the one and 
only iteration for the test set, the PE typically responds with outputs close to but not 
equal to 1 or 0 for most patterns. A few patterns may result in values scattered in 
between. 

The process is to use the output values, rather than the fixed values, of the PE 
threshold as the "break points" for calculating the ROC curve. Again, the values for 
each ofthe four possible decisions must be calculated for each value ofthe output PE. 

Figure 10.1 illustrates a hypothetical case involving two configurations of a neu- 
ral network implementation that result in the two ROC curves shown. The curve 
representing the configuration of NN2 reflects better overall system performance 
than that of NN 1. The dotted line drawn along the major diagonal where the true 
positive and false positive ratios are equal represents the situation in which no 
discrimination exists. In other words, a system can achieve this performance solely 
by chance. When the curve follows the left vertical and upper horizontal axes, the 
system is discriminating perfectly. In this case, for all values of the false positive 
ratio, the true positive ratio is one. 

From this brief discussion, it is evident that the ROC curve has two attributes: 
It always lies above the major diagonal, and it is always monotonically increasing in 
value from left to right. This discussion also implies that a single-value performance 
measure of a system might be obtained by measuring the area under the ROC 
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curve. This is, in fact, the preferred measure of system performance using the ROC 
curve. 

Note that the total area of the graph is one square unit, and the area under 
the ROC curve is just the proportion of the entire graph lying beneath the curve. 
Also note that the area under the curve is always between 0.5, the area under the 
diagonal when no discrimination exists, and 1.0, the area corresponding to perfect 
performance. 

There are two main ways to calculate the area under the ROC curve. One is to 
generate a smooth curve through the points and calculate the area under it. An easier 
way is to connect the points with straight-line segments and calculate the area under 
it using the trapezoidal rule. The trapezoidal rule simply means taking the average of 
two adjacent values of the true positive ratio (y-axis values) and multiplying by the 
corresponding false positive ratio interval along the x-axis, then adding all of these 
individual segment areas together to obtain the total area. 

It should be obvious that an ROC curve requires some minimum number of 
points if a reasonably smooth curve is to be plotted or if the area under a curve 
constructed of straight-line segments between adjacent points is to have meaning. 
Generally speaking, an absolute minimum of 5 points should be used to construct a 
smooth curve, and 9 or 10 will give a reasonably fine-grained structure from which 
to calculate an area from straight-line segments. 

The information represented by an ROC curve can be used in a number of ways. 
For example, the shape of the curve can indicate the sensitivity of the system per- 
formance to the threshold value. As another example, the shape of and area under 
the ROC curve may reflect changes in network parameters (such as eta and alpha 
in a back-propagation network) or adaptation regimens (such as the number of 
training epochs) more sensitively than other performance measures such as percent 
correct. 
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Caution should be observed when interpreting ROC curves. For example, it is 
possible for two ROC curves with the same area to intersect (one will have higher 
values on the left side ofthe plot, the other on the right). One will thus exhibit better 
performance with respect to false positives, the other with respect to false negatives. 
Depending on the relative importance (or cost) associated with each of these error 
types, one or the other curve will represent the more desirable system. 

Also, it is important that a sufficient number of cases be analyzed so that the true 
positive and false positive ratios represent system performance over the range of 
operating environments. This means at least a couple of things. First, enough cases 
should be used so that the ratios at each value of threshold chosen to plot the curve 
are valid. Second, the developer may want to obtain data from the system at points 
not necessarily of interest otherwise (in the case of a neural network, for example, 
threshold values near 0.5). 

Networks typically are trained to values of 1 and 0. In a well-performing net- 
work with just one or two output PEs, then, not many, if any, cases will be available 
that result in output activation values around 0.5. Techniques involving network 
inversion, or evolutionary, computation tools (described Chapter 9), can be used to 
obtain such cases. In systems with numerous output classes or diagnoses, it is more 
likely that cases resulting in activation values around 0.5 for most of the output PEs 
will exist. 

Other parameters and measurements associated with the ROC curve might prove 
useful in some applications. The standard error, for example, can help in assessing 
the reliability of the calculation of the area. The discussion of these items is beyond 
the scope of this book, but a number of references are available that will assist in 
further pursuit of the subject (Hanley and McNeil 1982, 1983; McClish 1987; 
Meistrell and Spackman 1989). 

Note that ROC curves and their associated contingency matrices do not take into 
account the prior probabilities of the event and nonevent (or class and nonclass) rep- 
resented by the output PE. Prior probabilities do, however, enter into the calculations 
for the confusion matrix, discussed later. 

Recall and Precision 

Several ways of looking at the performance of a neural network or other computa- 
tional intelligence system use the four possible decisions defined in the contingency 
table (refer to Table 10.1 ) and in the definition of ROC curves. One way is the use of 
metrics that have been familiar in the fields of expert systems and databases: recall 
and precision (Saito and Nakano 1988; Stanfill and Kahle 1986). 

Recall is the number of positive diagnoses correctly made by the system divided 
by the total number of positive diagnoses made by the gold standard. Recall is some- 
times called the probability of detection. This is defined in the discussion on ROC 
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curves as the true positive ratio and provides an indication of the relative number of 
false negatives. 

Precision is the number of positive diagnoses correctly made by the system 
divided by the total number of positive diagnoses made by the system. In the 
parlance of Table 10.1, this is TP/(TP + FP), and it provides an indication of the 
magnitude of false positives. 

Recall and precision are just another way of looking at the four quantities in the 
contingency matrix; they "cut" the data in a different way than the sensitivity and 
specificity parameters do. Which metric is most appropriate depends heavily on 
the application and end users. Eberhart and Dobbins (1990) found that recall and 
precision were a metric of choice when developing an epileptiform spike detection 
system for use by neurologists (summarized in Chapter 12). In that application, 
the number of true negatives had relatively little meaning, and the precision metric 
provided more meaningful information than specificity. 

Other ROC-related Measures 

In this section, we summarize four performance metrics derived from the contin- 
gency table (Table 10.1) that can often be more informative for characterizing 
network performance than percent correct and that are easy to compute. 

Sensitivity, or the probability of detection [TP/(TP + FN)], is the likelihood that an 
event will be detected, given that it is present. It is likely to be especially impor- 
tant when it is critical that an event be detected. For example, the detection of 
AIDS is important because its consequences are severe. 

Specificity, or the true negative rate [TN/(TN + FP)], is the likelihood that the 
absence of an event will be detected, given that it is absent. For example, the 
absence of a "blip" on a radar screen is likely to be an important event: perhaps 
a downed airplane. 

Positive predictive value, [TP/(TP + FP)], is the likelihood that a signal of an event 
is associated with the event, given that a signal occurred. This is an especially 
important statistic when it is imperative that a signal be attended to. For exam- 
ple, neurology staff always pay attention to a signal spike in an EEG, especially if 
the spike has a high probability of being associated with the corresponding 
signal of interest. 

False alarm rate, or the probability offalse alarm [FP/(FP + TN)] = [ 1 - specificity], 
is the likelihood that a signal is detected (falsely), given that a nontarget event 
occurred. It is easy to see where the name came from. 

Accuracy, [(TP + TN)/(TN + FP + FN + TP)], indicates the probability of a correct 
classification. It is the estimate of percent correct for a system. 
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Other ROC-related measures are especially useful when dealing with 
"unbalanced data." For example, there may be very few cases of a rare disease in a 
large database of medical symptoms and diagnoses. It is still important to achieve a 
high accuracy on the diagnosis of this rare disease. Another example is correctly pre- 
dicting loan defaults. Two metrics used for unbalanced data in situations such as this 
are the geometric mean (G-mean) developed by Kubat (1998) and the 
F-measure developed by Lewis and Gale (1994). They are defined in equations 10.10, 
10.11, and 10.12, where PD is probability of detection, PR is precision, and SP is 
specificity. 

G-mean1 = sqrt (PD *PR) 

G-mean2 = sqrt (PD * SP) 

F-measure = [(~ + 1) *PR*PD]/(/~2*PR + PD) 

(10.10) 

(10.11) 

(10.12) 

In the calculation of F-measure,/3 can be any nonnegative value, and it manip- 
ulates the weights assigned to PD and PR. If/~ is 1, which is a typical case, equal 
weights result. The relative weights of PD and PR are problem-specific and should 
be determined on a case-by-case basis. 

Each of the ROC-related statistics described here can be computed at each 
output location in a multiple-output neural network or other computational intel- 
ligence system. If the outputs are mutually exclusive, the criterion for correctness 
is based on the winning PE having the largest value, not on its merely being 
above 0.5. If the output PEs are not mutually exclusive, then a criterion of 0.5 can 
be used. 

Examples of the former, with mutually exclusive categories, might be mammal, 
fish, or bird. In such a case, only one can be considered correct. An example of cat- 
egorizations that are not mutually exclusive are output PEs that indicate the pres- 
ence of properties: warm-bloodedness, breathes air, and so on. Assuming in both 
cases that the input vector is a list of primitive features for an animal, the latter 
case clearly could contain instances of multiple correct categories (many animals are 
cold-blooded and breathe air). 

Confusion Matrices 

An ROC curve (calculated from a contingency matrix) is useful when examining the 
performance of a single output PE, or any other computational intelligence system 
with one output. An analogous performance metric that is useful when a system has 
multiple output classes represented by multiple PEs is the confusion matrix. 
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For a system comprising n classes, an n x n matrix is constructed. The rows, 
designated by the subscript i, reflect the "gold standard" classification. The 
columns, designated by the subscript j, reflect the classifications as made by the 
computational intelligence system (which could be a neural network with multiple 
outputs). The entry in each position of the matrix represents the total count (total 
number of instances, each represented by a pattern) of the situation that occurred 
in the test set represented by that position. 

The positions along the main diagonal of the matrix are those instances that were 
correctly classified; for example, S33 is the number of instances of the third class that 
were correctly classified. The positions off the diagonal represent errors: sij (i ~ j) is 
the number of instances of the class i that were misclassified as belonging to class j. 

Sometimes a column is added onto the right side of the matrix that represents 
instances that could not be classified according to system decision criteria. For the 
remainder of this discussion, however, it is assumed that an n x n matrix is used. 

There are several ways to use information in a confusion matrix. In any case, 
the matrix is prepared by first performing calculations row by row (one "gold 
standard" class at a time). The first step in interpreting the matrix is to calculate 
each "class confusion" by dividing each matrix entry by the total count of instances 
in its row (gold standard class). The numbers in each row now add to 1.0. Note that 
the contingency matrix used to calculate the ROC curve is just a class confusion 
matrix with n - 2. 

The resulting class confusion matrix can now be used to calculate an average per- 
cent correct for the system by adding all of the entries on the main diagonal of the 
matrix and dividing the result by the number of classes. Note that this may not be a 
"true" percent correct unless all classes have the same prior probabilities, but it can 
be a useful measure, particularly if no more information is available. 

In order to further use the matrix for calculating cost information, it is neces- 
sary to know the prior probability of each class. Each element in the class confusion 
matrix is then multiplied by the prior probability for the class represented by the 
row where the element is located. Each value in the matrix represents a probability 
of occurrence: The sum of all matrix values is now 1.0. 

The last step in interpreting the confusion matrix is to multiply each element in 
the matrix by its cost. It is often assumed that correct classifications (on the main 
diagonal) have associated costs of 0. It is necessary to know the cost of each type of 
misclassification accurately in order to make the best use of a confusion matrix. It 
is sufficient for many purposes if the cost ratios among all of the misclassifications 
are known. The total cost is then calculated by summing all of the individual costs. 
Note that subjective measures of cost, such as pain incurred because of a mistaken 
medical diagnosis, are not acceptable for inputs to the confusion matrix. The results 
are very sensitive to both prior probabilities and costs. 

Let's work through an example of a confusion matrix. We'll assume that we have 
a medical diagnostic system with three possible diagnoses: A, B, and C. We have 
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trained a back-propagation neural network with 50 cases of each diagnosis. (We 
often use about the same number of each output class, diagnosis in this case, to train 
a network, as discussed in the first part of this chapter.) We know from an extensive 
database of case histories that the prior probabilities of the three classes are 0.60, 
0.30, and 0.10, respectively. 

