Preface

Several computational analytic tools have matured in the last 10 to 15 years that
facilitate solving problems that were previously difficult or impossible to solve. These
new analytical tools, known collectively as computational intelligence tools, include
artificial neural networks, fuzzy systems, and evolutionary computation. They have
recently been combined among themselves as well as with more traditional approa-
ches, such as statistical analysis, to solve extremely challenging problems. Diagnos-
tic systems, for example, are being developed that include Bayesian, neural network,
and rule-based diagnostic modules, evolutionary algorithm-based explanation facil-
ities, and expert system shells. All of these components work together in a “seamless”
way that is transparent to the user, and they deliver results that significantly exceed
what is available with any single approach.

At a system prototype level, computational intelligence (CI) tools are capable
of yielding results in a relatively short time. For instance, the implementation of a
conventional expert system often takes one to three years and requires the active
participation of a “knowledge engineer” to build the knowledge and rule bases.
In contrast, computational intelligence system solutions can often be prototyped
in a few weeks to a few months and are implemented using available engineering
and computational resources. Indeed, computational intelligence tools are capable
of being applied in many instances by “domain experts” rather than solely by
“computer gurus.”

This means that biomedical engineers, for example, can solve problems in
biomedical engineering without relying on outside computer science expertise such
as that required to build knowledge bases for classical expert systems. Furthermore,
innovative ways to combine CI tools are cropping up every day. For example, tools
have been developed that incorporate knowledge elements with neural networks,
fuzzy logic, and evolutionary computing theory. Such tools are able to solve quickly
classification and clustering problems that would be extremely time consuming
using other techniques.

The concepts, paradigms, algorithms, and implementation of computational
intelligence and its constituent methodologies—evolutionary computation, neural
networks, and fuzzy logic—are the focus of this book. In addition, we emphasize
practical applications throughout, that is, how to apply the concepts, paradigms,
algorithms, and implementations discussed to practical problems in engi-
neering and computer science. This emphasis culminates in the real-world case

Xiii

@ ’Q Preface

studies in a final chapter, which are available on this book’s web site at
http:// www.computelligence.org/issue/CICI/CICI. html.

Computational intelligence is closely related to the field called “soft computing.”
There is, in fact, a significant overlap. According to Lotfi Zadeh (1998), the inventor
of fuzzy logic and one of the leading proponents of soft computing:

Soft computing is not a single methodology. Rather, it is a consortium of computing
methodologies which collectively provide a foundation for the conception, design
and deployment of intelligent systems. At this juncture, the principal members of soft
computing are fuzzy logic (FL), neurocomputing (NC), genetic computing (GC),
and probabilistic computing (PC), with the last subsuming evidential reasoning,
belief networks, chaotic systems, and parts of machine learning theory. In contrast to
traditional hard computing, soft computing is tolerant of imprecision, uncertainty
and partial truth. The guiding principle of soft computing is: “exploit the tolerance
for imprecision, uncertainty and partial truth to achieve tractability, robustness, low
solution cost and better rapport with reality.”

Zadeh also believes that soft computing is serving as the foundation for the emerg-
ing field of computational intelligence, and that “In this perspective, the difference
between traditional Al [artificial intelligence] and computational intelligence is that
Al is based on hard computing whereas CI is based on soft computing” (Zadeh
1994). We believe that soft computing is a large subset of computational intelligence.
We heartily agree with him when he says, “Hybrid intelligent systems are definitely
the wave of the future” (Zadeh 1994).

Some of the material in this book is adapted from Computational Intelligence
PC Tools by Eberhart, Dobbins, and Simpson (Academic Press 1996). The extensive
rewrite and reorganization of that material reflect the change in our perception of
computational intelligence that has occurred over the years. That change is reflected
in an increased emphasis on evolutionary computation as providing a foundation
for CL It also features significant recent developments in particle swarm optimiza-
tion and other evolutionary computation tools.

The primary intended audience for Computational Intelligence: Concepts to
Implementations comprises researchers and graduate students with engineering or
computer science backgrounds and those with a special interest in computational
intelligence and/or system adaptation. One of the authors [RE] has taught a Cl intro-
ductory course for several years; the material in this book was developed to support
that course. Other audiences include researchers in fields such as cognitive science
and the physical sciences and those who are motivated to learn about computational
intelligence via self-study. We assume this book’s users understand the basic con-
cepts of classical (two-valued) logic, classical set theory, and elementary probability
theory. We also assume that readers have a familiarity with computers and a very
basic familiarity with calculus. Knowledge of a computer language such as Java, C,
or Visual BASIC is very helpful but not required.

Preface O @

The implementation chapters frequently refer to and list portions of computer
code. In Chapters 4 and 6 we use the most common general-purpose, procedural
programming language, C, to implement the evolutionary algorithms and the arti-
ficial neural networks. Data structures, routines, and finite state machines are used
extensively in the C programming. In Chapters 8 and 9, reflecting programming lan-
guage evolution trends, we use an object-oriented programming language instead of
the procedural programming language C to implement the fuzzy systems and evolu-
tionary fuzzy systems. There are a variety of object-oriented languages, such as C++,
Java, and C#. We use C++ here primarily because it can be looked at as an extension
of the C language.

Organization of the Book

This book is divided into twelve chapters. Chapters 1 and 2 lay the groundwork for
the topic, introducing computational intelligence and its foundations. The next por-
tion of the book includes the “backbone” chapters on the three main constituents of
CI: evolutionary computation, neural networks, and fuzzy logic, in that order. This
order provides an initial focus on evolutionary computation, which is presented as
providing a foundation for development of computational intelligence tools involv-
ing neural networks and fuzzy logic. For instance, when we discuss neural networks,
we see how evolutionary computation can be used to evolve the weights and struc-
ture of feedforward neural networks, and with fuzzy logic, we examine evolutionary
computation applications to tools built using fuzzy logic. In other words, the evo-
lutionary computation theme pervades this book. Within each backbone chapter,
we discuss the histories of computational intelligence, evolutionary computation,
neural networks, and fuzzy logic.

We follow each backbone chapter with a chapter discussing implementation and
examples. Each one contains a section on implementation considerations that
addresses features frequently incorporated into these implementations, which fea-
tures we chose and why we chose them, and the guidelines to using them, as well
as interactions among them. The implementation chapters are intended to provide
readers with the insight to clearly understand “canned,” commercially packaged
software applications and to enable a more thorough understanding of software and
hardware implementation issues for CI paradigms.

Each chapter ends with exercises.

Chapters’ Contents

Chapter 1, Foundations, defines terms used throughout the book and briefly reviews
biological and behavioral motivations for the constituent methodologies of compu-
tational intelligence. This is followed by a brief review of the major application areas

@ ’O Preface

for each methodology, as well as of CI. The chapter concludes with a review of major
computational intelligence application areas.

Chapter 2, Computational Intelligence, launches directly into the core subject
of this book. We first review the concepts of adaptation and self-organization, key
to our view of computational intelligence. Then we summarize the brief history of
the CI field, viewing it from the perspectives of other researchers. This leads us into
a discussion of the relationships among the three major components and how they
cooperate and/or are integrated into a computational intelligence system. We present
our definition of computational intelligence, supported by diagrams that place it
into context.

Chapter 3, Evolutionary Computation: Concepts and Paradigms, has been
adapted from the Evolutionary Computation Theory and Paradigms chapter in
Swarm Intelligence (Kennedy, Eberhart, and Shi 2001) with updates and augmen-
tations, including recent developments in particle swarm optimization and other
evolutionary computation approaches. After reviewing the history of evolutionary
computation and giving an overview of the field, we discuss its main paradigms:
genetic algorithms, evolutionary programming, evolution strategies, genetic pro-
gramming, and particle swarm optimization.

Chapter 4, Evolutionary Computation Implementations, discusses factors to con-
sider when implementing evolutionary computation paradigms and presents two
implementation examples: a canonical genetic algorithm and a real-valued particle
swarm that can be run in single-swarm or multiswarm configurations.

Chapter 5, Neural Network Concepts and Paradigms, first briefly presents an
overview of the history of neural networks, then examines what they are and why
they are useful. A discussion of neural network components and terminology fol-
lows, with a review of neural network topologies. A more detailed look at neural
network learning and recall comes next, focusing on three of the most common neu-
ral network paradigms: back-propagation, learning vector quantization, and self-
organizing feature map networks. These networks represent the two basic learning
types: supervised learning (back-propagation) and unsupervised learning (learning
vector quantization and self-organizing feature maps). We also briefly discuss hybrid
networks and recurrent networks. Finally, considerations of preprocessing and post-
processing are evaluated.

Chapter 6, Neural Network Implementations, discusses factors to consider when
implementing artificial neural networks and presents four implementation exam-
ples: back-propagation, learning vector quantization, self-organizing feature maps,
and evolutionary neural networks.

Chapter 7, Fuzzy Systems Concepts and Paradigms, leads off with a brief review
of the history of the field, followed by an examination of fuzzy sets and fuzzy logic,
the concepts of fuzzy sets, and approximate reasoning. We stress the differences
between fuzzy logic and probability, and we present both Mamdani and Takagi—
Sugeno—-Kang approaches to the design and analysis of fuzzy systems. The chapter

Preface Q s @

concludes with a look at some design considerations and special topics related to
fuzzy systems.

Chapter 8, Fuzzy System Implementations, discusses factors to consider when
implementing fuzzy systems and presents two implementation examples: a tradi-
tional fuzzy rule system and an evolutionary fuzzy rule system. The evolutionary
fuzzy rule system provides a transition into computational intelligence systems.

Chapter 9, Computational Intelligence Implementations, reflects recent devel-
opments in the field, including evolutionary fuzzy systems and approaches to sys-
tem adaptation using computational intelligence. We expand the discussion of the
interaction and cooperation among the three basic components of CI and include a
section on adaptive evolutionary computation using fuzzy systems.

Chapter 10, Performance Metrics, includes a number of system performance
measures not generally used in other disciplines. Included are percent correct, sum-
squared error, absolute error, normalized error, receiver operating characteristic
curves, recall and precision, confusion matrices, and the chi-squared test.

Chapter 11, Analysis and Explanation, presents several tools that are helpful in
assessing and explaining how well a computational intelligence tool is doing its job.
Included are sensitivity analyses, Hinton diagrams for neural networks, and the use
of evolutionary computing tools for analysis. An example of using particle swarm to
develop an explanation facility is included in this chapter.

The book concludes with Chapter 12, Case Study Summaries, which provides
examples of practical applications. This “virtual” chapter is located on the book’s
web site. Having it there makes it a “living” chapter that can be updated periodi-
cally. We will add new case studies from time to time and delete older ones as they
become obsolete. We invite you, the reader, to submit case studies you would like to
have considered for inclusion. (Please see the web site for more information about
this.) Among the initial case studies posted are two based on recent work by us,
the authors, including one on human EEG analysis and another on optimization of
logistics operations. Other case studies discussed in detail are schedule optimization
and control system design. Several other case study examples are briefly reviewed.

Abibliography concludes the book. The glossary is a “virtual” one that is located,
with Chapter 12, on this book’s web site http://www.computelligence.org/issue/CICI/
CICLhtml.

Our Approach: What This Book Is, and Is Not, About

This book asserts that computational intelligence rests on a foundation of evolution-
ary computation. This is certainly not the only way to view computational intelli-
gence, but so far in the authors’ experience, it has proved useful and effective.

Itis about computational tools that you can use in practical applications. Although
the authors have backgrounds in engineering and computer science, CI tools are just
as applicable to problems in other fields such as cognitive science and business.

O Preface

This book is about self-organization, which is closely related to emergent
computation. Self-organization involves simple processes that lead to complex
results, and the whole being greater than the sum of its parts. As Stephen Wolfram
(1994) said, “It is possible to make things of great complexity out of things that
are very simple. There is no conservation of simplicity.”

It is about complex adaptive systems, a term that describes nonlinear systems com-
prising the interaction of numerous adaptive elements, or entities. The concepts of
self-organization and complexity are related, as we discuss later.

This book is not an exhaustive treatise on all permutations and variations of com-
putational intelligence and its constituent methodologies. If you want an exhaustive
discussion of artificial neural network paradigms, for instance, you’ll need to turn to
another book. We present only those paradigms we believe provide the most useful
tools for someone solving practical problems.

It is not a compendium of mathematical derivations and proofs. We present only
those few we believe are essential to gaining a working-level understanding of how
and why the computational tools work.

This book is not about agents. Most of our computational intelligence tools do
not qualify as “agents” because they lack the required autonomy and specialization.
They can, however, be incorporated into intelligent agents and agent systems.

It is not about life. We nip around the edges of artificial life in a few places, but
we don’t address the question “What is alive?” (We do, however, share some pre-
liminary thoughts on that subject.) We also do not address the search for artificial
intelligence (whatever that is) or even for a computational intelligence tool from
which intelligent behavior will emerge. Our focus is on solving problems.

Throughout the text, additional aspects of our approach and philosophy should
become evident, perhaps a little bit at a time. First, when considering computa-
tional intelligence tools and systems, traditional distinctions between hardware and
software get a bit blurred; distinctions between data and program are often almost
nonexistent. Second, our emphasis is on problem solving and applications rather
than physiological, biological, or behavioral plausibility. We do not pay too much
attention to whether the CI tools reflect what actually goes on in the brain or any
other part of a biological organism. Third, we believe that the activities of a com-
putational intelligence application developer and user are often somewhat different
from those in other technical areas.

Developing computational intelligence applications requires the developer to
play two roles. The first is the hands-on active design, develop, test, and debug role
that is fairly common in other technical areas. The second, as important as the first,
is a more passive observation and analytical thinking role. Results from a compu-
tational intelligence tool are often not what was expected. Most of the time, if the
developer takes the time to observe and think, rather than “bash to fit and paint to
match,” something very useful can be learned.

Preface Q @

The authors’ web site for this book is http://www.computelligence.org/issue/CICI/
CICLhtml. (There is a link to this site from the publisher’s web site.) Software imple-
mentations are written for the Windows and/or Java environment, and executable
versions of software described in the implementation chapters are located and main-
tained on the web site. Included as part of each implementation are the ancillary
files—a run file and a data file—needed to run the implementation. In addition, out-
put (results) files, obtained by the authors using the executable and ancillary files,
are provided. You may want to rename these output files, or move them to another
directory, so that you can compare your results with those of the authors.

We’d like to emphasize that the software is not just for demonstration; you can
use it for many real-world applications. The C and C++ source code has been written
using the Borland C++ 4.5 development environment. The Java code will run on any
computer that supports the Java Virtual Machine; this includes machines running
Windows, Unix, and Macintosh operating systems.

Of special note are the recent variations of particle swarm optimization that have
been integrated into the EC theory and paradigms chapter and the EC implementa-
tions chapter. Source code is provided on the web site for some of the implementa-
tions so that you can modify the software for specific applications.

Some of our software can be run using a web browser. Other software, including
source code, is useful only after downloading it from the book’s web site. Approx-
imately 600 slides that cover the material in this book are available to instructors
(or anyone else) at no cost. These slides, configured as Word files, are downloadable
from the web site. The site also contains hyperlinks to other resource information
on the Internet related to subjects in this book.

A significant amount of source code is also on the web site. A total of eight
software modules are available, both as executables and as source code:

Web Site Details

Genetic algorithm

Particle swarm optimization (including multiple swarms)
Back-propagation neural network

Learning vector quantization neural network
Self-organizing feature map neural network
Evolutionary back-propagation neural network

Fuzzy rule system

Evolutionary fuzzy rule system

We ask that you send the authors a payment of US $25 per software module of source
code ($150 for all of the source code) if you find it useful. We are relying on your
honesty. (The address is on the web site with the software.)

@4‘ O Preface

Finally, as described previously, Chapter 12, Case Studies, is available on the
web site.

Acknowledgments

Each of us has numerous people who should be acknowledged; we mention
only a few.

Russ Eberhart: First, I want to acknowledge my wife Francie and son Sean who
put up with a higher than usual absence rate of their spouse and father, respectively.
I also want to acknowledge my son Mark, a three-time cancer survivor, who has
taught me what courage is. Special thanks go to my students in ECE 536, Intro-
duction to Computational Intelligence. They were the guinea pigs. Sometimes, just
from their eyes glazing over, I knew that a section needed to be rewritten (or deleted).
Their patience is appreciated, and their input has been invaluable.

Yuhui Shi: I would like to thank my parents and parents-in-law for taking good
care of my daughter Melissa Xueyin Shi and my son Nicholas Yuge Shi so that
I had plenty of quality time to work on this book. My thanks also go to profes-
sors Zhenya He of Southeast University, M. N. S. Swamy and M. Omair Ahmad of
Concordia University, Xin Yao of the University of Birmingham, Jinhyung Kim of the
Korean Advanced Institute of Science and Technology, and to Russell C. Eberhart,
who are my mentors and have paved the way for me in my career development.

Both of us acknowledge the contributions of our technical reviewers. Their
insights resulted in improvements in both the organization and content of this book.
Finally, we are grateful to the team at Morgan Kaufmann Publishers who worked dili-
gently with us throughout the process of writing, editing, and production. Working
with Denise Penrose, Diane Cerra, Emilia Thiuri, Marilyn Rash, and Mary James has
been a pleasure and a learning experience.

chapter

OI1C

Foundations

This chapter introduces general terms
used to discuss computational intelligence
as well as component methodologies—
computational intelligence (Cl), including
artificial neural networks, fuzzy logic, and
evolutionary computation—asthey are used
in this text. We review the biological bases
for artificial neural network and evolution-
ary computation analysis tools, including

the differences between biological struc-
tures and these analysis tools, and we
discuss the behavioral motivations for fuzzy
systems. The chapter ends with a review of
myths related toimplementations and appli-
cations of Cl and its component technolo-
gies, and a review of major application areas
for each of the three main computational
intelligence methodologies. n

@’O Chapter One—Foundations

Definitions

This section defines some of the most important terms used in this book. These
definitions set the stage for more detailed analyses; more comprehensive definitions
appear in subsequent chapters. Often, the first time a term is used in the book, it is
in italics. In addition, whenever a term is italicized, you can find its definition in the
glossary.

We begin with a general definition of intelligence and then focus on the issues
relevant to computational intelligence. A standard dictionary (Webster’s New Colle-
giate Dictionary, 1975) definition of intelligence is: “1 a (1): The ability to learn or
understand or to deal with new or trying situations : REASON; also : the skilled use
of reason (2): the ability to apply knowledge to manipulate one’s environment or to
think abstractly as measured by objective criteria (as tests).”

“Intelligence is the capability of a system to adapt its behavior to meet its goalsina
range of environments. It is a property of all purpose-driven decision-makers.” This
definition, perhaps more relevant to the subject matter of this book, was published
by David Fogel (1995).

An artificial neural network (ANN) is an analysis paradigm that is roughly mod-
eled after the massively parallel structure of the brain. It simulates a highly inter-
connected, parallel computational structure with many relatively simple individual
processing elements (PEs). Henceforth in this text the terms artificial neural network
and neural network are used interchangeably.

As used in this text, fuzziness refers to nonstatistical imprecision and vagueness
in information and data. Most concepts dealt with or described in the “real world”
are fuzzy. For example, “It is kind of foggy outside now, but it should be fairly sunny
before too long” is an example of a statement that incorporates three fuzzy concepts:
“kind of,” “fairly,” and “before too long.” (It could even be argued that the word
“now” is imprecise and vague enough to be fuzzy.)

Fuzzy sets model the properties of imprecision, approximation, or vagueness. In
conventional logic, known as crisp logic, an element either is or is not a member of the
set. It can be said, therefore, that each element has a membership value of either 1 or
0 in the set. In a fuzzy set, fuzzy membership values reflect the membership extents
(or grades) of the elements in the set. It will be shown that a membership function
is the basic idea in fuzzy set theory; a fuzzy membership function is identical to a
fuzzy set.

Fuzzy logic is the logic of “approximate reasoning.” It comprises operations on
fuzzy sets including equality, containment, complementation, intersection, and
union; it is a generalization of conventional (two-valued, or crisp) logic.

Evolutionary computation comprises machine learning optimization and clas-
sification paradigms roughly based on mechanisms of evolution such as biolog-
ical genetics and natural selection. The evolutionary computation field includes
genetic algorithms, evolutionary programming, genetic programming, evolution

Definitions O‘ » @

strategies, and particle swarm optimization. All of these paradigms use populations
of individuals (potential solutions), rather than single data points or vectors.

Genetic algorithms are search algorithms that incorporate natural evolution
mechanisms, including crossover, mutation, and survival of the fittest. They are
more often used for optimization, but also are used for classification. Evolutionary
programming algorithms are similar to genetic algorithms, but do not incorporate
crossover. Rather, they rely on survival of the fittest and mutation. Evolution strate-
gies are similar to genetic algorithms but use recombination to exchange information
between population members instead of crossover, and often use a different type of
mutation as well. Genetic programming is a methodology used to evolve computer
programs. The structures being manipulated are usually hierarchical tree structures.
Particle swarm optimization flies potential solutions, called particles, through the
problem space. The particles are accelerated toward selected points in the problem
space where previous fitness values have been high.

Computational intelligence is a methodology involving computing that provides
a system with an ability to learn and/or to deal with new situations, such that the
system is perceived to possess one or more attributes of reason, such as general-
ization, discovery, association, and abstraction. Computational intelligence systems
usually incorporate hybrids of paradigms such as artificial neural networks, fuzzy
systems, and evolutionary computation systems, augmented with knowledge ele-
ments. They are often designed to mimic one or more aspects of biologiacal intelli-
gence. Computational intelligence is also closely related to adaptation. In fact,
another definition of CI is that it comprises practical adaptation concepts,
paradigms, algorithms, and implementations that enable or facilitate appropriate
actions (intelligent behavior) by systems in complex and changing environments.
We discuss adaptation in more detail in the next chapter,

A paradigm is a particular example of computational intelligence attributes—in
the case of a neural network, the architecture, activation and learning rules, update
procedure, and so on—that exhibits a certain type of behavior. Put another way, it
is a clear and specific example of a concept. Back-propagation is one example of a
neural network paradigm because it implies a certain set of attributes, for example,
the architecture and the learning rule. A paradigm is a particular set of choices for all
attributes. Development of a new paradigm involves assembling a set of attributes
that define the intended behavior of the CI tool.

An implementation is a computer program written and compiled for a specific
computer or class of computers that implements a paradigm. The back-propagation
neural network application on the book’s web site (described in Chapter 4) is an
implementation of the back-propagation paradigm.

The discussion in this book deals with semantics, as well as with concepts. To an
extent, we are the prisoners of our terminology. For example, consider the term arti-
ficial intelligence. It is the authors’ opinion that labeling some subset of intelligence
artificial is somewhat analogous to calling what an airplane does “artificial flight.”

@’O Chapter One—Foundations

There are also terms that require careful usage. One example is neural networks, for
which it is necessary to specify whether we are referring to biological wetware or
artificial neural network analytical tools. We must also be aware of what Bezdek
(1994) calls “seductive semantics,” which are words and phrases that are often inter-
preted too literally, resulting in meanings being inferred that are more profound
and important than are warranted. Examples are cognitive and genetic. With that
caveat, and having presented the basic definitions we use, let us now review the
theory and technology foundations of computational intelligence tools and com-
ponent methodologies.

Biological Basis for Neural Networks

Every day of our lives, each of us carries out thousands of tasks that require us to keep
track of many things at once and to process and act on these things. Relatively simple
actions, such as picking up a glass of water or dialing a telephone number, involve
many individual components requiring memory, learning, and physical coordina-
tion. The complexity of such “simple” tasks, which most of us do all the time with-
out consciously “thinking” about them, is underscored by the difficulty involved in
teaching robots to perform them. Performance of these tasks is facilitated by our
complex adaptive biological structure.

Neurons

Studies in fields such as biology and biophysics over the past few decades have shed
some light on the construction and operation of our brains and nervous systems,
which helps us understand how these tasks are performed. Living organisms are
made up of cells, and the basic building blocks of the nervous system are nerve
cells called neurons. The major components of a neuron include a central cell body,
dendrites, and an axon.

Figure 1.1 is a conceptual diagram of a neuron.! The signal flow goes from left
to right, from the dendrites, through the cell body, and out through the axon. The
signal from one neuron is passed on to others by means of connections between the
axon of the first and dendrites of the others. These connections are called synapses.
Axons often synapse onto the trunk of a dendrite, but they can also synapse directly
onto the cell body.

The human brain has a large number of neurons, or processing elements (PEs).
Typical estimates of the total number are on the order of 10 to 500 billion (Rumelhart
and McClelland 1986). According to one estimate by Stubbs (1988), neurons are

1 There are many kinds of neuron; for detailed information on their configuration and functioning,
refer to a book on neuroanatomy or neurology, such as Kandel, Schwartz, and Jessell (2000).

Biological Basis for Neural Networks C)‘. @

Axons
from Other
Neurons

Cell Body

-3 [nformation Flow

Dendrites

Figure 1.1 Conceptual diagram of a neuron.

arranged into about 1,000 main modules, each with about 500 neural networks. Each
network has on the order of 100,000 neurons. The axon of each neuron connects to
anywhere from hundreds to thousands of other neurons; the value varies greatly
from neuron to neuron and from neuron type to neuron type. According to a rule
called Eccles’s law, each neuron either excites or inhibits all neurons to which it is
connected.

Biological versus Artificial Neural Networks

While the processing element in an artificial neural network (ANN) is generally con-
sidered to be very roughly analogous to a biological neuron, there are significant dif-
ferences between a neural biological structure (as it is currently understood) and the
implementation or representation of this structure in artificial neural networks. We
summarize the most important differences here, recognizing there are many others.

Eccles’s Law

In a typical implementation of an ANN, connections among PEs can have either
positive or negative weights. These weights correspond to excitatory and inhibitory
neural connections, so Eccles’ law is not usually implemented in ANN.

AC versus DC

Information about the state of activation, or excitation, of a PE generally is passed
to other PEs to which it is connected as a value that roughly corresponds to a direct
current (DC) level. In biological neural networks (BNNs), a train of pulses across
a synapse carries the information, and higher absolute values of activation result
in higher pulse rates, so that something analogous to alternating current (AC) fre-
quency, or pulse repetition rate, generally corresponds to activation level. There are
exceptions to the pulse rate carrying information in biological networks, but they
are relatively unimportant for our discussion.

@ ’Q Chapter One—Foundations

PE Types

While there are many kinds of neuron in biological systems, an artificial neural
network is typically implemented with only one type of PE. Occasionally, two
or three types of PE are used, and as the technology of ANNs develops, more
sophisticated tools may make use of several PE types in each implementation. On
the other hand, some studies indicate that any required implementation can be
carried out with as few as two types of PE (Rumelhart and McClelland 1986).

Speed

It is reported widely in the literature that neurons in BNNs typically operate on
individual cycle times of about 10 to 100 milliseconds. The basic clock frequency
in a personal computer is a few gigahertz, which results in a basic cycle time for
the computer of less than a nanosecond. Even taking into account the number of
multiply—accumulate operations needed to calculate and propagate a new value for
a PE (typically 10-100), the basic cycle time for an individual PE is still only about
10 to 100 nanoseconds. In some ways, however, speed is deceptive. Despite its slower
cycle, the brain is still able to perform some tasks orders of magnitude faster than
today’s fastest digital computer. This, most likely, is because of the brain’s massively
parallel architecture. (Recent research related to neural processing in echo-locating
bats, however, indicates that these creatures are physiologically processing signals in
a time span of a few hundred nanoseconds, so it seems obvious that we still have
much to learn about how the brain functions.)

Quantity of PEs

There is a significant difference between the number of PEs in the typical ANN and
the number of biological neurons involved in any task in a BNN. Typical ANNs are
implemented with something like a few dozen to several hundred PEs. Each of the
1,000 main modules in the human brain described by Stubbs (1988) contains about
500 million neurons, and it is almost certain that several (perhaps many) of these
main modules are involved in any simple task. Of course, for any practical appli-
cation, most engineers and computer scientists might be hard pressed to figure out
how to effectively use a neural network tool (NNT) with 500 million PEs!

Some biologically oriented scientists have criticized artificial neural networks
because they don’t model all the activities of the brain sufficiently well. Our primary
goal as engineers and computer scientists, however, is to solve complex problems,
not to model the brain. Our interest, then, is in adapting relevant concepts to solve
difficult problems. As an oft-quoted saying (oft-quoted in engineering circles, any-
way) puts it, “Scientists study what is. Engineers create what has never been.” This
statement is not meant to be antagonistic toward scientists. What scientists do is just
as noble and worthwhile as what engineers do; they just have a different mission and
a different perspective.

—~ ™
Biological Basis for Neural Networks (\/\)‘: .@

Biological Basis for Evolutionary Computation

Whereas individuals adapt and learn over their lifetimes using their neural networks
to accomplish tasks, species survive by reproducing and evolving over time by pass-
ing on new information through their genes. In a manner somewhat analogous to
neural networks’ ties with biology, the field of evolutionary computation has roots
in biological genetics. The concept of chromosomes is central to both genetics and
evolutionary computation.”

Chromosomes

All living organisms are made up of cells such as neurons, as described earlier. Chro-
mosomes are structures in cell nuclei (cell bodies) that transmit genetic information.
Each representative of a given species has a characteristic number of chromosomes.
Humans normally have 46, occurring as 23 homologous (corresponding) pairs in
the female and 22 homologous pairs and one nonidentical pair in the male. One of
each pair is derived from the father, one from the mother. A sketch of three pairs of
human chromosomes appears in Figure 1.2.

Individual patterns, or strings, in evolutionary computation systems are basi-
cally analogous to chromosomes in biological systems. In fact, the term chromo-
some is commonly used in most genetic algorithm and evolutionary programming
systems. In genetics, the collection of chromosomes required to completely specify

H

Figure 1.2 Sketch of three pairs of human chromosomes. The patterns of bands along the
chromosomes are the result of a staining technique and allow identification of
the individuals of chromosome pairs. Source: Drawing by Mark C. Eberhart.

2 In this text, the term genetics refers to biological genetics, which is “a branch of biology that deals
with the heredity and variation of organisms” (Webster’s New Collegiate Dictionary, 1975).

’O Chapter One—Foundations

an organism is called the genotype. In evolutionary computation, the collection of
patterns or strings needed to completely specify a system is known as a structure.
Most of the systems considered in this text are specified by one pattern, or string, or
state vector; the terms chromosome and structure are thus generally interchangeable.

In the biological world, chromosomes are made up of genes, each of which is
identified by its location (locus) and its function, such as a person’s hair color gene.
In other words, genes are specific segments of chromosomes associated with specific
functions. Individual values a gene may assume are called alleles; a hair color allele
value may be “brown hair.” In the artificial chromosomes of evolutionary compu-
tation systems, the chromosome patterns or strings are made up of parameters, or
features, that can vary over a specified range of values. A given parameter or feature
occupies a fixed location in the artificial chromosome. The chromosome therefore
is encoded to represent a set of parameters.

Biological versus Artificial Chromosomes

Just as artificial neural networks are only roughly analogous to collections of bio-
logical neurons, so artificial chromosomes are only approximately modeled after
biological ones.

Composition

Biological chromosomes contain linear threads of DNA, nucleic acids that make up
an extremely complex double helix structure. Artificial chromosomes are typically
strings of binary and/or real values. Each occurrence of the string typically represents
a system state vector.

Length

The biological chromosomes that define an organism vary in length, although a spe-
cific chromosome is generally the same length from one organism to another. Each
artificial chromosome in a population is the same length, that is, contains the same
number of bits.

Reproduction

Biological chromosomes duplicate themselves during cell division, which occurs
during a normal cell’s lifetime. Many cell divisions (duplications) occur within an
organism for every event of sexual reproduction. During reproduction, the egg and
the sperm each contribute one chromosome for each homologous pair. In evolu-
tionary computation, the duplication of chromosomes analogous to what occurs
during biological cell division is generally called “reproduction.” Also, the synthe-
sis of new chromosomes from two “parents” is called crossover, or recombination,
in evolutionary computation. Furthermore, during crossover (or recombination),
any number of bits or real values can be exchanged between two parent artificial

Behavioral Motivations for Fuzzy Logic O‘ @

chromosomes, as compared with the fixed 50 percent contribution of chromosomes
by each parent in human reproduction.’

This section has primarily discussed the biological basis of evolutionary compu-
tation from a genetics point of view. Concepts such as survival of the fittest, associ-
ated with Darwinian evolution, also play an important role in CI and are
discussed in Chapter 3.

Behavioral Motivations for Fuzzy Logic

The biological motivation or basis for fuzzy logic does not originate at the cellular
and subcellular level, as is the case with neural networks and evolutionary compu-
tation, respectively. It is reflected at the behavioral level of the organism, that is,
in the ways the organism interacts with its environment. While the previous two
methods are deeply rooted in biology, fuzzy logic deals mainly with uncertainty
and vagueness. We do not live in a world of ones and zeros, black and white, true
and false, or other absolutes. Our observations, communications, and experiences
almost always include a large measure of uncertainty. For example, a statement
such as “Next year I will visit Hawaii” cannot be categorized in terms of truth and
falsehood. It is uncertain.

Two main types of uncertainty exist. One is statistical, based on the laws of prob-
ability. An example of statistical uncertainty is the outcome of the toss of a coin.
Observations or measurements can be used to resolve statistical uncertainty. For
example, once the coin is tossed, no statistical uncertainty remains. The other type
of uncertainty is nonstatistical and is based on vagueness, imprecision, and/or ambi-
guity. Nonstatistical uncertainty is illustrated by statements such as “Go to bed prezty
soon” and “Jim is very tall” and “That car is going around 75 kilometers per hour.”
The concept of fuzziness is associated with nonstatistical uncertainty.

Those of you who are experts in the English language may have noticed that,
particularly in the first statement, the imperative state does not mesh very well with
the vague qualifier “pretty soon.” This, however, is exactly the kind of vague, messy
English we often use for communication. One of the primary attributes of fuzzy
logic is its ability to efficiently capture and manipulate these vague, messy concepts.

Fuzziness is an inherent property of a system. It is not resolved or altered by
observation or measurement. Allowing uncertainty in the description of a complex
system makes it more tractable to analysis. Fuzzy logic thus provides a framework
within which nonstatistical uncertainty can be defined, described, and analyzed.
A similar perspective on fuzzy logic is articulated by George Klir (Klir and Folger
1988), who refers to fuzziness as arising from what he calls “linguistic imprecision.”

3 For more information on natural genetics, refer to a genetics text. A good choice is one written by
Mange and Mange (1998).

’O Chapter One—Foundations

Myths about Computational Intelligence

There are a number of myths regarding computational intelligence. First, it is a myth
that the only way to achieve results with CI tools is with a vast sum of money, a
supercomputer, and an interdisciplinary team of Nobel laureates, as some commer-
cial vendors imply. Having a supercomputer or a parallel processing machine isn’t
required to do something useful with CI tools. It’s not even necessary to have a
Sun workstation. A personal computer is a perfectly adequate hardware base for
most implementation and application projects. So, with relatively simple hardware
and software tools, it is possible to solve problems that are otherwise impossible or
impractical. Computational intelligence tools do offer solutions to some problems
that aren’t feasible to solve in any other way known to the authors. That isn’t a myth!

What is a myth is that some combination of CI tools can solve all difficult engi-
neering or computer science problems faster and cheaper than anything previously
available. It is also a myth that CI tools can solve most problems single-handedly.
They are often inappropriate for problems requiring precise calculations. For exam-
ple, it is unlikely that anyone will ever successfully balance a checkbook with a neural
network.

Another statement that qualifies as mostly myth is that no programming is
needed to use artificial neural networks. This is at best misleading. It is true that
a neural network trains (adapts) and runs on input data and according to a set of
rules that update the weights that connect the processing elements, or nodes, and
that the learning of the network is not, strictly speaking, programmed. It is also
true that computer-aided software engineering (CASE) tools are becoming more
available and that little or no programming expertise may be required to use these
tools to generate executable neural network code.

It is also true, however, that in the real world of neural network applications,
some programming is required to get from the specification of the problem to
a solution. Neural network applications significantly reduce the requirement for
reprogramming. Once the problem is specified, it is not unusual to reuse the net-
work code repeatedly, making changes in data preprocessing and network runtime
parameters.

Furthermore, although it is accurate to say that computational intelligence tools
such as neural networks can play a key role in the solution of several classes of
problems that are difficult if not impossible to solve any other way currently known,
it is almost always true that the CI portion of the solution is only a relatively
small part of the overall system. For example, in terms of the total amount of
computer code in a neural network-based solution, the network often accounts
for only about 10 percent of the total solution. It is an absolutely indispensable
10 percent, and success would not be possible without it, but it is important to
keep it in perspective. Preprocessing and further manipulation of the data to form

Computational Intelligence Application Areas O @

pattern files for presentation to the network typically involve much of the code
(although we’ll show you a way to develop a neural network that eliminates much
of the preprocessing). Interpreting and displaying the results often account for
another large portion.*

Another myth about neural network and evolutionary computation applications
is that it is necessary to know something about neural biology or biological genetics,
respectively, to understand them. Nothing could be further from the truth. In fact,
for most engineers and computer scientists, neural network and evolutionary com-
putation tools can be considered just another (powerful) set of resources in the CI
analysis toolkit. Furthermore, a good case can be made for the argument that neural
networks are technical descendants of analog computing just as much as they are
descended from biology or neurology.

A myth about fuzzy logic is that it is really fuzzy, or imprecise. It is not. The inputs
to a fuzzy system are precise values for input parameters. Likewise, outputs from a
fuzzy system are “crisp” (exact) values, capable, for instance, of being used as precise
inputs to control systems.

Another myth about fuzzy logic is that it is just another version of probability. It
isn’t. Probability deals with statistical uncertainty, whereas fuzzy logic is related to
nonstatistical uncertainty, as we discussed previously.

Finally, it is a myth that optimization exists. This is being said somewhat with
tongue in cheek, but it is important to realize that very seldom does a real-world CI
implementation find the absolute optimum of anything. It is almost always sufficient
to get within a specified region of the optimum, if it is known. Often, in fact, the
optimum value is not even known. Note that we use the term optimization in its
pure “dictionary definition” sense: Optimization is the identification of the very best
solution, or, in the case in which multiple optima exist, the identification of all of
the multiple optima.

Computational Intelligence Application Areas

Each component methodology of computational intelligence has application areas
for which it is particularly well suited. We briefly review these areas in this section.
Keep in mind that application areas may overlap; that is, a given problem may be
solvable by either a neural network or a fuzzy system, albeit with different levels of
performance. In later chapters we examine combinations of the methodologies that
can produce different results. This compilation of application areas is not meant

4 The 10 percent of the code typically represented by the neural network often takes a dispropor-
tionately large percentage of the development effort, perhaps 20 percent, but that effort associated
directly with neural network application development is usually still a relatively small portion of
the total project.

@ ’O Chapter One—Foundations

to be complete. It is not necessarily even representative of all of the major areas of
applications. It is meant to convey some sense of the range of problems to which CI’s
component methodologies have been applied.

Neural Networks

There are five application areas for which neural networks are generally considered
to be best suited. The first three are related.

Classification

This area analyzes which of several predefined classes best reflects an input pattern.
The number of classes is typically small compared with the number of inputs. One
example is a decision whether or not a given segment of EEG data represents an
epileptiform spike waveform. Neural networks’ ability to construct nonlinear map-
pings between high-dimensional spaces is another type of classification analysis.
Some types of video image processing by neural networks (such as diagnoses of
tumors) are examples of this application area.

Content Addressable Memory or Associative Memory

A typical example is obtaining the complete version of a pattern at the output of the
network by providing a partial version at the input. (The input and output nodes of
the network may sometimes be the same nodes.) This process is sometimes described
as obtaining an exemplar pattern from a noisy and/or incomplete one.

Clustering or Compression

This area involves classification but can also be considered a form of encoding. An
example is the significant reduction of the dimensionality of an input, as in the case
of speech recognition. Another is the reduction of the number of bits that must
be stored or transmitted to represent, within some allowed error margin, a block
of data; in other words, the original block of data can be reconstructed within the
allowed error with fewer bits than were in the original data.

Generation of Sequences or Patterns

This fourth area is somewhat different from the first three in that no classification
is involved. This generation of patterns is done by a network trained to examples.
For instance, if a network is trained to reproduce a certain style of musical sequence,
then it is possible for the network to compose “original” versions of that type of
music. Or a neural network may be trained to model, or simulate, something. Grow-
ing numbers of applications in the financial world, becoming known as “financial
engineering” applications, are being reported. Because of inherent randomness in
the process being simulated, there may be no “right” answers, but the system can
perhaps be described statistically. The network simulation may then be designed

Computational Intelligence Application Areas O‘ .@

to reproduce these statistical qualities. This area can be extended to many areas of
application and represents the ability of a neural network system to be “creative.”

Control Systems

The use of neural networks in control systems is one of the fastest-growing appli-
cation areas. It is enjoying widespread implementation for several reasons. First,
a neura] network-based control system can deal with all of the nonlinearities of a
system. (The system doesn’t have to be approximated as linear.) Second, a network
can be used to model the nonlinear system in the process of designing the con-
trol system. Third, the development time for a neural network control system is
typically much shorter than it is for other more traditional techniques.

The number of specific neural network applications for each of the five areas
grows, it seems, daily. Some applications are specific to a discipline. For exam-
ple, applications in medicine include EEG waveform classification and appendicitis
diagnosis. In business and finance, neural networks are part of systems for trading
options on commodity futures contracts and finance company credit application
processing. Military-related applications include target tracking and recognition,
fault diagnoses in aircraft, and the detection of trace amounts of explosives. In
the automotive industry, neural networks can determine the battery pack state-of-
charge in an electric vehicle, help determine the proper distance a car should follow
another, and, in fact, simultaneously control the positions of a number of cars on
an expressway. Artistic endeavors are supported as well, with neural networks that
can compose music. Other applications cut across disciplines, such as networks for
speech recognition, text-to-speech conversion, and image processing.

Evolutionary Computation

The two main areas of application for evolutionary algorithms are optimization and
classification. Most of the discussion in this text focuses on optimization, since most
engineering applications of evolutionary computation are related to optimization.

Optimization

One of the early applications that popularized genetic algorithms was the control
of gas pipeline transmission (Goldberg 1989). Evolutionary algorithms have also
been applied to multiple-fault diagnosis, robot track determination, schedule opti-
mization, conformal analysis of DNA, load distribution by an electric utility, neural
network explanation facilities, and product ingredient mix optimization. (In some
of these cases, other CI paradigms have been used, too.)

Classification

A use of evolutionary computation that has applications across many fields,
including both classification and optimization, is the evolution of neural networks.
This computational intelligence-based methodology is discussed in detail in

‘- 'Q Chapter One—Foundations

Chapter 6. Other classification applications include rule-based machine learning
systems, such as that used to learn control of pipeline operations by Goldberg (1989)
(which also had an optimization element) and classifier systems for high-level
semantic networks.

Fuzzy Logic

Fuzzy logic is being applied in a wide range of applications in engineering areas
ranging from robotics and control to architecture and environmental engineering.
Other areas of application include medicine, management, decision analysis, and
computer science. As with neural networks, new applications appear almost daily.
Two of the major application areas are fuzzy control and fuzzy expert systems.

Control Systems

Fuzzy control systems have been applied to subway systems, cement kilns, traffic
signal systems, home appliances, video cameras, and various subsystems of auto-
mobiles including the transmission and brake systems. One application familiar to
many is the circuitry inside a video camera that stabilizes the image in spite of the
unsteady holding of the camera.

Expert Systems

Fuzzy expert systems have been applied in the areas of medical diagnostics, for-
eign exchange trading, robot navigation, scheduling, automobile diagnostics, and
the selection of business strategies, just to name a few. We present an example of the
role of fuzzy logic in a scheduling system in Chapter 12.

Summary

This chapter provides background information from which to learn about CI and
its implementation. We introduce the definitions and component methodologies of
CI, and we debunk some of the myths you may have heard. Having understood the
biological basis for the component methodologies, you will be able to better con-
ceptualize how these systems work. Briefly reviewing some application areas offers
an idea of the types of problem that computational intelligence tools can be used
to solve.

EXBICISES —eevmmm— S

1. What are some alternative terms for processing element? Discuss the choices,
listing advantages and disadvantages for each.

Exercises O‘ . @

State a myth relative to neural networks, fuzzy systems, or evolutionary
computation, in addition to those discussed in this chapter. Why is it a myth?

How do you think adaptation and self-organization are interrelated?

4. Survey recent technical publications and the Internet for these additional areas

to which one of the component technologies of CI has been successfully applied:
face recognition, health screening, creating art.

a. What motivated the use of the technology in these applications?
b. What technical tools, in addition to CI, were required to solve the problems?
c. What was the role of the CI component technology in each case?

What is the difference between fuzziness and probability? Provide an example to
illustrate the difference.

What is the definition of artificial intelligence? List some differences between
computational intelligence and artificial intelligence.

chapter

WO

Computational Intelligence

This chapter covers the key elements of
computational intelligence and how com-
putational intelligence fits into the larger
picture comprising machine intelligence
and biological intelligence. We examine
adaptation and learning, how they differ,
and what that means for computational
intelligence (Cl). We build from the bot-
tom up, identifying each element in turn.
First we discuss three main types of
adaptation that are incorporated into a
variety of computational models: super-
vised, unsupervised, and reinforcement
adaptation. Next we briefly examine the
concept of self-organization, which we
believe plays an important role in evo-
lution. We then look at how computa-
tional intelligence has been perceived and
defined by various researchers. Finally, we
discuss our view of computational intel-
ligence and how it fits into a model of
intelligent systems.

Despite the relatively widespread use of
the term computational intelligence, there
is no commonly accepted definition of the
term. The definitions offered in Chapter 1
include assumptions about the nature of
what are called the “constituent method-
ologies” of computational intelligence. As
will be seen, other researchers make dif-
ferent assumptions and arrive at different
perspectives.

As is true for researchers in any develop-
ing, maturing field, we are standing on the
shoulders of those who have preceded us.
Of particular influence has been work pub-
lished by Marks (1993) and Bezdek (1981,
1992, 1994, 1998). An extension of their
work presented in this chapter is a new
model of biological and machine intelli-
gence that defines the context for compu-
tational intelligence.

This chapter is not meant to be the
final word on any aspect of computational

17

’O Chapter Two—Computational Intelligence

intelligence. It is intended only to be a snapshot in time, and a relatively subjective
snapshot at that. If it stimulates discussion and further development, it will
accomplish our objective.

With those caveats, the chapter is initiated by discussing adaptation and pre-
senting several definitions. None of these definitions is meant to be particularly
controversial. Rather, they are intended to provide the framework for the remain-
der of the book. .

Adaptation

We discuss adaptation and, later, self-organization because they play an important
role in our view of computational intelligence. The concept of adaptation is central
to computational intelligence. One definition stated in Chapter 1 is that computa-
tional intelligence comprises practical adaptation concepts, paradigms, algorithms,
and implementations that enable or facilitate appropriate actions (intelligent behav-
ior) in complex and changing environments.

Webster’s New Collegiate Dictionary’s (1991) definition of adaptation provides a
useful beginning to our discussion:

1: the act or process of adapting: the state of being adapted 2: adjustment to envi-
ronmental conditions: as a: adjustment of a sense organ to the intensity or quality
of stimulation b: modification of an organism or its parts that makes it more fit for
existence under the conditions of its environment.

The same source defines the word adapt as follows: “to make fit (as for a spe-
cific or new use or situation) often by modification.” To be fit is to be suitable,
that is, adapted so as to be capable of surviving and acceptable from a particular
viewpoint.

Thus, we define adaptation as the ability of a system to change, or evolve, its
parameters in order to better meet its goal. Dynamic adaptation is the ability of a
system to adapt “online,” that is, in essentially real time, in a changing environment.
In dynamic adaptation, the system adapts while it is running (online), rather than
being taken offline to be retrained. For a system to exhibit adaptation, its trajectory
through the problem space must depend on the state of its environment.

Accordingly, a number of factors can make adaptation difficult (Holland 1992):

1. A large problem space (the hyperspace comprising the dynamic ranges of
all problem variables), which contains many alternative (candidate)
solutions, called structures.

2. A large number of variables in each structure, making difficult the deter-
mination of which variables, and which combinations of variables,
contribute to good solutions.

Adaptation O‘ ; 0

3. The function used to measure the performance of the system (which we
call the fitness function) is very complex and nonlinear, having many local
optima and/or discontinuities.

4. The fitness function landscape of global and local optima varies with time
and over the problem space.

5. A complex and changing environment in which the system exists.

We are making certain assumptions when we say that a system is adaptive. First,
we assume that the system is converging to a sufficiently good solution. Second, we
assume that adaptive processes drastically shorten the time required to arrive at a
solution when compared with enumerative methods that must explore significant
portions of the problem space (Kennedy, Eberhart, and Shi 2001).

We believe that most engineering and computer science applications are driven
by what we call the law of sufficiency: If a solution is good enough, fast enough, and
cheap enough, it is sufficient. (Being good enough simply means it meets specifica-
tions.) We believe that for most “optimization” applications, it is more appropriate
to use the term “adaptation” because we generally do not actually find the optimum
solution and often do not even know where it is.

In the remainder of this section, we look at adaptation from three perspectives.
First, we examine and compare the concepts of adaptation and learning. Next, we
review the three main types of adaptation paradigm: supervised adaptation, unsu-
pervised adaptation, and reinforcement adaptation. Finally, we consider the three
spaces with which we must deal when working with adaptive systems: problem space,
function space, and fitness space.

Adaptation versus Learning

The preceding definitions of adaptation describe and apply to computational intel-
ligence systems extremely well. Too often, the process of altering structures such as
neural networks, evolutionary computation tools, and fuzzy systems is described
as learning. The word learning, in fact, appears throughout this book. This usage
is in accordance with that of many researchers.

Learning, however, is defined as “knowledge or skill acquired by instruction or
study,” and the synonym listed for learning is knowledge. Likewise, to learn is defined
as “to gain knowledge or understanding of or skill in by study, instruction or
experience” (Mish 2001).

Instead, learning is what an entire intelligent system does. All of the main com-
ponents of an intelligent system participate in the learning process; all exchange
information with the component of the system that is the repository of the system
knowledge. Learning thus applies to the entire intelligent system, while adapration
mainly applies to the portion of the system we address in this book—the portion
where computational intelligence exists.

@ ’O Chapter Two—Computational Intelligence

Adaptation must overcome numerous barriers, including local optima and
nonlinearities. The problem hyperspace landscape (topography, environment) is
constantly changing. The adaptive systems with which we are dealing are complex,
and the fitness or performance measure is often complicated and varying over time.

Adaptive systems answer this challenge by progressively modifying population
structures, using a set of operators that themselves evolve (adapt) over time. These
adaptive processes drastically shorten the time required to arrive at a solution when
compared with enumerative methods that must explore significant portions of the
problem space.

As you continue through this chapter, you will see that we assert that adaptation
is arguably the most appropriate term for what computational intelligence systems
do. In fact, it is not too much of a stretch to say that computational intelligence and
adaptation (with self-organization) are synonymous. Adaptation, thus, is the leitmotif
of this book.

Three Types of Adaptation

There are various ways to categorize adaptation.! Each of the following sections dis-
cusses one of three categories pertinent to computational intelligence: supervised
adaptation, reinforcement adaptation, and unsupervised adaptation.

Note that in all three cases we separate the adaptation algorithm from the adap-
tive system. Usually, the algorithm is used to adapt (tune) the system and is then
removed. The adaptive system (with its parameters frozen) then responds to input
vectors from the environment. This is traditionally called offline adaptation. Some-
times the adaptation algorithm, or a portion of it, remains active as the system is
used. This is traditionally called online adaptation. Unlike offline adaptation, there
are various degrees of online adaptation.

Supervised Adaptation

Compared to the other two categories of adaptation, supervised adaptation is well
defined. A “teacher” that provides relevant input/output (I/0) examples is always
present. In addition, it has a number of characteristics, including:

m Adaptation is often carried out one step (iteration) at a time. The system
adapts so that it emulates the training I/O examples while acquiring the
ability to generalize.

11n many textbooks, the title of this section would be “Three Types of Learning.” Based, however,
on the reasoning earlier in this section, we generally use the term adaptation in this book to describe
what computational intelligence systems do. We realize that this is somewhat unconventional, but we
believe that the reasoning is sound, and that “adaptation,” more accurately than “learning,” describes
what is going on in a computationally intelligent system.

2 Other authors might call these supervised learning, reinforcement learning, and unsupervised
learning.

Adaptation O‘ @

® The system’s performance metric is often inversely proportional to some
function of the sum of errors over the I/O examples. Examples include
sum-squared error, mean-squared error, and sum of absolute error. The
supervised adaptation algorithm often uses information about the gradient
of the error with respect to an error surface that is averaged over all I/O
examples to adapt the current point.

An example of supervised adaptation appears in Figure 2.1. In Figures 2.1
through 2.3, an arrow going through the adaptive system box indicates the ability
to adjust the parameters of the system. Supervised adaptation often results in an
adaptive system that is used for what is, or amounts to, function approximation.
The system is good at mapping input vectors to output vectors over its domain.

One example of supervised adaptation that we examine in this book is a neural
network adapted by the back-propagation algorithm. Input patterns for which the
output patterns are known are presented to the network. The difference between
what was expected at each output and what was actually there (defined as the error)
is calculated for each output and each pattern. Some function of the error at each
output is then used to adjust system parameters. In the case of a neural network, the
weights of the network are adjusted in an attempt to minimize the error.

Environment

Desired Outputs

" Teacher” (responses)
(dataset with /O
examples)
Input
(state)
Vector
/ System

Adaptive Outputs
System
Supervised Error Values
Adaptation
Algorithm

Figure 2.1 Supervised adaptation example. An arrow going through the adaptive system
box indicates the ability to adjust the parameters of the system.

@’O Chapter Two—Computational Intelligence

Reinforcement Adaptation

Reinforcement adaptation of a system is achieved through its interaction with a
“critic” that provides heuristic reinforcement information. An illustration of
reinforcement adaptation appears in Figure 2.2. The input variable information
often includes the dynamic range of each variable and perhaps other variable infor-
mation such as the precision required. Some sort of goal or fitness metric is also nec-
essary. For example, in a multiple-city delivery-scheduling problem (e.g., the trav-
eling salesman problem), the goal may be to minimize the total distance traveled to
visit all of the cities. The critic provides some fitness measure based on the goal—
for example, a scaled number inversely proportional to the total distance traveled.
So, although some kind of goal or fitness metric is required, the fitness cannot be
obtained directly, but only a suggestion on how good the solution is relative to other
solutions. (A direct fitness metric is possible only with supervised adaptation.)

Of the three types of adaptation, reinforcement adaptation is most closely
related to biological systems. One very simple illustration is that animals (including
humans) tend to avoid behavior that causes us discomfort and tend to seek or repeat
behavior that brings us comfort. Reinforcement adaptation has roots in the opti-
mal control theory area called dynamic programming (Bellman 1957). Sequential
decision making obtains much of its mathematical foundation from dynamic
programming.

Environment
" Critic”
input Variable
and Fitness
Information
Input
(state) System
Vector / Output
Adaptive
System
Heuristic
- Reinforcement
Reinforcement Information
Adaptation <
Algorithm

Figure 2.2 Reinforcement adaptation example. An arrow going through the adaptive
system box indicates the ability to adjust the parameters of the system.

Adaptation O‘ @

Characteristics of reinforcement adaptation often (but not always) include

® The system often deals with a time series of input (state) vectors, waiting
until the sequence is complete to judge the fitness of the system.

m The critic looks at only the outcomes (the results), not at some error
measure due to each input.

An example of a paradigm using reinforcement adaptation is particle swarm
optimization, which is introduced in Chapter 3. A particle swarm explores the
problem space, keeping track of the fitness of its particles and also remembering
where in the problem space the best solutions have so far been found. We probably
do not know where the optimal solution is. We may not even know whether a single
optimal solution exists (there may be multiple optima). There may be a number
of constraints, making the problem very complex. All we can tell the system is
whether one solution is better than another; sometimes, as in the case of particle
swarm optimization, we can calculate how much better it is. But that’s about the
extent of it.

Unsupervised Adaptation

In the case of unsupervised adaptation, no external teacher or critic is involved
in system adaptation. Instead, a dataset comprising example vectors of the sys-
tem’s variable parameters is provided. That is operated on by the unsuper-
vised learning algorithm. A representation of unsupervised adaptation appears in
Figure 2.3. Characteristics of unsupervised adaptation algorithms include:

® There is no indication of fitness whatsoever incorporated into the
unsupervised adaptation algorithm. It just plods along with blinders on,
executing its job, which may involve clustering or “competitive learning.”

® The interpretation of what the unsupervised algorithm did, and how well it
did it, and whether it is even appropriate and/or usable, is done after the
algorithm stops running. This offline evaluation is typically done by a
human or other intelligent system.

Clustering aggregates similar input patterns into distinct, mutually exclusive
subsets referred to as clusters. As stated by Anderberg (1973), “the objective is to
group either the data units or the variables into clusters such that elements within
a cluster have a high degree of ‘natural association’ among themselves while the
clusters are ‘relatively distinct’ from one another.” Clustering is generally consid-
ered a two-phase process. In the first phase, the number of clusters in the data is
determined or assumed. The second phase assigns each data point (pattern) to a
single cluster.

e ’O Chapter Two—Computational Intelligence

Environment

" Database ”
Dataset of
Input Vectors

Input
Vectors

/

Adaptive
System

Unsupervised
Adaptation
Algorithm

Figure 2.3 Unsupervised adaptation example. An arrow going through the adaptive

system box indicates the ability to adjust the parameters of the system.

Examples of unsupervised adaptation are two types of neural network we
discuss in this book, self-organizing feature maps and learning vector quantization
neural networks, which we examine in Chapter 6, Neural Network Implementa-
tions. When a set of patterns is presented to either of these types of network, the
adaptation algorithm clusters patterns that are similar, perhaps subject to some
constraints. With the proper algorithm and constraints, the output distribution
will accurately represent the probability distribution of the input patterns, but
there is no hint of a “teacher” telling the network what the answer is pattern by
pattern, or even a “critic” giving the network qualitative fitness hints.

Summary

In summary, what are the differences, and the implications of these differences,
among the three types of adaptation? Our thoughts on this comprise a thread that
runs through the book. For now, we confine our comments to a few relatively
straightforward observations.

What does it mean to use a “teacher,” a “critic,” or a “dataset™ A teacher has
detailed input/output information, which consists of a number of specific exam-
ples. Typically, the more of these examples that are available, the better a system will
be able to adapt to emulate the structure underlying them. This is not always true,
of course. For instance, it is impossible to build a multiclass classifier if all of your

Adaptation O‘ @

examples are from one class. (A multiclass classifier specifies which of several output
classes represents an input pattern best. For example, a medical diagnostic classifier
decides which disease in its inventory best represents a given a set of medical symp-
toms comprising an input pattern.) So the distribution of the input/output patterns
over the problem space is important.

A critic has some notion that one solution is qualitatively better than another, but
can’t calculate a fitness metric specific to the problem. Furthermore, a critic doesn’t
inherently know where an optimum is, or even if there is one; a teacher may know
the optimum location of a solution in the problem space.

The dataset is just that: a dataset. There is no fitness information, qualitative or
quantitative, within it.

Does that make one kind of adaptation, say supervised, better than another, say
unsupervised? We believe that one kind can be better than another only when con-
sidered from the perspective of a specific application. If all we have is a dataset with
no fitness information, then we will use unsupervised adaptation to find features,
or clusters, in the data. We can then apply other analytic techniques to these clus-
ters or features. Even if we have output information with our input vectors, we may
use unsupervised adaptation to find new ways to look at the data or as a sort of
preprocessing step to reduce the problem’s dimensionality to facilitate a supervised
adaptation application.

Now that we’ve looked at the three main types of adaptation, we look at the spaces
in which these adaptation methods operate.

Three Spaces of Adaptation

No matter which type of adaptation is implemented, we typically refer to three kinds
of space when we work with adaptive systems. We call them input parameter space,
system output space, and fitness space. As there is no standard terminology, however,
other authors call our input parameter space problem space, and our system output
space function space.

The input parameter space is defined by the dynamic ranges of the input variables.
In general, these dynamic ranges are specified. However, sometimes all we have to
work with are example patterns, and we may not have a valid basis for constraining
the input parameters to the ranges represented by the example vectors.

The system output space is defined by the dynamic range(s) of the output vari-
able(s). It is not unusual for the output dynamic ranges to be specified as either
a hard or a soft constraint. (A hard constraint is one that cannot be violated;
a soft constraint can be violated, but a penalty is applied to the system perfor-
mance measure.) We prefer to name this space system “output” rather than “func-
tion” since it is common not to know what function, if any, is represented by the
data. Often, we aren’t interested in finding the function, at least not as our first
objective.

O Chapter Two—Computational Intelligence

The fitness space is the space we use to define the “goodness” of the solutions
(in the output space) generated by the adaptive system. It is common practice
to scale the fitness to values between 0 and 1, with the optimal value being 0 or
1 depending on whether the goal is to minimize or maximize the fitness value.
Sometimes the fitness space and the system output space are the same. A sim-
ple example of this is maximizing the function sin(zx/256) for integer values of
x between 0 and 255 (the input parameter space). This is the example we use in
Chapter 3 to illustrate the step-by-step process of a genetic algorithm. In this case,
the output values vary between 0 and 1, and the maximum fitness value of 1 occurs
at an input value of 128.

In general, however, the system output and fitness values do not coincide. Con-

3
sider another simple example of minimizing '21 xl2 given a dynamic range for x;
i=
of [-10, 10]. In this case, the system output space is [0, 300]. We often trans-
form the output space to a better representation for the purposes of calculating
fitness, frequently in the range of [0, 1]. One possible simple fitness function is
just 1/(abs(output)), which ranges from 1/300 (fairly close to 0) to 1.0 for a perfect
answer.
Always keep these three spaces of adaptation in mind. And always know which
one you are dealing with!
Now that you have some understanding of the concept of adaptation, with its
three main types and three spaces, we’ll discuss another concept central to compu-
tational intelligence: self-organization.

Self-organization and Evolution

Although self-organization’s inclusion as a key concept in computational intelli-
gence is, for the authors, relatively recent, the term self-organization was apparently
used for the first time in the literature relevant to computational intelligence by
W. Ross Ashby (Ashby 1945, 1947). He first used the term “self-organization” in his
1947 paper, but he was writing about the same concept in 1945. He cited the ner-
vous system as an example of self-organization. He wrote that the nervous system,
when in contact with a new environment, tends to develop an internal organization
that leads to behavior that is adapted to that environment. (Note the reference to
adaptation!)

Ashby maintained that self-organization has two methods of implementation
(Dyson 1997). The first is illustrated by a system that starts with its parts separate
(so that the behavior of each is independent of the others’ states) and whose parts
then act so that they change in order to form connections. An example of the sec-
ond is where a system’s interconnected components become organized in a produc-
tive or meaningful way. An example is an infant’s brain, where self-organization is

Self-organization and Evolution Q : »GD

achieved less by the growth of new connections and more by allowing meaningless
connections to die out.

Farley was an early contributor to the investigation of self-organizing systems.
In Farley and Clark (1954), the subject is the simulation of self-organizing systems
by digital computer. In Farley (1960), he said that self-organizing systems “auto-
matically organize themselves to classify environmental inputs into recognizable
percepts or ‘patterns,” and that “this self-organizing ability is called ‘learned per-
ception.” Kleyn (1963), another early contributor, wrote: “A system is said to be
self-organizing if, after observing the input and output of an unknown phenomenon
(transfer relation), the system organizes itself into a simulation of the unknown
phenomenon.”

Today, there are almost as many ways to define self-organization as there are writ-
ers on the subject, but summaries of attributes and descriptions of self-organization
often include the following points (Kennedy, Eberhart, and Shi 2001):

m Self-organizing systems usually exhibit what appears to be spontaneous
order.

m Self-organization can be viewed as a system’s incessant attempts to organize
itself into ever more complex structures, even in the face of the incessant
forces of dissolution described by the second law of thermodynamics.

® The overall system state of a self-organizing system is an emergent property
of the system.

® Interconnected system components become organized in a productive or
meaningful way based on local information; global dynamics emerge from
local rules.

® Complex systems can self-organize.

® The self-organization process works near the “edge of chaos.”

Bonabeau et al. (1999) define self-organization as “a set of dynamical mecha-
nisms whereby structures appear at the global level of a system from interactions
among its lower-level components. The rules specifying the interactions among the
system’s constituent units are executed on the basis of purely local information,
without reference to the global pattern, which is an emergent property of the system
rather than a property imposed on the system by an external ordering influence.”
This definition illustrates the close ties between self-organization and the emergent
property of a system.

Examples of self-organization are all around us. A simple example is the for-
mation of ice crystals on the surface of water as it begins to freeze. Another simple
example happens in a salt solution when the water is dried and crystals are observed
forming. Yet another example is the often complex and beautiful patterns generated

@ ’O Chapter Two—Computational Intelligence

by cellular automata (CAs), which are specified by very simple mathematical
functions. These CAs are not programmed to produce these patterns; rather, the
patterns are an emergent feature of the system.

As a more complex example, the evolution of the human brain has been
described as a self-organizing process (McKee 2000). McKee uses the term auto-
catalysis to describe how the design of an organism’s features at one point in time
affects or even determines the kinds of designs it can change into later. Thus the
evolution of the organism is determined not only by selection pressures but by
the constraints and opportunities offered by the structures that have evolved so
far (Kennedy, Eberhart, and Shi 2001).

The concept of self-organization has had a profound effect on how the authors
view evolution, and the way evolution is viewed has had a profound effect on how
we perceive computational intelligence. The following section reviews this new per-
spective of evolution and illustrates why we believe that evolutionary computation
provides the foundation of computational intelligence.

Evolution beyond Darwin

What is usually described as the Darwinian view of evolution is perhaps bet-
ter described as the neo-Darwinian view. For example, chromosomes weren’t
even known in Darwin’s time, so the prevailing view is a sort of amalgam of
Darwinian and Mendelian ideas. (In 1865 Gregor Johann Mendel, an Augustinian
priest in the Brno Monastery in the Czech Republic, described to the Brno Nat-
ural Science Society the transfer of genetic material in pea plants. Unfortunately,
the fundamental importance of Mendel’s finding was not understood by the Soci-
ety. Until about 1900 it was not recognized that Mendel had discovered the “law
of heredity.”)

The neo-Darwinian view of evolution reflects three main observations. First is
that chromosome composition is determined by the parents (at least in animals and
humans). Second is that random mutation expands the search space of the species,
providing the desirable attribute of diversity. Third is that fitter individuals have a
higher probability of surviving to the next generation.

According to modern researchers, including Kauffman (1993, 1995), there are
two fundamental shortcomings of the existing theory. The first is that the ori-
gin of life by “chance” or mutation is highly improbable in the time frame
of earth’s history. The second is that evolution of complex life forms solely
through mutation is also highly improbable. A detailed discussion of these points
is beyond the scope of this book, but Kauffman (1993, 1995) offers compelling
arguments.

Thisleads to a new view of evolution, in which, due primarily to self-organization,
complex systems can “appear” over a relatively short time frame compared with

Historical Views of Computational Intelligence O‘ ; e

Darwinian evolution. In this new perception of evolution, it appears that natural
selection and self-organization work hand-in-hand. That is,

evolution = natural selection + self-organization

It is the authors’ opinion that the neo-Darwinian view of evolution tends to con-
strain evolutionary computation to a supporting role in computational intelligence,
while the incorporation of self-organization facilitates the viewpoint that evolution-
ary computation is computational intelligence’s foundation.

Self-organization remains an active area of inquiry. See, for example, the works
of Stuart Kauffman (1993, 1995).

It should be evident to you by now that adaptation and self-organization are
intertwined, an idea that we return to at various points in this book. It should also
be evident that we consider adaptation and self-organization to play important
roles in computational intelligence. With our discussions of adaptation and self-
organization complete, it is time to look at computational intelligence, starting
with early work in the field.

Historical Views of Computational Intelligence

As is the case with adaptation and self-organization, there is no universally accepted
definition of computational intelligence. In this section, we present views of com-
putational intelligence by other researchers. As you will see, these views are not the
same. In the next section, we present our view of computational intelligence. It is
somewhat different from the views presented in this section.

In an editorial in IEEE Transactions on Neural Networks, then editor-in-chief
Robert Marks wrote, “Neural networks, genetic algorithms, fuzzy systems, evolu-
tionary programming, and artificial life are the building blocks of C1.” He further
stated, “Although seeking similar goals, CI has emerged as a sovereign field whose
research community is virtually distinct from AI” (Marks 1993).

David Fogel said in 1995 that CI generally describes “methods of computation
that can be used to adapt solutions to new problems and do not rely on explicit
human knowledge.”

Walter Karplus of the University of California at Los Angeles, who was then pres-
ident of the IEEE Neural Networks Council (NNC), offered the following comment
at the June 2, 1996, meeting of the ADCOM of the NNC: “CI substitutes inten-
sive computation for insight into how the system works. NNs, FSs, and EC were all
shunned by classical system and control theorists. CI umbrellas and unifies these
and other revolutionary methods.”

Bezdek (1998), who has probably thought about computational intelligence
more than most other researchers, asserts that computational intelligence is a
proper subset of artificial intelligence but that artificial intelligence is not a subset of

’O Chapter Two—Computational Intelligence

the much more complex biological intelligence. Rather, he believes that biological
intelligence is used to guide artificial intelligence (and thus computational intel-
ligence) models of it. He also views computational pattern recognition as one of
many subsets of computational intelligence. In Bezdek’s scheme, biological intelli-
gence is organic (carbon-based), while computational intelligence (and its subsets)
and artificial intelligence are examples of machine intelligence and are thus silicon-
based. He believes that some computational models lack biological equivalents.

Now that we’ve briefly toured the historical views of computational intelligence,
let’s see how the concepts we discussed previously, adaptation and self-organization,
fit into it.

Computational Intelligence as Adaptation
and Self-organization

This section discusses the authors’ view of computational intelligence, in which
adaptation and self-organization play key roles. The authors have a different view
with respect to several aspects of computational intelligence presented above.

We assert that intelligence is manifested both in carbon-based and silicon-based
systems, and sometimes in hybrids of the two. In fact, intelligence need not be lim-
ited to systems based on carbon and silicon: Other substances are the active subjects
of inquiry in fields such as molecular computing. It does not matter what kind of
system produces the intelligence for it to exist.

It follows that the statement that some computational models do not have bio-
logical equivalents is irrelevant to this discussion. (It could be argued that compu-
tational models implemented by humans have biological analogies since humans
conceived of, designed, developed, and tested them. The validity of this statement,
however, is also irrelevant.) What is relevant is that no distinction should be made
between biological and nonbiological intelligence. Thus, we assert that statements
arguing biological equivalency, one way or the other, are not relevant to the discus-
sion of intelligence or computational intelligence.

In this book, computational intelligence is defined as a methodology involving
computing that provides a system with an ability to learn and/or to deal with new
situations, such that the system is perceived to possess one or more attributes of
reason, such as generalization, discovery, association, and abstraction. The output
of a computationally intelligent system often includes predictions and/or decisions.
Put another way, CI comprises practical adaptation and self-organization concepts,
paradigms, algorithms, and implementations that enable or facilitate appropriate
actions (intelligent behavior) in complex and changing environments.

Computational intelligence systems in silicon often comprise hybrids of para-
digms such as artificial neural networks, fuzzy systems, and evolutionary compu-
tation systems, augmented with knowledge elements. Silicon-based computational

Computational Intelligence as Adaptation and Self-organization Q@

_Izl?flex | Intelligent

I
| I
| |
| I
I |
| Y
Inputs World s | Behavi I
= Sensing Model Output —Iia—vg- [
I - Generation |
I | knowledge)- | |
| ' 5 '
| | Raw - — | :
Data ecision
| | Reaction Prediction I I
| | Reason ' |
I [I
| ' Adaptati l |
. ion
i : Preprocessing a:ngt 9 : |
and Algorithms Processed Data, £ s [
I | Clusters, Classes, Self-organization l |
| | Features | |
I | ; |
| | _Intelligent System B :
I
i |

Figure 2.4 Relationships among components of intelligent systems. Thick arrows represent
the main pathway through the system.

intelligence systems are often designed to mimic one or more aspects of carbon-
based biological intelligence.

The relationships among the components of intelligent systems are repre-
sented very approximately by Figure 2.4. To make the figure easier to understand,
we have emphasized pattern recognition, a common computational function.
Many additional functions would be needed to make the figure more com-
plete. Examples include function approximation, pattern association, filtering,
and control.

The inputs to the intelligent system from the environment can be sensory in the
case of biological systems or they can be via a computer keyboard, in the case of a
silicon-based system. The output of an intelligent system via the output generation
node is intelligent behavior. (The main pathway through the system is represented
by the thick arrows.)

What is intelligent behavior? In the movie named after him, Forest Gump says,
“Stupid is as stupid does.” We believe that intelligence is as intelligence does. Intelli-
gent behavior has an effect on the system’s environment, perhaps via communica-
tion or action. If there is no action or communication that affects the environment,
then there is no intelligent behavior. In Figure 2.4, one arrow goes directly from
sensing to output generation; another goes from preprocessing and algorithms to

@’O Chapter Two—Computational Intelligence

output generation. These represent processes that include actions related to safety
and survival. For example, the arrow from sensing to output generation could
represent a person’s reflex actions when touching a hot stove. The arrow from
preprocessing and algorithms to output generation could represent reactions of
someone who happens upon a rattlesnake while hiking. Each of the arrows passes
through the outer shell of the world model (embedded knowledge).

In addition to reactions, outputs of the preprocessing and algorithms node
include processed data and clustering, which may be used as inputs for the adap-
tation and self-organization node. Products of adaptation and self-organization
include reason, as described previously, as well as prediction and decision. Note
that it is quite possible to reason, predict something, or decide to do something
without actually taking action. Only when the reason, prediction, or decision is
implemented, resulting in an action on or communication with the environment,
is intelligent behavior said to have occurred.

Complexity is often described as an attribute of intelligence (see, for example,
Fogel 1995 and Bezdek 1994); for a discussion of complex adaptive systems that
is applicable to intelligent systems, see Holland (1992). In Figure 2.4, complexity
may generally be considered to increase as we move from sensing through prepro-
cessing and algorithms, and through adaptation and self-organization to output
generation. A note of caution is appropriate here. Without a complete definition
and characterization of complexity, and subsequent application to intelligent sys-
tems, which is beyond the scope of this book, it may be premature to characterize
systems that effect intelligent behavior as more complex than, say, sensing systems
such as human sight.

Stochasticity, or randomness, is also sometimes listed as an attribute of intelli-
gent systems. It is somewhat uncertain whether the attribute should be represented
as randomness, pseudorandomness, or chaos. (Note that computer systems cannot
generate randomness, just pseudorandomness.) However it is represented, it seems
to permeate many aspects of carbon-based intelligent systems, from basic biology
to behavioral intelligence, as well as most silicon-based intelligent processes and
systems.

In the representation in Figure 2.4, nodes at the tails of arrows need not be
subsets of those at the heads, and any node can provide input to the output
generation node. For example, sensing is not necessarily a subset of preprocessing
and algorithms. Furthermore, sensing can provide an input to output generation
via reflex.

The world model at the top center of the diagram (which includes data and
knowledge) and the arrows going to and from it require additional explanation.
For each of the four nodes (sensing, preprocessing and algorithms, adaptation
and self-organization, and output generation) arrows run both to and from the
world model, signifying a flow of “information” in both directions.

Computational Intelligence as Adaptation and Self-organization O‘ .@

World Model
(embedded knowledge)

Survival Culture

Data Goals
Available Resources

Values

Adaptation Strategies

Figure 2.5 An expanded view of the world model.

The sizes of the arrowheads are meant to very roughly reflect the relative
quantities of the flows. For example, the flow from sensing to the world model
is much greater than the flow to sensing from the world model. And, as we move
from the sensing node through preprocessing and algorithms, and then through
adaptation and self-organization to output generation, a greater proportion of the
flow comes from the world model to the node.

Figure 2.5 is an expanded view of the world model, within which some of the
categories of “information” are stored. Note that the world model is dynamic, con-
stantly being revised and updated. In Figure 2.5, the knowledge complexity generally
increases moving from left to right (keeping in mind the previous note of caution
about complexity). Only a few components of the model are given.

The diagrams in Figures 2.4 and 2.5 are simplistic, but they are meant to convey
the authors’ belief that there should be no distinction between carbon- and silicon-
based intelligence. A system simply possesses one or more of the attributes shown in
the figures, and the actions on and communications to the environment are intelli-
gent to some degree, depending on the system attributes.

So, where’s the computational intelligence? In accordance with our earlier def-
initions, it resides primarily in the adaptation and self-organization node. We also
believe that elements of computational intelligence can be found in the preprocess-
ing and algorithm node and in the output generation node. As represented, com-
putational intelligence is buried deeply in the core of the system, be it biological or
machine, perhaps the furthest from the interface with the environment. It is an area
in which developments are occurring that will lead to exciting new analytical tools.

At the risk of oversimplifying the concept of computational intelligence as illus-
trated in Figure 2.4, we extract the portion of the figure most closely associated
with computational intelligence and depict it with Figure 2.6. This prompts another
definition, as follows: Computational intelligence comprises adaptation and self-
organization using processed data and embedded knowledge as input and produc-
ing predictions, decisions, generalizations, and reason as output. The embedded
knowledge resides within the system, while the processed data originates outside the
system.

e ’O Chapter Two—Computational Intelligence

Predictions,
Decisions,
Generalizations,
Reason

Processed Data

Adaptation and
Self-organization

Embedded Knowledge
Figure 2.6 A simplified view of computational intelligence.

We have presented our view of computational intelligence in this section. We
hope you now understand something about our model of CI and the important
roles played by adaptation and self-organization. We discuss one capability of a
CI system, the ability to generalize, in more detail in the next section.

The Ability to Generalize

One key capability of a computational intelligence system is the ability to generalize.
This ability is one of the aspects of computational intelligence that distinguishes it
from hard computing. This section briefly reviews what is meant by the term gener-
alization and some of its implications.

Often, when developing a computational intelligence implementation, we are
provided with, or obtain ourselves, a dataset comprising a number of input/output
patterns. Usually, these pattern pairs comprise only a very small portion of all pos-
sible pattern pairs in the problem space. For the sake of this discussion, assume that
there is only one input and one output in each pattern pair; more inputs and/or
outputs do not change what we are discussing, and the single input/output version
makes the representation easier.

We generally assume that there is some (probably nonlinear) function f(x) that
maps each input to an output in the problem space: y = flx) for the input space
X and the output space Y. We can represent our dataset as § = {(x,' ,¥i) € X % Y},
i = 1, K, n, where n is the number of pattern pairs.

The goal of the computational intelligence system, then, is to build a model f*
that will map other values of x into Y such that f*(x) ~ f(x) for x* ¢ S. This is
usually what we mean by generalization. It is the ability to correctly map examples
in the problem space to which the system was not exposed during training.

What the generalization metric is, however, can vary from problem to problem.
Most of the time it is assumed that, for a “perfect” system, y = f(x) V x € S and
f*(x) = fix) V x € S. The first assumption may not be valid because of errors and/or
noise that almost inevitably appear in even the most “gold-plated” datasets.

The second assumption can be troublesome if we split our dataset S into training
and test datasets, as is usually done. The dataset is usually split because we don’t have

Computational Intelligence versus Artificial Intelligence O‘ .@

any values of x* ¢ S for which we know the correct f(x*). So we use some of the
dataset for training and some for testing.

We usually assume that the ability of a model to generalize is best measured by
the system performance on the test set. It is quite possible that the best test set per-
formance does not coincide with the best performance on the training set. A neural
network, for example, can be overtrained on the training set (it is said to “memorize”
it) so that it performs relatively poorly on the test set.

In summary, it is important to define what you mean when you use the term
generalization and what metric you will use to measure it. Remember that the size
n of the dataset S has to be large enough to have sufficient input/output patterns
for both training and testing. It is impossible to say anything about generalization
if you can’t train the system (build the model) in the first place; it is difficult to
say much about generalization with insufficient testing patterns.

With definitions of computational intelligence under our belts and having dis-
cussed a key concept of computational intelligence, generalization, we now consider
where computational intelligence fits in the overall picture, which includes artificial
intelligence and hard computing.

Computational Intelligence and Soft Computing versus
Artificial Intelligence and Hard Computing

This section summarizes where computational intelligence belongs in the overall
scheme of computing and its relationship to artificial intelligence (AI). We concur
with Lotfi Zadeh’s assertion (1998) that soft computing is the basis of computa-
tional intelligence and that hard computing is the basis of artificial intelligence.
(We discuss Zadeh’s considerable contributions to computational intelligence in
Chapter 7, Fuzzy Systems Concepts and Paradigms.)

Where, then, does “traditional AI” fit? The authors’ perception is that some
of it is at the outer level, or near the interface surface, of the adaptation and self-
organization node in Figure 2.4, where arrows depart for the output generation
node and the world model. Some of it resides in the world model. At the heart of
the adaptation and self-organization node are (in silicon-based systems) such com-
putational intelligence tools as the hybrid neural network/genetic algorithm/fuzzy
logic tools described in the definition of computational intelligence near the begin-
ning of this chapter. These tools have access to, and use, embedded knowledge.
There is, therefore, a difference between artificial intelligence and computational
intelligence, albeit a somewhat “fuzzy” one.

And what about hard computing? If truth be told, the authors don’t consider
very much of what is defined as hard computing to be eligible for inclusion in an
intelligent system, and Figure 2.4 is our concept of an intelligent system.

e ’O Chapter Two—Computational Intelligence

So what is the bottom line with respect to hard computing versus soft computing,
traditional Al versus computational intelligence? Which attributes of a CI system do
not hold for traditional Al and hard computing? We believe that four important ones
are

® The ability to generalize, as discussed previously
® The ability to deal successfully with partial truths and uncertainty

® Tolerance for errors and noise, which results in graceful degradation of
system performance

® The ability to perform well in changing and complex environments

Which attributes of a hard computing system do not hold for a computational intel-
ligence (soft computing) system? We believe that two important ones are

® Precision

m Certainty

1t is unlikely that any of us will ever use a computational intelligence system to
balance our checkbook or calculate our taxes. So there is definitely a place for hard
computing.

On the other hand, real life and real systems are replete with impreci-
sion, uncertainty, partial truths, and nonlinearity. We are finding that many
very difficult jobs, such as developing optimization and diagnostics systems in
complex and changing environments, can be accomplished with computational
intelligence implementations. Hard computing doesn’t stand a chance in these
arenas.

Summary

This chapter presents basic information on computational intelligence. It discusses
adaptation and self-organization and examines their roles in computational intelli-
gence.

We look at adaptation from three perspectives. We first examine and compare
the concepts of adaptation and learning. As defined in this book, learning applies to
the entire intelligent system, while adaptation mainly applies to the portion of the
system where computational intelligence is relevant.

Summary O‘ -@

Next we review the three main types of adaptation paradigms: supervised
adaptation, reinforcement adaptation, and unsupervised adaptation. The three
types of adaptation use a “teacher,” a “critic,” or an algorithm operating on the
dataset with no feedback, respectively.

A teacher has detailed input/output information comprising a number of
specific examples. Typically, the more of these examples that are available, the better
a system will be able to adapt to emulate the structure underlying them. This is not
always true, of course. For instance, it is impossible to build a multiclass classifier
if all of your examples are from one class. So the distribution of the input/output
patterns over the problem space is important.

A critic has some notion that one solution is qualitatively better than another but
can’t calculate a fitness metric specific to the problem. Furthermore, a critic doesn’t
inherently know where an optimum is or even if there is one; a teacher may know
the location of an optimum solution in the problem space.

The algorithm operating on a dataset with no fitness feedback is just that. There
is no fitness information, qualitative or quantitative, that results from running the
unsupervised algorithm.

How, then, do we decide which type of adaptation to use? We believe that the
choice should be made from the perspective of a specific application. If all we have
is a dataset with no fitness information, then we will use unsupervised adaptation to
find features, or clusters, in the data. We can then apply other analytic techniques to
these clusters or features. Even if we have output information with our input vectors,
we may use unsupervised adaptation to find new ways to look at the data or as a
preprocessing step to reduce the problem’s dimensionality to facilitate a supervised
adaptation application.

Additionally in this chapter, we consider the three spaces with which we must
deal when working with adaptive systems: problem space, function space, and fitness
space. Always be aware which space you’re in at any given time.

There is no universally accepted definition of computational intelligence (CI).
Several views of computational intelligence are presented, followed by the authors’
view of computational intelligence. That is, computational intelligence comprises
practical adaptation and self-organization concepts, paradigms, algorithms, and
implementations that enable or facilitate appropriate actions (intelligent behavior)
in complex and changing environments. The inclusion of self-organization in our
definition of computational intelligence is a relatively recent development; inspi-
ration and insight came from the current views of evolution as natural selection
plus self-organization by researchers such as Kaufmann.

In the next chapter, we look at the methodology we believe provides the foun-
dation of computational intelligence: evolutionary computation. We explore genetic
algorithms, evolutionary programming, evolution strategies, genetic programming,
and particle swarm optimization.

’O Chapter Two—Computational Intelligence

Exercises

1. What other elements might be appropriate for inclusion in the world model of
Figure 2.5?

2. Read other discussions of computational intelligence, including Bezdek (1998).
Develop your own one-paragraph definition of computational intelligence.

3. Find an article or a chapter in another book on emergent computing. Compare
the concept of emergent computing as presented there with the concept of
self-organization presented in this chapter.

4. Find another source of information on cellular automata. Discuss the relationship
between cellular automata and self-organization.

5. Randomness is sometimes listed as an attribute of intelligent systems. Why?

6. Give a real-world example of each type of adaptation: supervised, reinforcement,
and unsupervised.

chapter

three

Evolutionary Computation
Concepts and Paradigms

One of the component methodologies of
computational intelligence, and the one
we believe provides its foundation, is evo-
lutionary computation. This chapter goes
into some detail in reviewing the field
of evolutionary computation, which con-
sists of machine learning optimization and
classification paradigms that are roughly
based on evolution mechanisms such as
biological genetics, natural selection, and
emergent adaptive behavior. Evolution-
ary computation paradigms provide tools
to build intelligent systems that model
intelligent behavior.

This chapter also provides basic infor-
mation needed to use evolutionary compu-
tation tools to solve practical problems.
The terminology and key concepts are
presented, followed by paradigms that
are developed from and illustrate the
key concepts. The chapter is written
largely from the perspective of an engi-
neer or computer scientist, emphasizing
the application potential of evolutionary
computation tools and drawing compar-
isons with other applied problem-solving
techniques. =

39

1 ’Q Chapter Three—Evolutionary Computation Concepts and Paradigms

History of Evolutionary Computation

There are a number of ways to address the history of almost any subject, evolu-
tionary computation included. We choose to focus on people rather than theory
or technology for two main reasons. First, it seems a more interesting way to look
at history. History is, after all, just a record of people doing things. Second, the
evolutionary computation field, particularly in the early days, revolved around
a few key individuals. These individuals and their followers seem to us to have
sometimes resembled minicultures.

Having said that, the selection of individuals is somewhat arbitrary because the
intent is to provide a broad sample of people, rather than an exhaustive list, who con-
tributed to current technology. Some well-known researchers are mentioned only
briefly, and others are omitted. The fact that someone is discussed only briefly, or
even omitted altogether, is not meant to reflect the authors’ opinion of that person’s
contribution. The selected people and their contributions are discussed roughly in
chronological order. We organize our history according to the main evolutionary
computation areas.

The evolutionary computation field considered in this book includes the
following five areas':

Genetic algorithms
Evolutionary programming
Evolution strategies

Genetic programming

Particle swarm optimization

Of the five methodologies, more work has been done in genetic algorithms than
in any other area, and so we focus on that field. (We realize that the emphasis on
genetic algorithms is fading somewhat. In fact, hybrids of the five methodologies
are becoming increasingly popular.) Contributors to the other four areas are also
discussed but in somewhat less detail. Although it might be argued that work in
the early twentieth century on Darwinian synthesis by Haldane (1990) and others is
the place to start, what is now known as evolutionary computation really began to
take shape about 50 years later. We begin our journey looking at the roots of genetic
algorithms in the 1950s.

Genetic Algorithms

The development of genetic algorithms (GA) has its origins in work done in the
1950s by biologists using computers to simulate natural genetic systems. One of

! There are other ways to look at the field, such as considering genetic programming as a branch of
genetic algorithms, but we choose this approach.

History of Evolutionary Computation O‘ @

those doing work most closely related to our current concepts of genetic algorithms
was A. S. Fraser, an Australian who began publishing in the field in the late 1950s
(Fraser 1957). Our history of evolutionary computation thus (arbitrarily) begins
with him.