We next use 50 cases of each diagnosis (that were not  used in training) to test the 
system. It may or may not be realistic to expect that we will have 50 test cases for each 
diagnosis. (Keep in mind that the probability of diagnosis C is only 10 percent. Ifwe 
need 50 cases of C for training and 50 for testing, that implies that we have about 
1,000 cases from which to draw data. If, for example, we have only about 800 cases, 
we could end up with only about 30 cases of C for testing.) The results are depicted 
in Table 10.3, where the gold standards are represented by the rows. Then the class 
confusion matrix is formed by dividing each entry by the total number of instances 
in its row as in Table 10.4. 

We now multiply each element in Table 10.4 by the prior probability for each 
class, resulting in the final confusion matrix of Table 10.5. Each element in the matrix 
is now the probability for each application of the diagnosis tool of that outcome. 

Before we go on to calculate costs (and inject some reality into this example), 
let's look at what we have so far. We have a diagnostic system that performs with an 
accuracy of 82.8 percent (the sum of the main diagonal values). On the surface, it 
appears that we are doing pretty well with respect to the third diagnosis, C. 

Table  10.3 Test Results for Medical Diagnostic Example 

A 

A 40 8 
Gold 

Standard B 6 42 
Diagnoses 

C 1 1 

CI System 
Diagnoses 

B C 

2 

48 

Table 10.4 Class Confusion Matrix for Medical Diagnostic Example 

A 
Gold 

Standard B 
Diagnoses 

C 

CI System 
Diagnoses 

A B C 

0.80 0.16 0.04 

0.12 0.84 0.04 

0.02 0.02 0.96 
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Table 10.5 Final Confusion Matrix for Medical Diagnostic Example 

Cl System 
Diagnoses 

A B C 

A 0 .480  0 . 0 9 6  0.024 
Gold 

Standard B 0 .036  0 . 2 5 2  0.012 
Diagnoses 

C 0 .002  0 . 0 0 2  0.096 

However, now is when we inject reality. The medical diagnosis represented 
by A is a condition that can be cured by an over-the-counter drug available at 
any drugstore that costs, say, $10. Medical diagnosis B is a more serious medical 
problem that requires aggressive treatment with a prescription antibiotic that costs, 
say, $100. Condition C is a very serious condition that requires hospitalization 
and surgery, with a total cost of $5,000. And, by the way, if condition C is not 
diagnosed right now, the patient has only a 20-percent chance of survival. Although 
it is impossible to assign a dollar value to a human life, let's say that the average 
insurance policy of these patients is $100,000, and use that value, crass as it may 
appear. That means that each misdiagnosed condition C will result in an average 
cost of $80,000 (80 percent chance of death times $100,000 life insurance policy). 
We ignore the millions of dollars for which the hospital or clinic may be sued by 
a malpractice attorney. 

We stated previously that it is often assumed that correct classifications have zero 
cost, but it should also be apparent by now that the costs of the correct diagnoses in 
this example are not zero; they are $10, $100, and $5,000 for A, B, and C, respectively. 
A diagnosis of A as B will cost $100 (misdiagnosis) plus $10 (eventually a correct 
diagnosis). Our cost of a diagnosis of B as A will be $10 (incorrect diagnosis) plus 
$100 (eventually a correct diagnosis). Likewise, a misdiagnosis of B as C is assumed 
to cost $5,000 (misdiagnosis) plus $100 (correct diagnosis) plus a very angry patient 
(no cost assigned). And so on. Our final cost matrix is in Table 10.6. 

Table 10.6 Final Cost Matrix for Example Problem 

A 4.80 
Gold 

Standard B 3.96 
Diagnoses 

C 160.02 

CI System 
Diagnoses 

B 

10.56 

C 

120.24 

25.20 61.20 

160.20 480.00 
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The figures in Table 10.6 tell us that the average estimated cost of each application 
of the diagnostic system is $1,026.18. There are two main ways to reduce this average 
estimated cost. The first is to reduce the costs for the treatments of the three con- 
ditions. We probably have little or no control over those costs, however. The most 
obvious way to reduce costs is to lower the costs of missed diagnoses, and the most 
obvious place to start is with the misdiagnoses of condition C. 

The cost calculations from confusion matrices can be used in a variety of ways 
to fine-tune a computational intelligence system. For example, a system can first 
be trained and tested using whatever methodologies are appropriate. For example, 
a neural network-based diagnostic system is trained for the best performance on 
the test set. Then, the threshold levels of the output PEs, or membership functions 
of fuzzy sets, or whatever, can be adjusted by calculating the costs associated with a 
variety of choices, choosing the combination that produces the lowest system cost. If 
there is only one, or only a few PEs or membership functions, simple iterative proce- 
dures can be used. If there are numerous outputs or functions, an evolutionary com- 
putation tool can be used to find the best (lowest cost) combination. If appropriate 
cost information is not available, the system can still be tuned so as to minimize the 
off-diagonal numbers, the sum of which represents the percent incorrect. 

Chi-square Test 

At least one of the preceding performance metrics will probably be useful whenever 
the supposed results are known. For example, in a pattern classification situation, if 
the "gold-plated" classification is known in each case, it's relatively easy to tell how 
well the system is doing its job. Depending on the specific application, the percent 
correct, recall and precision, or some other measure can be calculated. What should 
be done, however, if the "right" answers are unknown? This situation isn't as far- 
fetched as it might seem at first glance. 

An example is one of the main areas of application of neural networks described 
in Chapter 1. The fourth area described is different from the other four in that no 
classification is involved. Instead, it involves the generation of structured sequences 
or patterns from a network trained to examples. The composition of music, based 
on training to a given music style, is an example of this area. Another example is 
the simulation of some process, such as a biological process, that can be described 
statistically. In this general class of applications, the expected specific result of each 
case may not be known, but an idea probably exists of what the statistical distribution 
of results should look like. A useful measurement tool we can use in many such cases 
is the chi-square test. 

The chi-square test examines the frequency distribution of all of the categories 
(or answers or classifications) that it is possible to obtain from a particular network 
system. That is, it looks at how often each category is expected to occur versus 



how often it actually occurs. The expected frequency of occurrence for a particular 
category is defined as E, and the actual (observed) frequency of occurrence for that 
category as O. Categories may be on a nominal, ordinal, or interval scale, but they 
must be mutually exclusive and collectively exhaustive (Roscoe 1969). 

The activation values of output PEs don't directly enter into the chi-square test. 
Only the frequencies of occurrence of the output classes do. Of course, the chosen 
threshold value plays a role in the selection of the winning output pattern, so the 
output values play an indirect role. The values themselves, however, don't enter into 
the chi-square calculation. 

The chi-square test is used to determine whether a given set of output categories, 
when compared with an expected distribution, has a variance from probability or a 
predefined expectation greater than would be expected by chance alone. It should be 
noted that the chi-square test assumes normally distributed data. If the data are not 
normally distributed, performance may not be acceptable. Equation 10.13 presents 
the chi-square calculation, where n is the number of categories. 

1l 
2 (Oi-  Ei) 2 

Z = E  Ei 
i=1  

(10.13) 

The calculation and interpretation of the chi-square test are now outlined. For a 
detailed explanation, refer to any reputable book on statistics such as Armitage and 
Berry (1987), Moore (2001), and Ross (2004). 

Remember that the focus is on the frequency distribution of the output patterns. 
If there are four output PEs in a neural network application, and the PE with the 
largest activation (output) indicates the output classification ("winner take all"), 
then n = 4, and the calculation is relatively straightforward. 

Assume that in any test set of 50 patterns, the expected frequency distribution of 
classifications is 5, 10, 15, and 20, respectively, for PEs 1 to 4. Suppose that for one 
50-pattern test set, the frequency distribution obtained is 6, 10, 14, and 20 for PEs 
1 to 4, respectively. Then chi-square for this first test set, as calculated by equation 
10.13, is 0.267. Suppose that for a second test set, a distribution of 2, 15, 8, and 25 
for PEs 1 to 4, respectively, is obtained. Chi-square for this second test set, calculated 
by equation 10.13, is 8.82. 

Now that values have been calculated, a determination must be made as to 
how many degrees of freedom the system has, which corresponds to the number 
of frequency distribution values required to uniquely determine the entire set of 
values, given that the total number of tests is known. In the example case, if the 
frequencies of occurrence are known for any three of the four output PEs, we can 
calculate the fourth, given that the total number is known. Thus, there are three 
degrees of freedom. (In general, if there are n output PEs, each representing exactly 
one possible classification, then we can say that there are n -  1 degrees of freedom. 
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Or, if there are m classifications in a fuzzy expert system, there are m - 1 degrees 
of freedom.) 

The next step is to refer to chi-square distribution tables that you can find in a 
statistics textbook or a collection of statistical tables. Along the row corresponding 
to three degrees of freedom, under the probability of 0.950 is the value 0.352; under 
the probability of 0.050 is the value 7.81. The results for the two test sets can now be 
interpreted. 

For the first test set, the hypothesis of no difference (sometimes called the null 
hypothesis) between the expected and obtained distributions is sustained at the 0.95 
level. Stated another way, no significant difference between the two distributions 
exists with a probability exceeding 95 percent. (It is more than 95 percent probable 
that the differences are due solely to chance.) 

For the second test set, the null hypothesis is rejected at the 0.05 level. In other 
words, there is a greater difference between the two distributions than would have 
been expected by chance, with a probability of less than 5 percent that the difference 
was due to chance. 

Another way to interpret the results is by using a spreadsheet application such 
as Microsoft Excel. To find the probability that the null hypothesis is sustained 
or rejected, use the Excel command = C H I D I S T  (2 '2 ,  d f )  , where x 2 is the cal- 
culated chi-square value and df is the degrees of freedom. In our example, enter- 
ing =CHIDIST (0.  267 ,  3) yields an answer of 0.966, and entering =CHIDIST 
( 8 . 9 2 ,  3 ) yields an answer of 0.030. Using the spreadsheet software thus gives us 

more precise answers. We now can say that for the first test set the null hypothesis 
is sustained at the 0.966 level, and in the second test set the null hypothesis is 
rejected at the 0.030 level. 

We can use another command in Excel to generate the chi-square values given a 
probability p and the degrees of freedom dr. The command is =CHIINV (p, df) .  
So, for example, ifwe enter-CHIINV ( 0 . 9 5 ,  3 ) ,  we obtain the value 0.352, the 
value we saw in the chi-square table. You can thus build your own chi-square table 
for particular ranges ofp and dfthat are of interest to you. 

Now that the chi-square test and its use have been reviewed, a few comments 
are appropriate. First, note that the chi-square test measures the performance of the 
entire system at once, that is, all of the output PEs in the case of a neural network 
implementation. Remember that the ROC curve is designed to analyze one output 
PE at a time. The other side of that coin, however, is that it is necessary (for chi- 
square) to determine exactly how many output combinations are possible. 

For example, in a music composition situation, it could be that there are 
20 output PEs: 14 that represent note values such as C and F# and 6 that represent 
duration times such as quarter notes and half notes. In this case, there would be up 
to 14 x 6 = 84 possible combinations. In the expected distribution, there may be 
fewer than 84 if some combinations don't occur. It will be necessary to decide how 
to handle these combinations with zero expected frequencies, if they are obtained, 
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because it would be necessary to divide by 0 if the chi-square test were strictly 
applied. It is also difficult to find chi-square tables with more than about 30 or 40 
degrees of freedom. 

In general, a good guideline is that you should use the chi-square test only when 
20 percent or fewer of the expected counts are < 5 and all individual expected counts 
are at least 1 (Moore 2001). 

It should be obvious that, when using a computational intelligence system for 
modeling or simulation, the goal is for the chi-square test to yield the smallest value 
feasible. In other words, the goal is for the differences between the modeled and the 
modeling systems' outputs to be so small that they are attributed to chance. 

It would not be surprising if new learning algorithms were developed for neural 
networks that replaced the back-propagation algorithm for modeling and simula- 
tion applications. These algorithms could be based on minimizing of chi-square 
values for the network as a whole rather than minimizing error values summed 
over individual PEs. For other computational intelligence tools that use a single, 
overall performance figure as a training (or testing) metric, such as simulators 
based on fuzzy logic or a prediction system based on a reinforcement learning 
neural network, the chi-square test could be the metric of choice. 

Summary 

In this chapter, we look at a variety of ways to measure the performance of a com- 
putational intelligence system, ranging from cases where we can assign specific costs 
to missed classifications and know the prior probabilities of each class (confusion 
matrixes) to cases where we don't have any training data and only a general idea 
of what to expect from a system (chi-square goodness of fit). In the next chapter 
we consider ways to analyze and explain a system's behavior, including explanation 
facilities that show the user what the system is doing. 

Exercises 

1. We have developed a diagnostic system with three possible diagnoses, Q, R, and S, 
that are equally probable (0.333 each). Assume that the costs associated with the 
three diagnoses are x, 2x, and 5x, respectively, and that the raw cost matrix com- 
prises the base costs on the diagonal and the sum of the row and column values 
for off-diagonal values, as illustrated in Table 10.7. (For example, Q misdiagnosed 
as S costs x + 5x, and so on.) Actually, the cost of condition S is 10x, but we are 
reimbursed 50 percent of the cost by Medicare, so our cost is 5x, and Table 10.7 is 
valid. Assume that, despite the cost differences in diagnosing the conditions, 
each diagnosis represents a relatively mild problem and none is more health- 
threatening than any other; that is, none is more serious than a common cold. 
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Table 10.7 Raw Cost Matrix for Exercise 10.1 

Q 
Gold 

Standard R 
Diagnoses 

S 

CI System 
Diagnoses 

Q R S 

x 3x 6x 

3x 2x 7x 

6x 7x 5x 

Table 10,8 System I Results for Exercise 10.1 

Q 

Q 36 
Gold 

Standard R 2 
Diagnoses 

S 3 

CI System I 
Diagnoses 

R 

37 1 

2 35 

Table 10,9 System II Results for Exercise 10.1 

Q 
Gold 

Standard R 
Diagnoses 

S 

CI System II 
Diagnoses 

Q R S 

30 10 0 

8 37 0 

1 0 39 

Further assume that we have trained two computational intelligence diagnos- 
tic systems, I and II, and the results are evaluated using the 40 cases of each dia- 
gnosis we have for testing with the results, as shown in Tables 10.8 and 10.9. 

How many patients are misdiagnosed in each case? Purely based on cost, 
which of the two systems should be used? Assuming x is $20, what are the estima- 
ted cost savings in 1,000 cases? 

Now assume that the federal government announces that it will stop reim- 
bursing us for S, so that our cost for correctly diagnosing S suddenly doubles to 
10x. (Off-diagonal costs must be adjusted accordingly as well.) From a cost per- 
spective, which diagnostic system should we use now? Why? Comment on this 
method of selecting the diagnostic system. 



Exercises 

2. For a pattern set we are using to train a neural network, one-half of the target 
values are 1 and one-half are 0. Calculate Emean. What happens to Emeanif targets of 
0.9 and 0.1 are used instead of 1 and 0, respectively? 

3. Train a neural network on the Iris dataset using the back-propagation imple- 
mentation (see Chapter 6). Plot an ROC curve for each of the three output PEs, 
using at least 10 values for the threshold value. Discuss your results. 

4. Given the following set of targets and outputs, calculate the average sum-squared 
error and the normalized error. 

Target Output 

1 .90 

1 .87 

1 .79 

1 .89 

1 .88 

0 .12 

0 .11 

0 .21 

0 .13 

0 .10 

Repeat your calculations, assuming that thetargets were 0.9 and 0.1 instead of 
1 and 0, respectively, and the outputs were the same. 

5. We are developing a simulation of the game of baseball. We want to measure how 
well our system simulates the margin of victory. In general, we like the margin 
of victory to be 1, 2, or 3 runs. A 4-run game isn't too bad, but games with mar- 
gins of 5 or more runs are okay once in a while but aren't very interesting. So, after 
consulting baseball statistics to see what the margin of victory was in American 
and National League playoff games, we decide that we'd like the distribution of 
the margin of victory of games played by our system to be as shown on the "Ideal" 
row in the following table. We develop two versions of the simulator and play 
100 games with each system. The margins of victory from our simulations are 
shown on the lines for System 1 and System 2. 

Margin of victory 1 2 3 4 >=5 

Ideal number of games 25 30 20 15 10 

System l number of games 28 29 21 14 8 

System 2 number of games 24 27 21 17 11 
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Use the chi-square metric to analyze the two systems. At what level does each 
of them sustain the null hypothesis? Which one would you choose? Why? Is 
there a problem with using chi-square for this analysis? If so, what is it? 

6. Use k-fold cross validation to analyze the Iris dataset. Using 3-fold and 10-fold 
approaches, partition the dataset into 3 and 10 subsets, respectively. What results 
for training and testing are obtained with each approach? What significant 
differences do you see? For this dataset, what maximum value of k would you 
recommend? Why? 

7. Use PSO to evolve the weights for different configurations of neural networks that 
classify the Iris dataset. Use the Mann-Whitney U test to evaluate the configura- 
tions. Find two configurations for which the null hypothesis is not rejected and 
two for which it is rejected at the 0.05 level. Limit the values of nl and n2 to 10 or 
less so that you can use Table 10.1, but justif-y your choices of nl and n2. Hint: You 
may want to make the network perform terribly on purpose in order to make it 
easier to reject the null hypothesis. 



chapter 
e e v e n  

ly" d pl " Ana an. Ex anatlon 

The previous chapter discussed perfor- 
mance metrics: ways to measure how well 
a system performs. This chapter presents 
analysis and explanation tools that can be 
used to explain how computational intelli- 
gence systems do what they do. Only a few 
are discussed; it is beyond the scope of this 
book to deal with the subject in detail. 

We first discuss sensitivity analysis. 
We describe a few practical and useful 
approaches that assess relative significance 
of system inputs. Next we discuss Hinton 
diagrams, used with neural networks to 
analyze patterns of connection weights. 

Then we discuss explanation facili- 
ties. We review the explanation facility's 
differences and similarities in requirements 
for symbolic and numeric systems; then we 
discuss neural networks, fuzzy systems, and 
evolutionary computation tools for expla- 
nation facilities with a focus on evolution- 
ary computation tools. 

Applications of evolutionary compu- 
tation paradigms are playing increasingly 
important roles in explanation facilities. 
Until now, these applications have been 
primarily in the area of artificial neural 
network diagnostic systems. This section 
explores the application of evolutionary 
computation to explanation facilities, both 
in numeric-based systems such as arti- 
ficial neural networks and in symbolic- 
based applications such as expert systems. 
We will suggest ways in which more tra- 
ditional approaches used in knowledge- 
based systems can be combined with 
evolutionary computation tools to pro- 
duce improved explanation facilities for 
hybrid and computational intelligence 
systems. 

In the last section of this chapter, we 
present a software implementation of an 
analysis and explanation tool: an evolution- 
ary computation explanation facility tool. 
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This implementation appears on the book's web site and is distributed as 
shareware in accordance with the information on the web site. 

Techniques have been developed to extract rules from neural networks 
(e.g., Craven 1993). We do not cover these techniques in this book. Instead, 
we focus on directly evolving fuzzy expert systems, as discussed in Chapters 7, 
8, and 9. m 

Sensitivity Analysis 

Various definitions of sensitivity exist. In the previous chapter, which focuses on 
performance metrics, sensitivity is defined within the context of the ROC curve as 
true positive divided by true positive plus false negative [TP/(TP + FN)], which is 
also called the true positive ratio. 

In this chapter, which deals with analyzing how computational intelligence 
systems work, sensitivity analysis provides one method for evaluating the relative 
importance of system inputs. A basic premise is that the significance of an input 
can be evaluated by measuring the effect it has on the output(s). 

This information can be applied in a couple of main ways. One is during the 
development of the system, when it is important to know which inputs are impor- 
tant and should be retained and which are redundant or insignificant and should 
be removed. An example of this approach is the system developed to predict the 
bioactivities of molecules based on a set of descriptive features by Embrechts and 
colleagues (2002). Another is used after the system is developed, when sensitivity 
analysis of a system model or simulator can tell us what parameters are most signif- 
icantly contributing to an output we want to minimize (such as cost) or maximize 
(such as profit). For example, see Guo and Uhrig (1992), who used sensitivity analy- 
sis to identify significant parameters relative to the thermal performance of a nuclear 
power plant. 

There are a variety ofways to measure sensitivity. Many of them involve clamping 
or otherwise controlling one input at a time while looking at the effects on the output 
values or system error. Many pitfalls exist in using these techniques. A few, however, 
can be useful when used in the correct way. We first describe one approach, called 
relation factors. 

Relation Factors 

Relation factors reflect the strength of the relationships between individual inputs 
and individual outputs of a computational intelligence system. They are discussed 
in detail in the context of a neural network diagnostic system by Saito and Nakano 
(1988), but they are also applicable to other system configurations. They could prob- 
ably also be called "causal factors." Relation factors can sometimes represent infor- 
mation similar to rules in expert systems. Two kinds of relation factor used to analyze 
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system performance are described in this section. We refer to them as relation factor 
one and relation factor two. 

Relation factor one is the effect of a given system input on a given output when 
all other inputs are constrained to be constant, usually 0. For example, for a back- 
propagation neural network, the effect is calculated by subtracting the value of a 
given output PE with all other inputs set to a constant value, say, 0, from its value 
with the one specified input set to 1. For a fuzzy system, the input to be tested is 
varied between the minimum and maximum of its dynamic range, while all other 
inputs are set to the minimum values of their dynamic ranges. With i inputs and 
o outputs, there are a total of i times o relation factors one. In some systems, it may be 
valid to clamp the "other" inputs to the midpoint of the input range rather than to 0. 
This would, for instance, clamp the other inputs to 0.5 in the case of a standard back- 
propagation neural network, and to the input value corresponding to the maximum 
value of the middle membership function for an expert system. (If the membership 
function is trapezoidal, the input value corresponding to the middle value of the 
maximum membership can be used.) 

Relation factor two takes into account the fact that the effect of a given input 
on a given output differs with varying input value combinations (input patterns). 
Relation factor two measures the average effect of a given input on a given output 
over a set of input patterns. 

For the set of patterns, relation factor two is calculated as follows. First, calculate 
the change in an output's value when a given input is switched over its entire range 
while all other inputs hold the value defined by the first input pattern. Examples 
are to switch from 0 to 1 for a neural network input, or from the minimum to 
the maximum value of the dynamic range for a fuzzy system. For the same input, 
repeat the calculation for each pattern in the pattern set. Then add all of the changes 
together and divide by the number of patterns. This yields a value for relation factor 
two for a given input-output pair. Now repeat the process for each remaining 
input. Then repeat the process for each output. Again, there are i times o relation 
factors two. 

An example of using relation factors can occur when working with a partial set 
of inputs, and it is desired that the system be somewhat "intelligent" about what 
input it requests next. For example, for working with a medical diagnostic system to 
distinguish between two illnesses, a variation of the relation factor method can be 
used to decide which medical symptom to enter next. 

Just present the partial set of symptoms obtained thus far to the system and 
switch each of the remaining inputs, one by one, over its range (0 to 1 for a neu- 
ral network, or over the input's dynamic range for a fuzzy system, for example). 
The input that causes the largest differential to occur between the two diagnoses can 
correspond to the symptom entered next into the system. 

Next we review a sensitivity analysis and network-pruning process developed by 
Zurada and colleagues (1994), which we call the Zurada sensitivity analysis. 
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Zurada Sensitivity Analysis 
Before we review the analysis process, let's recall some of the terminology related to 
neural networks that we introduced in Chapter 5. Remember that input patterns are 
denoted Ak = (akl, ak2, ..., akn); k = 1, 2, ..., m, and the output (target) patterns as 
Bk = (bkl, bk2, ..., bkp); k = 1, 2, ..., m. Note that the subscript k refers to a pattern, 
there are m input patterns, and there are p outputs. The input layer of PEs is denoted 
Fx = (Xl, x2, ..., Xn), where each xi receives input from the corresponding input pat- 
tern component aki, and i = 1, 2, ..., n. Also remember that the trained output of an 
Fz PE for one pattern k is Zkj. 

For any training pattern k, Zurada and colleagues (1994) define the sensitivity 
Sj(/k ) 0~kj of a trained output Zkj with respect to an input aki as -'- O--~k~" Thus, a sensitivity 

matrix S(k) is associated with each complete training pattern k, and we must calcu- 
late the sensitivity matrix for each input of the m patterns. Once that has been done, 
Zurada and colleagues define three sensitivity measures over the complete training 
pattern set. 