Fraser was working in the area of epistasis (suppression of the effect of a gene)
and represented each of three parameters of an epistatic function as 5 bits in a 15-bit
string. He then based his selection of “parents” by choosing those strings whose vari-
able values produced function values between —1 and +1. Fraser was working with
natural systems, and although his work somewhat resembles function optimization
as currently done by genetic algorithms, he apparently did not consider the possi-
bilities of applying his methodology to artificial systems (Fraser 1960, 1962).

Also beginning to publish in the early 1960s was the man who, together with his
students, has probably had more influence on the field of genetic algorithms than
any others: John H. Holland of The University of Michigan. Holland attended MIT
asan undergraduate, where he was influenced by such luminaries as Norbert Weiner
and John McCarthy. He was part of a team that programmed the prototype of the
IBM 701 to “learn” something about running a maze, prompting Holland to regard
the computer as a sort of “simulated lab rat.” After working at IBM, Holland went to
the University of Michigan, where, under Arthur Burks, he obtained the first Ph.D.
in the United States in computer science (Levy 1992).

Davis (1991) stated:

John Holland . . . created the genetic algorithm field. The field would not exist if
he had not decided to harness the power inherent in genetic processes in the early
1970s and functioned as the technical and political leader of the genetic algorithm
field from its inception to the present time. Our understanding of the unique features
of genetic algorithms has been shaped by the careful and insightful work of Holland
and his students from the field’s critical first years to the present time. (p. vi)

Holland’s interest is in machine intelligence, and he and his students developed
and applied the capabilities of genetic algorithms to artificial systems. He taught
courses in adaptive systems in the early 1960s while laying the groundwork for
applications to artificial systems with his publications on adaptive systems theory
(Holland 1962). Holland’s systems were adaptive because of their robustness in spite
of changes and uncertainty in the environment. Further, they were self-adaptive in
that they could make adjustments based on their interaction with the environment
over time.

The GA metaphor is genetic inheritance at the level of the individual. A problem
solution is considered as an individual’s chromosome, or pattern of genetic alleles,
and low-level operations such as those in the nuclei of cells are proposed for devel-
oping new solutions.

One of Holland’s many contributions was his use of a population of individ-
uals, conceptualized as chromosomes, in the search process, rather than single

'- O Chapter Three—Evolutionary Computation Concepts and Paradigms

individuals, as was common at the time. (Fraser used populations but, as stated
previously, didn’t apply his methodology to artificial systems.) He also derived
the schema theorem, which shows that schema (fundamental building blocks of
individual chromosomes) that are more “fit” with respect to a defined fitness func-
tion are more likely to reproduce in successive generations of the population of
chromosomes. We go into more detail about the schema theorem later in this
chapter.

Chromosomes in nature are formed of twisted strands of DNA, composed
of the four proteins adenine, cytosine, guanine, and thymine. These strands are
presently understood as a kind of computer program that gives instructions to the
cells that comprise the organism; the DNA sequence contains instructions about
how to develop and what to do. While our digital computers use the base-2, or
binary, number system to encode program instructions and data, chromosomes use
a base-4 method, encoded in the ordering of the four proteins. Genetic algorithms
usually use base-2 chromosomes, though the methods developed by Holland and
his followers can be applied to any base number system, including floating-point
decimals.

Beginning in the 1960s Holland’s students routinely used selection, crossover,
and mutation in their applications. Several of Holland’s students made significant
contributions to the genetic algorithm field, often starting with their Ph.D. disserta-
tions. We mention only a few.

The term genetic algorithm was used first by Bagley (1967) in his dissertation,
which utilized genetic algorithms to find parameter sets in evaluation functions for
playing the game of Hexapawn, which is played on a 3 x 3 chessboard on which
each player starts with three pawns. Bagley’s genetic algorithm resembled many used
today, with selection, crossover, and mutation.

In 1975, Holland published one of the field’s most important books, entitled
Adaptation in Natural and Artificial Systems. In the first five years after it was
published, the book sold 100 to 200 copies per year and seemed to be fading
into oblivion. Instead, between 1985 and 1990, the number of people working
on genetic algorithms—and interest in Holland’s book—increased sufficiently to
persuade Holland to update and reissue it (Holland 1992).

Also in 1975, K. A. De Jong, one of Holland’s students, published his Ph.D.
dissertation entitled, “An Analysis of the Behavior of a Class of Genetic Adaptive Sys-
tems.” As part of his work, De Jong put forward a set of five test functions designed
to measure the performance of any genetic algorithm. Two metrics were devised,
one to measure the convergence of the algorithm, the other to measure the ongoing
performance. De Jong examined the effects of varying four parameters (population
size, crossover probability, mutation probability, and generation gap) on the perfor-
mance of six main kinds of genetic algorithm paradigm (De Jong 1975). Although
a number of other benchmark functions have emerged, De Jong’s five-function test

History of Evolutionary Computation O‘ e

bed and two performance metrics are still among frequently referenced criteria for
genetic algorithm performance.

From Michigan De Jong went to the University of Pittsburgh, where he taught
genetic algorithms to a number of students, among them Steve Smith and John
Grefenstette. Smith published a significant dissertation on machine learning involv-
ing a classifier system that became known as “Smith’s Poker Player” (Smith 1980).
After graduation, Grefenstette began teaching yet another generation of students at
Vanderbilt University, including J. David Schaffer, who was the first to develop
a multiobjective algorithm (Schaffer 1984), work that has enjoyed a revival in
popularity.

Grefenstette developed a genetic algorithm implementation called GENESIS
that, in its various incarnations and reincarnations, became perhaps the most
widely used genetic algorithm implementation in the late 1980s (Grefenstette
1984a, 1984b). He also was instrumental in founding and editing the proceedings
of the first International Conference on Genetic Algorithms, a premier conference
in the field (Grefenstette 1985).

David E. Goldberg, another of Holland’s students, has concentrated on engi-
neering applications of genetic algorithms. He is a former gas pipeline worker
whose Ph.D. dissertation considered a 10-compressor, 10-pipe, steady-state, serial
gas pipeline problem (Goldberg 1983). The goal was to provide a strategy that
minimizes the power consumed in the pumping stations, subject to pressure-
related constraints. He summarized the power the genetic algorithm brought to
the pipeline problem when he wrote, “If we were, for example, to search for the
best person among the world’s 4.5 billion people as rapidly as the GA, we would
only need to talk to four or five people before making our near optimal selection”
(Goldberg 1987). Goldberg’s 1989 volume is one of the most influential books
on genetic algorithms: Genetic Algorithms in Search, Optimization and Machine
Learning (Goldberg 1989). He continues to be an important contributor to the
field.

The author of another significant genetic algorithm book is self-taught in genetic
algorithms. Lawrence (Dave) Davis got interested in them while working at Texas
Instruments, where he obtained support to evaluate genetic algorithms for 2D
bin packing in a chip layout application. He published the Handbook of Genetic
Algorithms after moving to the Boston area, where he worked for BBN. His book
comprises two main parts. The first is a tutorial on genetic algorithms; the second
is a collection of case studies contributed by a number of researchers (Davis 1991).
In the mid-1990s, two of the most widely read books by people wanting to learn
about genetic algorithms were those by Goldberg and Davis.

At approximately the same time that Holland and his students were developing
genetic algorithms, two groups were working on opposite sides of the Atlantic on
different approaches that do not use crossover, a main feature of genetic algorithm

e ’O Chapter Three—Evolutionary Computation Concepts and Paradigms

implementations. These approaches are evolutionary programming and evolution
strategies. We begin with evolutionary programming.

Evolutionary Programming

In the United States, Larry J. Fogel and his colleagues developed what they named
evolutionary programming. Evolutionary programming uses the selection of the
fittest, but the only structure-modifying operation allowed is mutation—there is
no crossover. Fogel and his colleagues mainly worked with finite state machines
and were interested in machine intelligence; they were able to solve some problems
that were quite difficult for genetic algorithms.

Fogel (1994) described evolutionary programming as taking a fundamentally
different approach from that of genetic algorithms:

The procedure abstracts evolution as a top-down process of adaptive behavior, rather
than a bottom-up process of adaptive genetics. It is argued that this approach is more
appropriate because natural selection does not act on individual components in iso-
lation, but rather on the complete set of expressed behaviors of an organism in light
of its interaction with its environment.

Philosophically, then, evolutionary programming researchers consider each point in
the population to represent an entire species, with species competing to fill environ-
mental niches.

Fogel summarizes evolutionary programming as implementing “survival of the
more skillful” rather than the “survival of the fittest” emphasized by genetic algo-
rithm developers. In the mid-1960s a book documenting this approach proved to
be quite controversial (Fogel et al. 1966). Misunderstandings and misinterpretations
related to the book have been identified as a contributing factor to problems expe-
rienced by researchers in obtaining funding for evolutionary computation in the
late 1960s and 1970s (Goldberg 1989). It is probable, however, that another signifi-
cant factor was the well-known symbolics versus numerics controversy (temporarily
won by Minsky and the symbolics researchers). One of the leading evolutionary pro-
gramming researchers during the 1970s was at New Mexico State University. Don
Dearholt and his students were responsible for a significant number of publications
on evolutionary programming during this decade.

Evolution Strategies

At the same time that Fogel and his group were working on evolutionary pro-
gramming, across the Atlantic Ocean Ingo Rechenberg and Hans-Paul Schwefel
were experimenting with mutation in their attempts to find optimal physical con-
figurations for a series of hinged plates in a wind tunnel and a tube that delivered
liquid—the usual gradient-descent techniques were unable to solve the sets of

History of Evolutionary Computation O‘ ; o

equations for reducing wind resistance. They began experimenting with mutation,
slightly perturbing their best problem solutions to search randomly in the nearby
regions of the problem space.

Rechenberg and Schwefel used the first computer available at the Technical
University of Berlin to simulate various versions of the approach that became
known as evolution strategies (Rechenberg 1965; Schwefel 1965). In the early 1970s,
Rechenberg published a book that is considered the foundation for this approach
(Rechenberg 1973), and evolution strategies continue to experience significant
activity, especially in Europe. Research developments in Germany and the United
States continued in parallel, with each group unaware of the other’s findings until
the 1980s (although they may have known about each other [Fogel 2000]).

Genetic Programming

The fourth major area of evolutionary computation is genetic programming.
Some of the earliest related work (Friedberg 1958; Friedberg et al. 1959) dealt with
fixed-length computer programs that were coded by another program designed to
optimize their performance. Their programs, dubbed “Herman” and “Ramsey,”
each comprised a set of 64 instructions, with each instruction being 14 bits
long. The programs were defined such that every arrangement of the 14 bits
was a valid instruction, and each set of 64 instructions was a valid program.
Unfortunately, the results of the efforts did not live up to expectations; and, in
retrospect, there were probably three main reasons for this. First, the programs
were limited in length to 64 instructions: A “failure” was tallied if the program
did not terminate successfully by the end of the 64th instruction (even if there
was a loop). Second, there was only one program; thus, there was a population
of just one that evolved. Third, it is not clear that the fitness function used was
appropriate.

These limitations were successfully dealt with by Stanford’s John Koza (yet
another former student of Holland), who developed genetic programming in its
current form in the late 1980s. Whereas the other three evolutionary computation
approaches use string-shaped chromosomes, Koza evolved computer programs in
a population of tree-shaped ones. The units used for crossover were LISP sym-
bolic expressions that are essentially subroutines. Koza has been a prolific pro-
ducer of documentation, including books (Koza 1992) and videotapes related to
genetic programming, which is one of the fastest-growing and most fascinating
areas of evolutionary computation. The idea of evolving computer programs has
been around for decades; it is now becoming a reality.

Particle Swarm Optimization

The fifth major area of evolutionary computation is the “new kid on the block,”
particle swarm optimization, which has roots in three main component areas.

’O Chapter Three—Evolutionary Computation Concepts and Paradigms

Perhaps most obvious are its ties to artificial life (A-life) in general and to bird
flocking, fish schooling, and swarming theory in particular. It is also related to evo-
lutionary computation, with ties to both genetic algorithms and evolution strategies
(Back 1995). The third component area is social psychology. This brief history
focuses on three of the main contributing paradigms from social psychology. The
A-life and evolutionary computation roots are reviewed in the introduction to the
section on particle swarm optimization later in this chapter.?

The first social psychology paradigm is Latané’s dynamic social impact theory
(Latané 1981). Summarized, this theory states that the behaviors of individuals
can be explained in terms of the self-organizing properties of their social system,
that clusters of individuals develop similar beliefs, and that subpopulations diverge
from one another (polarize). There are four major characteristics of social impact
theory: consolidation, clustering, correlation, and continuing diversity. Consolida-
tion means that opinion diversity is reduced as individuals are exposed to majority
arguments. Clustering means that individuals become more like their neighbors
in social space. Correlation means that attitudes that were originally independent
tend to become associated. Finally, continuing diversity means that clustering
prevents minority views from complete consolidation. In summary, individuals
influence one another and, in doing so, become more similar, and patterns of
belief held by individuals tend to correlate within regions of a population. This
theory is consistent with findings in the fields of social psychology, economics,
and anthropology.

The second paradigm is Axelrod’s culture model (Axelrod 1984). In this model,
populations of individuals are represented as strings of symbols, or “features.” The
probability of interaction between two individuals is a function of their similarity,
and individuals become more similar as a result of their interactions. The observed
dynamic is polarization, that is, homogeneous subpopulations that differ from one
another.

The third paradigm is Kennedy’s adaptive culture model (Kennedy 1998). In this
model, there is no effect of similarity of individuals on the probability of their inter-
action. In fact, the effect of similarity is negative in that it is dissimilarity that creates
boundaries between cultural regions. Interactions between individuals occur if their
fitnesses are different. Kennedy’s work in culture and cognition can be summarized
as follows:

® Individuals searching for solutions learn from the experiences of others
(individuals learn from their neighbors).

® An observer of the population perceives phenomena of which the
individuals are the parts (individuals that interact frequently become
similar).

2 For a more detailed account of all three component areas, see Kennedy, Eberhart, and Shi (2001).

Evolutionary Computation Overview O‘ ; 0

m Culture affects the performance of individuals that comprise it (individuals
gain benefit by imitating their neighbors).

Jim Kennedy and Russ Eberhart both worked at Research Triangle Institute
in North Carolina in the early 1990s. Kennedy was interested in exploring the
possibility that an evolutionary computation paradigm might play a role in his
modeling of social systems. The two continued to collaborate even after Kennedy
moved to Washington, D.C., and Eberhart moved to Indianapolis (both moved in
1994). The first two papers were published in 1995 (Kennedy and Eberhart 1995,
Eberhart and Kennedy 1995). One was delivered in Nagoya, Japan; the other, in
Perth, Australia. The international flavor of the work in the field continues. As
of the writing of this book, the authors are aware of work being done in over 30
countries on particle swarm optimization.

Toward Unification

As the 1980s came to a close, the first four areas of evolutionary computation con-
tinued to develop relatively independently, with little cooperation or communica-
tion among them. In 1994, however, an important meeting was held that brought
together researchers from all four evolutionary computation areas: the IEEE World
Congress on Computational Intelligence, held at Walt Disney World, Florida. The
World Congress comprised a mini-symposium on computational intelligence and
three conferences: The International Conference on Neural Networks; the fuzzy
logic conference (FUZZ/IEEE 1994); and the First IEEE Conference on Evolution-
ary Computation (ICEC), chaired by Zbigniew Michalewicz of the University of
North Carolina at Charlotte. A total of 96 papers were presented orally in ICEC
and 63 in poster sessions, representing authors from 23 countries worldwide. The
two volumes of proceedings from this evolutionary computation conference are a
landmark in the field (Michalewicz et al. 1994).

At the second World Congress, held in Anchorage, Alaska, in 1998, parti-
cle swarm optimization joined the program. The third World Congress, held in
Honolulu, Hawaii, featured a significant number of papers from each of the five
main areas, as well as interesting and promising hybrids. Researchers in the five
areas of evolutionary computation are now communicating and working signifi-
cantly more with each other.

Now that we’ve looked at the history of evolutionary computation, let’s look at
what it is and how to use it.

Evolutionary Computation Overview

The five areas of evolutionary computation (EC) share attributes and implemen-
tation procedures, which we now discuss before moving on to separate overviews

’O Chapter Three—Evolutionary Computation Concepts and Paradigms

of each area. EC paradigms generally differ from traditional search and optimiza-
tion paradigms in three main ways:

1. EC paradigms utilize a population of points (potential solutions) in their
search.

2. EC paradigms use direct “fitness” information instead of function
derivatives or other related knowledge.

3. EC paradigms use stochastic, rather than deterministic, transition rules.

In addition, EC implementations sometimes encode the parameters in binary or
other symbols, rather than working with the parameters themselves. We now exam-
ine these differences in more detail, beginning with the attributes of EC paradigms.

EC Paradigm Attributes

How do traditional optimization methods differ from EC paradigms? Most tradi-
tional optimization paradigms move from one point in the decision hyperspace to
another, using some deterministic rule. One of the drawbacks of this approach is
the likelihood of getting stuck at a local optimum. For example, if the fitness land-
scape resembles some hills surrounding a mountain that represents the optimum,
it is likely that a traditional paradigm will get stuck at the top of a hill and never
find the mountain (global optimum). EC paradigms, on the other hand, start with
a population of points (hyperspace vectors). They typically generate a new popu-
lation with the same number of members each epoch, or generation. Thus, many
maxima or minima can be explored simultaneously, lowering the probability of get-
ting stuck. Operators such as crossover and mutation effectively enhance this parallel
search capability, allowing the search to directly “tunnel through” from one promis-
ing hyperspace region to another. (An operator is a rule for changing a proposed
problem solution.)

Evolutionary computation paradigms do not require information that is aux-
iliary to the problem, such as function derivatives. Many hill-climbing search
paradigms, for example, require the calculation of derivatives in order to explore
the local maximum. In EC optimization paradigms the fitness of each member of
the population is calculated from the value of the function being optimized, and it
is common to use the function output as the measure of fitness. Fitness is a direct
metric of the individual population member’s performance on the function being
optimized.

The fact that EC paradigms use probabilistic transition rules certainly does
not mean that a strictly random search is being carried out. Rather, stochastic
operators are applied to operations that direct the search toward regions of the
hyperspace that are likely to have higher values of fitness. Thus, for example,

Evolutionary Computation Overview O‘

reproduction (selection) is often carried out with a probability that is proportional
to the individual’s fitness value.

Some EC paradigms, particularly genetic algorithms, use special encodings for
the parameters of the problem being solved. In genetic algorithms, the parameters
are often encoded as binary strings, but any finite alphabet can be used. These
strings are almost always of fixed length, with a fixed total number of 1s and 0Os,
in the case of a binary string, being assigned to each parameter. By “fixed length”
it is meant that the string length does not vary during the running of the EC
paradigm. The string length (number of bits for a binary string) assigned to each
parameter depends on its maximum range for the problem being solved and on
the precision required.

Now that we’ve discussed the attributes of the paradigms, let’s see how to
implement them.

Implementation

Regardless of the paradigm implemented, evolutionary computation applications
often follow a similar procedure:

1. Initialize the population.

2. Calculate the fitness for each individual in the population.
3. Reproduce selected individuals to form a new population.
4

. Perform evolutionary operations, such as crossover and mutation, on the
population.

5. Loop to step 2 until some condition is met.

Initialization is commonly done by seeding the population with random values.
When the parameters are represented by binary strings, this simply means gener-
ating random strings of 1s and Os (with a uniform probability for each value) of
the fixed length described earlier. It is sometimes feasible to seed the population
with “promising” values that are known to be in the hyperspace region relatively
close to the optimum. (Based on our experience, however, we caution you against
using this approach. Randomly generated populations tend to be more reliable.)
The number of individuals chosen to make up the population is both problem and
paradigm dependent, but it is often in the range of a few dozen to a few hundred.

The fitness value is often proportional to the output value of the function being
optimized, though it may also be derived from some combination of a number
of function outputs. The fitness function takes as its inputs the outputs of one or
more functions, and then it outputs some probability of reproduction. Sometimes
it is necessary to transform the function outputs to produce an appropriate fitness
metric; sometimes it is not.

’O Chapter Three—Evolutionary Computation Concepts and Paradigms

Selection of individuals for reproduction to constitute a new population (often
called a new generation) is usually based on fitness values. The higher the fitness,
the more likely it is that the individual will be selected for the new generation.
Some paradigms that are considered evolutionary, however, such as particle swarm
optimization, can retain all population members from epoch to epoch.

Now that we’ve discussed the step-by-step process, let’s consider the process as
a whole. In many, if not most, cases, a global optimum exists at one point in the
decision hyperspace. (Sometimes multiple optima exist.) Furthermore, stochastic or
chaotic noise might be present. Occasionally the global optimum changes dynam-
ically because of external influences; frequently there are very good local optima as
well. For these and other reasons, the bottom line is that it is often unreasonable to
expect any optimization method to find a global optimum (even if it exists) within
a finite time. The best that can be hoped for is to find near-optimum solutions
and that the time it takes to find them increases less than exponentially with the
number of variables. We agree with one leading EC researcher who suggests that
the focus should be on “meliorization” (improvement) rather than on optimization
(Schwefel 1994).

Put another way, evolutionary computation is often the second-best way to
solve a problem. Classical methods such as linear programming should often be
tried first, as should customized approaches that take full advantage of knowl-
edge about the problem. (It is also possible that a hybrid approach that uses ele-
ments from classical methods with elements of evolutionary computation will
work well.)

Why should we be satisfied with second best? For one thing, classical and cus-
tomized approaches are frequently not feasible, while EC paradigms are feasible
in a vast number of situations. Also, a real strength of EC paradigms is that they
are generally quite robust. In this field, robustness means that an algorithm can
be used to solve many problems, and even many kinds of problems, with a mini-
mum amount of special adjustments to account for special qualities of a particular
problem. Typically an evolutionary algorithm requires specification of the length
of the problem solution vectors, some details of their encoding, and an evaluation
function; the rest of the program does not need to be changed. Finally, robust
methodologies are generally fast and easy to implement. This is especially true of
EC paradigms, which are often one or more orders of magnitude faster than other
approaches (if other approaches exist).

We’ve completed our overview of evolutionary computation. The next sections
review five areas of evolutionary computation: genetic algorithms, evolutionary
programming, evolution strategies, genetic programming, and particle swarm opti-
mization. Genetic algorithms, discussed in the next section, receive a majority of
the attention, as they currently account for most of the successful applications in
the literature (although this is changing).

Genetic Algorithms O‘ @

It seems that every technology has its jargon, and genetic algorithms are no excep-
tion. Therefore, we begin by reviewing some of the basic terminology that is needed
to understand the genetic algorithm (GA) literature. A sample problem is then
presented to illustrate how GAs work; a step-by-step analysis illustrates a GA appli-
cation, with options discussed for some of the individual operations. The section
concludes with a more detailed look at the fundamental Schema theorem and at
approaches for improving GA performance in some situations.

In this book, unless otherwise specified, we deal with canonical genetic algo-
rithms, a basic version of GAs that feature binary parameter encoding, one- or
two-point crossover, and bit-by-bit mutation. (We discuss these attributes later in
this section.)

Details of implementing GAs are discussed in Chapter 4, where a specific
GA implementation is summarized. We begin here by looking at the general
features of GAs.

Genetic Algorithms

Overview of Genetic Algorithms

One perspective of genetic algorithms is that they are search algorithms that reflect
in a very primitive way some of the processes of natural evolution. (As such, they
are analogous to artificial neural networks’ status as primitive approximations of
biological neural processing.) Engineers and computer scientists do not care as
much about the biological foundations of GAs as about their utility as analysis
tools (another parallel with neural networks). GAs often provide very effective
search mechanisms that can be used in optimization or classification applications.

EC paradigms work with a population of points rather than a single point; each
“point” is actually a vector in hyperspace representing one potential, or candidate,
solution to the optimization problem. A population is thus just an ensemble, or
set, of hyperspace vectors. Each vector is called an individual in the population;
sometimes an individual in a GA is referred to as a chromosome because of the
analogy to genetic evolution of organisms.

Because real numbers are often encoded in GAs using binary numbers, the
dimensionality of the problem vector might be different from the dimensionality
of the bitstring chromosome. The number of elements in each vector (individ-
ual) equals the number of real parameters in the optimization problem. A vector
“element” generally corresponds to one parameter, or dimension, of the numeric
vector. Each element can be encoded in any number of bits, depending on the
representation of each parameter. The total number of bits defines the dimension
of hyperspace being searched. If a GA is being used to find “optimum” weights for
a neural network, for example, the number of vector elements equals the number

@’O Chapter Three—Evolutionary Computation Concepts and Paradigms

of weights in the network. If there are w weights, and it is desired to calculate each
weight to a precision of b bits, then each individual will consist of w- b bits, and
the dimension of the binary hyperspace being searched is 2**. Thus we can see
that even for a fairly modest problem involving the optimization of three vari-
ables to a resolution of three decimal places each (10 bits), the search space is 23°.
The variables being optimized comprise what is called the phenotype space, and
the behavior of the system given certain values of the variables is the phenotype.
The binary strings on which operators such as crossover and mutation work
comprise what is called the genotype space, and the strings themselves are the
genotypes.

The series of operations carried out when implementing a canonical (basic)
GA paradigm is:

Initialize the population.
Calculate fitness for each individual in the population.
Reproduce selected individuals to form a new population.

Perform crossover and mutation on the population.

SN

Loop to step 2 until some condition is met.

In some GA implementations, operations other than crossover and mutation are
carried out in step 4. We will further explore GAs by applying a basic GA to a
simple problem.

A Sample GA Problem

Because implementing a canonical (basic) GA paradigm is so simple, a sample
problem (also simple) seems to be the best way to introduce most of the basic GA
concepts and methods. As will be seen, implementing a basic GA involves only
copying strings, exchanging portions of strings, and flipping bits in strings.

Our sample problem is to find the value of x that maximizes the function
fix) = sin(zx/256) over the range 0 < x < 255, where values of x are restricted
to integers. This is just the sine function from zero to x radians, as illustrated in
Figure 3.1. Its maximum value of 1 occurs at z/2, or x = 128. The function value
and the fitness value are thus defined to be identical for the sample problem.

There is only one variable in our sample problem: x. We assume for the sample
problem that the GA paradigm uses a binary alphabet. The first decision to be made
is how to represent the variable. It is easy in this case because the variable can only
take on integer values between 0 and 255. It is therefore logical to represent each
individual in our population with an 8-bit binary string. Using standard binary
encoding, the binary string 00000000 will evaluate to 0; 11111111, to 255.

Genetic Algorithms O‘.@

N o e e e

-

8 255

Figure 3.1 Function to be optimized in example problem.

The determination of the number of bits needed is usually more complex than
this case. There is generally more than one variable, and the number of bits for
each variable must be chosen to yield the desired precision. For example, a real
variable that varies between 0 and 1 and has a precision of three decimal places
(one part in a thousand) can be represented by a string of 10 bits (one part in
1,024).

We must decide next how many individuals will make up the population.
In an actual application, it is common to have between a few dozen and a few
hundred individuals. For the purposes of this illustrative example, however, the
population consists of eight individuals.

The next step is to initialize the population, which is usually done randomly.
A random number generator is thus used to assign a 1 or 0 to each of the eight
positions in each of the eight individuals, resulting in the initial population in
Figure 3.2. Also shown in the figure are the values of x and f(x) for each binary
string.

After fitness calculation, the next step is reproduction. Reproduction consists
of forming a new population with the same number of individuals by selecting
from members of the current population with a stochastic process that is weighted
by each of their fitness values. In the sample problem, the sum of all fitness values
for the initial population is 5.083. Dividing each fitness value by 5.083, then, yields
a normalized fitness value fhorm for each individual. The sum of the normalized
values is, of course, 1. The normalized values are shown in an accumulated fashion
in the cumulative form column in Figure 3.2.

@ ’O Chapter Three—Evolutionary Computation Concepts and Paradigms

Individuals x f(x) frorm cumulative fpom
10111101 189 0.733 0.144 0.144
11011000 216 0.471 0.083 0.237
01100011 99 0.937 0.184 0.421
11101100 236 0.243 0.048 0.469
10101110 174 0.845 0.166 0.635
0100101090 74 0.788 0.155 0.7%80
00100011 35 0.416 0.082 0.872
006110101 53 0.650 0.128 1.000

Tf(x) = 5.083

Figure 3.2 Initial population and f(x) values for GA example.

These normalized fitness values are used in a process called “roulette wheel”
selection, where the size of the roulette wheel wedge for each population member,
which reflects the probability of the individual being selected, is proportional to
its normalized fitness value.

The roulette wheel is “spun” by generating eight random numbers between
0 and 1. If a random number is between 0 and 0.144, the first individual in the
existing population is selected for the next population. If it is between 0.144 and
(0.144 + 0.093) = 0.237, the second individual is selected, and so on. Finally, if
the random number is between (1 — 0.128) = 0.872 and 1.0, the last individual
is selected. The probability that an individual is selected is thus proportional to
that individual’s fitness value. It is possible, though highly improbable, that the
individual with the lowest fitness value could be selected eight times in a row
and make up the entire next population. It is more likely that individuals with
high fitness values are picked more than once for the new population. (Note that
roulette wheel selection works as described here only when all fitness values are
positive. Modifications must be made to accommodate negative fitness values.)

The eight random numbers generated (presented in random order) are 0.293,
0.971, 0.160, 0.469, 0.664, 0.568, 0.371, and 0.109. As shown in Figure 3.3, this
results in initial population member numbers 3, 8, 2, 5, 6, 5, 3, and 1 being chosen
to make up the population after reproduction.

The next operation is crossover. To many evolutionary computation practi-
tioners, crossover of binary encoded substrings is what makes a genetic algorithm
a genetic algorithm. Crossover is the process of exchanging portions of the strings
of two “parent” individuals. An overall probability is assigned to the crossover
process, which is the probability that, given two parents, the crossover process will
occur. This crossover rate is often in the range of 0.65 to 0.80; a value of 0.75 is
selected for the sample problem.

First, the population is divided randomly into pairs of parents. Because the
order of the population after reproduction in Figure 3.3 is already randomized,

Genetic Algorithms O,@

01100011
001101001
110110600
10101110
01001010
10101110
01100011
10111101
Figure 3.3 Population after reproduction.

1 2 Individuals X f(x)
011j000]11 01110111 119 0.994
00110101 001006001 33 0.394

10 0 168 0.882

1 2
111011000 10
1]11 0 11011110 222 0.405

2 1
010010 1]0 10001010 138 0.992

10/10111}0 0110 10 110 0.976

01100011 01100011 99 0.937

10111101 101111001 189 0.733
(a) (b) © d

Figure 3.4 Population before crossover showing crossover points (a); after crossover (b);
and values of x (¢) and f(x) (d) after crossover.

parents will be paired as they appear there. For each pair, a random number is
generated to determine whether crossover will occur. It is thus determined that
three of the four pairs will undergo crossover.

Next, for the pairs undergoing crossover, two crossover points are selected
at random. (Other crossover techniques are discussed later in this chapter.) The
portions of the strings between the first and second crossover points (moving from
left to right in the string) will be exchanged. The paired population, with the first
and second crossover points labeled for the three pairs of individuals undergoing
crossover, is illustrated in Figure 3.4(a) before the crossover operation. The portions
of the strings to be exchanged are in bold. Figure 3.4(b) illustrates the population
after crossover is performed.

Note that, for the third pair from the top, the first crossover point is to the
right of the second. The crossover operation thus “wraps around” the end of the
string, exchanging the portion between the first and the second, moving from

’O Chapter Three—Evolutionary Computation Concepts and Paradigms

left to right. For two-point crossover, then, it is as if the head (left end) of each
individual string is joined to the tail (right end), thus forming a ring structure. The
section exchanged starts at the first crossover point, moving to the right along the
binary ring, and ends at the second crossover point. The values of x and f(x) for
the population following crossover appear in Figure 3.4(c) and (d), respectively.

The final operation in this plain vanilla genetic algorithm is mutation. Mutation
consists of flipping bits at random, generally with a constant probability for each
bit in the population. As is the case with the probability of crossover, the probability
of mutation can vary widely according to the application and the preference of
the researcher. Values between 0.001 and 0.01 are not unusual for the mutation
probability. This means that the bit at each site on the bitstring is flipped, on
average, between 0.1 and 1.0 percent of the time. One fixed value is used for each
generation and is often maintained for an entire run.

As there are 64 bits in the sample problem’s population (8 bits x 8 individuals),
it is quite possible that none will be altered as a result of mutation, so the population
of Figure 3.4(b) will be taken as the “final” population after one iteration of the
GA procedure. Going through the entire GA procedure one time is said to produce
a new generation. The population of Figure 3.4(b) therefore represents the first
generation of the initial randomized population.

Note that the fitness values now total 6.313, up from 5.083 in the initial random
population, and that there are now two members of the population with fitness
values higher than 0.99. The average and maximum fitness values have thus both
increased. It is important to note that in most GA applications the fitnesses don’t
monotonically increase. There are times when the children have lower fitnesses
than their parents. If this situation continues, however, the individuals with lower
fitness will probably be eliminated through the selection process.

The population of Figure 3.4(b) and the corresponding fitness values in Figure
3.4(d) are now ready for another round of reproduction, crossover, and muta-
tion, producing yet another generation. More generations are produced until some
stopping condition is met. The researcher may simply set a maximum number of
generations for the algorithm to search, may let it run until a performance cri-
terion has been met, or may stop it after some number of generations with no
improvement.

This completes our simple application of the basic GA. It’s time to back up
and review the GA’s operations.

Review of GA Operations in the Simple Example

Now that one iteration of the GA operations (one generation) for the sample
problem has been completed, each operation is reviewed in more detail. Various
approaches, and reasons for each, are examined.

Genetic Algorithms O‘ @

The representation of the values for the variable x was made (perhaps
unrealistically) straightforward by choosing a dynamic range of 256; an 8-bit
binary number was thus an obvious approach. Standard binary coding, however,
is only one approach; others may be more appropriate.

In this example, the nature of the sine function places the optimal value of x at
128, where f(x) is 1. The binary representation of 128 is 10000000; the represen-
tation of 127 is 01111111. Thus, the smallest change in fitness value can require
a change of every bit in the representation. This situation is an artifact of the
encoding scheme and is not desirable—it only makes the GA’s search more diffi-
cult. Often, a better representation is one in which adjacent integer values have a
Hamming distance of 1; in other words, adjacent values differ by only a single bit.

Gray coding overcomes this impediment while retaining the advantages of binary
operations (Gray 1953). The challenge is to devise a scheme, using Os and 1s, to
encode integers where the Hamming distance between adjacent numbers equals 1;
this is called the “adjacency property.” There are many ways to accomplish this for
any length bitstring; the most commonly used version is called “binary-reflected
Gray code.” As shown Table 3.1, Gray coded integers that are one unit different in
value are also one unit distant in Hamming distance.

Table 3.1 Gray Codes and Binary Codes for Integers 0-15

R i T e
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

'O Chapter Three—Evolutionary Computation Concepts and Paradigms

The algorithm for generating Gray code from binary is quite simple. The length
of the Gray bitstring will be the same length as the binary version. Further, the
leftmost bit will be the same. Starting at the second position from the left, then,
the formula is

G; = XOR(B;, Bi-1)

where G; is the bit in the ith position of the Gray code (G is the leftmost bit);
B; is the bit in the ith position of the binary code; and the function XOR() returns
1 if the adjacent bits are different from one another, 0 if they are the same. In
other words, set the most significant bit on the Gray bitstring equal to the same bit
on the binary bitstring, and move to the right. Where a bit matches the bit to the
left of it on the binary bitstring, place a 0 in the Gray bitstring; otherwise, place a
1. Go down the line doing this at each position. With Gray coding, a movement
of one unit on the number line is performed by flipping a single bit, allowing an
optimizer to climb more gracefully toward optima.

Some GA software allows the user to specify the dynamic range and resolution
for each variable. The program then assigns the correct number of bits and the
coding. For example, if a variable has a range from 2.5 to 6.5 (a dynamic range
of 4) and it is desired to have a resolution of three decimal places, the product
of the dynamic range and the resolution requires a string 12 bits long, where the
string of Os represents the value 2.5. A major advantage of being able to represent
variables in this way is that the user can think of the population individuals as
real-valued vectors rather than as bit strings, thus simplifying the development of
GA applications.

This kind of representation can present some challenges. If, for instance, the
dynamic range is 5 and resolution is 3 decimal places, we need 13 bits (same
as for dynamic range of 8) and some of the bitstrings resulting from crossover
and mutation will not be within the dynamic range. Provisions have to be made
to take care of such situations. One approach is to define “repair” functions that
move population members that are outside of the dynamic range back in. Another
approach is to assign particularly high penalties to locations outside the dynamic
range.

The “alphabet” used in the representation can, in theory, be any finite alphabet.
Thus, rather than use the binary alphabet of 1 and 0, we could use an alphabet
containing more characters or numbers. Engineers frequently represent variables
with real numbers. Many GA implementations, however, use the binary alphabet.

Turning our attention to the size of the population, De Jong’s dissertation
(1975) offers guidelines that are still usually observed: Start with a relatively high
crossover rate, a relatively low mutation rate, and a moderately sized population
(though just what constitutes a moderately sized population is unclear). The main
trade-off is obvious: A large population will search the space more thoroughly

Genetic Algorithms O‘ @

but at a higher computational cost. The authors have generally used populations
of between 20 and 200 individuals, depending primarily, it seems, on the string
length of the individuals. It also seems (in the authors’ experience) that the sizes of
populations tend to increase approximately linearly with individual string length
rather than exponentially, but “optimal” population size (if an optimal size exists)
depends on the problem as well.

The initialization of the population is usually done stochastically, though it
is sometimes appropriate to start with one or more individuals that are selected
heuristically. The GA is thereby initially aimed in promising directions, or given
hints. It is not uncommon to seed the population with a few members selected
heuristically and to complete it with randomly chosen members. Regardless of the
process used, the population should represent a wide assortment of individuals.
The urge to skew the population significantly should generally be avoided if the
limited experience of the authors is generalizable.

The calculation of fitness values is conceptually simple, though it can be quite
complex to implement in a way that optimizes the efficiency of the GA’s search
of the problem space. In the sample problem, the value of f{x) varies (quite con-
veniently) from 0 to 1. Lurking within the problem, however, are two drawbacks
to using the “raw” function output as a fitness function: one that is common to
many implementations, the other arising from the nature of the sample problem.

The first drawback common to many implementations is that after the GA has
been run for a number of generations it is not unusual for most (if not all) of the
individuals’ fitness values, after, say, a few dozen generations, to be quite high. In
cases where the fitness value can range from 0 to 1, for example (as in the sample
problem), most or all of the fitness values may be 0.9 or higher. This lowers the
fitness differences among individuals that provide the impetus for effective roulette
wheel selection; relatively higher fitness values should have a higher probability of
reproduction.

One way around this problem is to space the fitness values equally. For example,
in the sample problem the fitness values used for reproduction could be equally
spaced from 0 to 1, assigning a fitness value of 1 to the most fit population member,
0.875 to the second, and 0.125 to the least fit of the eight. In this case the population
members are ranked on the basis of fitness and then their ranks are divided by the
number of individuals to provide a probability threshold for selection. Note that the
value of 0 is often not assigned, since that would result in one population member
being made ineligible for reproduction. Also note that f(x), the function result, is
now not equal to the fitness and that, in order to evaluate actual performance of
the GA, the function value should be monitored as well as the spaced fitness.

Another way around the problem is to use what is called scaling. Scaling takes
into account the recent history of the population and assigns fitness values on
the basis of comparison of individuals’ performance to the population’s recent
average performance. When the GA optimization is maximizing some function,

O Chapter Three—Evolutionary Computation Concepts and Paradigms

scaling involves keeping a record of the minimum fitness value obtained in the last
w generations, where w is the size of the scaling window. If, for example, w = 5,
the minimum fitness value in the last five generations is kept and used, instead
of 0, as the “floor” of fitness values. Fitness values can be assigned a value based
on their actual distance from the floor value, or they can be equally spaced, as
described earlier.

The second drawback is that the sample problem exacerbates the compression
of fitness values situation described earlier because near the global optimum fitness
value of 1, f{x) (which is also the fitness) is relatively flat. There is thus relatively little
selection advantage for population members near the optimum value x = 128. If
this situation is known to exist, a different representation scheme might be selected,
such as defining a new fitness function, which is the function output raised to some
power.

What we have been talking about with respect to both drawbacks is selection
pressure, or how much reproduction advantage is given to population members
with higher fitness values. Too much pressure (advantage) can result in premature
convergence, and not enough may allow the population to wander aimlessly.

Note that the shape of some functions “assists” discrimination near the opti-
mum value. For example, consider maximizing the function f(x) = «2 over the
range 0 to 10; there is a higher differential in values of f(x) between adjacent val-
ues of x near 10 than near 0. Thus a slight change in the independent variable
results in great improvement or deterioration of performance—which is equally
informative—near the optimum.

In the discussion thus far, we have assumed that optimization implies finding a
maximum value. Sometimes, of course, optimization requires finding a minimum
value. Many versions of GA implementations allow for this possibility. Often, it
is required that the user specify the maximum value fpax of the function being

_optimized, f(x), over the range of the search. The GA can then be programmed to
maximize the fitness function fnax — f(). In this case, scaling, described previously,
keeps track of fya.x over the past w generations and uses it as a “roof” value from
which to calculate fitness.

We now consider roulette wheel selection. In genetic algorithms, the expected
number of times each individual in the current population is selected for the new
population is proportional to the fitness of that individual relative to the average
fitness of the entire population. Thus, in the initial population of the sample problem,
where the average fitness was 5.083/8 = 0.635, the third population member had a
fitness value of 0.937, so it could be expected to appear about 1.5 times in the next
population; it appeared twice.

The conceptualization is that of a wheel whose surface is divided into wedges
representing the probabilities for each individual (see Figure 3.5). For instance, one
point on the edge is determined to be the zero point and each arc around the circle
corresponds to an area on the number line between 0 and 1. A random number

Genetic Algorithms O -

Figure 3.5 Roulette wheel selection, in which the probability of an individual being
selected is proportional to its fitness.

is generated, between 0.0 and 1.0, and the individual whose wedge contains that
number is chosen. In this way, individuals with greater fitness are more likely to
be chosen. The selection algorithm can be repeated until the desired number of
individuals has been selected. There are a number of variations to the roulette
wheel procedure. A few of them are reviewed next.

One variation on the basic roulette wheel procedure is a process developed by
Baker (1987) in which the portion of the roulette wheel is assigned based on each
unique string’s relative fitness. One spin of the roulette wheel then determines the
number of times each string will appear in the next generation. To illustrate how
this is done, assume that the fitness values are normalized (sum of all equals 1).
Each string is assigned a portion of the roulette wheel proportional to its normalized
fitness. Instead of one “pointer” on the roulette wheel spun n times, there are n
pointers spaced 1/n apart; the n-pointer assembly is spun only once. Each of the n
pointers now points to a string; each place one of the n pointers points determines
one population member in the next generation. If a string has a normalized fitness
greater than 1/n (corresponding to an expected value greater than 1), it is guaranteed
at least one occurrence in the next generation.

In the discussion thus far, we have assumed that all of the population mem-
bers are replaced each generation. Although this is usually the case, sometimes
it is desirable to replace only a portion of the population—for example, the 80
percent with the worst fitness values. The percentage of the population replaced
each generation is sometimes called the generation gap.

’O Chapter Three—Evolutionary Computation Concepts and Paradigms

Unless some provision is made, with standard roulette wheel selection it is
possible that the individual with the highest fitness value in a given generation
may not survive reproduction, crossover, and mutation to appear unaltered in the
new generation. It is frequently helpful to use what is called the elitist strategy,
which ensures that the individual with the highest fitness is always copied into
the next generation. Most GA applications with which the authors are familiar
implement elitist strategy.

The most important operator in GAs is crossover, based on the metaphor of
sexual combination. Its purpose is to pass on information from population member
to population member. If a solution is encoded as a bitstring, then mutation may
be implemented by setting a probability threshold and flipping bits when a random
number is less than the threshold. As a matter of fact, mutation is not considered
by most GA practitioners to be an especially important operator in GA; it is usually
set at a very low rate and sometimes omitted. Crossover is generally considered
more important because it is considered to play a more important role in guiding
the population toward an acceptable solution.

Crossover is a term for the recombination of genetic information during sexual
reproduction. In GAs, offspring have equal probabilities of receiving any gene
from either parent because the parents’ chromosomes are combined randomly.
In nature, chromosomal combination leaves sections intact—that is, contiguous
sections of chromosomes from one parent are combined with sections from the
other, rather than simply shuffling randomly. In GAs there are many ways to
implement crossover.