The mean square average sensitivity matrix Savg is defined as 

k = l  
S j i ,  avg  " -  "-- 

m 

The absolute value average sensitivity matrix Sabs is defined as 

(11.1) 

S j i ,  abs - -  

m S!.k ) 

k = l  

m 

The m a x i m u m  sensitivity matrix Smax is defined as 

(11.2) 

Sji.max = max f (~~s:k)) (11.3) 
k = l  ..... m jz 

Note that the inputs and outputs must be scaled to the same range for valid com- 
parisons to be made. 

This method is computationally intensive, requiring that a sensitivity matrix be 
calculated for each pattern. There are ways to implement the "spirit" of the Zurada 
process using fewer calculations. One such method that the authors find useful is 
described by Embrechts and colleagues (2002). To implement this method, first 
select the median (or calculate the mean) value for each input parameter over the 
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pattern set. Next hold all input values at their medians (means) except one. Now 
measure the output(s) while varying the selected input over its dynamic range. 
Although it would be ideal to vary the selected input continuously, the output can be 
measured for a number of discrete values. Embrechts and colleagues measured the 
output for 13 discrete values of the input. You may select a number other than 13, 
based on your problem. 

An input parameter's sensitivity with respect to an output is the maximum minus 
the minimum for that output over the discrete values of the input. We now have an 
estimated sensitivity for each input-output pair. Let's call this estimated sensitivity 
Sji, e. Following a process analogous to equations 11.1 through 11.3, we can calculate 
a sensitivity for each input Si,e in one of three ways. 

The mean square average estimated sensitivity Si, ear is defined as 

Si, eav 

[Sji, e] 2 
j = l  

(11.4) 

The absolute value average estimated sensitivity Si,eab is defined as 

Si, eab = 

P I Sji, e 
j = l  

(11.5) 

The maximum estimated sensitivity Si,emx is defined as 

Siemx = max {Sji,e } 
' j = l  ..... p 

(11.6) 

Once the sensitivity is calculated for each input, the list of sensitivities can be 
rank-ordered. The rank-ordered information can be used in a couple of ways. First, 
and simplest, is to delete the input with the lowest sensitivity and try to train the 
network again. If you get sufficiently good test results (and they may even be a little 
better), then you know that you can remove that input parameter. 

A more scientific way to proceed is to use an additional random variable as an 
additional input when training the network. Then any input with sensitivity less 
that that for the input representing the random variable can safely be removed, 
usually one at a time starting with the variable with lowest sensitivity. (Also, of 
course, remove the random variable input.) Using successive training/testing iter- 
ations to remove these inputs with lowest sensitivities is described as "strip mining" 
by Embrechts and colleagues (2002). 
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The following list summarizes the process of sensitivity analysis and pruning of 
inputs we have just described. 

1. Train the neural network on the training set with one additional input 
representing a random variable. 

2. Calculate all input-output sensitivity estimates using the clamping and 
discrete values method outlined here, followed by equation 11.4, 11.5, 
or 11.6. 

3. Remove the random input. 

4. Remove the input with the lowest sensitivity. 

5. Retrain/retest the network with the pruned input set. 

6. As long as results are acceptable, repeat steps 4 and 5 until all inputs with 
sensitivities lower than the random input are removed. 

Removing inputs with little or no relevance to the performance of the system can 
improve system performance, both in terms of accuracy and in terms of ability to 
generalize. 

The same general approach can be adapted for fuzzy systems. The number of 
discrete values should be chosen so that the fuzzy membership functions are prop- 
erly activated, and remember to scale the inputs and outputs to the same range. 

Evolutionary Computation Sensitivity Analysis 
Evolutionary computation has been applied to many areas. Sensitivity analysis 
related to the applications of evolutionary computation is sometimes focused on 
the problem and/or solution domain, which is beyond of the scope of this book. 
In this section, we briefly discuss sensitivity analysis focused on the evolutionary 
computation method itself. 

The parameters of evolutionary algorithms play an important role in their search 
capability. The sensitivity of an evolutionary algorithm with respect to its parameters 
is critical to its performance and, therefore, its successful applications. Using this 
approach, we consider the parameters of an evolutionary algorithm as the input 
values to the sensitivity analysis, and its performance values as the output values. The 
sensitivity analysis approaches discussed in previous sections such as relation factors 
one and two can be used here. For most evolutionary algorithms, the output values 
can include parameters such as fitness value, convergence rate, and the maximum 
generation required to reach a good enough solution. 

The input values may be different for different algorithms. For example, for 
genetic algorithms, the input values can be mutation rate, crossover rate, popula- 
tion size, and so on. For particle swarm optimization algorithms, the input values 
can be inertia weight w, the cognitive and social coefficients Cl and c2, and so on. 
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A straightforward way to conduct the sensitivity analysis on the input-output pair 
is through experiments (Beielstein et al. 2002). The experimental results can be 
plotted for graphical visualization. We hope this will provide insights into how the 
algorithm's parameters can be tuned for best overall performance. 

Hinton Diagrams 

Extreme care must be taken when interpreting the values of weights in a neural 
network. Just because a weight is large doesn't mean that the processing element 
(PE) on the input side of it is particularly important. A high input-to-hidden weight 
doesn't necessarily make that input PE any more important than others; perhaps 
the magnitude of that input is always very small or the effect always gets canceled 
out in some way. Likewise, a small weight doesn't always denote an insignificant 
input; perhaps the value gets augmented from other inputs. For example, suppose a 
network system is designed to predict a person's ability to play basketball. Suppose 
that among the inputs are height and athletic ability. Neither alone is nearly as 
important an indicator as the two together. 

It is still sometimes worthwhile to examine the weight matrices in a neural net- 
work system. Since networks typically have a large number of connections, it can be 
difficult to display these in a meaningful and useful way. 

Perhaps the most obvious way is to display an array of numbers representing the 
weights. This can be done by examining on-screen or printing out the weights file for 
a network. This is usually not a very useful technique, however (though we have to 
make do with it if nothing better is available), because humans are not particularly 
good at working with lots of numbers or perceiving patterns and trends in data. 

A better way to represent network weight matrices is with graphics. A method 
developed by Geoffrey Hinton, called a Hinton diagram (McClelland and Rumelhart 
1986; Rumelhart and McClelland 1986), graphically shows the magnitudes of con- 
nection weights to or from a neural network layer. One method of implementation 
uses blue rectangles (or squares) to represent positive weights and red to depict neg- 
ative weights. The size of the rectangle (or square) is proportional to the magnitude 
of a weight. 

Figure 11.1 shows a Hinton diagram with lightly shaded rectangles denoting 
positive weights; dark ones are negative. This figure displays the weights for a feed- 
forward neural network with one hidden layer and with nine input, four hidden, 
and two output PEs. In the figure, input-to-hidden weights are shown at the top 
and hidden-to-output are at the bottom. A bias weight is the leftmost value in each 
row. The top row of the top block of weights depicts the magnitude of weights from 
the input PEs (bias first) to the first hidden PE. The second from the top row of 
the top block depicts weight magnitudes from the input PEs to the second hidden 
PE, and so on. Likewise, the top row of the bottom weight block depicts weights 
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Figure 11.1 Hinton diagram for a 9-4-2 feedforward neural network. 

from the hidden PEs (bias first) to the first output PE. This diagram represents the 
weights of one of the networks developed to detect electroencephalogram spikes, 
as described in one of the case studies in Chapter 12 on this book's web site. 

There are several variations of this scheme. Activation values as well as weights 
can be displayed, for example. Different geometric representations can be used to 
display multiple layers and their interconnections. For large networks, it may be 
possible to display only a part of a layer at a time. 

The Hinton diagram can be displayed continually as the network runs and 
can be refreshed each iteration. This may not be a good idea in a production 
system, however, because the display may take significant processing time away 
from the network. Also, it is not very useful if the network is iterating rapidly 
because changes may happen too fast for a human observer to follow. In that case, 
it may be better to display the weights once every fixed number of iterations or 
to suspend the network while the "frozen" state is examined. Another option is to 
have no real-time display but to examine the state after the network has finished 
training. 

The authors sometimes use diagrams such as that in Figure 11.1 to provide guid- 
ance for "pruning" trained networks. For example, in the figure, nearly identical 
weight patterns from hidden to outputs indicate that fewer than four hidden PEs 
are required. Indeed, the network represented by the figure works just as well with 
three. 
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Computational intelligence Tools for Explanation Facilities 

End users have traditionally wanted, and in some cases demanded, to know how 
experts arrive at conclusions or recommendations. When computer systems are 
involved, users tend toward the "demand" end of the spectrum. Computer system 
utilities designed to make classification and/or diagnostic decisions or recommenda- 
tions understandable to users, often by citing reasons why these decisions or 
recommendations were made, are frequently called explanation facilities. 

Explanation facilities must perform similar functions regardless of the compu- 
tational paradigm(s) at the heart of the system. The user seldom knows, and rarely 
cares, whether the system is using a knowledge base, a neural network, a Bayesian 
classifier, another paradigm, or some combination of paradigms. They just want to 
know how the classification or recommendation was derived, and they want to be 
provided this information in a way that is understandable and helpful. 

In this section, we briefly review the design and implementation of explanation 
facilities. We assume that you are familiar with explanation facilities implemented 
for expert systems; we describe the implementation of facilities for neural network- 
based systems in somewhat more detail. We also describe two evolutionary compu- 
tation tools that can be used to build explanation facility components. We explore 
explanation facility requirements of hybrid systems and computational intelligence 
systems and discuss various approaches. 

Explanation Facility Requirements 
Explanation is a complex form of interaction, or communication, between and/or 
among humans. It is a communication skill related to humans' ability to reason. It 
is not well understood. 

Requirements, or specifications, for explanation facilities vary somewhat accord- 
ing to the application and with the situation. To illustrate this, consider the following 
definitions. Webster's Ninth New Collegiate Dictionary (1991) states that "explana- 
tion" means "the act or process of explaining" or "something that explains." The 
same source offers three definitions of "explain": "1 a: to make known; b" to make 
plain or understandable; 2" to give the reason for or cause of; 3" to show the logical 
development or relationships of." 

The computational system itself usually fulfills definition la by "making known" 
the classification or diagnosis. One or more of the other three definitions (lb, 2, 
and 3) are generally relevant to explanation facility attributes. Interaction with the 
explanation facility may be initiated by the user or by the computer system, or per- 
haps a mixture of both depending on the situation. 

Why use an explanation facility? The most commonly stated answer is that it 
can, upon demand, provide reasons why the system arrived at a particular con- 
clusion. The explanation facility can thus provide justification for classification or 
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Figure 11.1 Hinton diagram for a 9-4-2 feedforward neural network. 

from the hidden PEs (bias first) to the first output PE. This diagram represents the 
weights of one of the networks developed to detect electroencephalogram spikes, 
as described in one of the case studies in Chapter 12 on this book's web site. 

There are several variations of this scheme. Activation values as well as weights 
can be displayed, for example. Different geometric representations can be used to 
display multiple layers and their interconnections. For large networks, it may be 
possible to display only a part of a layer at a time. 

The Hinton diagram can be displayed continually as the network runs and 
can be refreshed each iteration. This may not be a good idea in a production 
system, however, because the display may take significant processing time away 
from the network. Also, it is not very useful if the network is iterating rapidly 
because changes may happen too fast for a human observer to follow. In that case, 
it may be better to display the weights once every fixed number of iterations or 
to suspend the network while the "frozen" state is examined. Another option is to 
have no real-time display but to examine the state after the network has finished 
training. 

The authors sometimes use diagrams such as that in Figure 11.1 to provide guid- 
ance for "pruning" trained networks. For example, in the figure, nearly identical 
weight patterns from hidden to outputs indicate that fewer than four hidden PEs 
are required. Indeed, the network represented by the figure works just as well with 
three. 
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choose the classification closest to the "quintessential" examples with which we are 
familiar. 

Furthermore, starting with a (possibly incomplete) set of inputs, which may be 
a mixture of binary and analog values, the typical explanation facility for a back- 
ward chaining expert system does not provide details on the decision hypersurface 
location. For instance, it doesn't specify which inputs would need to change, and by 
what amount, in order to change the classification in a certain way. This is, however, 
the way humans often relate to classification: A physician often thinks about the way 
in which signs and symptoms would have to change to arrive at a specific (different) 
diagnosis. 

Neural Network Explanation 
Some neural network explanation facilities provide the "best" examples of the vari- 
ous classes. They also can provide information on the location of the decision hyper- 
surface, providing information on what input to request next or how much to change 
certain inputs to arrive at a different decision. 

For neural network systems, the "best" examples of the various classes are 
known as codebook vectors, or quintessential examples, for each classification or 
diagnosis. The term codebook vector refers to an input pattern that generates a 
maximum or nearly maximum activation value for a given output processing ele- 
ment (classification) of a neural network. These codebook vectors can be retrieved 
from examples stored or can be generated on-line if, for example, the user is look- 
ing for a codebook vector within a specified Euclidean distance in hyperspace of 
the input pattern. Information is also available regarding the decision hypersur- 
face (sometimes called the differential diagnosis), which is the hypersurface that 
defines the boundary between any two classifications. For example, the distance to 
the decision hypersurface can be provided with either a complete or a partial set 
of inputs present. In this way, the user can determine which inputs would need to 
be changed, and by how much, for the classification or diagnosis to change in a 
specified way. 

Explanation facilities have also been developed for hybrid systems. An example 
is the neural network expert system called MACIE, which stands for a MAtrix Con- 
trolled Inference Engine. Stephen Gallant developed the original version of MACIE 
in the mid-1980s and used the term "matrix controlled" because neural networks 
were somewhat out ofvogue at the time (Gallant 1993). When asked why it requests a 
certain value, MACIE gives explanations relative to the goal variable with the highest 
likelihood, listing the effect (positive or negative) on intermediate variables. MACIE 
evolved into a commercial product that was released in the early 1990s. 

The situation with respect to neural networks is complicated by the fact that 
explanation facilities are more readily applied to some neural network paradigms 
than to others. For example, neural networks using radial basis functions or other 
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mathematically related paradigms are considered by some to be more amenable to 
explanation facility implementation (than, say, multilayer perceptrons) because of 
their nearest-neighbor attributes (Simpson and Brotherton 1995). 

Many explanation facilities for neural networks have shortcomings as well. When 
a loan application is denied because of the recommendation of a neural network- 
based system, for example, it may not be sufficient to cite examples of codebook 
vectors or distances to decision hypersurfaces. The user may demand to know the 
rules, or guidelines, that were violated and led to the denial of credit. 

Fuzzy Expert System Explanation 
For fuzzy expert systems, the explanation facility can list all rules that contributed to 
the classification or recommendation, ranked according to the significance of their 
contribution. Depending on the extent to which the solution is supported by the 
fuzzy rules, a degree of certainty can be assigned to the solution. The facility c a n  

also indicate where in the domain of the solution variable (low, medium, etc.) the 
solution is located (Cox 1994). 

Building explanation facilities for forward chaining or fuzzy expert systems is 
particularly difficult because of their parallel nature. Many rules (fuzzy rules, in the 
case of fuzzy expert systems), acting in parallel, often combine to contribute to the 
result. Unlike backward chaining expert systems, then, it is not possible to explain 
a specific system action by tracing a crisp sequence of rules. In fact, the explanation 
facility portion of a fuzzy expert system may contain some of the most complex code 
in the system (Cox 1994). 

Evolutionary Computation Tools for Explanation 
Evolutionary computation consists of machine learning optimization and classifi- 
cation paradigms that are roughly based on evolution mechanisms such as bio- 
logical genetics and natural selection. Previously in this book, we examined five 
main areas of the evolutionary computation field: genetic algorithms, evolutionary 
programming, genetic programming, particle swarm optimization, and evolution 
strategies. 

Genetic programming evolves and obtains a mathematical formula or logical 
function from the input and output datasets. The solutions that are evolved them- 
selves provide explanations of how the results can be obtained through the for- 
mula or function from the input data. Therefore, unlike the other evolutionary algo- 
rithms, a genetic programming system can, to some extent, provide solutions with 
some explanation capability. 

In the remainder of this section, we focus on the design and search capability 
of evolutionary algorithms to develop explanation facilities that are not part of any 
explanation capability the systems themselves can provide. We thus focus on using 
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the other four areas of evolutionary computation: genetic algorithms, particle swarm 
optimization, evolutionary programming, and evolution strategies. For a discussion 
of all five evolutionary computation areas, refer to Chapter 3. 

To illustrate the use of evolutionary computation tools in developing compo- 
nents of an explanation facility for a neural network, consider one of the network's 
output processing elements. Higher values of this output processing element (close 
to 1) indicate the existence of some classification, condition, or decision C, and lower 

m 

activation values (close to 0) represent C. 
To obtain codebook vectors for C, the trained neural network is used as the fit- 

ness function for the evolutionary computation tool. The fitness value returned by 
the evolutionary computation tool's evaluation function (in this case, the feedfor- 
ward neural network calculation) is equal to the processing element activation value 
for C. Thus, the evolutionary computation tool is maximizingthe processing element 
activation, or finding input patterns with very high output values. For networks with 
more than one output, a high fitness means that high values for the class C PE must 
be accompanied by values near 0 for all other output class PEs. 

Codebook vectors for C are obtained by minimizing the processing element 
activation (finding input patterns that result in an output close to 0). The deci- 
sion hypersurface is explored by fixing the processing element output value at the 
value that represents the boundary between two classes (often 0.5) and using the 
evolutionary computation tool to find input patterns that minimize the difference 
between the processing element output and the class boundary value. Different 
regions of the decision hypersurface can be explored in a number of ways, for 
instance by varying the random number seed used by the evolutionary computa- 
tion tool. 

Components of neural network explanation facilities have been developed using 
genetic algorithms. Results are reported in Eberhart and Dobbins (1991) and Eber- 
hart (1992). When a genetic algorithm (GA) or other evolutionary computation tool 
is used, the decision hypersurface can be explored, and additional codebook vectors 
obtained, by using rank-ordering when assigning fitness values, in addition to vary- 
ing the random number seed. Rank ordering causes fitness values to be distributed 
uniformly over a defined interval, such as 0 to 1, instead of being allowed to cluster 
near the top of the range, as often happens otherwise. 

It has been demonstrated that other evolutionary computation tools can be used 
in building explanation facilities. A particle swarm optimizer has been shown to 
produce results similar to the genetic algorithm (Kennedy and Eberhart 1995). 

Evolutionary computation tools can also be used to build explanation facility 
components for fuzzy expert systems, in a manner analogous to the method used 
for neural networks. In this case, the fitness value to be maximized is the closeness 
to a specific membership value for an output parameter of the fuzzy expert system. 
The expert system itself serves as the fitness function. 
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As we have pointed out throughout this book, the component paradigm tools of a 
computational intelligence system often become inseparable and indistinguishable. 
In other words, for the user, each tool loses its individual identity. This makes the 
design and implementation of an explanation facility significantly more complex. 

As we stated at the beginning of this section, the user seldom knows, and rarely 
cares, what paradigms are being used in a diagnostic or classification tool. It is there- 
fore important that the explanation facility be useful and consistent across compu- 
tational modules. Some of this consistency can be implemented via an intelligent 
user interface design. Much of it, however, must be provided for in the basic design 
of the system. 

Consider, for example, the diagnostic system depicted in Figure 11.2. This could 
be, for example, a medical diagnostic system with three main modules: perhaps one 
for abdominal disorders, one for chest pain, and one for ocular complaints. The 
user must be able to query the explanation facility and receive information that is 
useful and understandable, regardless of the situation. And the "look and feel" of 
the system should be as consistent as feasible. 

If the user is making a diagnosis that uses Module 1, the explanation facility may 
retrieve codebook vectors that were generated using an evolutionary algorithm, then 
use the output of the module to trigger a rule-based explanation. If the differential 
diagnosis (distance to the decision hypersurface) is requested, the explanation facil- 
ity can invoke an evolutionary algorithm to calculate what input symptoms must 
change, and by how much. These altered inputs can also be used to generate a neu- 
ral net output that triggers a rule-based explanation using the shell. 

A particle swarm optimizer might be used to generate codebook vectors and 
decision hypersurface information for Module 3, which uses fuzzy logic. The fuzzy 
outputs of the fuzzy logic diagnostic system would be defuzzified and used as inputs 
for the shell. 

Input Symptoms 

Diagnostic Module 1 
(neural network) 

Diagnostic Module '2 
(backward chaining 

expert system) 

Diagnostic Module 3 
(fuzzy logic 

expert system) 

Rule-based Expert System Shell 

Figure 11.2 Modular medical diagnostic system. 

Output Diagnosis 
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For either Module 1 or Module 3, the previously described analysis tools known 
as relation factors can be invoked to provide information on the sensitivity of the 
diagnosis to each individual input. For example, with the remainder of the inputs 
held at values representing the current input pattern, each input can individually be 
varied over its range (from 0 to 1, for example) while looking at the effect on the 
output. This technique can be used to determine which input could have the most 
significant impact on the diagnosis; it can also be used to select the next question to 
be asked. 

For Module 2, which uses a conventional backward chaining expert system, a 
standard rule-based explanation could be incorporated. In addition, however, it may 
be desirable to include a sensitivity measure based on relation factors. This mea- 
sure could be implemented with a genetic algorithm or particle swarm optimizer. 
Because outputs are typically not responsive to continuous changes in inputs, how- 
ever, some limitations on the resolution of relation factors exist. Since outputs are 
discontinuous, small changes in inputs may result in large output class differences. 

An Example Neural Network Explanation Facility 
A rudimentary example of an explanation facility for a neural network using particle 
swarm optimization is available on this book's web site. The filename for the appli- 
cation is nnexp ,  exe.  The source code is written in C and compiled using Borland 
C++ Version 4.5. The source code is being distributed as shareware. You are wel- 
come to use it for classroom or personal learning experiences in conjunction with 
the textbook at no cost, as discussed on the book's web site. 

Using the Iris dataset as an example, we will step through the use of this expla- 
nation facility software. You can use it with any back-propagation neural network 
weight file obtained from the back-propagation neural network software provided 
with this book. 

You need to specify the names of the run files. As in the evolutionary neural 
network implementation in Chapter 6, two run files (for example, b p .  r u n  and 
p s o .  run)  are specified for the BP net and the PSO, respectively. To run the imple- 
mentation from within the directory containing n n e x p . e x e ,  b p . r u n ,  and 
p s o .  run,  at the system prompt type: nnexp  bp.  run  p s o .  r u n .  

The file p s o .  run  is the same as that in the evolutionary neural network imple- 
mentation in Chapter 6 except that the evaluation function type value is 18 instead 
of 17 (line 5) and the optimization type is minimization (0) instead of maximiza- 
tion (1) (line 4). See Chapter 6 for explanations of the other inputs. Listed here are 
the contents o f p s o ,  run: 

i 

0 

i 

0 

18 
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1 

1 

0.0 

1.0 

0.5 

1.0 

I000 

30 

0.9 

0 

Within the back-propagation run file (bp.  run),  you specify the name of the 
neural network weight file along with the number of layers, the number of hidden 
PEs in each hidden layer, and the number of inputs and outputs for the network. In 
our example, the name of the weight file is i r i s .  wt s and the network has three 
layers (one hidden layer), four hidden PEs in the hidden layer, and four inputs and 
three outputs. 

You next need to tell the program what you're looking for. For example, if you are 
looking for "quintessential" examples of output class 1 of 3, then you might specify 
1 0 0 as the target. However, since numbers 1 and 0 are saturation values of the 
activation function, we specify the target values as 0 .9  0 .1  0 .1  instead of 1 0 0 
in the run file. (If you want to explore the decision hypersurface between classes 1 
and 2, you specify 0 .5  0 .5  0 .1  as the target.) Next you specify the sum-squared 
error you are willing to accept for the best particle. The maximum number of itera- 
tions for the PSO to run if that error is not achieved is specified in the file p s o. run.  
In our example, we choose 0 .011  and 1000 (see p s o .  run),  respectively. Finally, 
specify the name of the output file; in our case we chose i r i s e x p ,  out .  