The two main attributes of crossover that can be varied are the type of crossover
that is implemented and the probability that it occurs. The following paragraphs
examine variations of each.

A crossover probability of 0.75 was used in the sample problem, and two-point
crossover was implemented. Two-point crossover with a probability of 0.60 to 0.80
is a relatively common choice, especially when Gray coding is used.

The most basic crossover type is one-point crossover, as described by Holland
(1992) and others, for example, Goldberg (1989), and Davis (1991). It is inspired
by natural evolution processes. One-point crossover involves selecting a single
crossover point at random and exchanging the portions of the individual strings to
the right of the crossover point. Figure 3.6 illustrates one-point crossover; portions
to be exchanged are in bold in Figure 3.6(a).

10110/010 10110100
c1001|100 01001010

(a) (b)

Figure 3.6 One-point crossover before (a) and after (b) crossover.

Genetic Algorithms O‘ .@

Another type of crossover that has been found useful is uniform crossover,
described by Syswerda (1989). A random decision is made at each bit position in
the string as to whether or not to exchange (cross over) bits between the parent
strings. If a 0.50 probability at each bit position is implemented, an average of about
50 percent of the bits in the parent strings are exchanged. Note that a 50 percent
rate will result in the maximum disruption due to uniform crossover. Higher rates
just mirror rates lower than 50 percent. For example, a 0.60 probability uniform
crossover rate produces results identical to a 0.40 probability rate. If the rate were
100 percent, the two strings would simply switch places, and if it were 0 percent
neither would change.

Values for the probability of crossover vary with the problem. In general,
values between 60 and 80 percent are common for one-point and two-point
crossover. Uniform crossover sometimes works better with slightly lower crossover
probability. It is also common to start out running the GA with a relatively higher
value for crossover, then taper off the value linearly to the end of the run, ending
with a value of, say, one-half the initial value.

Inversion is a GA operation that is not generally used today. It is function-
ally related to crossover, but involves a single parent producing a single child.
Figure 3.7 illustrates the process, which consists of switching end for end a por-
tion of the parent structure, shown between the cut points in bold in Figure 3.7(a),
in the child. One reason it is not in general use is that it is perceived to destroy the
basic building blocks, or schemata, by inverting them. The term schemata usually
refers to substrings of an individual population member string; a more detailed
description appears in the next section, Schemata and the schema theorem.

In GAs, mutation is the stochastic flipping of bits that occurs in each generation.
Its purpose is to introduce diversity into the population and is generally done bit
by bit on the entire population. It is often done with a probability of something
like 0.001, but higher probabilities are not unusual. For example, Liepins and
Potter (1991) used a mutation probability of 0.033 in a multiple-fault diagnosis
application.

If the population comprises real-valued parameters, mutation can be imple-
mented in different ways. For instance, in an image classification application,
Montana (1991) used strings of real-valued parameters that represented thresh-
olds of event detection rules as the individuals. Each parameter in the string was
range-limited and quantized (i.e., could take on only a certain finite number of
values). If chosen for mutation, a parameter was randomly assigned any allowed
value in the range of values valid for that parameter.

10/0110 10 10101100
(@ (b)

Figure 3.7 Example of string before (a) and after (b) inversion operation.

’O Chapter Three—Evolutionary Computation Concepts and Paradigms

The probability of mutation is often held constant for the entire run of the GA,
although this approach does not produce optimal results in many cases. It can be
varied during the run and, if varied, usually is increased. For example, mutation
rate may start at 0.001 and end at approximately 0.01 when the specified number
of generations has been completed. In the software implementation described on
this book’s web site, a flag in the run file can be set that increases the mutation
rate significantly when the variability in fitness values becomes low, as is often the
case late in the run.

Selecting the number of generations for which the GA is run is often a trial-and-
error process. In general, given enough computing time, the number of generations
is adjusted until the desired response is obtained. Other factors, such as population
diversity and fitness improvement of the best population member, can enter into
the decision to end the GA run. For example, if the best fitness has not changed
for, say, 100 generations, we may choose to terminate the run.

The optimum number of generations is often a function of the problem. For
instance, if the GA is being used to train a neural network, the same caveats apply
as would apply if any neural network paradigm such as back-propagation were
being used. What is desired is optimum results with a test set, so conditions such
as overtraining must be avoided.

Whatever the application, given the stochastic nature of a GA, multiple runs
will probably be desirable. Then the best-performing individuals from each run
can be tested.

This completes our review of basic GA operations. In the next section, we
consider a theorem that provides some insight into how GAs work.

Schemata and the Schema Theorem

Exactly how do GAs do what they do? How is it possible to develop new population
members that, on average, are fitter than the previous generation while searching
new regions of the problem space? Since all that GAs have to work with are (often

'binary) strings, there must be features related to the fitness inherent in the strings
that are used.

The string features that are relevant to the optimization process are called
schemata (singular: schema). The schema theorem describes why the canonical GA
paradigm is able to efficiently direct an optimization process. (This theorem also
applies to other proportional selection methodologies.)

First described for the GA field by Holland (1975, 1992), schemata are similarity
templates for strings. Each schema defines a subset of strings with identical values at
specified string locations. As used here, the word string usually refers to substrings
of an individual population member string, but it can refer to the entire string.
Schemata provide a means by which relevant similarities among the individual
population members can be described and exploited.

Genetic Algorithms Q g @

To define schemata, the alphabet of the strings is used to define values at
specified locations, and an additional character is used as a “don’t care” symbol in
locations where the value doesn’t matter. As is common in the GA literature, the
pound symbol (#) is used in this book as the “don’t care” symbol. Schemata can
thus generally be thought of as comprising an alphabet of a,+ 1 characters, where
a, is the number of characters in the GA representation. In most cases, as in the
example, the GA strings have a binary representation, so the schemata comprise
the characters {0, 1, #}.

As an example, consider the schemata of length 4 that may appear in, say, the
leftmost four positions of the population strings of the sample problem. One such
schema is #000, which has two member strings. That is, two strings match the
schema: 1000 and 0000. The schema 1##0 has four matching strings: 1000, 1010,
1100, and 1110.

Holland argues that adaptation can be thought of in terms of schemata. Genetic
optimization increases the likelihood that the schemata that most improve the
species’ fitness will persist to the next generation. He also argues that crossover
among the fittest members of a population will result in the discovery and survival
of better schemata.

It should be noted that some researchers have recently found errors in Holland’s
argument, and the issue is currently controversial. Even if the proof is shaky, it can
be observed empirically, simply by running GA programs, that crossover is quite
effective, if not always fast, for finding good solutions to highly complex problems.

How many schemata are possible for a string length of / and an alphabet of 4,
characters? In the previous example, for a, = 2, there can be a 0, 1, or # at each string
position, resulting in a total possible number of schemata of 3 x 3 x 3 x 3 = 81.
Generalizing, there are (a,+ 1) total possible schemata for any representation of
length .

Another informative measure is the total number of unique schemata possible
in a population. Consider a specific string of length 8, taken from the example
problem: 01110111. Since each string position can assume the value it has or the
wild-card value, the string belongs to 28 = 256 schemata. Any binary string of
length [thus belongs to 2/ schemata. In a population of # individuals, then, there
are between 2 (if all members are identical) and n2! (if no two individuals are
the same) schemata. Populations with higher diversity have a greater number of
schemata.

Schemata that are part of an individual with high fitness have a higher than
average probability of reproducing. Therefore, highly fit schemata benefit from
differential reproduction relative to fitness. If selection were the only operator used,
though, no new regions of the search hyperspace would ever be explored. Crossover
and mutation provide new schemata to guide the search into new regions.

Crossover is a slightly more complicated matter than reproduction. Consider
two schemata: ##1####0 and ###10###. If both are part of strings of equal

’O Chapter Three—Evolutionary Computation Concepts and Paradigms

fitness, which is more likely to be passed on to the new population? Either one- or
two-point crossover is more likely to disrupt the first, since it is quite likely that a
crossover point will occur between the two string endpoints. The second is more
compact and less likely to be disrupted by a one- or two-point crossover operation.

Mutation is not likely to disrupt either schema, since it typically occurs at a
very low rate. And since it is considered on a bit-by-bit basis, if it does occur it is
just as likely to disrupt one as the other.

Although crossover and mutation are potentially disruptive, they facilitate an
efficient search by introducing innovations. Furthermore, compact (short) sche-
mata that are part of highly fit individuals will, with high probability, appear in
ever-increasing numbers in future generations. The schemata are the elements from
which future generations are built; Holland (1992) named them “building blocks.”
The schema theorem sums up all of this and provides a quantitative estimation of
one aspect of GA performance.

The schema theorem predicts the number of times a specific schema will appear
in the next generation of a GA, given the fitness of the population member(s) con-
taining the schema, the average fitness of the population, and other parameters. The
GA can be thought of as effectively working with a large number of schemata simul-
taneously, ranging from very short schemata to schemata as long as the individual
population members. This has been named “intrinsic parallelism” by Holland. The
schema theorem provides a quantitative prediction for all schemata, regardless of
length. It should be noted that the theorem applies only to “plain vanilla” GAs. As
soon as you do anything special, including something as simple as implementing
elitism, where the fittest population member is automatically copied into the next
generation, the schema theorem no longer applies.

The schema theorem appears as equation 3.1.3

19 1 —Pc@ — 0(S)pm (3.1)
favg

I-1
In equation 3.1, n is the total number of examples of a particular schema S. The
subscripts t+ 1 and ¢ refer to time steps, or generations. The parameter f(S) is
the average fitness of the individual population members that contain the schema
S, while favg is the average fitness of the entire population. The probabilities of
crossover and mutation are p, and p,,, respectively.

The parameter §(S) is called the “defining length” of the schema; it is the
distance between the first and last specific string positions. For example, for the
schema #01#11#, the defining length is 4. The total length of the string is [, while
o(S) is the “order” of the schema, or the number of fixed positions (1s and 0s) in

n:4+1(8) 2 n(S)

3 The derivation of the theorem is beyond the scope of this book. The reader is referred to the
derivation in Goldberg (1989).

Genetic Algorithms O‘ '

the schema. In the preceding example, the order of the schema is 4. The defining
length of a schema is just the number of potential “cut” points within the schema
that could be affected by crossover.

Summarized, equation 3.1 states that the expected number of occurrences of
schema S in generation ¢ + 1 is the number in the current generation multiplied
by the average schema fitness divided by the average population fitness, less the
disruptive effects caused by crossover and mutation. Schemata with above-average
fitness values will be represented an increasing number of times as generations
proceed. Those with below-average values will be represented less and less; they
will “die out,” just as happens in nature.

The schemata with small values for defining length are disrupted least by
crossover, so the most rapidly increasing representation in any population will
be of highly fit, short schemata, called building blocks, which will experience
exponential growth. Building blocks illustrate that it is often beneficial to keep
some parts of a solution intact. This is the most important consequence of the
schema theorem.

Note that the schema theorem, by itself, does not specify how well a GA will
solve a particular problem. It should also be noted that there is controversy in
the EC community with respect to the usefulness and validity of the theorem. We
include it, as have other recent books dealing with GAs such as (Mitchell 1996),
(Pedrycz 1998), and (Haupt and Haupt 1998), because we believe it provides useful
insights into GA processes.

We’ve now told you what we think you need to know about GAs, how they
work, and how to apply them to practical problems. All that is left are a few final
observations.

Comments on Genetic Algorithms

In sum, a genetic algorithm operates by evaluating a population of bitstrings
(there are real-numbered GAs, but binary implementations are more common)
and selecting survivors stochastically based on their fitness; thus, fitter members
of the population are more likely to survive. Survivors are paired for crossover,
and often some mutation is performed on chromosomes. Other operations might
be performed as well, but crossover and mutation are the most important ones.
Sexual recombination of genetic material is a powerful method for adaptation.
In Chapter 2, we discussed three spaces of adaptation: the parameter space,
the function space, and the fitness space. Much of the literature in evolutionary
computation treats the function space as if it were identical to the fitness space; that
is, the function output provides a number that indicates how close to the global
optimum the search algorithm is. There are, however, dangerous ambiguities in
the confusion of these two quantities. The fitness landscape can be very different
depending on the fitness function utilized. The fitness measure should probably

@ ’O Chapter Three—Evolutionary Computation Concepts and Paradigms

be scaled between 0 and 1 when possible, making it easy to understand as well as
an indication of the probability of a population member’s survival.

The material on genetic algorithms in this chapter provides only an introduction
to the subject. We suggest that you explore GAs further by sampling the references
cited in this section. With further study and application, it will become apparent
why GAs have such a devoted following. In the words of Davis (1991):

[T]here is something profoundly moving about linking a genetic algorithm to
a difficult problem and returning later to find that the algorithm has evolved a
solution that is better than the one a human found. With genetic algorithms we
are not optimizing; we are creating conditions in which optimization occurs, as
it may have occurred in the natural world. One feels a kind of resonance at such
times that is uncommon and profound.

This feeling, of course, is not unique to experiences with GAs; using other evo-
lutionary algorithms can result in similar feelings. An implementation of a genetic
algorithm is presented in Chapter 4. The software for the GA implementation is
on the book’s web site.

That’s it for genetic algorithms. Let’s now turn our attention to an evolutionary
computation paradigm that eschews crossover-—evolutionary programming.

Evolutionary Programming

Evolutionary programming (EP) is similar to genetic algorithms in its use of a pop-
ulation of candidate solutions to evolve an answer to a specific problem; it differs
in its concentration on top-down processes of adaptive behavior. The emphasis
in evolutionary programming is on developing behavioral models, that is, models
of observable system interactions with the environment. Theories of natural evo-
lution heavily influence the development of evolutionary programming concepts
and paradigms.

Evolutionary programming is derived from the simulation of adaptive behavior
in evolution: GAs are derived from the simulation of genetics. The difference is
perhaps subtle but important. Genetic algorithms work in the genotype space of
the information codings, while evolutionary programming (EP) emphasizes the
phenotype space of observable behaviors (Fogel 1990). EP is therefore directed
at evolving “behavior” that solves the problem at hand; it mimics “phenotypic
evolution.”

Evolutionary programming is a more flexible approach to evolution than some
of the other paradigms. Operators are freely adapted to fit the problem at hand.
Generally, the paradigm relies on mutation—not sexual recombination—to pro-
duce offspring. Whereas evolution strategies systems usually generate many more

Evolutionary Programming O‘ @

offspring than parents (a ratio of seven to one is common, as we will see in the
next section), EP usually generates the same number of children as parents. Parents
are selected to reproduce using a tournament method; their features are mutated
to produce children who are added to the population. When the population has
doubled, the members—parents and offspring together—are ranked, and the best
half are kept for the next generation.

Now that we have a rough idea of what EP entails, let’s see how to implement
it in an application. After that, we’ll look at examples of specific application areas.

Evolutionary Programming Procedure

The process for implementing EP will look familiar to you; the process itself is
similar to the one we used for GAs. The procedure generally followed when imple-
menting EP appears in the following list:

Initialize the population.

Expose the population to the environment.

Calculate fitness for each member.

Randomly mutate each “parent” population member.
Evaluate parents and children.

Select members of the new population.

N e W

Go to step 2 until some condition is met.

The population is randomly initialized. For problems in real (computable) space,
each component variable of each individual’s vector is generally a real value that
is constrained to some dynamic range. In the two EP examples that follow, the
variables (vector elements) represent finite state machine parameters and function
variables, respectively. The number of population members is problem dependent,
but is often a few dozen to a few hundred, as in to GA populations.

To better understand the remaining steps in the EP procedure, two examples
are examined. These two examples are representative of two main types of problem
to which EP paradigms are often applied. The first involves time series prediction
using a finite state machine. The second is the optimization of a mathematical
function.

Finite State Machine Evolution for Prediction

Remember that prediction is one of the attributes of computational intelligence sys-
tems we discussed in Chapter 2. Evolutionary programming paradigms are some-
times used for problems involving prediction. One way to represent prediction of

’O Chapter Three—Evolutionary Computation Concepts and Paradigms

the environment is with a sequence of symbols. As with GAs, the symbols must
be members of a finite alphabet. A system comprising a finite state machine, for
example, can be used to analyze a symbol sequence and to generate an output that
optimizes a fitness function, which often involves predicting the next symbol in
the sequence. In other words, a prediction is used to calculate a system response
that seeks to achieve some specified goal.

A finite state machine is defined as “a transducer that can be stimulated by a finite
alphabet of input symbols, can respond in a finite alphabet of output signals, and
possesses some finite number of different internal states” (Fogel 1991). The input
and output symbol alphabets need not be identical. The initial state of the machine
must be specified. It is also necessary to specify, for each state and input symbol
combination, the output symbol and next state. Table 3.2 specifies a three-state
finite state machine with an input alphabet of two characters and three possible
output symbols.

Finite state machines are essentially a subset of Turing machines, developed
by the English mathematician and computer science pioneer Alan Turing (1937).
Turing machines are capable, in principle, of solving all mathematical problems
(of a defined general class) in sequence. Finite state machines, as used in EP, can
model, or represent, an organism or system.

Unlike GAs, where crossover is an important component of producing a new
generation, mutation is the only operator used in EP systems. Each member of
the current population typically undergoes mutation to produce a “child.” Given
the specification of the finite state machine, and its operation, five main types of
mutation can occur: As long as more than one state exists, the initial state can
be changed and/or a state can be deleted. A state can be added. A state transition
can be changed. Finally, an output symbol for a given state-input symbol can be
changed.

Although the number of children produced by each parent is a system param-
eter, each “parent” typically produces one “child,” and the population becomes
twice its original size after mutation. After measuring the fitness of each structure,
the best half are kept, maintaining the population size at a constant value from

Table 3.2 Specification Table for a Three-
State Finite State Machine

Existing state A ABBCC
Input symbol 101010
Output symbol YY X ZZY
Next state A B CBASB

Source: Fogel (1991).

Evolutionary Programming O‘.@

generation to generation. At some point in some applications, it is necessary to
predict the next symbol in a sequence. The structure with the highest fitness is
chosen to generate this new symbol, which is then added to the sequence. (It is
also possible to specify the problem so that the symbol predicted is farther in the
future than one time step.)

Unlike other evolutionary paradigms, in EP systems mutation can change the
size of structures (states can be added and deleted). This fact and the potential for
changing state transitions lead to another consideration: The specification table
for a finite state machine can have unfilled blanks. There can be mutations that
add states that are never utilized in a given problem; Fogel (1991) calls these
“neutral mutations.” It is also possible to create the situation via mutation where
a specified state transition is not possible because the new state has been deleted.
These mutations and others, such as changing output symbols, tend to have less
effect the more states the machine has, but can still cause fatal errors in the finite
state machine if they are not handled properly.

Although Fogel (1995) usually allows a variable-length structure, it is also
possible to evolve a finite state machine with EP using a fixed structure. First,
the maximum number of states must be determined. For purposes of illustration,
using the three-state machine defined earlier as an example, we will assume that
no more than four states are allowed.

Each state can then be represented by a fixed 5-bit binary element as follows.
The first bit could represent the “activation” of the state: if it is 1, the state is
active; if 0, the state is inactive (that is, it does not exist). The next two bits can
represent the output symbol (X, Y, or Z) for an input of 0, and the final two bits
can represent the output symbol for an input of 1. (Note that our example above
has only three output symbols. With binary representation, we have to allow for
four and handle a nonexistent symbol the way nonexistent states are handled.) We
thus require a total element length of (1 + n; * b,) bits, where n; is the number
of possible inputs and b, is the number of bits needed to represent the output
symbols.

The population in our example is thus initialized with individuals 20 bits long.
For the example it may be a good idea to specify that only individuals with at least
two active states can be allowed in the initial population.

A child is now generated for each parent. Given the five possible kinds of
mutation outlined earlier, one possible mutation procedure is:

1. For each individual, generate a random number from 0 to 1.

2. If the number is between 0.0 and 0.2, change the initial state; if between
0.2 and 0.4, delete a state, etc.

3. The mutation selected in step 2 is done with a flat probability across all
possibilities. For example, if the initial state is to be changed and there

@4’0 Chapter Three—Evolutionary Computation Concepts and Paradigms

are a active states, then one active state is selected to be the initial state;
each active state has the probability of 1/a of being selected.

4. Infeasible state transitions are modified to be feasible. If a state transition
to an inactive state has been specified, one of the active states is selected
to be the object of the transition. As above, each active state has the
probability of 1/a of being selected.

5. Evaluate fitnesses and keep the best 50 percent, resulting in a new
population of the same size.

This scenario is only one of many possibilities. For example, it might be desirable
to lower the probability ranges (the ranges between 0 and 1 in step 2) for adding
and deleting states and correspondingly increase the mutation probability ranges
for changing input symbols and/or output symbols. It is also possible to evolve the
ranges, number of states, and so on.

One example of finite state machines is the development by Fogel (1995) using
evolutionary programming of finite state machines that do very well at playing
Axelrod’s prisoner’s dilemma game. As described in Kennedy, Eberhart, and Shi
(2001):

The prisoner’s dilemma is a situation where two interacting players have opposite,
symmetrical motives. Each player has the choice to cooperate or compete with the
opponent: if both cooperate, their payoffs are high, and if both compete payoffs are
low. If one competes (the technical term is defecting) while the other cooperates,
the defector receives a very high reward while the cooperator’s payoff is very low—
the lowest in the game, called the “sucker’s payoff.” When the game is played just
one time, the most reasonable thing to do is to defect, as there is no basis for
trusting the other player, and there is nothing to gain by being a sucker.

Usually though, the game is iterated, a series of games is played. A player would
score the highest if he always defected while his partner always cooperated—but
of course no sensible player would continue to cooperate while being hammered
repeatedly by a competitive opponent. Repeated trials require some consideration
of strategy, for instance, a player might end up with the highest score if he lulled his
opponent into cooperating, then struck with a defection, then lulled and defected,
and so on. It might be that the best approach would be just to cooperate from the
start—except that nothing then prevents the opponent from taking advantage. The
simple game then produces opportunities for many kinds of strategies. Axelrod
roughly grouped these into two kinds: “nice” strategies, which rely on cooperation
to keep the level of payoffs high for both parties, and strategies he refers to
as “mean” (specifically that includes only the all-defect strategy) or “not nice.”
Strategies that are not nice include ones that might try to use cooperation as a
way to make the opponent vulnerable, then defect for the higher payoff.

The payoff function is that used by Axelrod (1980): If both cooperate, each
player gets 3 points; if both defect, each player gets 1 point; if one defects and one

Evolutionary Programming O‘ .@

cooperates, the cooperating player gets no points while the defecting player gets
5 points.

Fogel allowed the finite state machines to have up to eight states. This doesn’t
represent all possible behaviors & la Axelrod, but it does allow a dependence on
sequences of greater than third-order. Fogel was able to evolve finite state machines
that had average scores slightly greater than 3.0, which is the score that is achieved
through mutual cooperation alone.

Figure 3.8 is the diagram for a seven-state finite state machine (one of many
evolved by Fogel) to play prisoner’s dilemma. The start state is state 6, and play is
begun by cooperating. In the table, “C” denotes cooperate and “D” denotes defect.

C.C/C
D,C/C
D,b/D

= =Start state
C=Cooperate
D=Defect D,C/C C,D/D

C,c/C

Figure 3.8 A seven-state finite state machine to play prisoner’s dilemma. Source: Fogel 1995;
(© IEEE. Used with permission.

’O Chapter Three—Evolutionary Computation Concepts and Paradigms

The input alphabet comprises [(C,C), (C,D), (D,C), (D,D)], where the first letter
represents the finite state machine’s previous move and the second the opponent’s.
So, for example, a label of C,D/C on the arrow leading from state X to state Y
means that if the system is in state X and on the previous move the finite state
machine cooperated and the opponent defected, then cooperate and transition to
state Y. Sometimes, more than one situation can result in the same state transition.
For example, in Figure 3.8, assume the machine is in state 6, in which case if the
machine and opponent both defected on the previous move, the machine defects
(D,D/D) and transitions to state 2. Likewise, a transition from state 6 to state
2 occurs if the machine cooperated and the opponent defected on the previous
move; the machine cooperates in this case (C,D/C) as it moves into state 2.

Now that we’ve seen how to apply evolutionary programming to finite state
machines used for prediction, let’s look at another main area of application, func-
tion optimization.

Function Optimization

The second example of a type of problem to which EP paradigms are applied is
function optimization. (Remember what we said previously about optimization:
Usually we really don’t find the optimum and often we don’t know much about
where it is or if it even exists. What we usually find is sufficiently good solutions to
problems.) The following example features the modification of each component
of the evolving individual structures with a Gaussian random function.

Consider, for the example, optimizing a function with two variables such as
F(x,y) = x* + y*. The extremum in this case is a minimum at x = y = 0. The first
step is to establish a random initial population and then to specify the dynamic
range of the two variables. One plausible approach might be to start with an initial
population of 50 individuals, each variable of which is initialized randomly over the
range [—5, 5]. The fitness value of each individual is then calculated. The inverse
of the Euclidean distance from the origin is one reasonable fitness measure.

Each “parent” individual is mutated to create one “child.” The mutation method
used by Fogel (1991) is to add a Gaussian random variable with zero mean and
variance equal to the parent’s error value (the Euclidean distance from the origin
in this example) to each parent vector component. The fitness of each child is then
evaluated the same way as the parents’.

The process of mutation is illustrated in equation 3.2:

Pi+kj = Pi + N0, Bigp, +2)),Vj = L., m, (3.2)

where
pi,j is the /1 element of the i organism
N(u, 0?) is a Gaussian random variable with mean x and variance ¢?

Evolution Strategies Q‘@

@y, is the fitness score for p;
p; is a constant of proportinality to scale ¢,
z; represents an offset

For the function used in the example, it has been shown that the optimum rate of

1.224+/%)
n

convergence is represented by o = , where # is the number of dimensions
(Biack and Schwefel 1993).

Another way to perform mutation involves a process known as self-adaptation.
In this variation, the standard deviations (and rotation angles, if used) are modified
based on their current values. As a result, the search adapts to the error surface
contours (Fogel 1995).

Fitness, however, is sometimes not used directly by itself to decide which half
of the augmented population will survive to the next generation. Tournament
selection is used, with each individual competing with a number, say 10, of other
individuals in the following way.

For each of the 10 competitions with other individuals, a probability of “scoring
a point” is set equal to the error score of the opponent divided by the sum of the
individual and opponent errors. For instance, if the error of the individual is 2
and that of the opponent (one of 10 opponents) is 3, the probability of scoring a
point is 3/5, or 60 percent. The total score is tallied over the 10 competitions for
each individual, and the one-half of the population with the highest total scores
is selected for the next generation.

This concludes our discussion of using evolutionary programming for opti-
mization. (Keep in mind that, as we discussed previously, we believe that it really
isn’t optimization most of the time.)

Comments on Evolutionary Programming

The implementation of evolutionary programming concepts seems to vary more
from application to application than GA implementations. A number of factors
contribute to the differences in approach, but the most important factor seems to
be the top-down emphasis of EP. Another is the fact that selection is a probabilistic
function of fitness rather than being tied directly to it. One developer of EP (Fogel
1991) stated that EP is at its best when it is used to optimize overall system behavior.

Evolution Strategies

We begin our look at evolution strategies (ES) with the concept of the evolution
of evolution. As a biological analogy, evolution strategies model problem solutions
as species rather as they have been described earlier, as populations of normally
distributed multivariate points scattered around a fitness landscape. The aspect of

’O Chapter Three—Evolutionary Computation Concepts and Paradigms

these populations that permits them to adapt to their environment (in research
this is often simulated by a test function or hard optimization problem) is their
ability to evolve their own evolvability.

If evolutionary programming is based on evolution, then, reasons Rechenberg
(1994), the field of evolution strategies is based on the evolution of evolution. Since
biological processes have been optimized by evolution, and evolution is a biological
process, then evolution must have optimized itself. Evolution strategies, although
utilizing forms of both mutation and crossover (usually called “recombination” in
the evolution strategies literature), have a slightly different view of both operations
than either evolutionary programming or genetic algorithms.

There are many similarities between evolution strategies and evolutionary pro-
gramming, and in fact the two paradigms are moving closer together as researchers
exchange techniques across the Atlantic. Evolution strategies, like evolutionary pro-
gramming, take a top-down view. They also stress the phenotypic behavior as
opposed to the genotypic. This means, for example, that the phenotypic behavior
ramifications of recombination are of importance, rather than what happens to
the genotypes. ES paradigms also usually use real values for the variables rather
than the binary coding favored in genetic algorithm implementations.

In evolution strategies the goal is to move the mass of the population toward
the best region of the landscape. Through application of the simple rule, “survival
of the fittest,” the best individuals in any generation are allowed to reproduce; their
offspring resemble them but with some differences introduced through mutation.
An individual is a potential problem solution characterized by a vector of numbers
representing phenotypic features. Mutation is performed by adding normally dis-
tributed random numbers to the parents’ phenotypic coordinates, their position
in the search space, so that the next generation of children explores around the
area in the landscape that has proven good for their parents.

The amount of mutation—the evolvability of the population—is controlled
in an interesting way in ES. An individual is typified by a set of features and
by a corresponding set of strategy parameters. These are usually variances or
standard deviations (the square root of the variance), though other statistics are
sometimes used. The strategy parameters are used to mutate the feature vectors
for the individual’s offspring; for instance, standard deviations can be used to
define the variability of the normal distribution used to perturb the parent’s fea-
tures. Random numbers can be generated from a probability distribution with
a mean of zero and a standard deviation defined by the strategy parameters;
adding these random numbers to the values in the parent’s feature vector simu-
lates mutation in the offspring. They resemble the parents but differ from them
to some controlled extent. Since the evolutionary process is applied to the strategy
parameters themselves, the range of mutation, or the variability of the changes
introduced in the next generation, evolves along with the features that are being
optimized.

Evolution Strategies Q‘@

Intuitively it can be seen that increasing the variance is like increasing the
step-size taken by population members on the landscape. High variance equals
exploration and wide-ranging search for good regions of the landscape, and it
corresponds to a high rate of mutation; low variance is exploitation, focused search
within regions. The strategy parameters stochastically determine the size of the
steps taken when generating offspring of the individual; a large variance means
that large steps are likely to be taken, that the children are likely to differ greatly from
their parents. As the children are randomly generated from a normal distribution,
though, a large variance can produce a small step size, and vice versa. It is known
that 68.26 percent of random normal numbers generated fall within one standard
deviation, 95 percent will fall within 1.96 standard deviations of the mean, and
so on. So widening the standard deviation widens the dispersion of randomly
generated points.

Evolution strategies’ unique view of mutation includes the concept of an evo-
lution window. The theory behind the concept is that mutation operations result
in fitness improvement only if they land within a defined step-size band, or win-
dow (Rechenberg 1994). Crossover and mutation operations that land outside the
evolution window are not helpful. A theoretical derivation of Rechenberg states that
if mutations are carried out with an optimal standard deviation, the probability of
a “successful” (helpful) mutation is about one-fifth. Evolution strategies carry the
idea of the evolution window still further. They assert that dynamic adjustment
of the mutation size to a dynamic evolution window can provide benefits called
“meta-evolution,” or evolution of the second kind (Rechenberg 1994).

Like evolutionary programming, ES employs Gaussian noise functions with
zero mean to determine mutation magnitudes for the variables. For the strategic
parameters, log normal distributions are sometimes used as mutation standard
deviations.

Evolution strategies theory states that mutation rates should be inversely pro-
portional to the number of variables in the individual population member and
should be proportional to the distance from the function optimum. In real-world
applications, of course, the exact value of the optimum is usually unknown. How-
ever, some knowledge often exists about the optimum. It is often known within
an order of magnitude, sometimes to within a factor of two or three. Even limited
knowledge such as this can be helpful in guiding the evolution strategy search.

In ES, recombination manipulates entire variable values. This is usually done
using one of two methods. The first and more common method (the local method)
involves forming one new individual using components (variables) from two ran-
domly selected parents. The second method, the global method, uses the entire
population of individuals as potential sources from which individual components
for the new individual can be obtained.

Each of the two methods, local and global, is generally implemented in one of
two ways. The first is called discrete recombination, which consists of selecting the

’O Chapter Three—Evolutionary Computation Concepts and Paradigms

parameter value from either parent. In other words, the parameter value in the child
equals the value of one parent. The second way, called intermediate recombination,
involves setting each parameter value for a child at a point between the values
for the two parents; typically, the value is set midway between those values. If the
parents are denoted by A and B, and the ith parameter is being determined, then the
value established using intermediate recombination is x7*¥ = x4, ; 4+ C(x, i — x4,),
where C is a constant, usually set to 0.5 to yield the midpoint between the two
parent values.

Thus we see that evolution strategies contain a component representing sexual
combination of features. In intermediate recombination, for instance, the children’s
features are computed as a kind of average of the two parents’ features; in discrete
recombination, individual features may come intact or mutated from one parent
or the other.

In the experience of ES practitioners, the best results often seem to be obtained
by using the local version of discrete recombination for the parameter values and
the local version of intermediate recombination for the strategy parameter(s). In
fact, Bick and Schwefel (1993) report that implementation of strategy parameter
recombination is mandatory for the success of any ES paradigm.

All of this is well and good; we know now how to transform individual popu-
lation members using recombination and mutation. How, then, do we select the
members of the next generation? How do we accomplish selection?

Selection

In evolution strategies, as in all Darwinian models, an individual’s fitness deter-
mines the probability that it will reproduce in the next generation. There can be
many ways to decide this; for instance, we could rank all the individuals from best
to worst, chop off the bottom of the list, and save only the proportion that we
want to survive. This proportion depends on how many offspring they will have,
assuming the population size remains constant from one generation to the next.

In nature, of course, there is no ranking of individuals; the survival of each
depends on the environment and that individual’s chance encounters. Imagine a
snowshoe hare that has a mutation that makes its fur turn black in the winter.
In the snow this hare is more visible than its camouflaged cousins. It might just
happen, though, that no predators come into the area where this hare lives, so
they don’t see it and it subsequently reproduces, passing on the mutation. It can
happen; it is just that the likelihood is reduced relative to the alternative, which is
that a predator that comes into the area immediately notices this contrastive morsel
and eats him rather than his harder-to-see littermates. In nature, the measure of
fitness has a great amount of error in it; possible improvements are commonly
lost.

This suggests that selection needs to be probabilistic—you can’t just propa-
gate the best so-many individuals to the next generation. A lesson learned from

TN
Evolution Strategies O‘ 79

simulated annealing is that sometimes a step backward is productive in the long
run. In the same way, natural evolution lets some less-fit individuals reproduce,
and it is quite likely that eventual improvement is transmitted through the less
obvious route. Evolutionary computation researchers have come up with a num-
ber of techniques for stochastically selecting survivors for the next generation. In
order to better model the stochastic aspect of natural selection—what could be
called survival of the luckiest—several computational methods of selection have
been devised. Common methods include ranking, roulette wheel selection, and
tournament selection.

Ranking is the simplest procedure, though it does not have the advantage of
allowing selection of less-fit individuals. The population is sorted from best to
worst, and individuals above the cutoff in the list are chosen. One salient objection
to this method is that it requires global information. Knowledge of all fitness values
is needed in order to determine the rank of any individual. Obviously, nature does
not work this way; only local information is used in natural selection, and errors in
ranking—occasions where more-fit members fail to reproduce or less-fit members
succeed—contribute to the adaptation of the population. This might be a weaker
argument than it seems, though; there are plenty of times when a computer needs
to use global information in order to accomplish things that nature does without
it. For instance, to detect collisions in virtual worlds requires computation of the
relative positions of all objects in the world, but in the physical world things behave
appropriately without any such computations. Running into a brick wall stops you,
period. So evolution in a computer program might be acceptable even if it required
global information as a way to accomplish an end.

Roulette wheel selection was discussed in the section on genetic algorithms.
Recall that, in roulette wheel selection, each individual is given a probability of
selection proportional to its fitness. Tournament selection was discussed in the
section on evolutionary programming.

Tournament selection uses local competitions to determine survivors. In its
simplest form, individuals are paired at random and the better member of each
pair is selected to reproduce. This can be repeated until the next generation is
sufficiently populated. Other tournament methods pair up individuals in some
number of competitions, adding a point to their score each time they win, and
then keep individuals with more than a critical number of points; other methods
select subgroups at random from the population and allow the one with the highest
fitness to survive to the next generation.

The results of tournament selection correlate with the results of ranking—that
is, fitter individuals survive in general. One-on-one, winner-take-all tournaments
allow the most error in terms of less-fit individuals being selected; while the very
best individual is guaranteed to survive and the very worst is guaranteed not to, it
is entirely possible that the next-to-worse individual is paired with the worst one
and thus is selected. Repetitive and subgroup tournaments decrease the amount of
error while increasing the correlation with ranking results, until an algorithm where

’Q Chapter Three—Evolutionary Computation Concepts and Paradigms

each individual engages in n-1 unique tournaments, where # is the population size,
is exactly equivalent to ranking.

Differences exist between evolution strategies and other paradigms of evolu-
tionary computation with respect to selection. ESs generally operate with a surplus
of descendants. Schwefel (1994) describes the most common versions of ES selec-
tion, known as the (y4, 4) and (4 + 4) ES. In both versions, the number of children
generated from y parents is 4 > u. Commonly used is a i/u ratio of 7. In the
original (1 + 1) ES, one parent produces one offspring, with only the fitter of the
two surviving. This version is seldom used now.

The difference between the “plus” and “comma” versions comes in the next
step. In the (y, A) version, the y individuals with the highest fitness values out of the
4 children are selected. Note that the u parents are not eligible for selection in this
scheme, only the children. In the (x+ 2) version, the best y individuals are selected
from a pool of candidates that includes both the u parents and the 4 children—that
is, the union of the two groups of individuals. Whichever method is used, the y
individuals that are left have thus been selected completely deterministically and
have equal probabilities to mate and have descendants in the next generation.

The discussion of genetic algorithms mentioned the elitist strategy, in which
the individual in each generation with the highest fitness is guaranteed to survive
to the next generation. This individual may be carried over from the previous
generation or may appear as a result of operations in the current one. As can
be seen from the preceding discussion, the (u + 1) version implements elitism,
as the most-fit parent will be retained, while the (4, 4) version does not. Elitism
is generally considered helpful in GA applications. With evolution strategies,
however, the (y, 4) version is generally observed to yield better performance (Béck
and Schwefel 1993).

The following list summarizes the procedure used in most evolution strategies.

Initialize population.

Perform recombination using the y parents to form 4 children.
Perform mutation on all children.

Evaluate 4 or u + 4 population members.

Select y individuals for the new population.

AR o

If the termination criterion is not met, go to step 2; otherwise, terminate.

Key Issues in Evolution Strategies

In sum, in evolution strategies mutation is applied to the parent’s features to
generate children that resemble the parent but differ stochastically from it. Each
survivor’s positional coordinates are entered as the mean of a normal distribution,

Genetic Programming O 0

and the corresponding strategy parameter is entered as the variance or standard
deviation, and a child vector of numbers is generated for both positions and strategy
parameters. These are evaluated, selection is applied, and the cycle repeats. The
evolution of strategy parameters suggests the evolution of evolvability, adaptation
of the mutability of a species as it searches for, then settles into, a niche.

This completes our review of evolution strategies. Recall that evolutionary pro-
gramming, the area we discussed just prior to evolution strategies, does not use
crossover, only mutation. The area we discuss next, genetic programming, empha-
sizes crossover, relegating mutation to a minor supporting role. Genetic program-
ming also uses a somewhat different structure than we’ve seen up to now.

Genetic Programming

The three areas of evolutionary computation discussed thus far have involved indi-
vidual structures that are defined as strings. Some are strings of binary values and
some include real-valued variables, but all are strings, or vectors. The genetic pro-
gramming (GP) paradigm deals with evolving hierarchical computer programs that
are generally represented as tree structures. Furthermore, while individual struc-
tures used up to this point have generally been of fixed length, programs being
evolved by genetic programming generally vary in size, shape, and complexity.

One perspective is that GPs are a subset of GAs that evolve executable programs.
Differences between GPs and generic GAs include:

® Population members are executable structures (generally computer
programs) rather than strings of bits and/or variables.

® The fitness of an individual population member in a GP is measured by
executing it. (Generic GAs’ measure of fitness depends on the problem
being solved.)

The goal of a genetic programming implementation is to “discover” a computer
program within the space of potential computer programs being searched that
gives a desired output for a given set of inputs. In other words, a computer is
figuring out how to write its own code.

Each program is represented as a parse tree, where the functions defined for
the problem appear at the internal tree points and the variables and constants
are located at the external points (leaves). The nature of the computer programs
generated makes genetic programming inherently hierarchical.

In preparation for running a genetic programming implementation, five steps
are carried out.

@ ’O Chapter Three—Evolutionary Computation Concepts and Paradigms

Specify the terminal set.
Specify the function set.
Specify the fitness measure.

Select the system control parameters.

o W

Specify termination conditions.

The terminal set comprises the variables (the system state variables) and constants
associated with the problem being solved. For example, consider a “cart center-
ing” problem, where the goal is to center a cart in the least amount of time on a
one-dimensional frictionless track by imparting fixed-magnitude forces that accel-
erate the cart left or right. The variables are the cart’s position x and velocity v.
A constant such as —1 is also an appropriate terminal for this problem (see Koza
1992, Chapter 6).

The functions selected for the function set are limited only by the program-
ming language implementation used to run the programs evolved by the GP
implementation. They can thus include mathematical functions (cos, exp, etc.),
arithmetic operations (+, *, etc.), Boolean operators (AND, NOT; etc.), conditional
operators such as if-then—else, and iterative and recursive functions. Each function
in the function set requires a certain (fixed) number of arguments, known as the
function’s arity. (Terminals are functions with arity 0.) One task of specifying the
function set is to select a minimal set that is capable of accomplishing the task.

This leads to two properties that are desirable in any GP application: closure
and sufficiency. For the closure property to be satisfied, each function must be able
to successfully operate on any function in the function set and on any value of
any data type assumable by a member of the terminal set.

This occasionally requires definition of special cases for functions. For example,
in arithmetic functions division by 0 can be defined for the purposes of a problem
as being equal to some constant value such as 1. If Boolean values returned by
conditional operators are not acceptable, the conditional operator can be redefined
in one of two ways: (1) Numerical values (such as 0 and 1) can be returned rather
than Boolean values (such as F and T), or (2) conditional branching and conditional
comparative operators can be defined to execute one of their arguments depending
on the evaluation of the test involving an external state or condition or on the
comparison test outcome. Functions that are redefined so as to return acceptable
values are called protected functions. If the closure property is not satisfied, some
method must be specified for dealing with infeasible population members and
with members whose fitness is not acceptable.

For the sufficiency property to be satisfied, the set of functions and set of
terminals must be sufficiently extensive to allow a solution to be evolved. In other
words, some combination of functions and terminals must be capable of producing

Genetic Programming O* e

a solution. Some knowledge of the problem is generally required to be able to
judge when the sufficiency property is met. In some problem domains, sufficiency
is relatively easy to determine. For example, if Boolean functions are being used, it
is well known that the function set comprising AND, OR, NOT is sufficient for any
problem. For other problems, it can be relatively difficult to establish sufficiency.

Having more than the minimally sufficient number of functions has been found
to degrade performance somewhat in some cases and to significantly improve it in
others. Having too many terminals, however, usually degrades performance (Koza
1992).

The fitness measure often is selected to be inversely proportional to the error
produced by program output. Other fitness measures are also common, such as
the score a program achieves in the game.

The two main control parameters are the population size and the maximum
number of generations that will be run. Other parameters used include reproduc-
tion probability, crossover probability, and the maximum size allowed (as measured
by the depth, or number of hierarchical levels) in the initial and final program
populations.

The termination condition is usually determined by the maximum number of
generations specified. The winning program is usually the best program (in terms
of the fitness measure) created thus far in any generation.

After the five preparatory steps for running a GP are completed, the GP process
can be implemented as follows:

1. Initialize the population of computer programs.
2. Determine the fitness of each individual program.

3. Carry out reproduction according to fitness values and reproduction
probability.

4. Perform crossover of subexpressions.

5. Go to step 2 unless termination condition is met.

The population is initialized with randomly generated computer programs com-
prising functions and terminals from the selected sets. In other words, each pro-
gram in the initial population is created by building a rooted tree structure with
randomly selected functions and terminals from the defined sets. No restrictions
are placed on the size or shape (configuration) of acceptable programs, other than
the maximum depth, or number of hierarchical levels, allowed. Each structure
created is a hierarchically structured executable program. A population of 500 has
been reported to be sufficient for most problems solved with GP implementations
(Koza 1992).