Listed here are the contents of bp .  run: 

iris .wts 

3 

4 

4 

3 

0.9 0.i 0.I 

0.011 

irisexp, out 

The program uses particle swarm optimization to "reverse-engineer" the neural net- 
work, finding the best examples it can of the target. The application uses a standard 
particle swarm with 30 particles, including an inertia weight (see Chapters 3 and 4). 

In this case, the format of the output file is i n p u t 1  i n p u t 2  i n p u t 3  
i n p u t 4  t a r g e t  v a l u e s  ( 0 . 9  0 . 1  0 . 1 )  e r r o r .  Since there are 30 parti- 
cles, there are 30 lines of output. You are most interested in those lines that have the 
smallest value for the error. In the example case, if the input error criterion is met, 
there will be at least one line with an error value less than 0 .011 .  Depending on 
your problem, you may be interested only in the best particle, but you will probably 



be interested in all of them with sufficiently low error values, say, less than 0 .013  
or 0 .015  in our example case. 

In one of our runs, we obtained the following line of output representing the 
lowest error: 

0.186070 0.373782 0.297252 0.154958 0.900000 0.i00000 0.I00000 

0.010015 

What does the output tell us? In this case, it says that a quintessential example 
(codebook vector)for classification 1 is ( 0 .186070 ,  0 . 3 7 3 7 8 2 ,  0 . 2 9 7 2 5 2 ,  
0 .154  958). Othervectorsnearlyasgoodare ( 0 . 3 4 5 6 8 3 , 0 . 0 9 8 6 1 6 ,  0 .17  9630, 
0 .081630 ,  a n d 0 . 3 4 1 4 3 1 ,  0 . 685645 ,  0 . 3 9 4 6 6 0 ,  0 .132066) .Recal l that  
each of these inputs represents, one of the four attributes of an iris flower: sepal 
length, sepal width, petal length, and petal width. Also recall that we are classifying 
each pattern as belonging to one of the three species of iris flower: Iris sectosa, Iris 
versicolor, and Iris virginica. Remember that we normalized the raw measurement 
data for presentation to the neural network. If we convert the numbers in the 
codebook vector back to raw measurements in centimeters, the four numbers we 
obtain are the dimensions of the sepal length, sepal width, petal length, and petal 
width for a "quintessential" example of an Iris sectosa flower. 

Now, if we use 0 .5  0 .5  0 .1  instead of 0 .9  0 .1  0 .1  as our target, we'll get 
examples of input patterns that are very near the decision hypersurface (the differen- 
tial diagnosis) for the dataset, in this case, the decision hypersurface between classes 
1 and 2. The output provides examples of patterns that cannot be classified as either 
class 1 or class 2 (Iris sectosa or Iris versicolor) by our system or, presumably, by an 
expert. 

Summary 

Sensitivity analyses are important for determining how various inputs contribute 
to the output(s) of a system. They can be used during the system design phase 
to prune inputs that are irrelevant to the system output(s). We present different 
approaches to sensitivity analysis, including an approach featuring relation factors 
and a sensitivity analysis methodology described by Zurada and colleagues. Expla- 
nation facilities are relatively common for traditional expert systems. Recently, using 
evolutionary computation tools such as genetic algorithms and particle swarm opti- 
mization, explanation facilities have been constructed for neural network systems. 
Hybrid diagnostic and classification systems incorporating a number of paradigms 
require explanation facilities that are useful, understandable, and consistent. These 



Chapter Eleven~Analysis and Explanation 

explanation facilities can be developed using a hybrid of rule-based and evolutionary 
computation tools. We provide an example of an explanation facility for a neural 
network, using the Iris dataset as an example. In the next (and last) chapter, which 
is on the book's web site, we tie together the concepts, paradigms, and implemen- 
tations we've examined so far in the book into illustrative case studies. 

Exercises 

1. Run the example software to obtain codebook vectors for each class of iris flower 
in the Iris dataset. Discuss your results. 

2. Run the example software to explore the decision hypersurface between each pair 
of classes. Discuss your results. 

3. Specify a method for calculating relation factor one for a fuzzy rule-based system. 

4. Assume that you are implementing in the C language the method discussed in this 
chapter for calculating the Zurada sensitivity two for an m-input, n-output 
system. Draw the flowchart for your implementation. 

5. Design and run experiments using PSO to plot relationships between the PSO's 
parameter (or input) values and its performance (or output) values. 

6. Propose an alternative way to display the information contained in a Hinton 
diagram. 

7. Using the Zurada sensitivity process, calculate the mean square average estimated 
sensitivity Si,eav for each input of the Iris dataset. What do these sensitivities tell 
you? 

8. Specify several possible codebook vectors for fuzzy expert systems. 
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biological neural network comparison, 
5-6 

computational intelligence comparison, 
190 

455 
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Artificial neural network (ANN) (continued) 
connection weights, 170-171 
definition, 2 
denormalization of output data, 195 
Eccles' law, 5 
explanation facilities, 431-432, 

435-437 
hard computing, 35-36 
historical perspective 

age of Camelot, 147-153 
age of computational intelligence, 165 
age of Neoconnectionism, 164-165 
Dark Age, 153-159 
naming, 146-147 
overview of periods, 146 
Renaissance, 159-154 

implementation 
back-propagation network 

BP_Main_Loop () routine, 
223-224 

enumeration data type, 218-220 
initialization and normalization, 

199-202 
ma i n ( ) routine, 222-223 
running, 233-234 
state handling routines, 224-233 
structure data type, 221-222 

learning vector quantizer neural 
network 

enumeration data type, 235-237 
LVQ_Main_Loop ( ) routine, 

240-241 
main ( ) routine, 239-240 
running, 249-250 
state handling routines, 241-249 
structure data type, 237-239 

error back-propagation for supervised 
adaptation, 206-210 

evolution of topology 
evolutionary adaptation, 212-215 
particle swarm optimization, 

216-217 
evolutionary back-propagation net- 

work 
BP_Ge t_P SO_D imens i on 

routine, 263 
evaluate_function routine, 

263-264 
main ( ) routine, 262-263 

running, 264-265 
feedforward calculations 

back-propagation networks, 
203-205 

learning vector quantizing 
networks, 206 

learning vector quantizing network 
initialization and normalization, 

202-203 
supervised adaptation algorithm, 

211-212 
unsupervised adaptation 

calculations, 210-211 
self-organizing feature map neural 

network, 250-262 
topology considerations, 199 

input and output patterns, 
169-170 

neurons, 4-5 
preprocessing 

data preparation, 192-195 
overview, 190-191 
test dataset selection, 191-192 
training dataset selection, 191 
validation dataset selection, 192 

processing element, see Processing 
element 

activation functions, 172-176 
input computation, 172 
qualities, 171 

speed, 6 
structure and features, 166-168 
terminology, 168-169 
topology 

multilayer networks, 178-179 
terminology, 176 
two-layer networks, 176-178 

Assilian, Sedrak, 272 
Asynchronous updating, processing 

element, 162 
Autoassociative network, 168 
Autocatalysis, definition, 28-29 
Average sum-squared error, performance 

metrics, 396-398 
Averaging flag, Mamdani-type fuzzy rule 

implementation, 350 
Axelrod's culture model, 46 
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Back-propagation, definition, 3 
Back-propagation neural network 

evolutionary back-propagation network 
implementation 

BP_Get_P SO_D imens i on routine, 
263 

evaluate_function routine, 
263-264 

main () routine, 262-263 

running, 264-265 

feedforward calculations, 203-205 

implementation 
BP_Main_Loop ( ) routine, 223-224 
enumeration data type, 218-220 
ma in  ( ) routine, 222-223 
running, 233-234 
state handling routines, 224-233 
structure data type, 221-222 

initialization and normalization, 
199-202 

Bayes classification, 189 
Bezdek, James, 273 
Black, Max, 271 
B P_BAC K_P ROP AGAT I ON_H I D DEN S 

state handling routine, 228 
BP_BACK_PROPAGAT I ON_OUTPUT state 

handling routine, 227-228 
BP BATC H TEMP WEIGH T STEP CHANGE 

state handling routine, 228-230 
BP_FEEDFORWARD_H I DDEN state 

handling routine, 226 
BP_FEEDFORWARD_INPUT state handling 

routine, 225-226 
BP_FEEDFORWARD_OUTP UT state 

handling routine, 226-227 
BP_GET_PATTERN state handling 

routine, 225 
BP_Get_P SO_D imens  i o n  routine, 263 
BP_Main_Loop () routine, 223-224 
BP_NEXT_GENERAT I ON state handling 

routine, 232-233 
BP_NEXT_PATTERN state handling 

routine1230-231 
BP_WE I GHT_CHANGE state handling 

routine, 231-232 

Cell populations, processing elements, 155 
Center-of-maximum, defuzzification, 

296-297 
c h e c k R u l e A c t i v e  () routine, 334 
Chi-square test, performance metrics, 

414-417 
Chromosome 

biological versus artifcial 
composition, 8 
length, 8 
reproduction, 8-9 

definition, 7 
patterns, 7 

CI, s e e  Computational intelligence 
Clerc's constriction method, 90-91 
Clipped center of gravity, defuzzification, 295 
Closure, genetic programming, 82 
Codebook vector, 431 
Competing conventions problem, neural 

network evolution, 216 
Competitive adaptation, neural networks, 

182-183 
Complexity, intelligence, 32 
Computational intelligence (CI) 

adaptation and self-organization, 30-34 
data mining, 385-387 
definition, 3 
generalization, 34-35 
historical views, 29-30 
implementation 

fuzzy adaptation, 375-377 
fuzzy evolutionary fuzzy rule system 

fuzzy rule linguistic descriptions, 
380-381 

ga () routine, 378-379 
overview, 378 
running, 381 

genetic algorithm adaptation, 375 
knowledge elicitation, 377 
overview, 374-375 

myths, 10-11 
neural network comparison, 190 
soft computing, 35-36 
tool selection 

modeling and optimization, 
383-384 

practical issues, 384-385 
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Computational Intelligence (cont inued)  

strengths and weaknesses 
comparisons, 382-383 

Concept forming networks, 156 
Confusion matrix, performance metrics, 

410-414 
Connectionism, definition, 149 
Conscience, adding to neural networks, 

248-249 
Constructive algorithm, network topology 

evolution, 212 
Constriction factor, particle swarm 

optimization, 90-91 
Correlation, pattern recognition, 189 
Crossover 

definition, 3 
enumeration data type for crossover 

operators, 100-101 
function pointers for crossover handlers, 

101-102 
genetic algorithm, 62-63, 65-66 
genetic programming, 86 

Crossover index, 101 
Crossover rate, genetic algorithm, 54-56 
Cross validation, performance metrics, 

392-393 

Darwin, Charles, 28 
Data mining 

CI implementation, 386-387 
overview, 385 

Data types, see Enumeration data type; 
Structure data type 

Davis, Lawrence, 43 
Defuzzification, 290, 294-297, 350-351 
defuzzify ( ) routine, 339 
De Jong, K. A., 42-43 
Delta rule, 181 
Denormalization, neural network output 

data, 195 
Destructive algorithm, network topology 

evolution, 212 
Discrete recombination, evolution strategies, 

7 7 - 7 8  

Dynamic programming, 22 

Eberhart, Russ, 47, 92 
EC, see Evolutionary computation 
Eccles' law, 5 
Electroencephalogram (EEG), waveform 

classification, 13 
Elitist strategy, genetic algorithm, 62 
Entropy, fuzziness measure, 298-301 
Enumeration data type 

back-propagation neural network, 
218-220 

crossover operators, 100-101 
genetic algorithm, 104-107 
learning vector quantizer neural 

network, 235-237 
particle swarm optimization, 

118-119 
self-organizing feature map neural 

network, 256-257 
Error checking, source code, 102-103 
ES, see Evolution strategies 
Evaluat e_Funct ion_Type, particle 

swarm optimization, 131 
evaluate_functions () routine 

evolutionary back-propagation network, 
263-264 

particle swarm optimization, 132-133 
Evolution 

Darwinism, 28 
neo-Darwinian view, 28 

Evolutionary adaptation 
evolution of network topology, 

212-215 
neural networks, 212-215 

Evolutionary back-propagation network 
BP_Get_P SO_D imens i on routine, 

263 
evaluate_function routine, 

263-264 
ma in ( ) routine, 262-263 
running, 264-265 

Evolutionary computation (EC) 
applications 

classification, 13-14 
optimization, 13 

chromosomes and biological 
computation, 7-9 

definition, 2-3 



explanation tools, 432-434 
genes and alleles, 8 
historical perspective 

evolution strategies, 44-45 
evolutionary programming, 44 
genetic algorithms, 40-44 
genetic programming, 45 
particle swarm optimization, 