@ ’O Chapter Three—Evolutionary Computation Concepts and Paradigms

A

Figure 3.9 Example of root of randomly created program in initial population. Other
functions continue down from the two branches.

The root of each program tree is a function randomly selected from the function
set. The root of a randomly created program appears at the top of Figure 3.9. The
number of lines, or branches, emanating from the function is equal to its arity. In
the figure, the multiplication function “*” takes two arguments.

Once the root function is selected, program population can be created in a
number of ways. Following is a description of what Koza (1992) calls the ramped
half-and-half method. It makes use of two approaches to building program trees:
the “grow” method and the “full” method.

In the grow approach, a random selection is made from the combined set of
functions and terminals for placement at the end of each line emanating from
the root function. If a function is selected, program creation continues recursively
with selections from the combined set. Whenever a terminal is selected, a leaf,
or endpoint, of the tree is established. Program creation along that line is thus
terminated. Except for the root function, therefore, all functions are at internal tree
locations. The leaves of the tree are all terminals. Any time the maximum depth
(number of hierarchical levels) is reached, the random selection is limited to the
terminal set. When the grow method is used, the program tree configuration is
guided by the ratio of the number of functions to the number of terminals. When
the ratio is higher, the average depth of each limb is higher.

In the full approach, each limb of the program tree extends for the full depth.
Only functions are selected for placement at the end of each line until the maximum
depth is reached, at which time only terminals are selected. All programs created
using the full approach thus have identical fully developed structures.

The ramped half-and-half approach produces a population of diverse sizes
and shapes. Koza (1992) reports using this method for almost all problems except
those involving Boolean functions. The method consists of creating programs with
evenly distributed depth parameters ranging from 2 to the maximum depth. For
example, if the maximum depth is 5, 25 percent of the population will have depth
2; 25 percent, depth 3, and so on. Within each subpopulation of a given depth,
one-half of the programs are created using the grow approach, one-half using the
full approach.

The fitness of each program is generally calculated for a number of cases, with
the average fitness value over the cases being defined as a program’s fitness. For
example, if a program were being evolved to calculate y as some function of x,
each program might be tested over 50 or 100 cases, each representing a value of x

Genetic Programming O‘ e

in the domain. It is important to use a sufficient number of cases to represent this
domain. Although it is possible to use different cases in different generations, the
same fitness cases are usually used across all generations.

Fitness can be calculated in a number of ways. Koza (1992) defines four fitness
metrics: raw, standardized, adjusted, and normalized. Raw fitness can be calculated
in one of several ways, according to the problem being solved. For example, if the
objective is to maximize the score of a game, or a profit margin, the raw fitness
can be the score or the profit margin, respectively. Likewise, if the objective is to
minimize costs or miles traveled, raw fitness could be the cost or number of miles,
respectively. Another, more common, raw fitness metric is the sum over all cases
of the absolute value of error. The error can be calculated as the sum of the linear
differences between the correct values and the program values, or as the sum of the
squares of the differences. For programs that output Boolean or symbolic values,
the error can be calculated as the number of incorrect outputs for the test cases.
Note that desirable raw fitness values can be either larger or smaller, depending
on how the fitness calculation is formulated.

Standardized fitness is configured so that lower values are more desirable. In
fact, the fitness value is often mathematically adjusted such that the optimum
standardized fitness value is 0. In some problems, such as when cost or error
values are being minimized, raw fitness and standardized fitness are identical. If
raw fitness is calculated such that better values are greater, then standardized fitness
is calculated by subtracting the raw fitness from the maximum possible value of
raw fitness.

Adjusted fitness is calculated using standardized fitness: adjusted fitness f; =
1/(1 — f;), where f; is standardized fitness. Values of adjusted fitness thus range
between 0 and 1, where 1 is the optimum value. Koza prefers adjusted fitness for
most of his applications (Koza 1992). One reason for this is its behavior as its
value approaches 1. Near the optimum, small changes in standardized fitnesses
have relatively more effect on adjusted fitness than similar changes that are distant
from the optimum. For example, consider a problem where standardized fitness
values can vary between 0 (optimum) and 20. A change in standardized fitness from
20 to 19 only moves the adjusted fitness from 0.0476 to 0.0500, while changing
standardized fitness from 3 to 2 results in an adjusted fitness increment from 0.25
to 0.33. The calculation of adjusted fitness is somewhat analogous to spacing and
scaling, discussed in the Genetic Algorithm subsection on fitness calculation.

Normalized fitness is the same as the normalized fitness used in GA applications.
It is the adjusted fitness value (for an individual program) divided by the sum of
adjusted fitness values for all programs that make up the population. As in GAs,
normalized fitness is used in roulette wheel selection.

Steps 3 and 4 of the GP process are often carried out in parallel. A probability
is assigned to reproduction, and another to crossover, so that the two sum to 1.
If, for example, the probability of reproduction is 10 percent (a typical value in

’Q Chapter Three—Evolutionary Computation Concepts and Paradigms

Koza’s problems), then the probability of crossover is 90 percent. This means that
once fitness calculations have been made, and it is time to build the new program
population, a decision is made based on these probabilities whether to perform
reproduction or crossover.

If reproduction is selected, it is often carried out in a similar fashion to the
roulette wheel selection used in GAs. A candidate program is selected for repro-
duction with a probability proportional to its fitness divided by the sum of all of
the programs’ fitnesses (its normalized fitness). For very large populations of 1,000
or more, highly fit individuals are sometimes given an even greater probability of
selection than their normalized fitness. This is called overselection.

If crossover is selected, it is accomplished by first selecting two parents using a
method based on normalized fitness similar to that used for reproduction. Then,
one point is randomly selected in each parent as the crossover point. The point
can be anywhere in each program, including the root and internal functions, or
the terminals. The entire substructure consisting of the crossover point root and
everything below it is exchanged between the two programs.

Note that the parent programs, as well as the exchanged substructures, are
usually of different sizes and configurations. Note also that the results of some
operations may not be what is usually expected of crossover. An example is when
the roots of the two programs are selected as crossover points, in which case the
results are identical to the two programs being selected for reproduction into the
new population.

When a crossover operation results in a program that exceeds the maximum
defined depth, the program that would exceed the depth limit as a result of
crossover is copied unaltered into the new population, while the crossover opera-
tion is carried out for the other program. In other words, the subtree at and below
the crossover point in the unaltered program replaces the program portion at and
below the crossover point in the other program.

Preprocessing and postprocessing as typically done when working with other
computational intelligence tools, such as artificial neural networks and genetic
algorithms, play a relatively minor role in GP implementations. The selection of the
function and terminal sets significantly depends on the problem domain, however,
so this selection could be thought of as preprocessing.

Formulating the approach to solving a problem with a GP implementation can
be difficult. Discovering what other people have done in similar circumstances
is often helpful. Chapter 26 of Koza’s 1992 book presents tables to guide a user
in selection of terminal sets, function sets, population size, and so on. Koza’s
videotapes are also useful sources of information.

Now that we’ve explored genetic programming, we turn to the youngest of the
evolutionary computation areas, particle swarm optimization. It has a number of
attributes in common with the areas discussed previously but is also different in
several ways.

Particle Swarm Optimization O‘ Q
Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary computation technique
developed by Kennedy and Eberhart in 1995 (Kennedy and Eberhart 1995;
Eberhart and Kennedy, 1995; Eberhart, Simpson, and Dobbins 1996). Thus, at
the time of the writing of this book PSO has been around for just over 10 years.
Already, it is being researched and used in more than 30 countries. This section
reviews developments related to PSO since its origin in 1995, along with resources
available to help you learn more about it. It is written from an engineering and
computer science perspective, and it is not meant to be comprehensive in areas
such as the social sciences.

Following the introduction, major developments in the particle swarm algo-
rithm since its origin in 1995 are reviewed. The original algorithm is presented first.
Following are brief discussions of constriction factors, inertia weights, and track-
ing dynamic systems. (Applications, both those already developed and promising
future application areas, are presented in Chapter 12. Those already developed
include human tremor analysis, power system load stabilization, and product mix
optimization.) Finally, particle swarm optimization resources are listed. Most of
them can be accessed via the book’s web site.

Developments

The story of particle swarm optimization is still unfolding. We can report on only
the developments that have occurred as of the publication of this book. For now,
let’s start at the beginning. The particle swarm concept originated as a simulation
of a simplified social system. The original intent was to graphically simulate the
graceful but unpredictable choreography of a bird flock. Initial simulations were
modified to incorporate nearest-neighbor velocity matching, eliminate ancillary
variables, and incorporate multidimensional search and acceleration by distance
(Eberhart and Kennedy 1995; Kennedy and Eberhart 1995). At some point in
the evolution of the algorithm, it was realized that the conceptual model was, in
fact, an optimizer. Through a process of trial and error, a number of parameters
extraneous to optimization were eliminated from the algorithm, resulting in the
very simple original implementation (Eberhart, Simpson, and Dobbins 1996).

Partical swarm optimization is similar to a genetic algorithm in that the system
is initialized with a population of random solutions. It is unlike a GA, however, in
that each potential solution is also assigned a randomized velocity and the potential
solutions, called particles, are then “flown” through the problem space.

Each particle keeps track of its coordinates in the problem space that are asso-
ciated with the best solution (fitness) it has achieved so far. (The fitness value is
also stored.) This value is called “pbest.” Another “best” value that is tracked by
the global version of the particle swarm optimizer is the overall best value, and its

’O Chapter Three—Evolutionary Computation Concepts and Paradigms

location, obtained so far by any particle in the population. This location is called
“gbest.”

The PSO concept consists of, at each time step, changing the velocity (acceler-
ating) each particle toward its pbest and gbest locations (in the global version of
PSO). Acceleration is weighted by a random term, with separate random numbers
being generated for acceleration toward pbest and gbest locations.

There is also a local version of PSO in which, in addition to pbest, each particle
keeps track of the best solution, called “Ibest,” attained within a local topological
neighborhood of particles.

The (original) process for implementing the global version of PSO is as follows:

1. Initialize a population (array) of particles with random positions and
velocities on d dimensions in the problem space.

2. For each particle, evaluate the desired optimization fitness function in d
variables.

3. Compare each particle’s fitness evaluation with its pbest. If current value
is better than pbest, set the pbest value equal to the current value and the
pbest location equal to the current location in d-dimensional space.

4, Compare fitness evaluation with the population’s overall previous best. If
the current value is better than gbest, reset gbest to the current particle’s
array index and value.

5. Change the velocity and position of the particle according to equations
3.3 and 3.4, respectively:

Vid = vig + ¢ *rand() * (pig — xig)
(3.3)
+ ¢ *Rand() * (pgq — Xia)

Xid = Xid + Via (34)

6. Loop to step 2 until a criterion is met, usually a sufficiently good fitness
or a maximum number of iteration generations.

Note that in equation 3.4 we appear to be adding a velocity to a position. However,
we are really adding a velocity occurring over a single time increment (iteration),
so the equation is valid.

Particles’ velocities on each dimension are clamped to a maximum velocity
Vmax. If the sum of accelerations causes the velocity on that dimension to exceed
Vmax, which is a parameter specified by the user, then the velocity on that dimen-
sion is limited to Vmax.

Vmax is therefore an important parameter. It determines the resolution, or fine-
ness, with which regions between the present position and the target (best so far)

Particle Swarm Optimization O‘@

position are searched. If Vmax is too high, particles might fly past good solutions. If
Vmax is too small, on the other hand, particles may not explore sufficiently beyond
locally good regions. In fact, they could become trapped in local optima, unable to
move far enough to reach a better position in the problem space.

The acceleration constants ¢; and ¢ in equation 3.3 represent the weighting
of the stochastic acceleration terms that pull each particle toward pbest and gbest
positions. Thus, adjustment of these constants changes the amount of “tension”
in the system. Low values allow particles to roam far from target regions before
being tugged back, while high values result in abrupt movement toward, or past,
target regions.

Early experience with particle swarm optimization (trial and error mostly)
led us to set each the acceleration constant ¢; and ¢; equal to 2.0 for almost all
applications. Vmax was thus the only parameter we routinely adjusted, and we
often set it at about 10 to 20 percent of the dynamic range of the variable on each
dimension.

Based on, among other things, findings from social simulations, it was decided
to design a “local” version of the particle swarm. In this version, particles have
information only of their own and their neighbors’ bests, rather than that of the
entire group. Instead of moving toward a kind of stochastic average of pbest and
gbest (the best location of the entire group), particles move toward points defined
by pbest and Ibest, which is the index of the particle with the best evaluation in
the particle’s neighborhood.

If the neighborhood size is defined as two, for instance, particle(i) compares
its fitness value with particle(i — 1) and particle(i + 1). Neighbors are defined as
topological neighbors; neighbors and neighborhoods do not change during a run.
For the neighborhood version, the only change to the process defined in the six
steps given earlier is the substitution of pys, the location of the neighborhood best,
for pes, the global best, in equation 3.4. Early experience (again, mainly trial and
error) led to neighborhood sizes of about 15 percent of the population being used
for many applications. So, for a population of 40 particles, a neighborhood of six,
or three topological neighbors on each side, was not unusual.

The population size selected is problem-dependent. Population sizes of 20 to 50
are probably most common. It was learned early on that smaller populations than
were common for other evolutionary algorithms (such as GAs and evolutionary
programming) were optimal for PSO in terms of minimizing the total number of
evaluations (population size times the number of generations) needed to obtain a
sufficient solution.

We now look at the development of the inertia weight. The maximum velocity,
Vmax, serves as a constraint to control the global exploration ability of a parti-
cle swarm. As stated earlier, a larger Vmax facilitates global exploration, while a
smaller Vmax encourages local exploitation. The concept of an inertia weight was
developed to better control exploration and exploitation. The motivation was to

@ ’Q Chapter Three—Evolutionary Computation Concepts and Paradigms

be able to eliminate the need for Vmax. The inclusion of an inertia weight in the
particle swarm optimization algorithm was first reported in the literature in 1998
(Shi and Eberhart 1998a, 1998b).

Equations 3.5 and 3.6 describe the velocity and position update equations with
an inertia weight included. It can be seen that these equations are identical to
equations 3.3 and 3.4 with the addition of the inertia weight w as a multiplying
factor of v;; in equation 3.3.

Via = w " vig + ¢; *rand() *(pig — xi2)

- . (3.5)
+ ¢z "Rand() *(pgd — xia)

Xid = Xid + Vid (3.6)

The use of the inertia weight w has provided improved performance in a number
of applications. As originally developed, w often is decreased linearly from about
0.9 to 0.4 during a run. Suitable selection of the inertia weight provides a balance
between global and local exploration and exploitation and results in fewer iterations
on average to find a sufficiently optimal solution. (A different form of w, explained
later, is currently being used by one of the authors, RE.)

After some experience with the inertia weight, it was found that although the
maximum velocity factor, Vmax, couldn’t always be eliminated, the particle swarm
algorithm works well if Vmax is set to the value of the dynamic range of each
variable (on each dimension). Thus, you don’t need to think about how to set
Vmax each time the particle swarm algorithm is used.

Another approach to using an inertia weight is to adapt it using a fuzzy system.
The first paper published reporting this approach used the Rosenbrock function
with asymmetric initialization as the benchmark function (Shi and Eberhart 2000).
The fuzzy system comprised nine rules, with two inputs and one output. Each input
and the output had three fuzzy sets defined. One input was the global best fitness
for the current generation; the other was the current inertia weight. The output
was the change in intertia weight. The results reported show that by using a fuzzy
adaptive inertia weight, the performance of particle swarm optimization can be
significantly improved in terms of the mean best fitness achieved in a given number
of iterations. We discuss fuzzy systems in Chapter 7.

The next major development we consider is the constriction factor. Because
particle swarm optimization originated from efforts to model social systems, a
thorough mathematical foundation for the methodology was not developed at the
same time as the algorithm. Within the last few years, a few attempts have been
made to begin to build this foundation.

Recent work done by Clerc (1999) indicates that use of a constriction
factor may be necessary to ensure convergence of the particle swarm algorithm.
A detailed discussion of the constriction factor is beyond the scope of this book,

Particle Swarm Optimization O‘

but a simplified method of incorporating it appears in equation 3.7, where K is a
function of ¢; and ¢, as reflected in equation 3.8.

via =K* [vig + ¢1 "rand() *(pig — xia) 37)
+ ¢ *Rand() *(pga — xia)]

2

K=
2= 0= Vi o]

,where p =c1+ ¢, ¢ >4 (3.8)

Typically, when Clerc’s constriction method is used, ¢ is set to 4.1 and the
constant multiplier K is thus 0.729. This results in the previous velocity being
multiplied by 0.729 and each of the two (p — x) terms being multiplied by
0.729 * 2.05 = 1.49445 (times a random number between 0 and 1).

In initial experiments and applications, Vmax was set to 100,000, because it
was believed that Vmax isn’t necessary when Clerc’s constriction approach is used.
However, from subsequent experiments and applications (Eberhart and Shi 2000),
it has been concluded that a better approach is to limit Vmax to Xmax, the dynamic
range of each variable on each dimension, while selecting w, ci, and ¢; according
to equations 3.7 and 3.8.

What we’ve discussed so far is fine as long as we’re dealing with static systems.
Most applications of evolutionary algorithms are to the solution of static prob-
lems. Many real-world systems, however, change state frequently (or continuously).
These system state changes result in a requirement for frequent, sometimes almost
continuous, reoptimization.

It has been demonstrated that particle swarm optimization can be successfully
applied to tracking and optimizing dynamic systems (Eberhart and Shi 2001).
A slight adjustment was made to the inertia weight for this purpose. The inertia
weight w in equation 3.5 was set equal to [0.5 + (Rand()/2.0)]. This produces a
number randomly varying between 0.5 and 1.0, with a mean of 0.75. This was
selected in the spirit of Clerc’s constriction factor described above, which sets w
to 0.729. Constants ¢; and ¢; in equation 3.5 were set to 1.494, also according to
Clerc’s constriction factor.

The random component of the inertia weight is important because when track-
ing a dynamic system, it cannot be predicted whether exploration (a larger inertia
weight) or exploitation (a smaller inertia weight) will be better at any given time.
An inertia weight that varies roughly within our previous range addresses this.

For the limited testing done (Eberhart and Shi 2001) using the parabolic func-
tion, the performance of particle swarm optimization was shown to compare
favorably (faster to converge, higher fitness) with other evolutionary algorithms

e ’O Chapter Three—Evolutionary Computation Concepts and Paradigms

for all conditions tested. The ability to track a 10-dimensional function was
demonstrated.

Now that we’ve seen how particle swarm optimization works and some of the
exciting developments that have occurred recently, let’s look at how to get more
information about it.

Resources

Three main categories of resources are available with respect to particle swarm
optimization: books, web sites, and technical papers. The first book to include a sec-
tion on particle swarm optimization was Eberhart, Simpson and Dobbins (1996).
See Kennedy and Eberhart (1999) for a book chapter on PSO. An entire book is
now available, however, on the subject of swarms: Swarm Intelligence (Kennedy,
Eberhart, and Shi 2001) discusses both the social and psychological as well as
the engineering and computer science aspects of swarm intelligence. The web site
for the book, www.Computelligence.org, is a guide to a variety of resources related
to particle swarm optimization. Included are Java applets that can be run online
illustrating the optimization of a variety of benchmark functions. The user can
select a variety of parameters. Also on the web site is PSO software written in
C++, Visual BASIC, and Java that can be downloaded. A variety of links to other
web sites are also provided. The web site for this book is, obviously, another major
source of PSO information and pointers to other sites. With respect to conferences,
those related to evolutionary computation (such as the Congress on Evolutionary
Computation) sponsored or cosponsored by the IEEE provide the richest source
of publications on PSO. A special issue of the IEEE Transactions on Evolutionary
Computation devoted to particle swarm optimization was published in June 2004.

Summary

In this chapter, we first present a brief history of evolutionary computation, fol-
lowed by an overview of the evolutionary computation field. Five main evolu-
tionary algorithms are then discussed in detail in their own sections, respectively.
The five areas are genetic algorithms, evolutionary programming, evolution strate-
gies, genetic programming, and particle swarm optimization. Among the five, the
genetic algorithm is emphasized, with more detailed discussion on subjects such
as schemata and the schema theorem.

The five evolutionary algorithms share many features. First, all are
population-based search algorithms. The cooperation and/or competition among
the population move the potential solutions toward the better search areas. Second,
all are motivated by nature. Particle swarm optimization is motivated by social
behavior, and the other four main evolutionary algorithms are motivated by the

Exercises O ; e

survival of the fittest and/or evolution. Third, the five evolutionary algorithms
employ direct “fitness” information instead of function derivatives or other related
knowledge. Therefore, evolutionary algorithms can solve problems that are not
continuous, not differentiable, and multimodal. Fourth, randomness plays roles
in all of the algorithms. The search process is not deterministic. It is this random-
ness and the “fitness” information that gives evolutionary algorithms the ability
to enable individuals to move to anywhere and escape from local
optima.

Finally, they all generate the next generation from the previous generation. In
particle swarm optimization, the individuals (particles) “fly” through the search
space with dynamically changing velocities. That is, the individuals “fly” to the
next generation from the current generation. In the other four evolutionary algo-
rithms, the next generation is obtained by applying so-called evolution operators
to the current generation: In genetic algorithms and evolution strategies, the selec-
tion, mutation, and crossover (recombination) operators are applied; in genetic
programming, selection and crossover operators are used; and in evolutionary
programming, selection and mutation operators are utilized.

Comparisons of evolutionary computation tools (in these five areas) and other
processing methods are also discussed in each section, respectively. Evolutionary
algorithms are recommended to solve nonlinear problems for which the traditional
approaches are hard, if not impossible, to apply. It is usual and reasonable to expect
evolutionary algorithms to find near optimal solutions within a limited period of
time—a solution that is good enough to be acceptable.

Exercises

1. Convert the following binary coded strings to Gray coding: 10101010,
10011100, 01100110.

2. How many schemata are possible for a 6-bit binary string?

3. According to the schema theorem, what happens to highly fit schemata in
successive generations? What are the effects of crossover and mutation
according to the theorem? Why use crossover and mutation?

4. Assume standard binary encoding of parameters is used for a genetic algorithm
implementation. Briefly discuss how the effects of uniform crossover and
two-point crossover change as the number of bits representing a parameter is
increased.

5. After running a genetic algorithm for a fairly long time, the fitness values
tend to cluster at the high end of the scale. For example, on a scale
of 0 to 1, they might cluster from 0.90 to 0.98. What is the main problem
with this? How can it be alleviated?

’O Chapter Three—Evolutionary Computation Concepts and Paradigms

6. Assume that the average fitness of strings containing a particular schema § is
20 percent less than the average fitness of all schemata, and the schema appears
in 50 percent of the initial population. Assume that the probability of disrup-
tion of this schema by crossover or mutation is negligible. Calculate when S
will disappear from a population with 50 members. Repeat for a 100-member
population.

7. Assume each population member in a GA consists of 8 binary coded bits (as in
the GA example in the chapter), representing the integers 0 to 255. Briefly
describe or sketch the portion of the problem space covered by the following

schemata: O R 1, 10 , 10, ***11***,
8. What is the main difference between evolutionary programming and evolution
strategies?

9. Assume you are going to use genetic programming to evolve a program to
classify the Iris dataset (pp. 197-198). Specify a function set and a terminal set
that are appropriate to solve the problem.

10. Sketch out a genetic programming representation of the best possible approxi-
mate solution to v = zr*h, (v is the volume of a right cylinder, r is its radius,
and h is its height) given that the maximum depth of the program is five layers
and you may only use the constant values 0, 1, and 10. If you were going to
evolve programs to do this calculation using genetic programming, what would
you propose to use as a function set?

11. How is a particle swarm optimizer similar to a genetic algorithm? How is
it different? How does it resemble an evolution strategies implementation?

chapter

four

Evolutionary Computation

Implementations

In the last chapter, we reviewed the concept
of evolutionary computation, seeing how it
can provide a foundation for computational
intelligence. We examined five main areas
of evolutionary computation: genetic algo-
rithms, evolutionary programming, evolu-
tion strategies, genetic programming, and
particle swarm optimization.

In this chapter, we discuss the com-
mon issues related to the implementation
of evolutionary algorithms. We present two
implementations of evolutionary computa-
tion: a genetic algorithm implementation
and a particle swarm optimization imple-
mentation.

The genetic algorithm (GA) implemen-
tation is basically a “plain vanilla” GA, but
with a few interesting options. It imple-
ments one-point, two-point, or uniform
crossover, and roulette wheel, tournament,
or ranking selection. It has an interesting

set of options for mutation, one of which is
reminiscent of evolution strategies.

Five benchmark functions are included
with the GA implementation: the parabolic
function (sometimes referred to as the
spherical function), the Rosenbrock func-
tion, the Rastrigrin function, the Griewank
function, and Schaffer’s F6 function.

The function equations appear in
Table 4.1. All have optimal function (output)
values of 0 (f *(x) = 0) except for Schaffer’s
F6 function, for which the function value
at the optimum is 1.0. The parameter val-
ues (x) at the optimum are all (0,0,...,0)"
except for the Rosenbrock function, for
which x* = (1,1,..,1)".

Table 4.2 lists the dynamic range and
error criterion for each function. The
dynamic range is the range within which
the variables are initialized. Each dynamic
range is symmetrical; that is, for the

95

@ ’O Chapter Four—Evolutionary Computation Implementations

Table 4.1 Functions Used in GA and PSO Implementations

Function : : Formula
Parabolic ANES ¥
i=1
Rosenbrock f,(0) = ¥ (100(x,, — x*)2 +(x; = 1))
i=1
Rastrigrin £,00) = 3 (x? = 10 cos(2zx;) + 10)
=1
Griewank f(x)—Lixz—ncos(i)H
riewa 30 = 7555 2% =1 ;

(sin \/m)z -05

Shaffer's F6 fe(x)=0:5—- ;
(1:0+0:001 (x2 +2))

Table 4.2 Functions, with Their Typical Initialization Ranges
and Error Criteria

Parabolic 10 0.01
Rosenbrock 100 100
Rastrigrin 5.12 100
Griewank 600 0.05
Shaffer’s F6 10 0.00001

parabolic function the dynamic range is [-10, 10]. The error criterion is the
maximum error value generally acceptable (in the literature) as a stopping crite-
rion, if error value is used as a stopping criterion. The error value column gives you
a metric for how well the algorithm performed.

The particle swarm optimizer (PSO) is implemented to run multi-PSOs simul-
taneously. By doing so, it can be used both for the optimization of nonlinear
functions and for optimization problems that require multi-PSOs running simul-
taneously. An implementation of a co-evolutionary PSO is described that solves
min-max problems.

The PSO implementation includes the same five benchmark functions, listed in
Table 4.1, as the GA implementation. In addition, for the multiple-swarm version

Implementation Issues O‘ ; e

of the PSO implementation, functions have been added that require simultaneous
minimize/maximize operations (constraint satisfaction). These functions are tisted
and described in the section on multi-PSOs near the end of the chapter. |

Implementation Issues

Before we get into specific evolutionary computation implementations, it is impor-
tant to understand some of the issues common to the implementations of all evo-
lutionary algorithms. These issues include chromosome representation methods,
learning strategies, programming strategies, and memory handling.

In this section, when the term “learning” is used, it is in accordance with what
is commonly found in the literature. However, our perspective is that “adaptation”
often describes what a computational intelligence system does better than “learning”
(see Chapter 2), so please consider mentally inserting the word “adaptation” when
you see “learning.”

Homogeneous versus Heterogeneous Representation

Let’s first look at homogeneous versus heterogeneous representation. Represen-
tation is an important factor that requires careful consideration. Traditionally,
homogeneous representations have been adopted; that is, all individuals are strings
of binary bits, integers, or real values. One advantage of homogeneous represen-
tations is that they are simple, and existing evolutionary operators can therefore
be employed (under the assumption that the same dynamic integer ranges are
used for each element when integer representation is utilized). But they may
result in inaccuracy and even difficulties in mapping from genotypes to phe-
notypes. For example, using binary representation to represent the optimization
functions’ real-valued parameters can result in inaccuracy, and using real-valued
representation to represent discrete parameters can result in difficulties. (If you are
trying to build a rule-based system, it is difficult to decode the real valued-based
chromosomes into rules.) One way to overcome the inaccuracies and difficulties
is by using heterogeneous representations—for example, using real values to rep-
resent real value parameters and using integers or binary bits to represent discrete
parameters. The principal feature of the heterogeneous representations is that
they are intuitive and natural. But representation-specific evolutionary operators
have to be designed for each different representation, and the complexity of the
algorithm is increased.

Genetic algorithms originally used binary representations, on which the theo-
retical foundation of genetic algorithms is based. Binary representations are still
popular. It is natural and intuitive to represent everything using binary strings

’O Chapter Four—Evolutionary Computation Implementations

because computer computation is based on 0s and 1s. A disadvantage of this kind
of representation is that the length of the chromosome will be extremely long when
the numbers or precision of variables is large. Also, inaccuracy is introduced when
binary strings are used to represent real-valued parameters. The advantage of the
binary representation is its simplicity and generality.

For the representation of multivalue discrete parameters, a more natural and
intuitive way is to use integer representation. Also, binary representation can be
easily transformed into integer representation. The advantage of integer representa-
tion is that the length of the chromosome is reduced compared with that of binary
representation. The disadvantage is that special evolutionary operators have to be
designed. Special care has to be taken in designing evolutionary operators, especially
when a different dynamic integer range is used for each element.

To overcome the inaccuracy problems introduced by using binary representations
for encoding real values, a more natural and intuitive way is to use real-valued rep-
resentations to encode real value parameters. The use of real-valued representations
makes it possible to use large domains (even unknown domains) for the variables,
which is difficult to achieve with binary and integer representations. The disadvan-
tage of this representation is that discrete parameters can’t be represented easily.

Even though every parameter can be represented by binary strings, integer
strings, or real-valued strings, it is hard to say, generally, which representation is the
best. It depends on the problem to be solved and your objectives. The advantage
to using uniform representation is that it is simple, and existing evolutionary
operators can be employed directly except in the case of integer representation.
For integer representation, each element may have a different dynamic integer
range since different variables may have different multivalue discrete parameters.
In this case, the mutation operator should be position dependent and specially
designed.

Generally speaking, it will be more natural to represent the problem to be solved
in a chromosome in the way it appears in the system implementation. In this way,
the problem can be more finely adjusted. Certainly this may increase the complex-
ity of the evolutionary operators. There is a trade-off between representation and
complexity of the evolutionary operators. Now that we’ve considered the subject of
representation, let’s look at adaptation.

Population Adaptation versus Individual Adaptation

One of the main questions with respect to adaptation is whether to use individual
or population adaptation. Evolutionary algorithms have been commonly imple-
mented as population adaptation algorithms, as in the Pittsburgh approach (Smith
1980), where a set of samples is available to be used as training examples. This
is the scenario for most function optimization and classification system designs

Implementation Issues O‘ @

where the training examples can be obtained before training. For other cases,
individual adaptation approaches may have to be adopted. The best-known indi-
vidual adaptation approach is the so-called Michigan approach (Holland 1978).

In the Pittsburgh approach, each chromosome represents the problem to be
solved, and a set of samples is available to be used as training examples. Since the
training is often offline, some complicated and large systems can be evolutionarily
designed by using fast computers, or even a group of computers, where each one
evaluates only a small portion of the chromosomes and all of them communicate.
The most important feature of the Pittsburgh approach is that the performance of
each candidate solution is directly proportional to the fitness of its chromosome rep-
resentation, which makes evolutionary search more effective and efficient since the
search is guided by fitness.

In nature, not all components in a system behave in the same way; some may have
a “good” contribution while others have a “bad” contribution to the performance
of the system. All the components both cooperate and compete among themselves,
and, in theory, the “good” components should have more chance to survive than
the “bad” ones. In the Pittsburgh approach, all the components of a system are rep-
resented in a chromosome and treated the same regardless of their contributions.
This may bring difficulties into the search since the search process only reflects the
competition among chromosomes.

These are situations where the Michigan approach may be appropriate. In the
Michigan approach, each chromosome represents only a single component of the
system and the whole population represents the complete system. So there is both
cooperation and competition among all the components of the system, and there-
fore the strongest potential components have more of a chance to appear and sur-
vive. Since the whole population represents only one system, only that single system
needs to be evaluated in each generation, which makes it possible to evaluate the
chromosomes online. Since in the Michigan approach only one system is evaluated
for each generation, only a single fitness from the environment is obtained. There-
fore, special techniques have to be used to distribute the payback among all the
chromosomes.

The evolutionary computation implementations described in this chapter all use
the Pittsburgh approach.

Static versus Dynamic Adaptation

In addition to the population versus individual adaptation question, the choice of
static versus dynamic adaptation exists. The most common evolutionary algorithms
take a static adaptation approach; that is, the algorithms have fixed parameters
through the course of the running of the algorithm. For example, the probabilities
of the crossover and mutation operators, the population size, and so on, are kept

’O Chapter Four—Evolutionary Computation Implementations

constant through the run. But even though evolutionary algorithms with static
adaptation approaches have been applied to successfully solve problems, when
solving complicated and large problems, in order for evolutionary algorithms to
have sufficiently good performance to successfully evolve the systems, the relation-
ship between exploration and exploitation abilities should be kept balanced during
the run.

One way to maintain the balance is through the dynamic adaptation of the
algorithm parameters. Different levels of adaptation can be implemented, such as
environment-level adaptation, population-level adaptation, individual-level adap-
tation, and component-level adaptation. Which level of adaptation to use depends
on the problem and your objective, but population-level adaptation is the most
commonly used among the four. For instance, if an operator such as the mutation
operator is adapted during a run, the adapted mutation rate is most often applied
to the entire population.

Flowcharts versus Finite State Machines

Two of the primary ways to represent evolutionary computation (and other compu-
tational intelligence) systems are as flowcharts and finite state machines. Flowcharts
are straightforward and easy to understand. They have been used frequently in
programming systems, especially simple systems. Finite state machines have been
very useful for programming systems that require frequent interaction with the
environment (the user). An example is pressing the Pause button through a graphic
user interface to pause the running of a system. In state machine implementations,
a task (or a system with a single task) is divided into several states, with each state
performing only a simple action. The system is actually a transition process from
one state to another, and the system can be interrupted at each state transition.
Since, for each state, only simple action is performed, it can enable the system
to have real-time interaction. It is also very useful when multitasking is involved.
Also, finite state machines are often more suited to the structured (object-oriented)
approach to systems development.

Handling Multiple Similar Cases

How do we handler situations where several possible cases exist? Each case has its
associated function to handler the corresponding situation, and so which of the
functions to call depends on the situation or the case. In the C language, a com-
mon method is to use the switch statement. First, a new enumeration data type is
defined to index the cases. For example, there are several ways to do the crossover
operation: one-point crossover, two-point crossover, uniform crossover, and so on.
The new enumeration data type can be defined as that shown in Listing 4.1.

Implementation Issues O‘ @

Listing 4.1 Enumeration data type for crossover operators.

Typedef enum crossover_type_tag

{
ONE_POINT_CROSSOVER,
TWO_POINT_CROSSOVER,
UNIFORM_CROSSOVER,
NUM__CROSSCVER

} crosscver_type;

A new data type to record the index of the current crossover operator to be used
can be declared as

crossover_type crossover_index;
Which crossover operator to use, then, depends on the crossover_index as

shown in Listing 4.2.

Listing 4.2 Example of a crossover index.

static void crossover_handler (int crossover__index)
{
switch {(crossover_index)
{
case ONE_POINT_CROSSOVER:
one_point_crossover(); Dbreak;
case TWO_POINT_CROSSOVER:
two_point_crossover(); break;
case UNIFORM_CROSSOVER:
uniform_crossover(); break;

In Listing 4.2, one_point_crossover (), two_point_crossover (),
and uniform_crossover () are the routines actually handling the crossover
operations. In the above implementation, if the NUM_CROSSOVER is less than 3,
an if~then statement in the C language would generally be used instead of a switch
statement.

Another way to handler the multicase situation is to use a function pointer. Cor-
responding to the enumeration data type crossover_type, an array of function
pointers is defined as that shown in Listing 4.3.

Listing 4.3 An array of function pointers for crossover handlers.

static constant fptr crossover_handler [NUM_CROSSOVER] =
{

one_point_crossover,

’O Chapter Four—Evolutionary Computation Implementations

two_point_crossover,
uniform_crossover,

}i

In Listing 4.3, £pt r is the function pointer data type. To invoke the crossover routine
now is as simple as passing the case index to the array of function pointers to point
to the right function. One disadvantage of using this is that the order of the function
pointers is critical, and it has to be in exactly the same order as in the definition of
the enumeration data type. Otherwise, a different function will be called. Cautions
thus have to be taken when deleting and/or adding cases.

Allocating and Freeing Memory Space

Handling memory is always a challenge when using the Clanguage. In programming
a computational intelligence system, numerous arrays and vectors are typically used.
In order for the source code to be reusable and suitable for general use, these arrays
and vectors should be dynamically configured. The sizes of these arrays and vectors
are dynamically read in when the program is running, and the memory space can’t
be reserved for them before runtime or during compile time. The memory space has
to be allocated to them during the run and freed after finishing the program run.
Listing 4.4 is an example of memory allocation and cleanup for a two-dimensional
integer array.

Listing 4.4 An example of memory allocation and cleanup.

/* declare an integer array */
int **population;

/* allocate memory space for the array */

population = (int **)calloc(number_of_row, sizeof(int *));
for (idx_i = 0; idx_i < number_of_row ; idx_i++)
population[idx_i] = (int *)calloc(number_of_column, sizeof{int));

/* release the allocated space */

for (idx_i = 0; idx_i < number_of_row; idx_i++)
free(population(idx_il);

free (population);

Error Checking

In any application, it is a good habit to add error checking into your source code for
debugging. Generally, most runtime errors can be detected by doing this. From an
error message, you can (usually) easily locate the source of the error and fix it. For
example, when accessing an element in a vector, you should first check whether the

Genetic Algorithm Implementation O‘ ¥ @

index is valid. You should also check whether the system has enough memory space
to be allocated to the array every time you are allocating memory space. You can use
the assert () routine defined in ASSERT . H or write your own error checking.
If assert () is used in your source code, it is recommended that you remove the
assert statements from the source code once your program has been debugged.
Listing 4.5 is an example of error checking for memory allocation.

Listing 4.5 An example of error checking for memory allocation.

/* allocate memory space for the array */
population = (int **)calloc(number_of_row, sizeof(int *});
assert (population != NULL);
for (idx_1i = 0; idx_i < number_of_row ; idx_i++)
{
population{idx_i] = (int *)calloc(number_of_column, sizeof(int));
if (population{idx_i] == NULL)
{
printf("file name: %s\t line number = %d\n",__FILE__, __LINE__);
exit(l);

Genetic Algorithm Implementation

Now that we’ve looked at issues common to the implementations of all evolution-
ary algorithms, let’s get down to some specifics. This section discusses the genetic
algorithm implementation. The implementation is essentially a canonical genetic
algorithm that uses mutation and crossover operators. It closely resembles the basic
genetic algorithm described in the previous chapter, so material discussed there is
not repeated. Please refer to Chapter 3 for the basics of genetic algorithms. We begin
by examining some issues related to programming GAs.

Programming Genetic Algorithms

In genetic algorithm implementations, the evaluation/fitness function is an inte-
gral part of the algorithm. The selection of representation methods depends heavily
on the problem to be solved. The genetic algorithm implemented here is applied
to search for optima of several benchmark functions with real-valued parameters.
A good way to encode the problem is to use real-valued representation, but we
choose to use a binary representation instead, since binary representation is the orig-
inal type that has been studied and implemented in the literature and the genetic

’O Chapter Four—Evolutionary Computation Implementations

operators have been thoroughly studied and are mature. It is also the original
fundamental version of the genetic algorithm on which the schema theorem (dis-
cussed in Chapter 3) is based.

Figure 4.1 shows the flowchart of the GA implementation in this book.

Definition of Enumeration and Structure Data Types

Since C is not an object-oriented language, it’s a good habit to define some enumer-
ation and structure data types at the beginning of the GA implementation. (It can be
argued that C is “object-based” since new objects and data types can be created via
enumerated types and structures.) This can make the implementation more closely

(Start)
y
{ ga_read_parameter())

y
(ga_allocate_memory())

y

(ga_initialization())

>

C ga_ev;rluate()) (ga_storeiresults())
Q ga_sele'ction()) (ga_free_r;emory() >

Y y

(ga_crossover()) End

(ga_mu;ation() j
!

Figure 4.1 Flowchart of the binary genetic algorithm implementation. Routines in this
figure are discussed in the text.

Genetic Algorithm Implementation O ; @

resemble an object-oriented one, and make it more reusable. In Listing 4.6 are the

new enumeration data types used in the implementation.

Listing 4.6 Enumeration data type in the GA implementation.

typedef enum selection_type_tag
{
ROULETTE_WHEEL_SCALING,
BINARY_TOURNAMENT,
RANKING,
NUM_SELECTION
} selection_type;

typedef enum crossover_type_tag

{
ONE_POINT_CROSSOVER,
UNIFORM_CROSSOVER,
TWO_POINT_CROSSOVER,
NUM_CROSSOVER

} crossover_type;

typedef enum Evaluate_Function_Tag

{

Fé, // 0 :F6: min

PARABOLIC, // 1 :Parabolic: min
ROSENBROCK, // 2 :Rosenbrock: min
RASTRIGRIN, // 3 :Rastrigrin: min

GRIEWANK, // 4 :Griewank: min
NUM_EVALUATE_FUNCTIONS // Total no. of eval. functions

} Evaluate_Function_Type;

Listing 4.7 Structure data type in the GA implementation.

typedef struct ga_binary_data_type_tag
{
unsigned char **population;
// double pointer to the population of binary GA

double *fit; // pointer to the fitness vector

int popu_size; // population size: popsize

int indi_length; // length of chromosome: length

int iter max; // iter: maximum number of iterations
double crossover_rate; // crossover rate

double mutation_rate; // mutation rate

double termination_criterion; // criterion

int best_index;

// index of best individual of current population
unsigned char bits_per_para;

// each weight represented by bits_per_para bits
unsigned char mutation_flag;

// flag for mutation, 1, variable, 0 constant
crossover_type c_type;

// crossover type: 0: one, 1: uniform, 2: two

’O Chapter Four—Evolutionary Computation Implementations

selection_type s_type; // selection method
double *gau; // store gaussian function value for each bit
int gene_index; // index of current generation
double fit_variance;
// variance of fitness of the current generation
double fit_mean; // average of fitness of the current generation

} ga_binary_data_type;

typedef struct ga_env_data_type_tag
{

char resultFile [NAME_MAX]; // result file name
int dimension; // N:
Evaluate_Function_Type function; // function to be solved

} ga_env_data_type;

The enumeration data types selection_type, crossover_type, and
Evaluate_Function_Type are defined to specify which types of selection
operators, crossover operators, and optimization functions will be implemented in
the software run, respectively.

Listing 4.7 shows the new structure data types in the GA implementation. In the
ga_binary_data_type definition, unsigned char **population is a
double unsigned char pointer pointing to the population. The unsigned
char is used to represent a bit, which is a waste of memory space. The unsigned
char type occupies 1 byte, which consists of 8 bits. To save memory, a bit should be
used to represent a bit in the population member string. Since there is no data type
in the C language for bit, an unsigned char should be used to represent 8 bitsin a
binary representation. For example, a binary representation with individual length
160 can be stored in 160/8 = 20 bytes, that is, an array of 20 unsigned chars.

unsigned char *binary_individual;
binary_individual = (unsigned char*)calloc (20, sizeof (unsigned char));

The disadvantage of using a byte to represent eight elements in binary
representation is that the genetic operations involve bit manipulations, which
makes the computation more complex and generally consume more compu-
tation time. There are thus trade-offs between required memory space and
computation time/complexity and between code simplicity and complexity and
a programmer’s time to write and test extra code. For generality, we use the
unsigned char type here.

The unsigned char variable bits_per_para is the number of bits used
to represent a real-valued parameter. The variable fit is a double pointer
pointing to fitness values of the population; gau is a double pointer pointing to
the vector bits_per_para number of real values, which are used to store the

Genetic Algorithm Implementation O‘ @

probability of mutating each bit. These probabilities are used for implementation
of bit-position—based mutation.