45-47 
paradigms 

attributes, 48-49 
implementation, 49-50 

sensitivity analysis, 426-427 
unification of fields, 47 

Evolutionary programming 
definition, 3 
finite state machine evolution for 

prediction, 69-74 
function optimization, 74-75 
historical perspective, 44 
implementation, 69 
overview, 68-69, 75 

Evolution strategies (ES) 
evolution of evolution, 75-76 
evolution window, 77 
historical perspective, 44-45 
implementation, 80 
mutation control, 76 
overview, 75-78, 80-81 
recombination, 77-78 
selection, 78-80 

Explanation facility 
definition, 429 
evolutionary computation tools for 

explanation, 432-434 
fuzzy expert system explanation, 

432 
neural network explanation, 431-432, 

435-437 
requirements, 429-431 

False alarm rate, receiver operating 
characteristic curve, 409 

Feedback neural network, 176 
Feedback pattern matching neural 

network, 177 

Index 

Feedforward neural network, 176, 204 
Feedforward pattern matching neural 

network, 177 
Finite state machine (FSM) 

evolution for prediction, 69-74 
flowchart versus finite state machine, 100 

Fitness 
genetic programming, 85-86 
performance metrics, 393-394 

Fitness shift flag, evolutionary design of fuzzy 
rule system with GAs, 369 

Fitness space, adaptation, 26 
Floating point variables, 201 
Flowchart, FSM versus flowchart, 100 
F-measure, receiver operating characteristic 

curve, 410 
Fogel, David, 29 
Fogel, Larry J., 44, 71 
f 1 ( ) routine, Mamdani-type fuzzy rule, 

341-343 
Fu, King Sun, 273 
Fukushima, Kunihiko, 158 
Function pointers, crossover handlers, 

101-102 
Function space, adaptation, 25 
Fuzzification, 290-293 
Fuzziness, definition, 2 
Fuzzy controller 

applications, 301-302 
fuzzy rule base, 302-303 
implementation 

Mamdani-type fuzzy controller 
action interface, 307-309 
fuzzy membership functions for 

each input variable, 304-305 
input linguistic variables and 

numerical ranges, 303 
operation, 310 
output linguistic variables and 

numerical ranges, 304 
rule base construction, 306-307 

Takagi-Sugeno-Kang Method fuzzy 
controller, 310-313 

Fuzzy evolutionary fuzzy rule system 
fuzzy rule linguistic descriptions, 

380-381 
ga () routine, 378-379 
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Fuzzy evolutionary fuzzy rule system 
(continued) 

overview, 378 
running, 381 

Fuzzy logic, see also Mamdani-type fuzzy 
rule; Takagi-Sugeno-Kang Method 

adaptation, 375-377 
applications 

control systems, 14 
expert systems, 14 

approximate reasoning 
containment, 285 
equality of fuzzy sets, 284-285 
overview, 275 
paradoxes in fuzzy logic, 283-284 

behavioral motivations, 9 
definition, 2 
evolutionary design of fuzzy rule system 

with GAs 
C++ advantages, 320 
class definitions 

class array, 356-357 
class IndividualInt, 358-359, 

361-362 
class tree, 354 

ga () routine, 365-366 
ma in  ( ) routine, 363-364 
membership functions, 354-355 
overview, 317-320, 353-354 
public member functions, 360, 

362-363 
running, 366-371 

expert system explanation, 432 
fuzziness measures, 297-301 
fuzziness overview, 275-276 
fuzzy rules 

firing in parallel, 293 
overview, 290 

historical perspective, 270-275 
myths, 11 
probability versus fuzziness, 276-277 
relations and operators 

compensatory operators, 288-289 
complement, 285-286, 288 
containment, 285, 288 
intersection, 286-288 
union, 287-288 

Fuzzy set 
AND, 286-287 

definition, 2, 275 
equality and approximate reasoning, 

284-285 
NOT, 285-286 
OR, 287-288 
theory 

linguistic hedges, 282-283 
linguistic variables, 281-282 
membership functions, 279-281 
set theory, 277-279 

Fuz zyOutput () routine, 335 
fuzzyOutputValue_max () routine, 

338-339 

GA, see Genetic algorithm 
g a _ c r o s s o v e r  () routine, 113-114 
g a _ e v a l u a t e  () routine, 109-110 
Gain, neural networks, 152 
Gallant, Stephen, 431 
Gamma operator, fuzzy logic, 289 
g a _ m u t a t i o n  () routine, 115-116 
g a () routine, evolutionary design of fuzzy 

rule system with Gaussian activation 
function, PEs, 175-176 

genetic algorithm, 365-366 
fuzzy evolutionary fuzzy rule system, 

378-379 
g a _ s e l e c t i o n  () routine, 110 
Gene, definition, 8 
Generalization, computational intelligence, 

34-35 
Generation gap, genetic algorithm, 61 
Genetic algorithm (GA) 

adaptation, 375 
definition, 3 
fuzzy rule system evolutionary design 

C++ advantages, 320 
class definitions 

class array, 356-357 
class I n d i v i d u a l I n t ,  358-359, 

361-362 
class tree, 354 

g a () routine, 365-366 
main ( ) routine, 363-364 
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membership functions, 354-355 
overview, 317-320, 353-354 
public member functions, 360, 

362-363 
running, 366-371 

historical perspective, 40-44 
implementation 

binary tournament selection operator, 
112-113 

enumeration data type, 104-107 
flowchart, 104 
functions used, 96, 104 
g a _ c r o s s o v e r  () routine, 

113-114 
g a _ e v a l u a t e  () routine, 109-110 
ga__mutat ion () routine, 115-116 
g a _ s e l e c t i o n  () routine, 110 
homogeneous versus heterogeneous 

representation, 97-98 
main () routine, 107-108 
running, 116-118 
structure data type, 104-107 

operations, 56-64 
overview, 51-52 
sample problem, 52-56 
schemata, 63-67 
schema theorem, 64, 66-67 

Genetic programming (GP) 
definition, 3 
genetic algorithm comparison, 81 
historical perspective, 45 
implementation, 81-86 
ramped half-and-half method, 84-85 

Genotype, definition, 52 
Geometric mean, receiver operating 

characteristic curve, 410 
Global best, particle swarm optimization, 

89 
Goldberg, David E., 43 
GP, see Genetic programming 
Gradient descent, 152 
Gray coding, genetic algorithm, 57-58 
Grefenstette, John, 43 
Griewank function, dynamic range and error 

criterion, 96 
Grossberg, Stephen, 154-156 

Hard-limiting function, processing 
element, 161 

Hebb, Donald O., 149-150 
Hebbian adaptation, neural networks, 

181-182 
Hebbian network, 149-150 
Heteroassociative network, 168 
Hinton, Geoffrey, 427 
Hoff, Marcian, 151-153 
Holland, John H., 41-43, 45, 64 
Holmblad, L. P., 274 
Hopfeld, John, 159-163 

Inertia weight 
particle swarm optimization, 

8 9 - 9 1  

P SO_UP DATE_INERT IA_WE I GHT 

state handler routine, 138 
Input parameter space, adaptation, 25 
Intelligence, definition, 2 
Interlayer weights, neural networks, 176 
Intermediate recombination, evolution 

strategies, 78 
Intralayer weights, neural networks, 176 
Inversion, genetic algorithm, 63 
Isomorphism problem, neural network 

evolution, 216 

]ames, Willam, 146-147 

Kalman filter, 188 
Karplus, Walter, 29 
Kauffman, Stuart, 28-29 
Kennedy's adaptive culture model, 46 
Kennedy, Jim, 46-47, 92 
Knowledge discovery in database, see Data 

mining 
Knowledge 

definition, 19 
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Knowledge (continued) 

elicitation, 377 

Kohonen network, see Learning vector 
quantizer neural network 

Kohonen, Teuvo, 157-158, 164, 203 
Koza, John, 45, 85 

Latan6's dynamic social impact 
theory, 46 

Latent addition, definition, 148 
Law of sufficiency, 19 
Learning vector quantizer (LVQ) neural 

network 
adaptation 

supervised adaptation algorithm, 
211-212 

unsupervised adaptation calculations, 
24, 210-211 

implementation 
enumeration data type, 235-237 
LVQ_Main_Loop () routine, 

240-241 
main () routine, 239-240 
running, 249-250 
state handling routines, 241-249 
structure data type, 237-239 

initialization and normalization, 
202-203 

Learning 
adaptation comparison, 19-20, 97 
definition, 19 

Least mean squares algorithm, 152 
Linear activation function, processing 

elements, 173 
Linear combination, input 

computation, 172 
Linear regression, 188-189 
Locus, definition, 8 
Lukasiewicz, Jan, 270 
LVQ_FEEDFORWARD_INP UT state 

handling routine, 243 
LVQ_FEEDFORWARD_OUTP UT state 

handling routine, 243-244 
LVQ GET PATTERN state handling 

routine, 242 

LVQ__Eain_Loop () routine, 
240-241 

LVQ neural network, see Learning vector 
quantizer neural network 

LVQ NEXT I TERAT I ON state handling 
routine, 246-247 

LVQ NEXT PATTERN state handling 
routine, 245-246 

LVQ_UP DATE_CONS C I ENCE_FAC TOR 

state handling routine, 247-249 
LVQ_WE I GHT_NORMAL I ZAT I ON state 

handling routine, 242-243 
LVQ_WE I GHT_STEP_CHANGE state 

handling routine, 245 
LVQ_WINNING_NEURON state handling 

routine, 244-245 
ma in  ( ) routine 

back-propagation neural network, 
222-223 

evolutionary back-propagation network, 
262-263 

evolutionary design of fuzzy rule system 
with GAs, 363-364 

genetic algorithm, 107-108 
learning vector quantizer neural 

network, 239-240 
Mamdani-type fuzzy rule, 341 
particle swarm optimization, 

122-123 

M 

Mamdani-type fuzzy rule 
fuzzy controller 

action interface, 307-309 
fuzzy membership functions for each 

input variable, 304-305 
input linguistic variables and 

numerical ranges, 303 
operation, 310 
output linguistic variables and 

numerical ranges, 304 
rule-based construction, 306-307 

implementation 
C++ advantages, 320 
checkRuleActive () routine, 

334 
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class definitions 
class Fuz zyMember, 324-325 
class Fuz zyRule, 331-335 
class FuzzyRuleSet, 335-339 
class Fuz zyVariable, 329-330 
class Mystring, 322-324 
class tree, 321 
class vector, 320-322 

d e f u z z i f y  () routine, 339 
f l  () routine, 341-343 
Fuz z y O u t p u t  () routine, 335 
fuz  zyOutputValue__max ( ) 

routine, 338-339 
fuzzy rule representation, 316-317 
Iris dataset application, 351-353 
ma i n ( ) routine, 341 
m e m b e r F u n c t i o n  () routine, 

326-327 
membership functions, 325-326 
public overloaded operators, 

328-329 
r e a d _ f l _ r u n f i l e  () routine, 

343-345 
running, 345-351 

overview, 290 
Mann-Whitney U test, performance metrics, 

401-404 
Marks, Robert, 29 
Matrix Controlled Interface Engine 

(MACIE), 431 
Max-membership, defuzzification, 296 
Maximum estimated sensitivity, Zurada 

sensitivity analysis, 425 
Maximum sensitivity, Zurada sensitivity 

analysis, 424 
Maximum velocity (Vmax), particle swarm 

optimization, 88-89 
McCarthy, ]ohn, 41 
McCulloch-Pitts neuron, 148 
Mean operator, fuzzy logic, 289 
Mean square average estimated sensitivity, 