The integer type variables popu_size, indi_length, and iter_max
are the population size, the length of the individual, and the maximum number of
generations. The double variables crossover_rate, mutation_rate, and
termination_criterion are the crossover rate, the baseline mutation rate at
the population level, and the criterion for terminating the run, respectively. (The
only termination method implemented in the software on the book’s Internet site is
reaching the maximum number of generations.) The integer type variables
best_index and gene_index are the index of the best individual among the
population at the current generation and the index of the current generation, respec-
tively. The unsigned char mutation_flag specifies which kind of mutation is
going to be performed (explained later). The crossover_type and
selection_type variables c_type and s_type specify which types of
crossover operator and selection operator are going to be used. The double types
fit_variance and fit mean are the variance and mean of the fitness values of
the current generation.

Another defined struct data type is ga_env_data_type, which includes
three data types: the first is a file name in which the results of the run are to be
stored; the second is the dimension of the problem (function). The length of each
individual is calculated by multiplying it with bits_per_para. The last one is the
function to be solved.

Two global data variables ga_data and ga_env_data are defined, as shown
below, so the GA and its environment-related parameters are not required to
be passed from one routine to another within the GA module.

ga_binary_data_type ga_data;
ga_env_data_type ga_env_data;

The GA main () Routine

Listing 4.8 is the main () routine, which is the entry point of the program. It is
a good habit to keep main () routines simple. In the GA_Start_Up (datFile)
routine, shown in Listing 4.8, all the GA problem-related parameters are read in from
the input file. For example, the variable “bits per parameter” bits_per_para is
read in from the input file. This variable tells how many bits are used to encode one
parameter to be evolved. The larger bits_per_para is, the higher the
resolution is and the longer the individual population member length is, and
therefore the more computation time it consumes. Also, memory space is allocated
to the dynamic data, and the population is initialized. In the GA_Clean_Up () rou-
tine, the results are stored to an output file and the previously allocated memory
space is de-allocated.

’O Chapter Four—Evolutionary Computation Implementations

Listing 4.8 Themain () routine of the binary GA implementation.

void main(int argc,char *argv{])
{
if (argc f= 2)
{
printf("usage: ga ([datFile}\n");
exit(1);
}
GA_Start_Up(dataFile);
GA_Main_Loop();
GA_Clean_Up(};
}

void GA_Start_Up {(char *datFile)
{
int idx_i;
ga_read_parameter (datFile);
ga_data.indi_length = ga_env_data.dimension * ga_data.bits_per_para;
ga_allocate_memory();
ga_initialization{();
for (idx_i = 0; idx_i < ga_data.bits_per_para; idx_i++)
ga_data.gaulidx_i] = gaussian{sqrt(idx_i));
}

void GA_Clean_Up (void)
{
ga_store_results();
ga_free_memory(};

}

void GA_Main_Loop (void)
{
while ((++{ga_data.gene_index)) < ga_data.iter_max)
{
ga_evaluate();
ga_selection();
ga_crossover () ;
ga_nmutate () ;

The GA_Main_Loop () routine is the main loop of the GA implementation.
All the genetic operations are performed here. These operations form the core of
the search process.

For each cycle (generation), first the population of solutions is evaluated, then
the next generation of solutions is selected using the selection operator according
to the fitness values obtained in the last step. The newly formed solutions then go
through crossover and mutation operations. This process is repeated until either the
specified maximum number of generations is reached or a termination criterion is
met. We didn’t implement a termination criterion but left it as an exercise for the
student (see Exercise 6 at the end of this chapter).

Genetic Algorithm Implementation O‘ @

The ga_evaluate () Routine

In the ga_evaluate () routine, shown in Listing 4.9, each individual is
evaluated. First the binary representation is decoded into the real-valued parameters
by calling the get _parameter () routine, then the evaluation function specified
inga_env_data (ga_env_data.function) iscalled. We have implemented
five benchmark functions: Shaffer’s F6, Parabolic, Rosenbrock, the generalized
Rastrigrin, and the generalized Griewank functions. They all are minimum opti-
mization problems except Shaffer’s F6 and have been transformed to the maximum
optimization problems by multiplying by -1 in the implementation.

Listing 4.9 The ga_evaluate () routine.

void ga_evaluate (void)
{
int idx_i;
double *para; /* pointer to the parameters */

/* allocate memory space for the parameter matrix */
para = (double *)calloc{ga_env_data.dimension,sizeof (double}};

/* fitness calculation */
for (idx_i = 0; idx_i < ga_data.popu_size; idx_i++)
{
/* convert binary vector to real valued parameters */
get_parameter (idx_1i,para);
/* get fitness */
ga_data.fit{idx_i] =

OPT_Function_Routines (ga_env_data.function,ga_env_data.dimension,para);

}

free(para);

ga_data.best_index = maximum{(ga_data.fit,ga_data.popu_size);

ga_data.fit_mean = average{ga_data.fit, ga_data.popu_size);

ga_data.fit_variance = variance(ga_data.fit,ga_data.fit_mean,
ga_data.popu_size);

double OPT_Function_Routines (int fun_idx,int dim, double *para)
{
double result;
switch (fun_idx)
{
case F6:
result = f6(para); break;
case PARABOLIC:
result = parabolic{(dim,para); break;
case ROSENBROCK:
result = rosenbrock(dim,para); break;
case RASTRIGRIN:
result = rastrigrin(dim,para); break;
case GRIEWANK:

’O Chapter Four—Evolutionary Computation Implementations

result = griewank(dim,para); break;
default: break;
}

return(result);

The ga_selection () Routine

The main objective of the selection operator in a GA is to give the candidate solu-
tions having better performance (higher fitness value) more chances to survive and
reproduce more copies into the next generation.

In the ga_selection () routine, shown in Listing 4.10, several selection
mechanisms are implemented. They are proportionate selection, binary tournament
selection, and ranking selection. All of them are combined with the elitist strategy;
that is, at least one copy of the best candidate solution will be reproduced into the
next generation. .

For the proportionate selection operator, the quantity of each candidate solution
copied into the next generation is proportional to its fitness value. The simplest one
is called roulette wheel selection, with each solution occupying an area on the wheel
proportionate to its fitness value. (Roulette wheel selection is discussed in Chapter 3.)
The wheel is spun as many times as the size of the population. Each time, a solution
is selected according to where the pointer points. The advantage of this selection is
that the concept is simple and easy to implement. The disadvantage is that the fitness
value has to be positive, which generally can’t be guaranteed, especially when there
is no a priori knowledge about the problem to be solved. A way to overcome this
problem is to shift the fitness values of the population. In our implementation, we
shift the raw (original) fitness values by moving the minimal fitness value to about
10 percent of the dynamic fitness range (max_fitness - min_fitness):

new_fitness{i] = old_fitness - min_fitness + 0.1 * (max_fitness -
min_fitness)

Another disadvantage of the roulette wheel selection operator is that this
approach can’t be directly used for a minimization optimization problem. The prob-
lem has to be converted to a maximization problem. If the original fitness value is
positive, then the fitness value of the converted problem is negative. The shifting
approach then has to be applied to the fitness value of the converted problem in
order to use a roulette wheel selection operator. This shift approach is also useful for
relatively flat fitness surfaces and/or near the end of a run.

For the binary tournament selection operator, two individuals are randomly
picked and their fitness values are compared. The individual with the better fitness
is copied into the next generation. The advantages of this approach are that it is
easy to implement, there are no restrictions on fitness values, it is suitable for

Genetic Algorithm Implementation O@

parallel implementation and thus runs fast, and it can be applied to solve both
minimization and maximization optimization problems directly.

The ranking selection operator is similar to that for roulette wheel selection. First
the solutions are ranked, then each solution is assigned a predetermined ranked fit-
ness value based on its rank in the population. These values are usually evenly spaced,
often between 0 and 1. After that the operations are similar to that in roulette wheel
selection, so we don’t repeat them here. This process is most useful when the fit-
nesses have become bunched together late in the run. As a simple example, consider
a ranked population of four individuals with fitnesses of 0.95, 0.96, 0.97, and 0.98.
As is, they have very similar probabilities of selection into the next generation. Now
evenly space their fitness values between 0 and 1, so that their ranked fitness values
are now 0.25, 0.50, 0.75, and 1.0. Now the probabilities of selection are 10 percent,
20 percent, 30 percent, and 40 percent, respectively, and the selection pressure has
been substantially increased.

Which selection operator to choose and how to implement it is critical since it
impacts the selection pressure and, therefore, the performance of the GA. In List-
ing 4.11, the source code of the implementation of a binary tournament selection
operator is shown. In this implementation, an integer pointer flag is defined and a
popu_size quantity of integer type memory space is allocated to it. Flag[i] is
used to record the copies of the individual i that have been selected for the next
generation. At the beginning, no copies are selected for each individual; that is,
flag[i] =0,Vi€{0,...,popu_size - 1}.Eachtimean individualiis selected
into the next generation, £lag[1] increases by 1. This process is repeated until
total popu_size copies of individuals have been selected. Then the new popula-
tion is formed by checking each f1ag[i].If flag[i] = 0, it means individual
i has not been selected for the next generation. It is then replaced by an individual
jwith flag[7] >1,and flag[i] increases by 1 and flag[7] decreases by 1.
This process is repeated until flag[j] = 1,Vj €{0,..., popu_size - 1}.

Listing 4.10 The ga_selection () routine.

void ga_selection (void)
{
switch (ga_data.s_type)
{
case ROULETTE_WHEEL_SCALING:
roulette_wheel_scaling(); break;
case BINARY_TOURNAMENT:

binary_tournament () ; break;
case RANKING:

ranking(}; break;
default:

binary_tournament (}; break;

@-‘O Chapter Four—Evolutionary Computation Implementations

Listing 4.11 The Binary tournament selection operator.

static void binary_tournament (void)
{

int idx_i,idx_j, idx_k;

int kid_1,kid_2;

int *flag; /* information for selected times */
int no;
flag = (int *)calloc(ga_data.popu_size,sizeof (int));

/* set all flags to be zero, means no one has been selected */
for (idx_i = 0; idx_i < ga_data.popu_size; idx_i++)
flagfidx_i] = 0;

flag[ga_data.best_index] = 1; /* keep the best */
/* set the flags for all individuals */

for (idx_i = 0; idx_i < (ga_data.popu_size — 1); idx_i++)
{

kid_1
kid_2

rand () % (ga_data.popu_size);
rand () % (ga_data.popu_size);

if ((ga_data.fit[kid_1]) > {(ga_data.fit([kid_21))
flag(kid_1] +=1;
else
flagikid_2] += 1;
}

/* form the new population */
for (idx_i = 0; idx_i < ga_data.popu_size; idx_i++)
{
if (flagfidx_i] == 0)
{
no = 0;
for (idx_j = 0; idx_j < ga_data.popu_size; idx_j++)
{
if (flagl[idx_j] > 1)
{
idx_k = idx_j;
no = no + 1;
break;
}
}
if (no == 0)
{
printf ("something wrong in selection \n");
exit (1);
}
flag[idx_k] = flag[idx_k] - 1;

/* copy the selected individual to new individual */
for (idx_j = 0; idx_j < ga_data.indi_length; idx_j++)
ga_data.population(idx_i][idx_Jj] = ga_data.population
[idx_k] [idx_31;
flaglidx_i] += 1;

Genetic Algorithm Implementation O‘@

}

/* check the selection */
for (idx_1i = 0; idx_i < ga_data.popu_size; idx_i++)
{
if (flag(idx_i] !'= 1)
{
printf ("something wrong with selection \n");
exit (1l);
}
}
free(flag);

The ga_crossover () Routine
Inthe ga_crossover () routine, as shown in Listing 4.12, three types of crossover
operator are implemented. Which one to use is specified in the input file. First, (pop-
ulation size)/2 pairs of individuals are randomly picked. Which pair of individuals is
going to experience the crossover operation is randomly determined, with crossover
occurring with a probability of crossover_rate. In the implementation, all
the individuals have one chance to be selected to undergo the crossover operation.
An integer pointer store_index is defined and allocated popu_size quantity
of integer type memory space. Each element of st ore_index stores an index of an
individual that has not been selected to go through the crossover operation. Another
integer data variable remain_number is defined to store the number of individ-
uals that have not been selected. At the beginning, store_index[j] = jand
remain_number = popu_size since no individuals have been selected yet.
Each time an individual j is selected through calling the search () routine,
store_index[j], 7 = j,..., remain_number is replaced by its next element
through calling the reorder() routine, that is, store_index[j] =
store_index[j+1]. Then remain_number decreases by 1. Each pair of
individuals selected has a chance (crossover_rate) to undergo the crossover
operation. This process is repeated until remain_number < 2. To facilitate fast
computation, st ore_index may be better defined as a linked list data type.

Listing 4.12 The ga_crossover () routine.

void ga_crossover (void)
{
int idx_i, idx_3j;
int *store_index;
int remain_number,kidl,kid2;
double prob;

store_index = (int *)calloc(ga_data.popu_size,sizeof (int));

}

Chapter Four—Evolutionary Computation Implementations

for (idx_i = 0; idx_i < ga_data.popu_size; idx_i++)
store_index[idx_1] = idx_i;
remain_number = ga_data.popu_size;

/* begin crossover among population */
for (idx_i = 0; idx_i < (ga_data.popu_size/2 + 1); idx_i++)
{ /* two kids are chosen each time */

if (remain_number >= 2)

/* at least two individuals remain unchosen */

{
idx_j = search(remain_number); /* find the first kid */

kidl = store_index[idx_3j]; /* index to the first kid */
remain_number--; /* update number of remaining unchosen */

reorder (store_index, remain_number, idx_3j);
/* reorder the sign vector */
idx_3j = search(remain_number); /* find the second kid2

kid2 = store_index[idx_j]; /* index to the second kid */
remain_number--; /* update number of remaining unchosen */

reorder (store_index, remain_number, idx_j);
/* reorder the sign vector */
prob = (rand()%1000)/1000.0;
if (prob <= ga_data.crossover_rate)
/* probability for crossover */
{
if ((kidl != ga_data.best_index) && (kid2 !=
ga_data.best_index))
{ /* keep the best */
switch(ga_data.c_type)
{
case ONE_POINT_CROSSOVER:
onecross (kidl,kid2); break;
case UNIFORM_CROSSOVER:
unicross(kidl,kid2); break;
default:
twocross (kidl, kid2); break;

}
}

free (store_index);

static int search (int si)

{

}

int re;
re = rand()%(si);
return(re);

static void reorder (int *vec,int si,int ind)

{

int i;
if (ind<si)
for (i=ind;i<si;i++)
* (vec+i)=* (vec+i+l);

Genetic Algorithm Implementation O‘ @

The ga_mutation () Routine

For a GA with binary representation, the mutation operation is generally performed
by independently, randomly, uniformly flipping bits with a small probability. In the
ga_mutation () routine, shown in Listing 4.13, two mutation methods are imple-
mented. Which one to use depends on a “mutation according to bit position” flag,
mutation_flag, which is read from the input file. When this flag is 0 (disabled),
mutation is carried out in the normal way: mutation is done bit by bit with a fixed
probability of mutation read in from the input file. When it is 1 (enabled), the prob-
ability of mutation my varies with the bit position in each variable.

The variation in mutation across each variable is an exponential function; that
is, it is much more probable that the least significant bit will be mutated than it is
that the most significant bit will be. It is implemented according to equation 4.1,
where b is the bit position (b = 0 for the least significant bit, b = 1 for the next-
to-least significant bit, etc.) and myq is the probability of mutation used when
mutation_flag = 0.

i
my = mo_e—b2/2 (4.1)

V2z

Note that the calculation is done across each variable. So, for a variable
represented by 16 bits, the resulting probability of mutation is m,(1/2x) 12, or about
(m)(0.40) for the least significant bit and about (#11p)(0.40)exp(-7.5) = (myg)(0.40)
(0.00055) for the most significant bit. The variance for the quasi-Gaussian function
can thus be seen to depend on the variables’ dynamic range and how each variable
is represented by the binary string.

This mutation by bit position can be seen to be similar in concept to the Gaus-
sian mutation carried out in the evolutionary programming function optimization
example and to the mutation scheme employed in evolutionary strategies, both
described in Chapter 3. We therefore implement a hybrid GA/EP/ES algorithm with
this mutation option. Listing 4.13 lists the ga_mutation () C source code, where
gau[idx_i] records the bit-position—dependent probability for the ith bit, which
is obtained by equation 4.1.

Listing 4.13 GA mutation operation C source code.

void ga_mutate (void)

{
int idx_i,idx_7J;
double prob, rate_m;

for (idx_j = 0; idx_j < ga_data.popu_size; idx_ij++)
if (idx_3j '= (ga_data.best_index))
for (idx_i = 0; idx_i < ga_data.indi_length; idx_i++)
{

’O Chapter Four—Evolutionary Computation Implementations

prob = (rand()%1000)/1000.0;
if ((ga_data.mutation_flag == 1))
rate_m = ga_data.mutation_rate *
ga_data.gaul[idx_i%(ga_data.bits_per_para)];
else
rate_m = ga_data.mutation_rate;

if (prob <= rate_m)

if ((ga_data.population[idx_j][idx_i]) == 0)
ga_data.population{idx_jliidx_i] = 1;
else
ga_data.population{idx_3jl{idx_i] = 0;

Generally, values of mutation rate within [0.001, 0.01] are recommended for the
canonical binary genetic algorithm discussed in this section, especially when a fixed
mutation rate is used. The mutation operation, generally speaking, has a disruptive
impact on the population and therefore brings new information into the population.
It facilitates exploration of the search space.

Running the GA Implementation

Now that we’ve looked at the individual components of the GA implementation,
let’s put them all together. To run the genetic algorithm implementation (the code
for which is on the book’s web site) requires the executable file ga . exe and an asso-
ciated run file, for example, ga . run. To run the implementation from within the
directory containing ga . exe and ga . run, at the system prompt typega ga. run.

One way to present the genetic algorithm implementation is to examine and dis-
cuss the contents of a typical run file, as shown in Listing 4.14, that can be invoked
with the executable file.

Listing 4.14 An example of a GA run file.

results.ocut
10

4

10000

16

20

0.75

0.005

0.02

=N

Genetic Algorithm Implementation O‘ @

The first entry, results.out, is the name of the data file where the results are
stored. The next two numbers are the dimension of the problem (10) and the func-
tion type (4—Griewank). These inputs are related to the GA’s working environment;
that is, the function to be solved is the 10-dimensional generalized Griewank func-
tion. The results of the run will be stored in a file named results.out.

Following the environment inputs are numbers: the maximum number of
generations (10,000), the number of bits per variable (16), the population size
(20), the percent probability of crossover divided by 100 (0.75), the probability
of mutation (0.005), the acceptable fitness values to which the problem is to be
evolved (0.02), the “mutate according to bit position” flag (0), the crossover type
(2), and the selection type (1).

The maximum number of generations is the maximum number of epochs, that
is, the maximum number of times the problem will be evaluated for the fitness of all
individuals in the population.

The number of bits per variable allows the user to set the resolution for each
vector element; in this case, each element represents one function parameter. The
trade-off here is that a relatively high number of bits provides the resolution needed
to successfully adjust parameters on a complex fitness surface, but it also increases
computational complexity significantly. This GA implementation provides a tool to
investigate this question with a variety of datasets representing various problems.

The number of population members (20 in this case) can be varied according to
the problem. A higher number allows a more thorough exploration of the problem
domain, but increases computing time. Typically, the value should be set between 20
and 200, but values outside the range may be appropriate for relatively simple prob-
lems that involve relatively short individuals (< 20) or for highly complex problems
that involve very large chromosomes (> 200).

The probability of crossover should be set between 60 and 80 percent for many
problems. The straightforward two-point crossover operator (as described in
Chapter 3) can be implemented, as can one-point and uniform crossover.

The next value (0.005 in the list) is the probability of mutation. Options for
mutation implemented in this GA were explained previously. The value listed here
is a sort of baseline value; it can be implemented in one of two ways. If not modi-
fied, however, the value represents the chance that mutation will occur determined
bit by bit.

The next value, 0.02, is the fitness target for the performance of the “evolved”
solution. The GA will terminate when this fitness level is achieved or when the max-
imum number of generations have been calculated, whichever occurs first. In either
case, the results are written to the specified output file. In this implementation, this
value is not used. We terminate the run only when the maximum number of gener-
ations is reached.

The next value (0) is the “mutation according to bit position” flag. The meaning
of this flag was explained in the previous section.

@ ’O Chapter Four—Evolutionary Computation Implementations

The next-to-last value in the list (2) is the crossover type. The GA implementation
allows the user to choose one of three kinds of crossover. If the crossover type is
set to 0, one-point crossover is implemented. If it is set to 1, uniform crossover is
implemented, and a value of 2 implements two-point crossover.

The last value in the list (1) is the selection type. The GA implementation allows
the user to choose any of three kinds of selection mechanisms. If the selection type
is set to 0, the roulette wheel selection operator is implemented; if it is set to 1, the
binary tournament selection operator is implemented; and a value of 2 implements
the ranking selection operator.

The output file lists the input parameters specified in the run file. It then lists the
fitness value for each population member at the end of the run. Last, the parameter
values for the population member with the highest fitness are listed.

It is important to experiment with the GA implementation. Be aware that
because of its stochastic nature, a GA may converge to a different point each
time it is run. Researchers rely on computational experimentation to compare
the effectiveness of evolutionary algorithms. You are encouraged to use accepted
statistical tests such as t-tests and Tukey’s method when you are reporting your
results.

You now know everything you need to know about running the GA implemen-
tation. We suggest you take the application for a trial run.

Particle Swarm Optimization Implementation

Now that we’ve reviewed the GA software, we discuss PSO implementation. The
PSO implementation is essentially an asynchronous version of particle swarm opti-
mization that uses global best and pbest (see Chapter 3). The basic particle
swarm optimization discussed in the previous chapter is implemented first, then
the implementation is expanded to provide the capability of running multi-PSOs,
particularly co-evolutionary particle swarm optimization. We begin by looking at
some programming issues.

Programming the PSO Implementation

In contrast to the implementation of the genetic algorithm discussed in the last
section, the implementation of PSO is based on a state machine (SM) instead of
a flowchart. Figure 4.2 shows the state machine of this PSO implementation. The
arrow leading from one state to another state is called a transition. It describes how
the SM transitions from state to state. The label of a transition describes the condi-
tion that triggers the transition.

Particle Swarm Optimization Implementation O‘ @

popu_index = popu_size m popu_index < popu_size

EVALUATE

PSO_
UPDATE_
LOCAL_BEST

PSO_
UPDATE_
INERTIA_
WEIGHT

PSO_
NEXT.

W

gene_index < max_gene

UPDATE_
POSITION

PSO_
UPDATE_
VELOCITY

gene_index = max_gene

PSOS_DONE

Figure 4.2 A state diagram of an asynchronous particle swarm optimization
implementation.

As in the GA implementation, some new data types are defined initially.
Listings 4.15 and 4.16 show these definitions.

Listing 4.15 Definition of some new data types in the PSO implementation.

typedef float *P_FLOAT;
typedef P_FLOAT FVECTOR;
typedef P_FLOAT *FMATRIX;

/***************t**********i**********i/

/* Enumerations */
/*i************************************/
typedef enum PSO_State_Tag
{
PSO_UPDATE_INERTIA_WEIGHT, // Update inertia weight
PSO_EVALUATE, // Evaluate particles

@ ’Q Chapter Four—Evolutionary Computation Implementations

PSO_UPDATE_GLOBAL_BEST, // Update global best
PSO_UPDATE_LOCAL_BEST, // Update local best
PSO_UPDATE_VELOCITY, // Update particle’s velocity
PSO_UPDATE_POSITION, // Update particle’s position
PSO_GOAL_REACH_JUDGE, // Judge whether reach the goal
PSO_NEXT_GENERATION, // Move to the next generation
PSOS_DONE, // Finish one cycle of PSOs
NUM_PSO_STATES // Total number of PSO states

} PSO_State_Type;

typedef enum PSO_Initialize_Tag

{
PSO_RANDOM_SYMMETRY_INITIALIZE, // 0 :Symmetry Initialization
PSO_RANDOM_ASYMMETRY_INITIALIZE, // 1 :Asymmetry Initialization
NUM_PSO_INITIALIZE // Number of initialization methods

} PSO_Initialize_ Type;

typedef enum MINMAX_Tag
{
MINIMIZATION, // 0 :Minimization problem
MAXIMIZATION // 1 :Maximization problem
} MINMAX_Type;

typedef enum Evaluate_Function_Tag

{

F6, . // 0 :F6: min

PARABOLIC, // 1 :Parabolic: min

ROSENBROCK, // 2 :Rosenbrock: min

RASTRIGRIN, // 3 :Rastrigrin: min

GRIEWANK, // 4 :Griewank: min
NUM_EVALUATE_FUNCTIONS // Total number of evaluation functions

} Evaluate_Function_Type;

typedef enum Inertia_Weight_ Update_Method_ _Tag

{
CONSTANT_IW, // 0 :Constant inertia weight
LINEAR_IW, // 1 :Linearly decreasing inertia weight
NOISE_ADDITION_IW, // 2 :Adding noise to the constant inertia weight
NUM_IW_UPDATE_METHODS // Number of inertia weight update methods

} IW_Update_Type;

Listing 4.16 Structure data type definitions for PSO.

/**'k***********************************/
/* Structures */
/****************i*********************/
typedef struct PSO_Initialize_Range_Type_Tag
{

float left;

float right;
} PSO_Initialize_Range_Type;

Particle Swarm Optimization Implementation O‘.@

typedef struct PSO_Environment_Type_Tag

{
MINMAX_Type
Evaluate_Function_Type
IW_Update_Type
PSO_Initialize_Type
PSO_Initizlize_Range_Type
float

opti_type;
function_type;
iw_method;
init_type;
init_range;
max_velocity;

float max_position;

int max_generation;
int boundary_£flag;
FVECTOR low_boundaries;
FVECTOR up_boundaries;

} PSO_Environment_Type;

typedef struct PSO_Type_Tag // PSO parameters

{

PSO_Environment_Type env_data;
int popu_size;
int dimension;
float inertia_weight;
float init_inertia_weight;
int global_best_index;
FVECTOR pbest_values;
FMATRIX velocity_values;
FMATRIX position_values;
FMATRIX pbest_position_values;
float eva_fun_value;
int popu_index;
int gene_index;

} PSO_Type;

In Listing 4.15 the enumeration data type PSO_State_Type defines all the
states in the PSO state machine. There are nine states, with each state having a
handling routine corresponding to it. The PSO_Initialize_Type defines the
methods to initialize the population. There are two methods: symmetrical and
asymmetrical initialization. The MINMAX_Type defines the types of optimization
problems the PSO is going to solve: either a maximization problem or a mini-
mization problem.

Evaluate_Function_Type defines the optimization functions to be solved
as in the GA implementation. The IW_Update_Type defines methods to update
the inertia weight dynamically. Three ways to deal with the inertia weight are imple-
mented. The inertia weight can be kept constant, decreased linearly, or added as
random noise through the course of the run.

In Listing 4.16 the struct data type PSO_Initialize_Range_Type
defines the data range within which the initialization is performed. The
PSO_Environment_Type defines a st ruct data type that includes parameters
related to the PSO environment. Included are optimization type (opti_type),

@4’@ Chapter Four—Evolutionary Computation Implementations

optimization function (function_type), inertia weight updating method
(iw_method), PSO initialization method (init_type), PSO initialization range
(init_range), maximum velocity allowed (max_velocity), maximum posi-
tion allowed (max_position), maximum number of generations
(max_generation), a flag telling whether there are boundaries for the para-
meters to be evolved (boundary_flag), and the upper and lower boundaries
if the boundary_flag is TRUE (low_boundaries and up_boundaries).

The PSO_Type defines a struct data type that includes all PSO parameters.
Included are PSO environment data (env_data), population size
(popu_size), dimension of the problem or length of the individual
(dimension), current inertia weight (inertia_weight), initial inertia weight
(init_inertia_weight), index of the global best at the current generation
(global_best_index), vector of pbest values (pbest_values), matrix of
velocity values (velocity_values), matrix of position values (position_
values), matrix of pbest position values (pbest_position_values),
fitness value of the current individual of the current generation (eva_fun_
value), population index (popu_index), and index of the current generation
(gene_index).

A PSO_Type variable pso, shown below, is defined at the PSO module scope so
it is unnecessary to pass the PSO-related parameters and variables from one routine
to another within the PSO module.

static PSO_Type pso;

The main () Routine

The main () routine is shown in Listing 4.17. As in the GA implementation, it is
kept as simple as possible to make the PSO module as independent as possible. In
the PSO_Start_Up () routine, as shown in Listing 4.17, all the necessary param-
eters for running the PSO implementation are read from the input file, then the
dynamic data storage variables are allocated memory space and initialized. In the
PSO_Clean_Up () routine, the results are stored in an output file and the previ-
ously allocated memory space is de-allocated. The PSO_Main_Loop () routine is
the core of the PSO implementation, where the state machine is run.

Listing 4.17 The PSOmain () routine.

void main (int argc, char *argv{])
{
if (argc>=2)
{
printf("Too many command line parameters");
exit (1);
}
PSO_Start_Up();
PSO_Main_Loop () ;

Particle Swarm Optimization Implementation O‘ @

PSO_Clean_Up{();
}

void PSO_Start_Up (void)

{
read_pso_parameters();
allocate_pso_memory () ; // allocate memory for particles
pso_initialize(); // initialize particles

}

void PSO_Clean_Up (void)

{
pso_store_results(); // output results
free_pso_memory(); // free memory space of particles

The PSO_Main_Loop () Routine
Before running the PSO_Main_Loop () routine, as shown in Listing 4.18, a PSO
module scope variable is defined as

static PSO_State_Type PSO_current_state;

This variable records the current state of the PSO state machine and is defined as
static to prevent the state from being changed by an outside module acciden-
tally. When running the state machine, the current state calls its handling routine
through pso_state_handler (PSO_current_state), where the state per-
forms its action until a transition to another state occurs. The state machine keeps
running until it reaches the state PSOS_DONE.

Listing 4.18 The PSO_Main_Loop () routine.

void PSO_Main_Loop (void)
{
BOOLEAN running;
running = TRUE;
while (running)
{
if (PSO_current_state == PSOS_DONE)
running = FALSE;
pso_state_handler (PSO_current_state);

State Handling Routines
The main part of the PSO state machine is its state handler, which is shown in
Listing 4.19. The state handler routine called is based on the current PSO state.

’Q Chapter Four—Evolutionary Computation Implementations

For example, if the current state is PSO_EVALUATE, then the PSO_evaluate ()
handler routine, shown in Listing 4.20, is called. Within this routine, if the cur-
rent population index is less than the population size, the evaluation function is
called to evaluate the fitness of the current individual, and the state transitions to
PSO_UPDATE_LOCAIL_BEST; otherwise, the current state transitions to the state
PSO_GOAL_REACH_JUDGE and the current population index is assigned the
value of 0. '

Listing 4.19 The PSO state handling routine.

static void pso_state_handler {(int state_index)
{
switch (state_index)
{
case PSO_UPDATE_INERTIA_WEIGHT:

PSO_update_inertia_weight (); break;
case PSO_EVALUATE:

PSO_evaluate(); break;
case PSO_UPDATE_GLOBAL_BEST:

PSO_update_global_best (); break;
case PSO_UPDATE_LOCAL_BEST:

PSO_update_local_best (); break;
case PSO_UPDTAE_VELOCITY:

PSO_update_velocity(); break;
case PSO_UPDATE_POSITION:

PSO_update_position(); break;
case PSO_GOAL_REACH_JUDGE:

PSO_goal_reach_judge(); break;
case PSO_NEXT_GENERATION:

PSO_next_generation(); break;
case PSOS_DONE:

PSOs_done () ; break;
default: break;

Listing 4.20 The PSO_evaluate () routine.

static void PSO_evaluate (void)
{
if ((pso.popu_index) < {pso.popu_size))
{
evaluate_functions {pso.env_data.function_type);
PSO_current_state = PSO_UPDATE_LCOCAL_BEST;
}
else
{
PSO_current_state = PSO_GOAL_REACH_JUDGE;
pso.popu_index = 0;

Particle Swarm Optimization Implementation Q .@

Programming the Co-evolutionary PSO

In the previous section, we described the implementation of a basic PSO. In this
section, we expand it to provide the capability of running multi-PSOs. As we
know, evolutionary algorithms have been successfully applied to solve many opti-
mization problems. They have also been used to solve optimization problems with
constraints by converting the constrained problems into unconstrained problems,
which are what the evolutionary algorithms are good at. The most commonly
employed conversion method adds penalty functions to punish the infeasible
individuals.

Another, potentially better, approach is to employ the augmented Lagrangian
method to convert the constrained problem into min—-max problems (Tahk and Sun
2000). Then two evolutionary algorithm populations are used to solve the min-max
problems. One is used to solve the minimization problem, with the maximization
problem treated as a fixed environment of the minimization problem; the other is
used to solve the maximization problem, with the minimization problem treated as
the fixed environment of the maximization problem. The only interaction between
these two algorithms is the fitness evaluations; that is, each is treated as an environ-
ment of the other.

Procedure for Running the Co-PSO
The procedure for running the co-PSO is (Shi and Krohling 2002):

1. Initialize two PSOs.
2. Run the first PSO for max_gen_1 generations.

3. Reevaluate the pbe stvalues for the second PSO if it is not the first
cycle.
4. Run the second PSO for max_gen_2 generations.

5. Re-evaluate the pbest values for the first PSO.

6. Loop to step 2 until a termination condition is met.

Each member of the first population is a vector of variables (elements), the values
of which we are trying to optimize, and each element is randomly initialized within
the range given for that variable when the problem is stated. Each member of the
second population represents a A vector, each element of which is initialized in the
range [0,1]. It is important to note that for both PSOs, the function that is evaluated
is the augmented Lagrangian. The first PSO is run as a minimization problem, and
the second as a maximization problem. The population sizes of the two populations
do not have to be the same (but they may be).

After initialization, the first PSO is run for max_gen_1 generations, as
follows: The fitness of each population member vector of variables is evaluated

’O Chapter Four—Evolutionary Computation Implementations

with each 4 vector in the second PSO population. The highest fitness (lowest
function value) thus obtained among all of the member/4 combinations is defined
as the fitness of that population member. Note that the A values are fixed
during this step; they are part of the “environment” within which the evaluation
occurs.

In the first iteration, called a cycle, we then go to step 4 of the procedure.
If it is not the first cycle, the pbest values for the second PSO population are
recalculated.

In step 4, we run the second PSO for max_gen_2 generations. This time, we are
optimizing with respect to the 4 values in the second population. We evaluate the
fitness of each population member vector of 4 values with each vector of variables
(population member) in the first population. The highest fitness (highest function
value) thus obtained among all of the A/member combinations is defined as the fit-
ness of that 1 population member. Note that all variable values are fixed during this
step; they are part of the environment.

In step 5, the pbest values for the first PSO population are recalculated. This is
the completion of one cycle of the procedure.

Benchmark Problems Selected for Implementation

Three benchmark-constrained optimization problems reported in (Michalewicz
and Schoenauer 1996), (Tahk and Sun 2000) and (Shi and Krohling 2002) were
selected for implementation in this book. The first optimization problem Gl
consists of minimizing:

4 13
f(x) = 5x +5x2+5x3+5x4—52xi2— in
i=1 i=5

subject to

2x1 + 2% + x10+x11 < 10
2x1 +2x3 +x10 +x12 < 10
20 4+ 2x3 + x11 +x12 £ 10
—8x; +x10<0
—8x+x11 <0
—8x3+x12<0
—2x4—x5+x190<0
—2x6—x7+x11 <0
—2xg —x9 +x12 <0

Particle Swarm Optimization Implementation O‘ .@

where

0<x<1, i=1,...,9
0<x<100, i=10,11,12

0<x<1l, i=13
The global minimum is known to be
x* =(1,1,1,1,1,1,1,1,1,3,3,3,1)

with f(x*) = —15.
The second optimization problem G7 consists of minimizing:

flx) = x% + x% + x1x — 14x; — 16x7 + (x3 — 10)2
+4(xs — 5) + (xs — 3)? + 2(x6 — 1)* + 5x7
+ T(xg — 112 4 2(x9 — 10)? + (x19 — 7)* + 45

subject to

105 —4x; — 5xp +3x7 —9x9 2 0

—3(x1 —2)% =4y = 3) = 2x3 + Txs + 120 2 0
—10x; +8x; + 17x7 —2x3 > 0

—x% = 2x(xy — 2)* + 2x1% — 14x5 + 6x5 > 0

8x1 — 2% — 5x9 +2x10+ 12 >0

—5x% —8xy — (x3 = 6)* + 2x4 +40 2 0

3x; — 6x2 — 12(x9 — 8)% + Tx10 2 0

—0.5(x; —8)2 = 2(x; —4) = 3x2 + x5 +30 2 0

where
-10<x<10, i=1,...,10
The global minimum is known to be

x*=(2.171996, 2.363683, 8.773926, 5.095984
0.9906548, 1.430574, 1.321644, 9.828726
8.280092, 8.375927)

with flx*) = 24.3062091.

’O Chapter Four—Evolutionary Computation Implementations

The last optimization problem G9 consists of minimizing;:

f) = (x1 = 10)* + 5(x ~ 12)% + x4 + 3(xg — 11)?
+ IOxg + 7x§ —4xgx7 — 10x6 — 8x7

subject to
127—2x%—3x;—x3—-4x§—5x5 >0
282 — Tx; — 3%y — 10x§—x4+x5 >0
196 — 23x; — x5 — 6x2 + 8x7 2 0
—4x] — x5 +3x130 — 2x2 = 5x6 + 1127 > 0
where

-10<x<10;, i=1,...,7
The global minimum is known to be

x* =(2.330499, 1.951372, -0.4775414, 4.365726,
—0.6244870, 1.038131, 1.594227)

with flx*) = 680.6300573.

For all three benchmark problems, the population sizes can be set to 40 and 30,
respectively. The maximum number of generations for each PSO of one cycle is gen-
erally chosen to be 10. To test the convergence speed of the co-evolutionary PSO,
three maximum numbers of cycles can be tested, such as 40, 80, and 120. The parti-
cles are randomly initialized within the boundaries for each run. The inertia weight
of each PSO can be linearly decreased over the course of each run, starting from 0.9
and ending at 0.4. Each different parameter setting can be tested by running multiple
times, such as 50 times. Each run is terminated only when the maximum number of
cycles has been reached.

Modification of Data Types and Routines of PSO Implementation

To implement the co-evolutionary PSO, the PSO implementation in the previous
section is expanded so that multi-PSOs can co-exist. New states have been included
into the enumeration data type PSO_State_Type since there is now transition
between different PSOs. The new PSO_State_Type is defined as that shown in
Listing 4.21.

Listing 4.21 The PSO_State_Type for multi-PSOs.

typedef enum PSO_State_Tag

{
PSO_UPDATE_INERTIA_WEIGHT, // Update inertia weight
PSO_EVALUATE, // Evaluate particles

Particle Swarm Optimization Implementation Q‘ ’

PSO_UPDATE_GLOBAL_BEST, // Update global best
PSO_UPDATE_LOCAL_BEST, // Update local best
PSO_UPDATE_VELOCITY, // Update particle’s velocity
PSO_UPDATE_POSITION, // Update particle’s position
PSO_GOAL_REACH_JUDGE, // Judge whether reach the goal
PSO_NEXT_GENERATION, // Move to the next generation

PSO_UPDATE_PBEST_EACH_CYCLE, // Update pbest each cycle for co-pso
// due to the environment changed

PSO_NEXT_PSO, // Move to the next PSO in the same cycle or
// the first pso in the next cycle

PSOS_DONE, // Finish one cycle of PSOs

NUM_PSO_STATES // Total number of PSO states

} PSO_State_Type;

The new added states are PSO_UPDATE_PBEST_EACH_CYCLE and
PSO_NEXT_PSO. The state PSO_UPDATE_PBEST_EACH_CYCLE is used to adjust
the pbest fitness value since the environment in which the pbest positions are
evaluated was changed when the multi-PSO’s algorithm was transitioned from one
PSO to the other PSO; the state PSO_NEXT_PSO is used to start the new PSO eval-
uation. The state machine is shown in Figure 4.3.

The PSO_Type pso has also been replaced by

static int NUM_PSO;
static PSO_Type *psos;

where NUM_PSO is read in from the input file at the beginning and tells how many
PSOs co-exist in the implementation. The variable psos is a PSO_Type pointer
pointing to the array of the NUM_P SO number of PSOs.

The PSO_Main_Loop () also has to be modified to allow multi-PSOs to coexist,
as shown in Listing 4.22.

Listing 4.22 The PSO_Main_Loop () routine in multi-PSOs.

void PSO_Main_Loop {void)
{
BOCLEAN running;
while ((pso_cycle_index++) < total_cycle_of_PSOs)
{
running = TRUE;
while (running)
{
if (PSO_current_state == PSOS_DONE)
running = FALSE;
pso_state_handler (PSO_current_state);

’O Chapter Four—Evolutionary Computation Implementations

PSO_

7 NEXT.
£ — UPDATE
GENERATION —

§ " POSITION
g 2

& [

5 2

£ v

i 8

>

3 g

';1 2

f =4

&

done (o_ NEXT_

@

PSOS_DONE
next_pso = number_psos

Figure 4.3 State diagram of asynchronous version of multi-PSOs.

In Listing 4.22 the integer variable total_cycle_of_PSOs keeps track of
the number of cycles the multi-PSOs have run, with each running for the maxi-
mum number of generations specified in its corresponding PSO_Type variable; the
integer pso_cycle_index is the index of the PSO that is running. The variable
total_cycle_of_PSOs isspecified inan input file and is read in at the beginning
of the run.

Particle Swarm Optimization Implementation O@

The Evaluate_Function_Type has also been expanded to include
constrained problems, and it is shown in Listing 4.23. Each constrained problem
is associated with two evaluation functions corresponding to the two PSOs in the
co-evolutionary PSO algorithms, respectively. For example, for the G1-constrained
problem, G1_MIN is the case index corresponding to the evaluation function of the
PSO that is responsible for the minimum part of the min—max problem transformed
from the G1 problem; G1_MAX is that for the maximum part of the min-max
problem.

Listing 4.23 Expanded Evaluate_Function_Type.

typedef enum Evaluate_Function_Tag

{

G1_MIN, // 0: Gl, min part
G1_MAX, // 1l: Gl, max part
G7_MIN, // 2: G7, min part
G7_MAX, // 3: G7, max part
G9_MIN, // 4: G9, min part
G9_MAX, // 5: GY9, max part
F6, // 6: F6: min
PARABOLIC, // 7: Parabolic: min
ROSENBROCK, // 8: Rosenbrock: min
RASTRIGRIN, // 9: Rastrigrin: min
GRIEWANK, // 10: Griewank: min

NUM_EVALUATE_FUNCTIONS // Total number of evaluation functions
} Evaluate_Function_Type;

The pso_state_handler (int state_index) also hasto be modified to
include new cases for handling the new states, which is shown in Listing 4.24.

Listing 4.24 Modified pso_state_handler.

static void pso_state_handler (int state_index)
{
switch {state_index)
{
case PSO_UPDATE_INERTIA_WEIGHT:

PSO_update_inertia_weight {}; break;
case PSO_EVALUATE:

PSO_evaluate(); break;
case PSO_UPDATE_GLOBAL_BEST:

PSO_update_global_best (); break;
case PSO_UPDATE_LOCAL_BEST:

PSO_update_local_best (); break;
case PSO_UPDATE_VELOCITY:

PSO_update_velocity(); break;

case PSO_UPDATE_POSITION:
PSO_update_position{(); break;

@’O Chapter Four—Evolutionary Computation Implementations

case PSO_GOAL_REACH_JUDGE:

PSO_goal_reach_judge(); break;
case PSO_NEXT GENERATION:
PSO_next_generation(); break;

case PSO_UPDATE_PBEST_EACH_CYCLE:
PSO_update_pbest_each_cycle(); break;
case PSO_NEXT_PSO:

PSO_next_pso(); break;
case PSOS_DONE:

PSOs_done () ; break;
default: break;

The PSO_EVALUATE State

As in the single PSO implementation, if all the individuals have been evaluated, the
state transitions to state PSO_GOAL_REACH_JUDGE, and the index of population
is set to 0. Otherwise, the current individual is evaluated and the state transitions
to state PSO_UPDATE_LOCAL_BEST since this is an asynchronous version of
multi-PSO implementation. For a synchronous version of PSO implementation,
the state stays at its current state PSO_EVALUATE until all the individuals have
been evaluated, at which time it transitions to state PSO_UPDATE_LOCAL_BEST.
For the co-evolutionary PSO, each PSO passes its function type to the
evaluate_functions () routine to call its corresponding function to evaluate
the PSO’s performance. For example, if the problem to be solved is G7, one PSO
for solving the minimization problem calls G7_MIN (), and the other PSO for solv-
ing the maximization problem calls G7_MAX (). The evaluate_functions ()

routine is shown in Listing 4.25.

Listing 4.25 The evaluate_functions () routine.

static void PSO_evaluate (void)
{
if ((psos[cur_pso].popu_index) < (psos[cur_psol.popu_size))
{
evaluate_functions (psos[cur_pso].env_data.function_type);
PSO_current_state = PSO_UPDATE_LOCAL_BEST;

}
else

{
PSC_current_state = PSO_GOAL_REACH_JUDGE;
psos{cur_psol.popu_index = 0;

}

static void evaluate_functions (int fun_type)

{

switch (fun_type)
{
case G1_MIN:

Particle Swarm Optimization Implementation O‘.@

gl_min{(); break;
case G1_MAX:

gl_max{(); break;
case G7_MIN:

g7_min{); break;
case G7_MAX:

g7_max{}; break;
case G9_MIN:

g9_min{}); break;
case G9_MAX:

g9_max(); break;
case F6:

f6(); break;
case PARABOLIC:

parabolic(); break;
case ROSENBROCK:

rosenbrock(); break;
case RASTRIGRIN:

rastrigrin(); break;
case GRIEWANK:

griewank () ; break;
default: break;

The PSO_UPDATE_LOCAL_BEST State

In this state, the handler routine, as shown in Listing 4.26, first checks whether it’s a
minimization or a maximization problem according to the current PSO’s optimiza-
tion type so that the implementation can be applied to solve both the minimization
and maximization problems. If the implementation is run as a co-evolutionary PSO,
one PSO is run to solve the minimization problem; the other is run to solve the max-
imization problem.

If the optimization type of the current PSO is minimization, it first checks whether
it is the first generation of the first cycle. If it is, it assigns 0 as the global best index and
the evaluation value as the current individual’s pbest value. It then checks whether
the current individual’s evaluation value is less than its pbest value. If it is, the cur-
rent position values are assigned to pbest position values, and the pbest value
is assigned to be the evaluation value of the current individual’s evaluation value.
Finally, the state transitions to state PSO_UPDATE_GLOBAL_BEST.

Listing 4.26 The PSO_UPDATE_LOCAL_BEST state handler routine.

static void PSO_update_local_best
{

int idx_i;

(void)

’O Chapter Four—Evolutionary Computation Implementations

if ((psos[cur_pso].env_data.opti_type) == MINIMIZATION)
{ // minimization problem
if ((pso_cycle_index == 1) && ((psos[cur_pso].gene_index) == 0))
{
psos[cur_pso] .global_best_index = 0;
psos[cur_pso] .pbest_values{psos[cur_pso].popu_index]
psoscur_psc].eva_fun_value;

}
if ((psos[cur_pso].eva_fun_value) <

(psos[cur_pso] .pbest_values[psos[cur_pso].popu_index]})
{

psos[cur_pso] .pbest_values[psos[cur_pso].popu_index]
psos{cur_pso].eva_fun_value;
for (idx_i = 0; idx_i < (psos{cur_pso].dimension) ;idx_i++)
{
(psos[cur_pso] .pbest_position_values[psos[cur_pso].popu_index] [idx_i])
(psos[cur_pso].position_values([psos([cur_pso] .popu_index]

[idx_1i1);
}

}
}
else
{ // maximization problem

if ((pso_cycle_index == 1) && ((psos[cur_pso].gene_index) == 0))

{

psos[cur_pso] .global_best_index = 0;
psos|cur_psol .pbest_values{psos{cur_pso] .popu_index] =
psos[cur_pso]l.eva_fun_value;

}
if ({psos[cur_pso].eva_fun_value) >
(psos[cur_pso] .pbest_values[psos[cur_pso].popu_index]))

{

psos[cur_pso] .pbest_values[psos[cur_pso] .popu_index] =
psos[cur_pso] .eva_fun_value;

for (idx_i = 0; idx_i < (psos[cur_pso].dimension) ;idx_i++)

{
(psos{cur_pso] .pbest_position_values[psos[cur_pso] .popu_index] {idx_i])=
(psos[cur_pso] .position_values[psos{cur_pso].popu_index] [idx_i]);

}

}
PSO_current_state = PSO_UPDATE_GLOBAL_BEST;

The PSO_UPDATE_GLOBAL_BEST State
Similar to the state PSO_UPDATE_LOCAL_BEST, this state first checks the opti-
mization type, then updates the global best index if the current individual of the

current PSO performs better than the global best. The state handler routine is shown
in Listing 4.27.

Particle Swarm Optimization Implementation O‘.@

Listing 4.27 The PSO_UPDATE_GLOBAL_BEST state handler routine.

static void PSO_update_global best (void)
{
if {((psos[cur_pso].env_data.opti_type) == MINIMIZATION)
{ // minimization problem
if ((psos{cur_pso].eva_fun_value) <
(psos[cur_pso] .pbest_values[psos[cur_psol].global_best_index]))
{
psos{cur_pso] .global_best_index = psos[cur_pso].popu_index;
}
}
else
{ // maximization problem
if ((psos[cur_pso].eva_fun_value) >
(psos [cur_pso] .pbest_values{psos[cur_pso].global_best_index]))
{
psos[cur_pso].global_best_index = psos[cur_pso].popu_index;
}
}
PSO_current_state = PSO_UPDATE_VELOCITY;

The PSO_UPDATE_VELOCITY State

In this state, the velocity values of the current individual of the current PSO are
updated according to equations 3.5 and 3.6 (in Chapter 3) and are checked with the
maximum velocity to keep the velocity values within the boundary. The state is then
transitioned to state PSO_UPDATE_POSITION.

Listing 4.28 The PSO_UPDATE_VELOCITY state handler routine.

static void PSO_update_velocity (void)
{
int idx_i;
for (idx_i = 0; idx_i < (psos[cur_pso].dimension) ;idx_i++)
{
psoscur_psol.velocity_values[psos{cur_pso].popu_index] [idx_i] =
psos[cur_pso] .inertia_weight) *
(psos[cur_pso].velocity_values(psos{cur_psol].popu_index] [idx_1i]) +
2*(rand()/32767.0) *
(psos[cur_pso] .pbest_position_values[psos[cur_pso]. popu_index] [idx_i] -
psos[cur_pso] .position_values[psos[cur_pso] .popu_index] [idx_i]} +
2* (rand{()/32767.0) *
(psos{cur_pso] .pbest_position_values[psos{cur_pso].global_best_index]
[idx_1i] - psos([cur_pso].position_values([psos[cur_pso].popu_index] [idx_il);
if ((psos[cur_pso].velocity_values|[psos|cur_pso].popu_index]
[idx_i])} > (psos{cur_psol.env_data.max_velocity))
{
psos[cur_pso] .velocity_values[psos[cur_pso] .popu_index]
[idx_i] = psos{cur_pso].env_data.max_velocity;

’O Chapter Four—Evolutionary Computation Implementations

else if ((psos{cur_pso].velocity_values[psos[cur_pso].popu_index]
[idx_i]) < (-(psos{cur_pso].env_data.max_velocity)))
{
psos[cur_pso].velocity values[psos[cur_pso].popu_index] [idx_i] =
—(psos{cur_psol.env_data.max_velocity);
}

}
PSO_current_state = PSO_UPDATE_POSITION;

The PSO_UPDATE_POSITION State

As in the previous state, the position values are updated according to equations 3.5
and 3.6. The position values are then checked to see whether they are within the
boundaries. If they exceed a boundary, they are assigned to the boundary value plus
arandom value to force them to be within the boundary. The state transitions back to
the state PSO_EVALUATE to complete the remainder of the PSO operations for one
individual. The index of the population is increased by 1. The state handler routine
is shown in Listing 4.29.

Listing 4.29 The PSO_UPDATE_POSITION state handler routine.

static void PSO_update_position {void)
{
int idx_1i;
for (idx_i = 0; idx_i < (psos[cur_pso].dimension) ;idx_i++)
{
psos[cur_pso] .position_values[psos{cur_pso] .popu_index] [idx_i] +=
psos[cur_pso]}.velocity_values[psos[cur_pso].popu_index] [idx_i];
if (psos[cur_pso].env_data.boundary_flag)
{
if ((psos[cur_pso].position_values[psos[cur_pso].popu_index]
[idx_1i]) < (psos[cur_pso].env_data.low_boundaries[idx_i]))
{
psos[cur_pso] .position_values|[psos[cur_pso] .popu_index} [idx_i] =
psos[cur_pso].env_data.low_boundaries[idx_i] +
((psos{cur_pso] .env_data.up_boundaries{idx_i] -
psos[cur_psol.env_data.low_boundaries{idx_i]) * rand()/(2 * 32767.0));
}
else if ((psos[cur_pso].position_values[psos[cur_pso].popu_index]
{idx_1i]) > (psos[cur_pso].env_data.up_boundaries{idx_i]))
{
psos{cur_pso] .position_values[psos[cur_pso].popu_index] [idx_i] =
psos[cur_pso] .env_data.up_boundaries[idx_i] -
((psos{cur_pso].env_data.up_boundaries[idx_1i] -
psos|cur_psol}.env_data.low_boundaries[idx_i]) * rand()/(2 * 32767.0));
}
}

Particle Swarm Optimization Implementation O‘ @

PSO_current_state = PSO_EVALUATE;
psos [cur_pso] .popu_index) ++;

The PSO_GOAL_REACH_JUDGE State

In this state, all the criteria are checked. If the termination criteria are satisfied,
the state transitions to state PSOS_DONE; otherwise, it transitions to state
PSO_NEXT_GENERATION. Since we have not implemented criterion checking in
this implementation, it transitions to state PSO_NEXT_GENERATION uncondi-
tionally. The state handler routine is shown in Listing 4.30.

Listing 4.30 The PSO_GOAL_REACH_JUDGE state handler routine.

static void PSO_goal_reach_judge (void)
{

PSO_current_state = PSO_NEXT_GENERATICN;
}

The PSO_NEXT_GENERATION State

In this state, the handler routine, as shown in Listing 4.31, first checks whether
the generation index of the current PSO has reached its maximum number of
generations. If it hasn’t, the generation index increases by 1 to start the next
generation of the current PSO, and the state transitions to state
PSO_UPDATE_INERTIA_WEIGHT. Otherwise, it moves to the next PSO by
increasing the PSO’s index by 1. If all the PSOs have completed their runs within
this cycle, the PSO’s index is assigned to 0 to start from the first PSO for the next
cycle. The state transitions to state PSO_UPDATE_PBEST_EACH_CYCLE.

Listing 4.31 The PSO_NEXT_GENERATION state handler routine.

static void PSO_next_generation (void)
{
if ((++(psos{cur_pso].gene_index)) <
(psos{cur_pso].env_data.max_generation))
{ // next generation of the same population of PSO
PSO_current_state = PSO_UPDATE_INERTIA_WEIGHT;
}
else
{
if ((++cur_pso) >= NUM_PSO)

’O Chapter Four—Evolutionary Computation Implementations

{ // end of the cycle
cur_pso = 0; // move to the first pso
}
PSO_current_state = PSO_UPDATE_PBEST_EACH_CYCLE;
// move to the next state
psos[cur_pso] .popu_index = 0;

The PSO_UPDATE_INERTIA WEIGHT State

In this state, the current PSO updates its inertia weight according to its inertia weight
updating method. The state transitions to the state PSO_EVALUATE. The index of
the population is set to 0 to start from the first individual. The state handler routine
is shown in Listing 4.32.

Listing 4.32 The PSO_UPDATE_INERTIA_WEIGHT state handler routine.

static void PSO_update_inertia_weight (void)

{
iw_update_methods (psos[cur_pso] .env_data.iw_method);
PSO_current_state = PSO_EVALUATE; // move to the next state
psos[cur_pso] .popu_index = 0; // start with the first particle

The PSO_UPDATE_PBEST_EACH_CYCLE State

In this state, if the PSO_UPDATE_PBEST_EACH_CYCLE_FLAG flag is dis-
abled, it transitions to the state PSO_NEXT_PSO by doing nothing. If the
PSO_UPDATE_PBEST_FEACH_CYCLE_FLAG is enabled, it calls the evaluation
function to evaluate the current individual’s pbest position. This state is main-
tained until all the individuals’ pbest positions have been reevaluated. The reason
to do this is that when a new PSO is running, the environment of the new PSO may
have been changed after the last time it was run. The pbest values don’t reflect the
true values within the current environment. For example, in the co-evolutionary
PSO, evaluating the current PSO will treat the other PSO’s parameters as fixed val-
ues (environment), which have been changed since the last time the current PSO
was run. The state handler routine is shown in Listing 4.33.

Listing 4.33 The PSO_UPDATE_PBEST_EACH_CYCLE state handler routine.

static void PSO_update_pbest_each_cycle (void)
{
if (PSO_UPDATE_PBEST_EACH_CYCLE_FLAG)

Particle Swarm Optimization Implementation O‘ @

pso_update_pbest_each_cycle_pending = TRUE;
if ({(psos{cur_pso].popu_index) < (pscs[cur_pscl.popu_size))
{
evaluate_functions (psos[cur_psol.env_data.function_type);
psos[cur_pso] .pbest_values[psos[cur_pso].popu_index] =
psos[cur_psol.eva_fun_value;
psos[cur_pso] .popu_index++;
}
else // done with evaluation, move to the next state
{
PSO_current_state = PSO_NEXT_PSO;
pso_update_pbest_each_cycle_pending = FALSE;

}
else
{
PSO_current_state = PSO_NEXT_PSO;
}

The PSO_NEXT_PSO State
In this state, the handler routine, as shown in Listing 4.34, first checks whether
all PSOs have been run in this cycle. If they have, the state transitions to state

PSOS_DONE to end the current cycle. Otherwise, the state transitions to state
PSO_EVALUATE to start running the new PSO.

Listing 4.34 The PSO_NEXT_PSO state handler routine.

static void PSO_next_pso (void)
{
if (cur_pso > 0)
PSO_current_state = PSO_EVALUATE;

else

PSO_current_state = PSOS_DONE; // end of the cycle
psos{cur_pso].popu_index = 0; // start with the first particle
psos[cur_psol] .gene_index = 0; // start with the first particle

The PSOS_DONE State

In this handler routine, as shown in Listing 4.35, the postprocessing is performed.
For example, the results for this cycle can be saved to an output file for later view.
Here we simply transition the state to PSO_EVALUATE, which makes the first PSO
start with the state PSO_EVALUATE if the maximum number of cycles has not been
reached, as shown in the PSO_Main_Loop () routine.

’O Chapter Four—Evolutionary Computation Implementations

Listing 4.35 The PSOS_DONE state handler routine.

Static void PSOs_done (void)
{

PSO_current_state = PSO_EVALUATE;
}

Running the PSO Implementation

Running the particle swarm optimization implementation requires the executable
filepsos.exeandaninputfile psos . run. To run the implementation from within
the directory containing psos.exe and psos. run, at the system prompt type
psos psos.run.

The parameters required for running psos are read in from the input file
psos.run. One way to demonstrate how to run the PSO implementation is to
present and discuss the contents of a run file, as shown in Listing 4.36, that can
be invoked with the executable.

Listing 4.36 An example of a multi-PSOs run file.

2
1

300

0

6

1

1

0.0

50.0

10

100

100

30

13

0.9

1

0 1.0
0 1.0
0 1.0
0 1.0
0 1.0
0 1.0
0 1.0
0 1.0
0 1.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 1.0

Particle Swarm Optimization Implementation O‘ @

D000 O0OOOCOHOWN JRORODF P b
. o O . s
© [

(e eNeNeNo ool ellel
N e a a
DOOOO OO0 OO

The first entry (2) specifies that two PSOs are included in this run. If it is 1, only
one PSO will be run. Any number of PSOs can be specified here to make multi-PSOs
co-exist. The next number (1) is the pso_update_pbest_each_cycle_flag
flag. When it is enabled, it means that before starting to run the next PSO, its pbest
positions will be re-evaluated first, as in the co-evolutionary PSO algorithm dis-
cussed previously. Following this is the number that specifies the total number of
cycles to run the PSOs (300), which means the PSOs will be run for 300 cycles. These
three inputs relate to all PSOs (here two PSOs). Following them are inputs specify-
ing parameters for each PSO, starting with the first PSO, then the next, until all the
PSOs have been specified.

The fourth to fifteenth inputs are numbers for the first PSO: the optimization
type (O—minimization), the function type (0—(G1_MIN), the inertia weight
update method (1—linearly decreasing), the initialization type (1—asymmetry),
left initialization range (0 . 0), right initialization range (50 . 0), maximum velocity
(10.0), maximum position (100 . 0), maximum number of generations for each
cycle (100), the population size (30), the dimension of the individual (13), and the
initial inertia weight (0. 9).

The next value (in the list) is the boundary flag (1). If it is disabled (0), it means
no boundary values are required to be read from the input file. It is then the end
of the input for the first PSO. If it is enabled (1) as in the list, then the boundaries
must be provided in the input file. The first line after the boundary flag specifies the
upper and lower boundary values for the first parameter to be evolved, followed by
the second, and so on. Since the dimension in this example is 13, a total 13 lines of
boundaries values must be provided.

’O Chapter Four—Evolutionary Computation Implementations

Following the numbers for the first PSO are the numbers for the second PSO. All
of the numbers have similar meanings to those for the first PSO, so we don’t repeat
the explanation here. Three points, however, should be noted. First, the optimization
type is 1 (maximization problem) instead of 0 (minimization problem) and the
corresponding function type is 1 (G1_MAX) instead of 0 (G1_MIN). Through this
kind of specification, the two PSOs work as two swarms in a co-evolutionary PSO
algorithm. Second, the number of dimensions (9) corresponds to the number of
constraints. Third, the upper and lower boundaries for all of the parameters to be
evolved are the same (0.0, 1.0) since they are the Lagrangian multipliers.

Summary

In this chapter, we first discuss the common issues related to the implementation
of evolutionary algorithms. These issues include chromosome representation meth-
ods, learning strategies, programming strategies, and memory handling.

We then present two implementations of evolutionary computation: genetic
algorithm implementation and a particle swarm optimization implementation. The
genetic algorithm implementation is basically a “plain vanilla” genetic algorithm.
The particle swarm optimization is implemented to be able to run either a single
PSO or multi-PSOs simultaneously. An implementation of co-evolutionary PSO
is described that solves min—max problems.

The genetic algorithm is implemented based on flowchart programming strat-
egy, and the particle swarm optimization is implemented based on the finite state
machine programming strategy. The strength and weakness of each strategy, there-
fore, are illustrated through the two implementations.

Five benchmark functions are included with both the GA implementation and
the PSO implementation. Also, additional constrained optimization problems are
included for the (co-evolutionary) PSO implementation.

Finally, how to run the implementations is specified in detail. Remember that
output (results) files are provided on the book’s Internet site; they were obtained
by the authors using the executable and ancillary files provided. You may want to
rename these output files, or move them to another directory, so that you can com-
pare your results with the authors’. If you forget to do that, just go back to the Inter-
net site and download them again.

Exercises

1. In the implementation of mutation operator, a “mutation according to bit posi-
tion” flag is used to tell whether or not a mutation by bit position is implemented.

Exercises O‘ s @

Define an enumeration data type to replace the flag and make corresponding
changes in the implementation of the mutation operator.

Draw a state machine diagram for the GA implementation.

3. Draw a flowchart for the implementation of PSO.

10.

Draw a state diagram for the synchronous version of PSO and compare it with the
asynchronous version.

Five benchmark functions are identified in Table 4.2. Identify an additional
benchmark function appropriate for evolutionary algorithms. Justify your choice.
Modify the source code for the GA to implement this benchmark function so
that it becomes an additional choice for the user.

Add the capability for specifying a termination criterion (acceptable error, for
example) to the GA source code.

Implement the benchmark function you identified in exercise 5 into the PSO
source code.

Run the GA implementation, optimizing the Griewank function. Try two different
crossover types and two different selection types (four combinations of
parameters). For each combination of parameters, how many total generations
are required to achieve a fitness of —1.3 or better? Turn in and discuss your resuits.
Based on your results, which combination of parameters would you select?

Run the PSO implementation as a single swarm, optimizing the F6 function. Note
that the run file example in Listing 4.36 is for two swarms, so make sure you have
an appropriate run file for a single swarm. Try two population sizes. Turn in and
discuss your results.

Run the PSO implementation using two swarms to optimize the G1 function. Try
two different population sizes for each of the two swarms (four combinations
total). Turn in and discuss your results.

chapter

five

Neural Network Concepts

and Paradigms

In the previous two chapters, we reviewed
concepts, paradigms, and implementations
of evolutionary computation. Chapters 3
and 4 provide a foundation on which we
build our computational intelligence struc-
ture. Now we examine the second main
component of computational intelligence,
artificial neural networks.

Building intelligent systems that can
model human behavior has captured the
attention of the world for decades. So it
is not surprising that a technology such as
neural networks has generated great inter-
est. This chapter first discusses the history
of neural networks. It next provides an evo-
lutionary introduction to neural networks
beginning with the key elements and termi-
nology of neural networks and then devel-
oping the topologies, adaptation methods,
and recall dynamics from this infrastructure.

The perspective taken in this chapter
is largely that of an engineer or computer
scientist, emphasizing the application
potential of neural networks and draw-
ing comparisons with other techniques that
have similar motivations. As such, we rely
on mathematics in some of the discussions
to make points more precisely.

The chapter includes a review of what
neural networks are and why they are so
appealing. Weintroduce atypical neural net-
work to illustrate several key features. Using
this network as a reference, we describe
fundamental elements of a neural network
such as input and output patterns, process-
ing elements, connections, and activation
calculations, and then we describe neural
network topologies, adaptation algorithms,
and recall dynamics. Finally, we present a
comparison of neural networks and similar

145

@ ’O Chapter Five-—Neural Network Concepts and Paradigms

non-neural information processing methods.Let’s get started by traveling back to
the roots of neural networks and looking at their history. .

Neural Network History

As is the case with the other history sections in this book, the focus is on people rather
than just on theory or technology. Again, the selection of individuals is somewhat
arbitrary because the intent is to provide a broad sample, rather than an exhaus-
tive list, of people who contributed to current technology. We mention some well-
known researchers only briefly and omit others. The fact that someone is discussed
only briefly, or even omitted, is not meant to reflect the authors’ opinion of that per-
son’s contribution. We discuss the selected people and their contributions roughly
in chronological order.

We address neural network history first by examining how neural networks
got their name. Then we discuss the history of neural network development in
five time segments, which we call ages. The first age begins at the time of William
James, just over a century ago (1890). This is called the Age of Camelot. It ends
in 1969 with the publication of Minsky and Papert’s book on perceptrons. Next
is the Dark Age, beginning in 1969 and ending in 1982 with Hopfield’s landmark
paper on neural networks and physical systems. The third age, the Renaissance,
begins with Hopfield’s paper and ends with the publication of Parallel Distributed
Processing, Volumes 1 and 2, by Rumelhart and McClelland, in 1986. The fourth
age, called the Age of Neoconnectionism after a review article on neural nets and
artificial intelligence (Cowan and Sharp 1988), runs from 1987 until 1998. The
final age, the Age of Computational Intelligence, runs from the second IEEE World
Congress on Computational Intelligence in 1998 until the present.

Where Did Neural Networks Get Their Name?

If artificial neural networks are so different from biological ones, why are they even
called neural networks instead of something else? The answer is that the background
and training of the people who first developed useful neural network implementa-
tions were generally in the biological, physiological, and psychological areas rather
than in engineering and computer science.

One of the most important publications that opened up neural network analysis
by presenting it in a useful and clear way was a three-volume set of books entitled
Parallel Distributed Processing (Rumelhart and McClelland 1986; McClelland and
Rumelhart 1986; McClelland and Rumelhart 1988). The chapters in the first two
volumes were authored by members of the interdisciplinary Parallel Distributed
Processing (PDP) research group, who were from a variety of educational institu-
tions. Several members of the PDP research group are cognitive scientists. Others

Neural Network History O‘ @

are psychologists. Computer scientists are definitely in the minority, and judging
from the professional titles and affiliations of the PDP authors, none is an engineer.

Had the concept of massively parallel processing initially been developed and
made practical by electrical or computer engineers, we could be using “massively
parallel adaptive filter” implementations instead of neural network implementations,
or they might be called something that has no reference to the word neural. Neural
networks do have technical roots in the fields of analog computing and signal pro-
cessing that date back five or six decades and that rival in importance their roots in
biology and cognitive science. This engineering heritage is reviewed in this section.

Much of the neural network effort in biology, cognitive science, and related fields
resulted from efforts to explain experimental results and observations in behav-
ior and in brain construction. Why should engineers and computer scientists care
about experimental results in brain research and cognitive science? For one thing, as
Anderson and Rosenfeld (1988) point out, if we can find out what kind of “wetware”
runs well in our brains, we may gain insight into what kind of software to write for
neural network applications. In other words, cognitive scientists and psychologists
may provide some important information for reverse-engineering artificial neural
network software.

The Age of Camelot

We begin our look at neural network history in the Age of Camelot with a person
considered by many to be the greatest American psychologist who ever lived, William
James. James also taught, and thoroughly understood, physiology. It has been over a
century since James published his Principles of Psychology, and its condensed version
Psychology (Briefer Course) (James 1890).

James was the first to publish a number of facts related to brain structure and
function. He first stated, for example, some of the basic principles of correlational
learning and associative memory. In stating what he called his Elementary Principle,
James (1890) wrote: “Let us then assume as the basis of all our subsequent reason-
ing this law: when two elementary brain processes have been active together or in
immediate succession, one of them, on re-occurring, tends to propagate its excite-
ment into the other.” This is closely related to the concepts of associative memory
and correlational learning.

He seemed to foretell the notion of a neuron’s activity being a function of the sum
of its inputs, with correlation history contributing to the weight of interconnections:

The amount of activity at any given point in the brain-cortex is the sum of the
tendencies of all other points to discharge into it, such tendencies being proportion-
ate (1) to the number of times the excitement of each other point may have accom-
panied that of the point in question; (2) to the intensity of such excitements; and
(3) to the absence of any rival point functionally disconnected with the first point,
into which the discharges might be diverted. (James 1890)

'~ ’O Chapter Five—Neural Network Concepts and Paradigms

Over half a century later, McCulloch and Pitts (1943) published one of the most
famous neural network papers, in which they derived theorems related to models of
neuronal systems based on what was known about biological structures in the 1940s.
In coming to their conclusions, they stated five physical assumptions:

1. The activity of the neuron is an “all-or-none” process. 2. A certain fixed number
of synapses must be excited within the period of latent addition in order to excite a
neuron at any time, and this number is independent of previous activity and position
on the neuron. 3. The only significant delay within the nervous system is synaptic
delay. 4. The activity of any inhibitory synapse absolutely prevents excitation of the
neuron at that time. 5. The structure of the net does not change with time.

The period of latent addition is the time during which the neuron is able to detect
the values present on its inputs, the synapses. This time was described by McCulloch
and Pitts as typically less than 0.25 milliseconds. The synaptic delay is the time
between sensing inputs and acting on them by transmitting an outgoing pulse, stated
by McCulloch and Pitts to be on the order of half a millisecond.

The neuron described by the five preceding assumptions is known as the
McCulloch-Pitts neuron. The theories they developed were important for a num-
ber of reasons, including the fact that any finite logical expression can be realized
by networks of their neurons. They also appear to be the first authors since William
James to describe a massively parallel neural model.

Although the paper was very important, it is quite difficult to read. In particu-
lar, the theorem proofs presented by McCulloch and Pitts have stopped more than
a few engineers in their tracks. Furthermore, not all of the concepts presented in
the paper are being implemented in today’s neural networks. In this book, compar-
isons are not made between the theories and conclusions of McCulloch and Pitts (or
anyone else) and the current theories of neural biology. The focus is strictly on the
implementation (or nonimplementation) of their ideas in current neural network
tools.

One concept that is not generally being implemented is their all-or-none neuron.
A binary, on or off, neuron is used as the processing element (PE) in neural networks
such as the Boltzmann machine (Rumelhart and McClelland 1986), but it is not
generally used in most neural network paradigms today. Much more common is
a PE whose output value can vary continuously over some range, such as {0, 1]
or [-1, 1].

Another example of an unused concept involves the signal required to “excite”
a PE. First, because the output of a PE generally varies continuously with the input,
there is no “threshold” at which an output appears. The PEs used in some neural
networks activate at some threshold, but not in most of the network implemen-
tations discussed in this text. For PEs with either continuous outputs or thresh-
olds, no “fixed number of connections” (synapses) must be excited. The net input

Neural Network History O @

to a PE is generally a function of the outputs of the PEs connected to it upstream
(presynaptically) and of the connection strengths to those presynaptic PEs.

A third example is that there is generally no delay associated with the connection
(synapse) in a neural network implementation. Typically, the output states (activa-
tion levels) of the PEs are updated synchronously, one layer at a time. Sometimes,
as in Boltzmann machines, they are updated asynchronously, with the update order
determined stochastically. There is almost never, however, a delay built into a con-
nection from one PE to another.

A fourth example is that the activation of a single inhibitory connection does
not usually disable or deactivate the PE to which it is connected. Any inhibitory
connection (a connection with a negative weight) has the same absolute magnitude
effect, albeit subtractive, as the additive effect of a positive connection with the same
absolute weight.

With regard to the fifth assumption of McCulloch and Pitts, it is true that the
structure of a neural network implementation does not change with time, with a
couple of caveats. First, it is usual to “train” neural networks prior to their use. Dur-
ing the training process, the structure doesn’t usually change but the interconnect-
ing weights do. In addition, it is not uncommon, once training is complete, for PEs
and/or interconnecting weights that aren’t contributing significantly to be removed.
This certainly can be considered a change to the structure of the network.

Given these examples, what are we left with of McCulloch and Pitts’ five assump-
tions? If truth be told, when referring to today’s neural network implementations,
we are in most cases left with perhaps one assumption, the fifth.

Then why is their 1943 paper so important? First, they proved that networks
of their neurons could represent any finite logical expression. Second, they used a
massively parallel architecture. And, third, they provided the stepping stones for the
development of the network models and adaptation techniques that followed.

Just because neural network implementations don’t conform to McCulloch and
Pitts’ work doesn’t imply in any way that their work was bad. Current artificial neural
networks don’t always reflect what we understand about biological neural networks,
either. For instance, it appears that a biological neuron acts somewhat like a voltage-
controlled oscillator, with the output frequency a function of the input level (input
voltage): The higher the input, the more pulses per second the neuron puts out.
Neural network implementations usually work with basically steady-state values of
the PE from one update to the next.

The next personality along our journey through the Age of Camelot is Donald O.
Hebb, whose 1949 book The Organization of Behavior (Hebb 1949) was the first to
define the method of updating synaptic weights that we now refer to as Hebbian. He
is also among the first to use the term connectionism. Hebb presented his method as a
“neurophysiological postulate” in his chapter entitled “The First Stage of Perception:
Growth of the Assembly” as follows: “When an axon of cell A is near enough to excite
a cell B and repeatedly or persistently takes part in firing it, some growth process or

@ ’O Chapter Five—Neural Network Concepts and Paradigms

metabolic change takes place in one or both cells such that A’s efficiency as one of
the cells firing B, is increased.”
Hebb made four primary contributions to neural network theory:

1. He stated that in a neural network, information is stored in the weights of
the synapses (connections).

2. He postulated a connection weight training rate that is proportional to the
product of the activation values of the neurons. Note that his postulate
assumed that the activation values are positive. Because he didn’t provide a
means for the weights to be decreased, they could theoretically go infinitely
high. Adaptation that involves neurons with negative activation values has
also been labeled Hebbian. This is not included in Hebb’s original form-
ulation but is a logical extension of it.

3. He assumed that weights are symmetric. That is, the weight of a connection
from neuron A to neuron B is the same as that from B to A. Although this
may or may not be true in biological neural networks, it is often applied to
neural network implementations.

4. He postulated a cell assembly theory, which states that as adaptation occurs,
strengths and patterns of synapse connections (weights) change, and
assemblies of cells are created by these changes. Stated another way, if
simultaneous activation of a group of weakly connected cells occurs
repeatedly, these cells tend to coalesce into a more strongly connected
assembly.

All four of Hebb’s contributions are generally implemented in today’s neural net-
works, at least to some degree. We often refer to adaptation schemes implemented
in some networks as Hebbian.

In the late 1950s, a landmark paper by Frank Rosenblatt (1958) defined a neural
network structure called the perceptron. The perceptron was probably the first valid
neural network implementation because it was simulated in detail on an IBM 704
computer at the Cornell Aeronautical Laboratory. This computer-oriented paper
caught the imaginations of engineers and physicists, despite the fact that its mathe-
matical proofs, analyses, and descriptions contained tortuous twists and turns. Any-
one capable of wading through the variety of systems and modes of organization
in the paper will see that the perceptron is capable of “learning” to classify certain
pattern sets as similar or distinct by modifying its connections. It can therefore be
described as a “learning machine,” or as we prefer to call it, an “adaptation machine.”

Rosenblatt used biological vision as his network model. Input node groups con-
sisted of random sets of cells in a region of the retina, each group being connected
to a single association unit (AU) in the next higher layer. AUs were connected bidi-
rectionally to response units (RUs) in the third (highest) layer. The perceptron’s

Neural Network History O‘ .@

objective was to activate the correct RU for each particular input pattern class. Each
RU typically had a large number of connections to AUs.

He devised two ways to implement the feedback from RUs to AUs. In the first,
activation of an RU would tend to excite the AUs that sent the RU excitation (positive
feedback). In the second, inhibitory connections existed between the RU and the
complement of the set of AUs that excited it (negative feedback), therefore inhibiting
activity in AUs that did not transmit to it. Rosenblatt used the second option for
most of his systems. In addition, for both options, he assumed that all RUs were
interconnected with inhibitory connections.

Rosenblatt used his perceptron model to address two questions. First, in what
form is information stored, or remembered? Second, how does stored information
influence recognition and behavior? His answers were as follows (Rosenblatt 1958):

. . . the information is contained in connections or associations rather than topo-
graphic representations . . . since the stored information takes the form of new
connections, or transmission channels in the nervous system (or the creation of
conditions which are functionally equivalent to new connections), it follows that
the new stimuli will make use of these new pathways which have been created, auto-
matically activating the appropriate response without requiring any separate process
for their recognition or identification.

The primary perceptron adaptation mechanism is self-organizing or self-associative
in that the response that happens to become dominant is initially random. However,
Rosenblatt also described systems in which training or “forced responses” occurred.

This paper laid the groundwork for both supervised and unsupervised train-
ing algorithms as they are seen today in back-propagation and Kohonen networks,
respectively. The basic structures set forth by Rosenblatt are therefore alive and well,
despite the critique by Minsky and Papert that is discussed later.

Rosenblatt also worked in the area of the recognition of sequences of patterns.
His analyses showed that very long pattern sequences could be recalled if the num-
ber of neurons available was roughly equal to the number in the brain. The major
quantitative results of his model for long-term sequential memory in the brain are
summarized in Rosenblatt (1964).

Frank Rosenblatt died in a sailing accident on Chesapeake Bay in 1971 on his 43rd
birthday. We can only speculate what further significant contributions he might have
made had he lived longer.

The last stop in the Age of Camelot is with Bernard Widrow and Marcian Hoff.
In 1960 they published a paper entitled “Adaptive Switching Circuits” that, particu-
larly from an engineering standpoint, has become one of the most important papers
on neural network technology (Widrow and Hoff 1960). Widrow and Hoff are the
first engineers discussed in this history section. Not only did they design neural net-
work implementations that they simulated on computers, they implemented their

@ 'O Chapter Five—Neural Network Concepts and Paradigms

designs in hardware. And at least a couple of the lunch-box-sized machines they
built “way back then” are still in working order!

Widrow and Hoff (1960) introduced a device called an adaline (for adaptive
linear). Adaline consists of a single processing element with an arbitrary number of
input elements that can take on values of plus or minus one and a bias element that is
always plus one. Before being summed by a summing element, each input, includ-
ing the bias, is modified by a unique weight that Widrow and Hoff call a “gain.”
(This name reflects their engineering background because the term gain refers to
the amplification factor that an electronic signal undergoes when processed by an
amplifier; it may be more descriptive of the function performed than the more com-
mon term weight.) Following the summer is a quantizer that has an output of plus
one if the summer output, including the bias, is greater than zero, and an output of
minus one for summer outputs less than or equal to zero.

What is particularly ingenious about the adaline is the adaptation algorithm. One
of the main problems with perceptrons is the length of time it takes them to learn
to classify patterns. The Widrow—Hoff algorithm yields adaptation that is faster and
more accurate. The algorithm is a form of supervised adaptation that adjusts the
weights (gains) according to the size of the error on the output of the summer (prior
to the quantizer).

Widrow and Hoff showed that the way they adjust the weights minimizes the
sum-squared error over all patterns in the training set. For that reason, the Widrow—
Hoff method is also known as the least mean squares (LMS) algorithm. The error
is the difference between what the output of the adaline should be and the output
of the summer. The sum-squared error is obtained by measuring the error for each
pattern presented to the adaline, squaring each value, and then summing all of the
squared values.

Minimizing the sum-squared error involves an error reduction method called
gradient descent, or steepest descent. Mathematically, it involves the partial deriva-
tives of the error with respect to the weights. Widrow and Hoff showed that it isn’t
necessary to take the derivatives because they are proportional to the error (and its
sign) and to the sign of the input.

They further showed that for » inputs, reducing the measured error of the sum-
mer by 1/n for each input does a good job of implementing gradient descent. Each
weight is adjusted until the error is reduced by 1/n of the total error at the begin-
ning. For example, if there are 12 input processing elements, each weight is adjusted
to remove 1/12 of the total error.

This method provides for weight adjustment (adaptation) even when the out-
put of the classifier is correct. For example, if the output of the summer is 0.5, the
classifier output is 1.0. If the correct output is 1.0, there is still an error signal of 0.5
that is used to train the weights further. This is a significant improvement over the
perceptron, which adjusts weights only when the classifier output is incorrect. That
is one reason the adaptation of the adaline is faster and more accurate than that of
the perceptron.

Neural Network History O‘ ,@

Widrow and Hoff’s 1960 paper was prophetic, too. They suggested several
practical implementations of their adaline: “If a computer were built of adaptive
neurons, details of structure could be imparted by the designer by training (show-
ing it examples of what he would like to do) rather than by direct designing.”

An extension of the Widrow—Hoff adaptation algorithm is used today in back-
propagation neural networks. In addition, their work in hardware implementation
of neural network implementations heralded cutting-edge work in very large-scale
integration (VLSI) by people such as Carver Mead and his colleagues at the
California Institute of Technology (Mead 1989).

Widrow is the earliest significant contributor to neural network hardware system
development who is still working in the area of neural networks. He and his students
also did the earliest work known to the authors in biomedical applications of neural
network tools. One of his doctoral students, Donald F. Specht (who later developed
the probabilistic neural network paradigm), used an extension of the adaline, called
an adaptive polynomial threshold element, to implement a vectorcardiographic diag-
nostic tool that used the polynomial discriminant method (Specht 1967, 1967a).
Widrow and his colleagues later did pioneering work using the LMS adaptive algo-
rithm for analyzing adult and fetal electrocardiogram signals (Widrow et al. 1975).

As the 1960s drew to a close, optimism was the order of the day. Many researchers
were working in artificial intelligence (AI), both in the area exemplified by expert
systems and in neural networks. Although many areas were still unexplored and
many problems were unsolved, the general feeling was that the sky was the limit.
Little did most folks know that, for neural networks, the sky was about to fall.

The Dark Age

In 1969 Marvin Minsky and Seymour Papert dropped a bombshell on the neural
network community in the form of a book called Perceptrons (Minsky and Papert
1969). Although it could be argued that neural network development in the late
1960s had suffered from an overdose of hype and a paucity of performance, nearly
all funding for neural networks (as well as for other computational intelligence
concepts) dried up after the book was published. This was the beginning of the
Dark Age.

Most of Minsky and Papert’s book is about simple perceptrons, with only an
input layer and an output layer (no hidden layer). Furthermore, neurons are thresh-
old logic units, so only two states are allowed, on and off. The authors’ analysis of
simple perceptrons was generally correct, but even this part of their book has a dis-
turbing undertone because of the authors’ style of writing and because of what is
not said. Their writing style is illustrated by statements such as “Most of this writ-
ing [about perceptrons] is without scientific value” and “It is therefore vacuous to
cite a ‘perceptron convergence theorem’ as assurance that a learning process will
eventually find a correct setting of its parameters (if one exists)” (Minsky and Papert
1969). Words and phrases such as “vacuous” and “without scientific value” project

@ ’O Chapter Five—Neural Network Concepts and Paradigms

an attitude not likely to make friends and influence people. The book doesn’t say
much about perceptrons’ good points; it isn’t as much about what perceptrons can
do as what they can’t do.

The coup de grace came in the last chapter, where Minsky and Papert wrote,
“[O]ur intuitive judgment [is] that the extension [to multilayer perceptrons with
hidden layers] is sterile.” This statement has proved to be incorrect and, in the opin-
ions of some, a conscious “hatchet job” on a research area whose proponents were
competing with Minsky, Papert, and their colleagues for funding.

Perhaps the most serious effect of the book is that it drove a wedge between
the “traditional” Al folks (those who work with expert systems and symbolics) and
the neural network people. This is particularly disturbing because it is becoming
increasingly apparent that, at least in many areas, major breakthroughs in intelligent
systems require a combination of approaches. The approaches of expert systems are
being combined with neural networks, evolutionary computation, and fuzzy logic
to form computational intelligence systems that are beginning to play an important
role in complex systems such as those used for medical diagnosis, control systems,
and financial analysis.

In the decade following the publication of Minsky and Papert’s book, the number
of researchers working in the neural network area dropped significantly. For those
who remained, progress continued but in smaller steps. Now we look at the work of
the Dark Age developers who have had a continuing impact on the field, particularly
those whose contributions led to current techniques in neural network implemen-
tations.

Stephen Grossberg of the Center for Adaptive Systems at Boston University, the
first Dark Age researcher discussed here, appeared on the neural network scene at
about the same time as Minsky and Papert published their book. He became a pro-
ductive, visible, and controversial personality in the field. His work is often abstract,
theoretical, and mathematically dense. It is relatively difficult to read his papers
because many of them refer to work described in several previous papers.

In his early work, Grossberg introduced several concepts that are used in a num-
ber of current neural network implementations. He and Gail Carpenter, his spouse,
introduced and developed a network architecture known as adaptive resonance the-
ory (ART). His early concepts include the “on-center off-surround” gain control
system for a group of neurons. This basically says that if a PE in a population of PEs
is strongly excited, the surrounding PEs will receive inhibition signals. This lateral
inhibition idea is also used in other network implementations, such as Kohonen’s
self-organizing structures discussed later.

Grossberg also contributed much to the theories of network memories, that is,
how patterns can stay active after inputs to the network have stopped. He wrote of
short-term memory (STM) and long-term memory (LTM) mechanisms, how the
former are related to neuron activation values and the latter to connection weights.
Both activation values and weights decay with time, a feature called forgetting.

Neural Network History O‘ .@

Activation values decay relatively quickly (short-term memory) whereas weights,
having long-term memory, decay much more slowly.

Note that there is a basic difference between the Grossberg networks and the
network structures discussed earlier. In the latter, the interconnecting weights are
trained and then frozen, whereas Grossberg’s patterns are presented to the networks
to classify without supervised training. In previous networks, activation values of
the PEs have no memory. The only thing determining the activation values is the
pattern currently being presented to the network.

Grossberg gives PEs (or groups of them, called cell populations) short-term mem-
ory so that the current activation value depends on the previous one as well as on the
average excitation of other connected populations. In accordance with on-center off-
surround, Grossberg’s earlier papers (Grossberg 1973) describe an inhibitory effect
of activation values of connected populations.

He also wrote about a different kind of PE activation function (output versus
input) than had been discussed earlier: a sigmoid function. A typical sigmoid
response function, as described in Grossberg (1973), is illustrated in Figure 5.1.
In this paper, he shows that signal enhancement and decreased sensitivity to noise
can occur if the signals transmitted between cell populations are sigmoid functions
of the populations’ average activity levels. This sigmoid function differs in several
respects from the one used with back-propagation networks described later. For one
thing, it only plays an inhibitory role, even when it is used as part of the shunting
self-excitation term for a population of PEs. For another, it is always nonnegative in
Grossberg’s 1973 implementation.