Zurada sensitivity analysis, 425 
Mean square average sensitivity, Zurada 

sensitivity analysis, 424 
Mean square, performance 

metrics, 399 
Mean-max membership, defuzzification, 

296-297 

Mean-variance connections, input 
computation, 172 

memberFunction () routine, 
Mamdani-type fuzzy rule, 
326-327 

Memory, allocation and handling, 
102-103 

Mendel, Gregor Johann, 28 
Minsky, Marvin, 153-154 
Multilayer error correction adaptation, 

neural networks, 183-187 
Mutation, definition, 3 

Neighborhood, self-organizing feature map 
neural network, 250 

Neighborhood best, particle swarm 
optimization, 89 

Neural network, s ee  Artificial neural 
network 

Neuron, artificial neural network, 4-5 
Noise, neural networks 

removal application, 195 
addition to training data, 196 

Nonlinear regression, 189 
Normalization, neural network data, 

193-194 
Normalized error, performance metrics, 

399-400 
Normalized fitness 

genetic algorithm, 53 
genetic programming, 85 

Off-line performance, 400 
On-line adaptation, 181 
On-line performance, 400 
Optimization 

definition 11 
function optimization with evolutionary 

programming, 74-75 
myths, 11 
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Optimization (continued) 

performance metrics, see Performance 
metrics 

Ostergaard, J.-J., 274 
Output rule file, evolutionary design of fuzzy 

rule system with GAs, 368 
Overselection, genetic programming, 86 

Papert, Seymour, 153-154 
Parabolic function, dynamic range, and error 

criterion, 96 
Particle swarm optimization (PSO) 

applications, 91-92 
constriction factor, 90-91 
definition, 3 
evolution of network topology, 

216-217 
historical perspective, 45-47, 87 
implementation 

benchmark problems, 126-128 
co-evolutionary algorithms, 125-126, 

128-131 
enumeration data type, 118-119 
e v a l u a t e _ f u n c t i o n s  () routine, 

132-133 
Evaluate_Function_Type, 131 
functions used, 96 
main  () routine, 122-123 
principles, 88, 118 
P SODONE state handler routine, 

139-140 
P S O _ e v a l u a t e  () routine, 

124-125 
P SO_GOAL_REACH_JUDGE state 

handler routine, 137 
PSO_Hain_Loop ( ) routine, 123, 

129 
P SO_NEXT_GENERAT I ON state 

handler routine, 137-138 

pso_state_handler, 131-132 

PSO_State_Type for multi-PSOs, 
128-132 

P SO_UPDATE_GLOBAL_BEST state 

handler routine, 134-135 

P SO_UPDATE_INERT I A....WE I GHT 
state handler routine, 138 

P s o u P  DATE_LOCAL BES T state 
handler routine, 133-134 

P SO_UP DATE_NEXT_P SO state 
handler routine, 139 

PSO UPDATE_PBES T EACH_CYCLE 
state handler routine, 138-139 

P SO_UP DATE_POS I T I ON state 
handler routine, 136-137 

P SO_UPDATE_VELOC I TY state 
handler routine, 135-136 

running, 140-142 
state handler routine overview, 

123-124 
structure data type, 119-121 

inertial weight, 89-91 
maximum velocity, 88-89 
neighborhood, 89 
neural network evolution, 216-217 
overview, 87-88 
resources, 92 

Pattern classification neural network, 178 
PE, see Processing element 
Percent correct, performance metrics, 

395-396 
Perceptron, definition, 150 
Performance metrics 

absolute error, 398-399 
average sum-squared error, 

396-398 
chi-square test, 414--417 
confusion matrix, 410-414 
cross validation, 392-393 
evolutionary algorithm effectiveness, 

400-401 
fitness, 393-394 
gold standard selection, 390-391 
Mann-Whitney U test, 401-404 
normalized error, 399-400 
pattern partitioning for training, testing, 

and validation, 391-392 
percent correct, 395-396 
receiver operating characteristic curves 

accuracy, 409 
applications, 404-405 
area under curve calculation, 407 
contingency matrix in definition, 

405-406 
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false alarm rate, 409 
F-measure, 410 
geometric mean, 410 
interpretation, 408 
neural network analysis, 406-407 
positive predictive value, 409 
precision, 409 
recall, 408-409 
sensitivity, 409 
specificity, 409 

statistics, 394-395 
Permutation problem, neural network 

evolution, 216 
Phenotype, definition, 52 
Positive predictive value, receiver operating 

characteristic curve, 409 
Precision, receiver operating characteristic 

curve, 409 
Problem space, adaptation, 25 
Processing element (PE) 

activation functions, 172-176 
cell populations, 155 
definition, 2 
input computation, 172 
neural networks, 148-149, 158, 161-163, 

171-176 
qualities, 171 
quantity, 6 
types, 6 

Processing element slab, 250-251 
PSO, see Particle swarm optimization 
P SO_DONE state handler routine, 139-140 
PSO_evaluate () routine, 124-125 
P SO_GOAL_REACH_JUDGE state handler 

routine, 137 
PSO_Main_Loop () routine, 123, 129 
P SO_NEXT_GENERAT I ON state handler 

routine, 137-138 
p s o _ s t a t e _ h a n d l e r ,  131-132 
P S O _ S t a t e _ T y p e ,  multi-PSOs, 128-132 
P SO UP DATE_GLOBAL_BE S T state 

handler routine, 134-135 
P SO_UPDATE_INERT IA_WE I GHT state 

handler routine, 138 
P SO_UPDATE_LOCAL_BEST state handler 

routine, 133-134 
P so_uP DATE_NEXT_P SO state handler 

routine, 139 

P SO_UPDATE_PBEST_EACH_CYCLE 
state handler routine, 138-139 

P SOUP DATE_P OS I T I ON state handler 
routine, 136-137 

PSO_UPDATE__VELOCITY state handler 
routine, 135-136 

Radial basis function, 190 
Ramp activation function, processing 

elements, 174-175 
Ramped half-and-half method, genetic 

programming, 84--85 
Rastrigrin function, dynamic range and error 

criterion, 96 
read_fl_runfile () routine, 

Mamdani-type fuzzy rule, 343-345 
Recall 

neural network, 168 
receiver operating characteristic curve, 

408-409 
Receiver operating characteristic (ROC) 

curves 
accuracy, 409 
applications, 404-405 
area under curve calculation, 407 
contingency matrix in definition, 

405-406 
false alarm rate, 409 
F-measure, 410 
geometric mean, 410 
interpretation, 408 
neural network analysis, 406-407 
positive predictive value, 409 
precision, 409 
recall, 408-409 
sensitivity, 409 
specificity, 409 
true positive ratio, 422 

Rechenberg, Ingo, 44-45 
Recombination 

definition, 3 
evolution strategies, 7 7 - 7 8  

Reinforcement adaptation, 22-23 
Relation factors, sensitivity analysis, 

422-423 
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Representation, homogeneous versus 
heterogeneous, 97-98 

Results file, Mamdani-type fuzzy rule 
implementation, 350 

ROC curves, s e e  Receiver operating 
characteristic curves 

Root mean square, performance metrics, 399 
Rosenblatt, Frank, 150-151 
Rosenbrock function, dynamic range and 

error criterion, 96 
Rosenfeld, Azriel, 273 
Roulette wheel selection 

evolution strategies, 79 
genetic algorithm, 60-61 

Rule output file 
evolutionary design of fuzzy rule system 

with GAs, 370 
Mamdani-type fuzzy rule 

implementation, 350 
Rule specification file, evolutionary design of 

fuzzy rule system with GAs, 367 
Ruspini, Enrique, 273 

Scaling 
genetic algorithm, 59-60 
neural network data, 192-193 

Schemata, genetic algorithm, 63-67 
Schema theorem, 64-67 
Schwefel, Hans-Paul, 44-45 
Selection, evolution strategies, 78-80 
Selection pressure, genetic algorithm, 60 
Self-organization 

computational intelligence, 30-34 
definition, 27 
examples, 27-28 
historical perspective, 26-27 

Self-organizing feature map (SOFM) neural 
network 

adaptation process, 253 
data type definitions, 255-258 
initialization, 252-253 
neighborhood, 250 
processing element slab, 250-251 
running, 261 
state handling routines, 258-260 
training, 255 
unsupervised adaptation, 24 

weight correction versus distance from 
winning PEs, 253-255 

Semantics, care, 4 
Sensitivity analysis 

evolutionary computation sensitivity 
analysis, 426-427 

explanation facility, s ee  Explanation 
facility 

Hinton diagram, 427-428 
overview, 422 
relation factors, 422-423 
Zurada sensitivity analysis, 424-426 

Sensitivity, receiver operating characteristic 
curve, 409 

Shaffer's F6 function, dynamic range and 
error criterion, 96 

Sigmoid activation function, processing 
elements, 175 

Smith, Steve, 43 
SOFM neural network, s e e  Self-organizing 

feature map neural network 
SOFM_UPDATE_NE I GHBORHOOD state 

handling routine, 259 
S©FM_WEI GHT_CHANGE state handling 

routine, 259-260 
Specht, Donald, 164 
Specificity, receiver operating characteristic 

curve, 409 
Standardized fitness, genetic programming, 

85 
Statistics, performance metrics, 394-395 
Steepest descent, 152 
Step activation function, processing 

elements, 173-174 
Stochastic approximation, 188 
Stochastic updating, processing element, 162 
Structure data type 

back-propagation neural network, 
221-222 

genetic algorithm, 104-107 
learning vector quantizer neural 

network, 237-239 
particle swarm optimization, 119-121 
self-organizing feature map neural 

network, 257-258 
Structure, definition, 8 
Sufficiency, genetic programming, 82 
Sugeno, Michio, 274 



Summation flag, Mamdani-type fuzzy rule 
implementation, 350 

Supervised adaptation, 20-21, 180 
Synaptic delay, definition, 148 
System output space, adaptation, 25 

Takagi-Sugeno-Kang (TSK) Method 
fuzzy controller, 310-313 
overview, 290 

Terano, Toshiro, 274 
Test dataset, selection for neural networks, 

191-192 
Topology, neural network, 168, 

176-179 
Tournament selection, binary tournament 

selection operator for GAs, 
112-113 

Tournament selection 
evolution strategies, 79-80 

Training dataset, selection for neural 
networks, 191 

Trapezoidal rule, receiver operating 
characteristic curve, 407 

True positive ratio, receiver operating 
characteristic curve, 422 

TSK Method, s ee  Takagi-Sugeno-Kang 
Method 

Index 

Uniform crossover, genetic algorithm, 63 
Unsupervised adaptation, 23-24, 180 

V 

Validation dataset, selection for neural 
networks, 192 

Variance, performance metrics, 399 
Vector quantization, 189-190 
Vmax, s e e  Maximum velocity 

Ih/ 

Wee, Bill, 273 
Weiner, Norbert, 41 
Widrow, Bernard, 151-153 
Widrow-Hoff adaptation algorithm, 153 
Widrow-Hoff rule, 181 
Winston, Patrick Henry, 276 

Z-axis normalization, neural network data, 
193-194 

Zadeh, Lotfi A., 271-272, 275, 281,286, 288 
Zimmerman, Hans, 272-273 
Zurada sensitivity analysis, 424--426 



About the Authors 

Russell C. Eberhart is professor of electrical and computer engineering at the 
Purdue School of Engineering and Technology, Indiana University Purdue Univ- 
ersity Indianapolis (IUPUI). He is also vice president of Computelligence LLC 
in Indianapolis, Indiana. He received his Ph.D. from Kansas State University in 
electrical engineering. He is coeditor of a book on neural networks, and coauthor 
of Computational Intelligence PC Tools (Academic Press, 1996). Russ is coauthor 
of a book with Jim Kennedy and Yuhui Shi entitled Swarm Intelligence (Morgan 
Kaufmann/Academic Press, 2001). He was awarded the IEEE Third Millennium 
Medal. In 2001, he became a Fellow of the IEEE, and in 2002 he became a Fellow 
of the American Institute for Medical and Biological Engineering. 

Yuhui Shi is an applied specialist for Electronic Data Systems, Inc. He received 
his Ph.D. in electrical engineering in 1992 from Southeast University in China. 
He has been actively involved in organizing several IEEE conferences related to 
computational intelligence. Yuhui is an associate editor of the IEEE Transactions 
on Evolutionary Computation, and an adjunct faculty member of the Department 
of Radio Engineering, Southeast University, and the Department of Electrical and 
Computer Engineering, Indiana University Purdue University Indianapolis. 