Another concept incorporated into Grossberg’s network models that differs
from those discussed previously is the adaptation algorithm. In models such as
Widrow—Hoff and the back-propagation network, the training signal is proportional

0.0 ,
-10 0 10
Input Value (x)

Figure 5.1 A sigmoidal activation function.

‘~ ’O Chapter Five—Neural Network Concepts and Paradigms

to the error in the output, that is, the difference between the desired and actual
values. In Grossberg’s models, adaptation is computed from the sum of the desired
and actual values, represented in some of his models by input and learned feedback
signals.

The adaptive resonance theory (ART) models developed by Grossberg and
Carpenter incorporate most of the features described. There are several versions of
the ART system, including ART1, ART2, and ART3. The ART network paradigms
have been described as some of “the most complex neural networks ever invented”
(Caudill 1989).

ART1 networks can process only binary input patterns. Almost all neural
network applications require continuous-valued patterns, which have to be approx-
imated (coded in binary) for input to ART1. ART2 networks are even more compli-
cated than those of ART1 and can process discrete-valued input data. Until recently,
many people have perceived the ART models as powerful research models rather
than available neural network tools. Recently, however, several implementations of
ART have been developed that are computationally efficient and feasible to run on
PCs. Actually, these implementations are approximations of ART but are satisfactory
for many applications.

Perhaps the most effective way to learn more about the ART2 and ART3 models
is to study the collections of papers by Grossberg and Carpenter (Grossberg 1982,
1988). Carpenter and Grossberg have also published a readable article that is pri-
marily focused on ART2 (Carpenter and Grossberg 1987b).

The Dark Age researcher discussed next is Shun-Ichi Amari, one of the most
prominent researchers of artificial neural network theory. He began combining bio-
logical neural network activity and rigorous mathematical expertise in his studies of
neural networks in the late 1960s.

One of Amari’s earliest results was in the area of error correction adaptation,
where he found a way to use a single hidden PE to form nonlinear decision bound-
aries for a restricted class of functions (Amari 1967). He demonstrated optimal
weight vector convergence, even with nonseparable pattern distributions. He gener-
alized the theory to multicategory classifiers and showed that it applies to the case
with general discriminant functions, including piecewise-linear discriminant func-
tions. Had Amari’s solution to this problem, known as the credit assignment prob-
lem, been widely known and accepted, Minksy and Papert’s book Perceptrons would
probably not have had the negative impact it did on the neural network field. Other
neural network research that Amari has done includes the analysis of randomly
connected neural networks (Amari 1971) and studies of temporally associative
memories (Amari 1972).

One of his best-known papers was published in 1977 (Amari 1977). It discusses
both recurrent, autoassociative networks, which Amari calls concept forming net-
works, and pattern associators. The concept forming networks are precursors of the
famous Hopfield networks discussed in the Renaissance section of this chapter.

Neural Network History Q @

An interesting feature of Amari’s 1977 paper is his concept of neuron pools. Unlike
most other researchers, Amari doesn’t assume that the neuron is the fundamental
element in neural networks. Rather, he uses the idea of small mutually connected
groups of neurons, called neuron pools, as the fundamental units of his models.

In fact, there does not appear to be any reason why individual neurons should be
considered the fundamental element. That is one reason why almost all researchers
and developers today use terms such as processing element (PE), unit, processing
unit, and neurode. The ability to assume a higher-level computing unit as the funda-
mental network computing element allows much more flexibility in network design
and development.

In more recent work, Amari has extensively analyzed competitive adaptation,
including that used in the self-organizing types of networks developed by Kohonen,
described later. He is also well known for studies of the memory capacity of various
kinds of networks.

In 1972, two researchers on different continents published similar neural
network development results. One, Teuvo Kohonen of the Helsinki University of
Technology in Finland, is an electrical engineer; the other, James Anderson, is a
neurophysiologist and professor of psychology at Brown University in the United
States. Although Kohonen called his neural network structure “associative memory”
(Kohonen 1972) and Anderson named his “interactive memory” (Anderson 1972),
their techniques in network architectures, adaptation algorithms, and transfer func-
tions were almostidentical. Despite the similarity of their results, the lists of references
in the papers published by these two men do not contain a single item in common!

Kohonen is chosen as the focus here, partly because of the current implementa-
tions of his work in neural network implementations (discussed in detail in the next
chapter) and partly because of his interest in applications such as pattern recognition
and speech recognition. This is not to diminish in any way Anderson’s work, which
was and continues to be significant and relevant. In fact, a two-volume set edited by
Anderson and Rosenfeld (1988) and by Anderson, Pellionisz, and Rosenfeld (1990)
is arguably the best compilation of the significant early work in the neural network
field. Each paper in the two volumes is prefaced by excellent introductory material
that places the paper in context. Anderson has been interested more in physiological
plausibility and models for his network structures and adaptation algorithms.

One of the most notable things about Kohonen’s 1972 paper is the PE, or pro-
cessing element, that he uses. It is linear and continuous-valued rather than the
all-or-none binary model of McCulloch-Pitts and Widrow—Hoff. Not only is the
output continuous valued, but so are the connection weights and input values.
Remember that Widrow—Hoff used continuous values to calculate the error values,
but the output of the PE was binary.

Also notable is Kohonen’s use of networks with many simultaneously active
input and output PEs, which are necessary when analyzing visual images or spectral
speech information. Rather than have the output of the network represented by

@ ’O Chapter Five—Neural Network Concepts and Paradigms

the activation of a single “winning” neurode or the activation level of a single
multivalued PE, Kohonen uses activation patterns on a relatively large number of
output PEs to represent the input classifications. This tends to make the network
better able to generalize and less sensitive to noise.

Most notably, the paper lays the groundwork for a type of neural network very
different from that evolved from the perceptron. The current version of the mul-
tilayer perceptron most commonly used is the back-propagation network, which
is trained by giving it examples of correct classifications, an example of supervised
adaptation. Most current versions of Kohonen’s networks, often referred to as self-
organizing networks, learn to classify without being taught. This is called unsuper-
vised adaptation and can frequently be used to categorize information when we
don’t know what categories exist. It is also possible to combine Kohonen’s unsu-
pervised architectures with architectures such as back-propagation to do interesting
and useful things.

The last researcher discussed in the review of the Dark Age is Kunihiko
Fukushima of the NHK Broadcasting Science Research Laboratories in Tokyo.
Fukushima has developed a number of neural network architectures and algorithms
but is best known for the neocognitron. The neocognitron was briefly described first
in English in a 1979 report, but the first thorough English-language description
appeared in Fukushima (1980). Subsequent papers reported developments and
refinements (Fukushima and Miyake 1982; Fukushima et al. 1983; Fukushima 1986).

The neocognitron is a model for a visual pattern recognition mechanism and is
therefore concerned with biological plausibility. As stated by Fukushima, the goal of
the work was “to synthesize a neural network model in order to endow it [with] an
ability to [perform] pattern recognition like a human being.” The network originally
described is self-organized and thus able to learn without supervision.

Later versions of the model utilize supervised adaptation. Fukushima and col-
leagues (1983) admit that the supervised adaptation situation more nearly reflects
“a standpoint of an engineering application to a design of a pattern recognizer rather
than that of pure biological modeling.” Because the network emulates the visual ner-
vous system, starting with retinal images, each layer is two-dimensional. An input
layer is followed by a number of modules connected in series. Each module consists
of two layers, the first representing S-cells (the more simple visual cortex cells) and
the second representing C-cells (the more complex visual cortex cells). Cell activa-
tions are nonnegative and continuous valued.

Weights from C-cells in one layer to S-cells in the next layer are modifiable, as
are those from the input to the first S-cells. Weights within a layer, from S-cells to
C-cells, are fixed. There are a number of “planes” within each layer. Each cell receives
input from a fixed, relatively small region of the layer preceding it. By the time the
output layer is reached, each output cell “sees” the entire input as a result of this
telescoping effect of decreasing the number of cells in each plane with the depth
into the network.

Neural Network History O‘ ; @

It is beyond the scope of this summary to describe the neocognitron fully, but
it exhibits a number of interesting features. For example, the network response is
not significantly affected by the position of the pattern in the input field. It also
recognizes input correctly despite small changes in shape or size of the input pat-
tern. Later versions cope even better with deformation and positional shift than early
versions and, when presented with a complex pattern consisting of several charac-
ters, are able to pay selective attention to the characters one at a time, recognizing
each in turn (Fukushima 1986).

A comprehensive version of the neocognitron has not been implemented to any
significant degree on smaller computers such as PCs (although several of the con-
cepts have appeared in current neural network implementations), probably because
of the paradigm’s complexity. For example, in the network described in Fukushima
(1980) an input layer of 256 cells (16x16) was followed by three modules of 8,544,
2,400, and 120 cells, respectively. In addition to the complexity introduced by more
than 11,000 PEs, the neocognitron has multiple feedforward paths and feedback
loops, resulting in a computing complexity that is daunting.

One important thing that Fukushima figured out, however, was how to deal with
adaptation of inner “hidden” cells (PEs) that are neither input nor output cells.
He assumes not only that you know what your desired response is but also that
you know what computational process needs to be followed stage by stage through
the network to get that response. Knowing the computational process is possible
only in certain well-defined cases, such as the one described by Fukushima in which
the 10 digits, 0 to 9, were being recognized in handwritten form. Nevertheless, it was
quite an accomplishment.

The Renaissance

Several publications appeared in the period from 1982 to 1986 that significantly fur-
thered the state of neural network research. Several individuals were involved, one
who published his first two landmark neural network papers by himself, and oth-
ers who, in addition to their individual efforts, published as a group. We call these
researchers the Renaissance men.

The individual who published by himself is John Hopfield of the California Insti-
tute of Technology. In the early 1980s, Hopfield published a paper that, according
to many neural network researchers, played a more important role than any other
single paper in reviving the field (Hopfield 1982). A number of factors were respon-
sible for the impact of Hopfield’s 1982 paper and his follow-up paper (Hopfield
1984). In addition to what he said, how he said it and his professional background
are important. What he said is summarized later, but first let’s examine his profes-
sional background and how he presented his findings.

Much of the significant work in neural networks during the Dark Age was
done by biologists, psychologists, and other researchers who could be labeled

'~ ’Q Chapter Five—Neural Network Concepts and Paradigms

“carbon-based.” Hopfield is a well-respected physicist. One might say that he is a
“silicon-based” researcher. In presenting his findings, he gathered a number of areas
into a coherent whole. He identified network structures and algorithms that could
be generalized and that had a high degree of robustness. Significantly, he pointed out
throughout his papers that his ideas could be implemented in integrated circuitry,
which is why we call him silicon-based. He presented his networks in a manner that
was easy for engineers and computer scientists to understand, showing the similar-
ities between his work and that of others.

Hopfield presented numerous lectures, all over the world, that convinced many
researchers and developers to begin working in neural networks. According to
Hecht-Nielsen (1990),

By the beginning of 1986, approximately one-third of the people in the field had been
brought in directly by Hopfield or by one of his earlier converts. Hopfield’s work as
a recruiter was perhaps the single most important contribution to the early growth
of the revitalized field.

In summary, he got the attention of the technical world.

Hopfield didn’t introduce many new ideas; he just put them together in new, cre-
ative, and brilliant ways. One new idea was his definition of the energy of a network.
For a given state of the network, the energy is proportional to the overall sum of the
products of each pair of node activation values (V;, V;) and the connection weight
associated with them (Wj;); that is,

E=-05) W;ViV; (W;=0) (5.1)
Lji#]

In other words, he proved that the network has stable states.

Many of his ideas are incorporated into networks that we examine later in this
chapter, but we don’t present the Hopfield network in detail. Instead, we review the
version of his network that uses binary processing elements (PEs) as presented in
(Hopfield 1982).

The network Hopfield described in 1984 (Hopfield 1984) is similar except that
it contains continuous-valued PEs with a sigmoidal nonlinearity. The same gen-
eral mathematical method is used for computing network values in each case.
Despite the continuous sigmoidal nonlinearity, inputs to the network must be
expressed in binary form. This arises from the network equations (to be shown)
and presents significant problems in using this version of the Hopfield net in many
applications.

A very simple example of a Hopfield network (the original 1982 version) is illus-
trated in Figure 5.2. Each PE is binary; that is, it can take on only one of two values.

Neural Network History Q 161

Figure 5.2 A simplified four-PE Hopfield network.

Hopfield used values of 1 and 0, but subsequently showed that values of 1 and -1
result in simplified mathematics. We use 1 and —1. The value that the PE assumes is
governed by a hard-limiting function. By this we mean that if the net input to a PE
is greater than or equal to some threshold value (usually defined to be 0), then the
activation value is 1; otherwise, it is —1.

Before we review the operation of the network, two limitations of Hopfield net-
works should be mentioned. The first is that they can reliably store and recall only
about 15 percent as many states as the network has PEs. For example, a network with
60 PEs can store about 9 states. A second limitation is that the patterns stored must
be chosen so that the Hamming distance between two patterns is about 50 percent
of the number of PEs. The Hamming distance between two binary patterns is the
number of bits in which the values are different. For example, the patterns 11111
and 1 -1 1 -1 1 have a Hamming distance of two.

From the first limitation, you can see that we’re stretching things to say we can
store much of anything in a four-PE network. We’ll use the patterns 1 1 1 1 and
—1-1-1-1 as the two we’ll store. We store the patterns by initializing (training) the
interconnecting weights according to equation 5.2. The equation says that a weight
is equal to the sum over all stored patterns of the product of the activation values of
the PEs on each end of the connection:

W= DViV; (W;=0) (5.2)

patterns

In our simple example, the sum over the two patterns of V;V; for each weight is
always 1 + 1 = 2, so each weight in our trained network is 2. Now let’s see how the
network updates the activation values of the PEs, recovering complete patterns from
partially incorrect ones.

’O Chapter Five—Neural Network Concepts and Paradigms

The activation values of the PEs are updated asynchronously and, in Hopfield’s
original configuration, stochastically. To be updated asynchronously means that they
are updated one at a time rather than all at once, as is the case with the back-
propagation networks that we look at later in this chapter. Updating stochastically
means that a probability is involved with a PE being updated at a given opportunity.
For example, if it’s the turn of PE number three to be updated, a random number
[0, 1] is generated. If the number generated is greater than, say, 0.5, the PE is updated;
otherwise, it isn’t.

Keeping in mind the hard-limiting function described earlier, we find that
equation 5.3 describes the process for calculating the net input to a PE, where I;
is the external input.

Netinput to PEi =)" W;V;+1; (5.3)
i

The activation value of the PE will be 1 if the net input is greater than or equal to
zero, and —1 otherwise. Let’s look at how this network, trained to “remember” the
two states 1 1 11 and -1 -1 -1 -1, deals with an “imperfect” input pattern.

We input a pattern of 1 1 1 -1, which has a Hamming distance of 1 from one
of the two remembered states, and assume the four PEs now have these values. One
way to think about this is to consider the weights W; set to 0 during the external
input process. Then the activation state of each PE assumes whatever we input to it.

Now we asynchronously and stochastically update the activation states of all four
PEs. If one of the PEs with a value of 1 is selected first, we calculate its new activation
value. (External inputs are no longer being applied, so I; is 0 for all PEs now.) Using
equation 5.3, you can see that each of the three PEs with a value of 1 has the same net
input whichever one is selected: 2(1) + 2(1) + 2(-1) = 2. Since 2 > 0, its activation
value doesn’t change.

When the PE with the activation value of -1 is selected and updated, its activation
value is changed to 1 because the net input to it is 2(1) + 2(1) + 2(1) = 6. As soon as
this happens, the pattern is stable, no matter how long you continue, because the net
input of any PE selected is now greater than 0. We have thus successfully recovered
one of the remembered states.

Similarly, you can see that the other remembered state is recovered if you start
with any pattern with a Hamming distance of 1 from -1 -1 -1 -1, such as
1 -1 -1 -1. If you start with a pattern with a Hamming distance of 2 from each of
the remembered states, the state recovered depends on which PE has its activation
value updated first. That seems only fair because the test pattern is halfway between
the two remembered states.

Although this is a simple example, the same principles apply to a large Hopfield
network. You should be able to work out more useful examples for yourself with the
information given.

o

Neural Network History O‘ 163

Hopfield’s work was noticed almost immediately by the semiconductor
industry. Within three years of his 1984 paper, AT & T Bell Laboratories announced
the first hardware neural networks on silicon chips, utilizing Hopfield’s theories.
Caltech colleague Carver Mead continued the innovations, fabricating hardware
versions of the cochlea and retina.

Just prior to AT & T’s announcement of the chips in 1986, the other Renais-
sance men, the Parallel Distributed Processing (PDP) Research Group, published
their first two volumes (Rumelhart and McClelland 1986, McClelland and Rumel-
hart 1986). The third volume followed in two years (McClelland and Rumelhart
1988). Although it is difficult to pinpoint when work on these volumes began, a
meeting organized by Hinton and Anderson in 1979 seems to have been the first
meeting that involved a significant number of the PDP group. The Renaissance in
neural networks, kindled by Hopfield, burst into flames with the release of their
books. Sixteen researchers made up the PDP Research Group, and anywhere from
one to four of them wrote each chapter in the first two PDP volumes. McClelland
and Rumelhart edited the first two volumes and contributed to the third.

It is hard to overstate the effect these books had on neural network research and
development. By late 1987, when one of the authors of this book [RE] bought his
copy of volume 1, it was in its sixth printing. The software included with volume 3
sold more copies in 1988 than all other neural network software combined. What
accounted for the unparalleled success of Parallel Distributed Processing? In one sen-
tence: The books presented everything practical there was to know about neural
networks in 1986 in an understandable, usable, and interesting way. In fact, 1986
seemed to mark the point at which a “critical mass” of neural network information
became available.

Recall that neural network paradigms have three primary attributes: the architec-
ture, the PE activation functions and attributes, and the adaptation algorithms. The
PDP books presented a variety of these three items, building several network types
as examples. The most read and quoted are probably in Chapters 1 to 4 and Chapter 8
in volume 1. Chapter 8 is entitled “Learning Internal Representations by Error
Propagation” and contains the basic derivation of the back-propagation algorithm
for multilayer perceptrons. It is one of the most quoted references in neural net-
work literature. Other chapters also represent landmarks in neural network devel-
opment, such as Chapter 7 on Boltzmann machines, written by Geoffrey Hinton of
Carnegie-Mellon and Terry Sejnowski, then of Johns Hopkins University and now at
the Salk Institute in San Diego. Hinton started out, with McClelland and Rumelhart,
to be one of the editors of the books but decided to devote more of his time to the
Boltzmann machine work.

Certainly one of the most significant contributions of the PDP volumes has been
the derivation and subsequent popularization of the back-propagation adaptation
algorithm for multilayer perceptrons, described in a landmark article in Nature at
about the same time (Rumelhart et al. 1986). Other groups developed the basic

‘- ’O Chapter Five—Neural Network Concepts and Paradigms

back-propagation scheme in the late 1980s, including Paul Werbos and Dave Parker
(Allman 1989).

We include in chapter 6 of this book an implementation of the back-propagation
model for personal computers. Competitive adaptation is briefly reviewed before we
present the Kohonen networks. We do not cover in any significant way a number
of other models and mechanisms described by the PDP group, including interac-
tive activation and competition, constraint satisfaction (including the Boltzmann
machine), and the pattern associator.

The Age of Neoconnectionism

In about 1987 we moved into the Age of Neoconnectionism, named by Cowan and
Sharp (1988). The field of neural networks and the development of neural network
implementations for personal computers expanded almost unbelievably in the next
decade. It was no longer feasible to assemble “all there is to know” about the current
state of neural networks in one volume, or one set of volumes, as the PDP Research
Group attempted to do in 1986—1988.

The first major conference on neural networks, the International Conference on
Neural Networks, was held in San Diego in 1987, sponsored by the IEEE. This con-
ference gave birth to both the IEEE Neural Networks Council (NNC) and the Inter-
national Neural Networks Society (INNS). Robert Marks, then of the University of
Washington, served as the first president of the IEEE NNC, and Steven Grossberg
was the first INNS president. Marks also served as the founding editor-in-chief of
IEEE Transactions on Neural Networks, arguably the most prestigious and widely read
journal in the field. One of the authors [RE] served as the second president of the
IEEE NNC. (In 2002 the IEEE Neural Networks Council became the IEEE Neural
Networks Society, and it is now the IEEE Computelligence Society.)

Dozens of neural network paradigms, with hundreds of variations, were
described in the literature. Because of the sheer volume of work being done by thou-
sands of people, it is difficult to decide which individual researchers to highlight
in the Age of Neoconnectionism. However, one new general class of networks was
increasingly utilized. These networks, sometimes called “basis function” paradigms,
include probabilistic neural networks and radial basis function networks. The per-
son generally credited with having the most to do with the early development of
probabilistic neural networks is Donald Specht, who published the first papers
about them (Specht 1988, 1990) and continues to contribute significantly to the
development of basis function paradigms.

In the decade from 1987 to 1997, the list of neural network applications
expanded from biological and psychological uses to include uses as diverse as biomedi-
cal waveform classification, music composition, and prediction of commodity prices.
Neural network development activity intensified worldwide. Another development

What Neural Networks Are and Why They Are Useful O @

occurred that is perhaps more important: the shift to PCs for neural network
implementations. Personal computers had changed drastically since the introduc-
tion of the first Altairs and Apples. Their increased capabilities (speed, memory, mass
storage, communications, and graphics) and reduced cost of personal computers
made the implementation of useful and cost-effective neural network systems uni-
versally attractive. As of 1994, more than 50 million PCs were being sold annually
worldwide (Gates 1995).

In 1994 the first IEEE World Congress on Computational Intelligence was held
in Florida. For the first time, major conferences on neural networks, evolutionary
computation, and fuzzy logic were held together. The boundaries between method-
ologies were beginning to erode.

The Age of Computational Intelligence

The second IEEE World Congress on Computational Intelligence was held in 1998
in Anchorage, Alaska. By this time, the boundaries between the three main areas of
computational intelligence had eroded even more, and we choose this year as the
beginning of the age of computational intelligence.

The third IEEE World Congress on Computational Intelligence in 2002 in
Honolulu, Hawaii, was a gathering of engineers and scientists whose presentations
and discussions were truly eclectic, and it was a celebration of the formation of the
new JEEE Neural Networks Society.

In 2005 the IEEE approved the society’s change of the name to properly reflect its
fields of interest: The IEEE Computelligence Society. In 2006, the fourth IEEE World
Congress on Computational Intelligence was held in Vancouver, British Columbia,
Canada.

Hybrid systems are the order of the day. And if you want to keep up with the
latest developments in neural networks, you have to skim the evolutionary compu-
tation and fuzzy logic journals because many, if not most, advances in computational
intelligence cut across methodologies. There is no looking back!

What Neural Networks Are and Why They Are Useful

Neural networks are information processing systems. In general, they can be thought
of as “black box” devices that accept inputs and produce outputs. In the simplest
terms, neural networks map input vectors onto output vectors. Some of the oper-
ations that neural networks perform include the following.

Classification. An input pattern is passed to the network, and the network produces
a representative class as output.

@ ’O Chapter Five—Neural Network Concepts and Paradigms

Pattern matching. An input pattern is passed to the network, and the network
produces the corresponding output pattern that best matches the input pattern.

Pattern completion. An incomplete pattern is passed to the network, and the

network produces an output pattern that has the missing pattern portions
filled in.

Noise removal. A noise-corrupted input pattern is presented to the network, and
the network removes some (or all) of the noise and produces a cleaner version
of the input pattern as output.

Optimization. An input pattern representing the initial values for a specific optimi-
zation problem is presented to the network, and the network produces a set of
variables that represent an acceptably optimized solution to the problem.

Control. An input pattern is presented that represents the current state of a con-
troller and the desired response for it, and the network output is the command
sequence that will create the desired response.

Simulation. An input pattern (or series of patterns) is presented that represents
the current state vector (and possibly previous state vectors) of a system or
time series. The trained network generates structured sequences or patterns
that simulate behavior of the system with time.

Neural networks consist of processing elements and weighted connections.
Figure 5.3 illustrates a typical neural network. Each layer in a neural network con-
sists of a collection of processing elements. Each PE collects the values from all of its
input connections, performs a predefined mathematical operation (such as a dot-
product followed by a threshold), and produces a single output value. The neural
network in Figure 5.3 has three layers: Fy, which consists of the PEs {x1, x2, x3}; F,,,
which consists of the PEs {y1, y2 }; and F,, which consists of the PEs {z1, 22, z3 } (from
left to right, respectively).

—@ O—
]

: () |
T —® (&)—
F F, F,

Figure 5.3 A typical neural network.

What Neural Networks Are and Why They Are Useful O‘ ; @

Processing elements are connected with weighted connections. In Figure 5.3
there is a weighted connection from every F, PE to every F, PE, and there is a
weighted connection from every F, PE to every F, PE. Each weighted connection
(referred to as either a connection or a weight; the terms are used interchangeably in
this book) acts as both a label and a value. As an example, in Figure 5.3 the connec-
tion from the F, PE x; to the F, PE y; is the connection weight wy; (the connection
from x; to ;). Connection weights store the information, or knowledge, in a net-
work. The values of the connection weights are often determined by a neural net-
work adaptation procedure (although sometimes they are predefined and hardwired
into the network). It is through the adjustment of the connection weights that the
neural network is able to adapt. By performing the update operations for each PE
when an input pattern is presented, the neural network is able to recall information.

There are several important features illustrated by the neural network shown in
Figure 5.3 that apply to all neural networks:

® Each PE acts independently of all others; each PE’s output relies only on its
constantly available inputs from the abutting connections.

® Each PE relies only on local information; the information provided by the
adjoining connections is all a PE needs to process. It does not need to know
the state of any of the other PEs to which it does not have an explicit
connection.

® The large number of connections provides redundancy and facilitates a
distributed representation.

The first two features allow neural networks to operate efficiently in parallel. The
last feature provides properly designed neural networks with fault-tolerance and
generalization qualities that are very difficult to attain with most other computing
systems.

In addition to these features, by properly arranging the topology of the net-
works, introducing a nonlinearity in the processing elements (i.e., adding a nonlin-
ear threshold function), and using the appropriate adaptation rules, neural networks
are able to “learn” arbitrary nonlinear mappings. This is a powerful attribute. There
are three primary situations where neural networks are advantageous:

1. Situations where relatively few decisions are required from a massive
amount of data (e.g., speech and image processing)

2. Situations where nonlinear mappings must be automatically acquired
(e.g., loan evaluations and robotic control)

3. Situations where a near-optimal solution to a combinatorial optimization
problem is required very quickly (e.g., job shop scheduling and telecommu-
nication message routing)

@ ’O Chapter Five—Neural Network Concepts and Paradigms

A basic knowledge of neural networks requires an understanding of the
nomenclature and a comprehension of the rudimentary mathematical concepts
used to describe and analyze neural network processing. In a broad sense, neural
networks comprise three principal elements needed to specify the network:

& Topology—how a neural network is organized into layers and how those
layers are connected.

® Adaptation—how a network is configured to store information.

® Recall—how the stored information is retrieved from the network.

We describe each of these elements in detail after a discussion of connection weights,
processing elements, and activation functions.

Neural Network Components and Terminology

Each neural network has at least two structural components: connection weights
and processing elements. The combination of these components creates a neural
network topology. A convenient analogy is the directed graph, where the edges are
analogous to the connection weights and the nodes are analogous to the processing
elements. In addition to connection weights and processing elements, processing
element activation functions and input/output patterns are also basic components
in the design, implementation, and use of neural networks. After a description of
the terminology of neural networks, we examine each of these elements in turn.

Terminology

Neural network terminology remains varied, with standards yet to be adopted. The
Standards Committee of the IEEE Neural Networks Council, now the IEEE Com-
putational Intelligence Society, is actively involved in standardizing terminology and
symbology (Eberhart 1990). We generally use terminology developed by the Stan-
dards Committee in this book. There are, however, exceptions. Therefore, for clarity,
we explain the terminology as appropriate. Figure 5.4 shows an illustration of some
of the terminology.

Input and output vectors (patterns) are denoted by subscripted capital letters
from the beginning of the alphabet. The input patterns are denoted Ay = ax,
aK2s - - -) k= 1,2, ..., m, and the output patterns as By = (bx1, bxos - - - bip)s
k=1,2, ..., m. Note that the subscript k refers to a pattern and that there are m
input patterns.

The processing elements (PEs) in a layer are denoted by the same subscripted
variable. The collection of PEs in a layer form a vector, and these vectors are denoted

Neural Network Components and Terminology O‘ @

Yv Y2 ¥z - Yo=Fy

Xq Wiy Wyt W3y ..o Wy
Xp | Wiy Wy W3y ... Wy
Xn | Wip Wop Wap ... Won
Y

Fy W

@, g e 0 A=A

Figure 5.4 A network used to illustrate terminology.

by capital letters from the end of the alphabet. In most cases three layers of PEs
are sufficient. The input layer of PEs is denoted Fx = (x1,x3, . . ., X,), where each
x; receives input from the corresponding input pattern component ai;. The next
layer of PEs is the Fy PEs, then the F; PEs (if either layer is necessary). If more than
one inner (hidden) layer is required, they are designated Fy;, Fy, and so on, moving
from input to output.

The number of layers in a network is determined by its use. Using the network in
Figure 5.4 as an example, the second layer of the network is the output layer; hence,
the number of Fy PEs must match the dimensionality of the output patterns. In this
instance, the output layer is denoted Fy = (y1, 32, . . ., yp), where each y; is correlated
with the jth element of B;. Connection weights are stored in weight matrices. Weight
matrices are denoted by capital letters toward the end of the alphabet, typically U,V,
and W. Referring to the example in Figure 5.4, this two-layer neural network requires
one weight matrix to fully connect the layer of n Fx PEs to the layer of p Fy PEs. The
matrix in Figure 5.4 describes the full set of connection weights between Fx and Fy,
where the weight wj; is the connection weight from the ith Fx PE, x;, to the jth Fy
PE, y;. For a two-layer network, the weight matrix is usually denoted by W. Addi-
tional layers and/or mean-variance weight configurations (discussed later) generally
have weight matrices denoted by U and/or V.

Input and Output Patterns

Neural networks cannot operate without data. Some neural networks use only single
patterns; others use pattern pairs. Note that the dimensionality of the input pattern
is not necessarily the same as the output pattern. When a network uses only single
patterns, it is defined as an autoassociative network. When a network uses pattern
pairs, it is heteroassociative.

One of the key issues when applying neural networks is determining what the
patterns should represent. For example, in speech recognition systems there are

’O Chapter Five—Neural Network Concepts and Paradigms

many types of features that can be employed, including linear predictive coding
coefficients, Fourier spectra, histograms of threshold crossings, cross-correlation
values, and others. The proper selection and representation of these features can
greatly affect the performance of the network.

In some instances, feature representation as a pattern vector is constrained by the
type of processing the neural network can perform. For example, some networks can
process only binary data, such as the binary Hopfield network (Amari 1972; Hop-
field 1982), binary adaptive resonance theory (Carpenter and Grossberg 1987a), and
the brain-state-in-a-box (Anderson et al. 1977). Others can process real-valued data,
including back-propagation (Parker 1982; Rumelhart et al. 1986; Werbos 1974) and
learning vector quantization (Kohonen 1988). Creating the best possible set of fea-
tures and properly representing those features is the crucial first step toward success
in any neural network application. This task often takes a significant portion of the
system development effort.

Network Weights

A neural network is equivalent to a directed graph (digraph). A digraph has edges
(weights, or connections) between nodes (PEs) that allow information to flow in
only one direction (the direction denoted by the arrow). Information flows through
the digraph along the edges and is collected at the nodes. Within the digraph rep-
resentation, connections serve a single purpose: They determine the direction of
information flow.

Neural networks extend the digraph representation to include a weight with each
edge (connection) that modulates the amount of signal passed from the output of
one PE along the connection to the next PE. As an example, in Figure 5.4 the infor-
mation flows from the Fx layer through the weighted connections, W, to the Fy layer.
For simplicity, a dual role for weights is used. A weight both defines the informa-
tion flow through the network and modulates the amount of information passing
between PEs.

The connection weights are adjusted during an adaptation process that captures
information. Connection weights with positive values are excitatory connections.
Those with negative values are inhibitory connections. A connection weight that
has a zero value is the same as not having a connection present. By allowing only
a subset of all the possible connections to have nonzero values, sparse connectivity
between PEs can be simulated.

For reasons that will be discussed later, it is often desirable for a PE to have an
internal bias value (threshold value). Figure 5.5(b) shows the PE y; with three weights
from Fx {w;j1, wj2, wj3 } and a bias value, b;. It is convenient to consider this bias value
as an extra weight, wy, emanating from the Fx layer PE xy, with the added constraint
that xg is always equal to 1, as shown in Figure 5.5(b). This mathematically equivalent

Neural Network Components and Terminology O‘@

() (b)

Figure 5.5 An illustration of PEs with internal (a) and external biases (b).

representation simplifies many discussions. We use this method of representing bias
(threshold) values throughout this book.

Processing Elements

The processing element (PE) is the component of the neural network where com-
putations are performed. Figure 5.5 illustrates the most common type of PE. A
PE can have one input connection, as is the case when the PE is an input layer
PE and it receives only one value from the corresponding component of the input
pattern, or it can have several input weights, as is the case of the Fy PEs shown
in Figure 5.4 where there is a connection from every Fx PE to each Fy PE. Each
PE collects the information that has been sent down its abutting connections and
produces a single output value. PEs possess two important qualities:

® PEs require only local information. All the information necessary for a PE to
produce an output value is present at the inputs and resides within the PE.
No other information about other values in the network is required.

® Each PE produces only one output value. This single output value either is
propagated along the connections from the emitting PE to other receiving
PEs or serves as an output from the network.

These two qualities facilitate neural networks’ parallel operation. As is done with
the weights, the value of the PE and its label are referred to synonymously. As an
example, the jth Fy PE in Figure 5.4 is y;, and the output value of that PE is also y;.

There are several mechanisms for computing the output of a processing element.
The output value of the PE shown in Figure 5.5(b), y;, is a function of the outputs of
the preceding layer, Fx = X = (x1, x, . . ., %) and the weights from Fx to y;, W; =
(wj1, Wj, . . .» Wjn). Mathematically, the output of this PE is a function of its inputs
and its weights, as shown in equation 5.4. Actually, it is usually a function of a func-
tion. First, a calculation is performed to determine how the weights and previous

@ ’O Chapter Five—Neural Network Concepts and Paradigms

outputs are combined to form the input to the PE. Then an activation function is
calculated that determines the output of the PE given its input.

¥; = FX,W)) (5.4)

Two common types of input computation are linear combination and mean-
variance connections. The most common input computation performed by a PEis a
linear combination (dot product) of the input values, X, with the abutting connec-
tion weights, W, followed by an activation function (cf. Hecht-Nielsen 1990; Maren
et al. 1990; Simpson 1990). Using the PE in Figure 5.5(b) as an example, the output
yj is computed using equation 5.5, where W; = (wj;, wp, . . ., wj,) and f() is one of
the activation functions described later in this chapter.

yi=f (Z Xi Wji) =f(X - W) (5.5)

i=0

The dot-product update has an appealing quality that is intrinsic to its computa-
tion. Looking at the relationship Ay - W; = cos(Ax, W))/||Al] ||Wjll, we can see that
the larger the dot-product (assuming fixed lengths Ay and W;), the more similars
the two vectors are. Hence, the dot-product can be viewed as a similarity measure.
Note that if vectors X and W; are of fixed length, maximizing their dot (inner) prod-
uct is the same as minimizing their mean-square separations, since

”X— w; ” - X012 + ” W; ” 2 _ two times the dot (inner) product.

The second common type of input computation is mean-variance connections,
which are used in instances where there are two weights connecting PE pairs instead
of just one, as shown in Figure 5.6. One use of these dual weights is to allow one
set of the abutting weights to represent the mean of a class, and the other the class
variance (Lee and Kil 1989; Robinson et al. 1988). In this case, the output value of
the PE depends on the inputs and both sets of weights, that is, y; = F(X, V}, W)),
where the mean connections are represented by W; = (w;;, wp, . . ., wj,) and the
variance connections V; = (vj1, ¥j2, « - - Vjn) for the PE Ve

Using this scheme, the activation function of y; calculates the difference between
the input, X, and the mean, W}, divided by the variance, Vj, squaring the resulting
quantity and passing this value through a Gaussian nonlinear function to produce
the final output value, as shown in equation 5.6, where the Gaussian nonlinear func-
tion appears in equation 5.7.

Neural Network Components and Terminology O‘.@

n
Wi

Figure 5.6 A PE with mean-variance connections.

M\ 2
yj=g<z (W”Vﬁx>) (5.6)

i=1

g(x) = exp (:;2-) (5.7)

Note that it is possible to remove one of the two connections in a mean-variance
network, if the variance is known and stationary, by dividing by the variance prior to
neural network processing. Gaussian nonlinear functions are described in the next
section.

Processing Element Activation Functions

Processing element activation functions, also sometimes referred to as threshold
functions or squashing functions, map a PE’s (possibly) infinite domain to a pre-
specified range. Although the possible number of activation functions is infinite,
five are regularly employed by a majority of neural networks: (1) the linear func-
tion, (2) the step function, (3) the ramp function, (4) the sigmoid function, and
(5) the Gaussian function. With the exception of the linear function, all of these
functions introduce a nonlinearity into the network dynamics by bounding the out-
put values within a fixed range. Each activation function is briefly described below
and illustrated in Figure 5.7, parts (a) to (e).

The linear activation function, as in Figure 5.7(a), produces a linearly modulated
output from the input x, as described by equation 5.8, where x ranges over the real
numbers and « is a positive scalar. If « = 1, it is equivalent to removing the activation
function completely.

flx) = ax (5.8)

The step activation function, as in Figure 5.7(b), produces only two values,
pand —s. If the input to the activation function, x, equals or exceeds the threshold

’O Chapter Five—Neural Network Concepts and Paradigms

)) f(x)
A
=2
X X
v\/\a
(a) (b) ©
Variance
f(x)
o
Mean
X -« >
l X
(d) (e)

Figure 5.7 Five of the most common activation functions.

value 6, then the step activation function produces the value g; otherwise, it
produces the value —§, where g and § are positive scalars. This function is described
mathematically in equation 5.9.

flx) = p tx20 (5.9)

-5 ifx<@

Typically the step activation function produces a binary value in response to the
sign of the input, emitting +1 if x is positive and 0 if it is not. By making the assign-
ments f = 1,6 = 0, and 6 = 0, the step activation function becomes the binary
step function of equation 5.10, which is common to neural networks such as the
Hopfield neural network (Amari 1972; Hopfield 1982) and the bidirectional
associative memory (Kosko 1988). A small variation of equation 5.10 is the bipolar
activation function, which replaces the 0 output value with a —1. In punish-reward
systems such as the associative reward—penalty paradigm (Barto 1985), the negative
value is used to ensure changes where a 0 will not.

o) = 1 ifx>0 (5.10)

0 otherwise

The ramp activation function, as in Figure 5.7(c), is a combination of the lin-
ear and step activation functions. The ramp activation function places upper and

Neural Network Components and Terminology O‘.@

lower bounds on the values that the function produces and allows a linear response
between the bounds. These saturation points are symmetric around the origin
and are discontinuous at the points of saturation. The ramp activation function is
defined in equation 5.11, where y is the saturation value for the function and the
points x = y and x = —y are where the discontinuities in f(.) exist.

y ifx>y
fO=9 x if x<y (5.11)

-y if x <—y

The sigmoid activation function, as in Figure 5.7(d), is a continuous version
of the ramp activation function. The sigmoid (S-shaped) function is a bounded,
monotonic, nondecreasing function that provides a graded, nonlinear response
within a prespecified range. The most common sigmoid function is the logistic
function of equation 5.12, where @ > 0 (often « = 1, which provides an output
value from 0 to 1.

flx) = (5.12)

1+ e

This function is familiar to statistics {(as the Gaussian distribution function),
chemistry (describing catalytic reactions), and sociology (describing human pop-
ulation growth). Note that a relationship between equations 5.12 and 5.10 exists.
When « = oo in equation 5.12, the slope of the sigmoid function between 0 and
1 becomes infinitely steep and, in effect, becomes the step function described by
equation 5.10. Two alternatives to the logistic sigmoid function are the hyperbolic
tangent, f(x) = tanh(x), which ranges from —1 to 1, and the augmented ratio of
squares described by equation 5.13, which ranges from 0 to 1.

i .
flx) =< 1+ if x>0 (5.13)

0 otherwise

The Gaussian activation function, as in Figure 5.7(e), is a radial function (sym-
metric about the origin) that requires a variance value greater than zero to shape
the Gaussian function. In some networks the Gaussian function is used in con-
junction with a dual set of connections, as described earlier by equation 5.6, and
in other instances (Specht 1990) the variance is predefined. In the latter instance,

l ’O Chapter Five—Neural Network Concepts and Paradigms

the activation function is described by equation 5.14, where x is the mean and v is
the predefined variance.

foo) = exp(lv"—2> (5.14)

Neural Network Topologies

The building blocks for neural networks have been described. Neural network
topologies now evolve from the patterns, PEs, weights (weighted connections),
and activation functions that have been described. Neural networks consist of
one or more layers of PEs interconnected by weights. The arrangement of the
PEs, weights, and patterns into a neural network is referred to as a topology.
After we introduce some terminology, we describe two common neural network
topologies.

Terminology

Neural networks are organized into layers of PEs. PEs within a layer are similar in
two respects. First, the connections that feed the layer of PEs are from the same
source. For example, the Fx layer of PEs in Figure 5.4 all receive their inputs from
the input pattern, and the layer of Fy PEs all receive their inputs from the Fx PEs.
Second, the PEs in each layer use the same type of update dynamics. In other words,
all the PEs use the same connection source(s) and destination(s) and the same type
of activation function.

There are two types of weight that a neural network employs: intralayer weights
and interlayer weights. Intralayer weights (“intra” is Latin for “within”) are weights
between PEs in the same layer. Interlayer weights (“inter” is Latin for “among”) are
weights between PEs in different layers. It is possible to have neural networks that
consist of one or both types of weight.

When a neural network has connections that feed information in only one direc-
tion, from input to output without feedback pathways in the network, it is a feed-
forward neural network. If the network has any feedback paths, where feedback is
defined as any path through the network that allows the same PE to be visited twice,
then it is a feedback neural network. Thus, a network using PEs that have self-feedback
loops is a feedback network.

Two-layer Networks

Two-layer neural networks consist of a layer of n Fx PEs fully interconnected to a
layer of p Fy PEs, as shown in Figure 5.8. The connections from the Fx to Fy PEs

Neural Network Topologies O‘ .@

Figure 5.8 Two-layer neural networks.

form the n-by-p weight matrix W, where the entry wj; represents the weight for the
connection from the ith Fx PE, x;, to the jth Fy PE, y;. There are three common
types of two-layer neural network: feedforward pattern matchers, feedback pattern
matchers, and feedforward pattern classifiers.

A two-layer feedforward pattern matching neural network maps the input pat-
terns, Ag, to the most closely corresponding output patterns, Bx. The network shown
in Figure 5.8(a) illustrates the topology of this feedforward network. The two-layer
feedforward neural network accepts the input pattern Ay and produces an output
pattern, Y = (y1,¥2, - . .» ¥p)» that is the network’s best estimate of the proper output
given Ay as the input. An optimal mapping between the inputs and the outputs is one
that always produces the correct response Bx when Ay is presented to the network,
k=1,2,...,m.

Most two-layer networks are concerned with finding the optimal linear mapping
between the pattern pairs (A, Bx) (¢f. Kohonen 1988; Widrow and Winter 1988),
but there are other two-layer feedforward networks that work with nonlinear map-
pings by extending the input patterns to include multiplicative combinations of the
original inputs (Maren et al. 1990; Pao 1989).

A two-layer feedback pattern matching neural network, shown in Figure 5.8(b),
accepts inputs from either the Fx or Fy layer, and produces the output for the other
layer (Kosko 1988; Simpson 1990). An example of this kind of network is the bidi-
rectional associative memory network (Kosko 1988).

@ ’O Chapter Five—Neural Network Concepts and Paradigms

A two-layer pattern classification neural network, shown in Figure 5.8(c), maps
an input pattern, A, into one of p classes. Representing each class as a separate Fy
PE, the pattern classification task reduces to selecting the Fy PE that best responds
to the input pattern. Some of the two-layer pattern classification systems use the
competitive dynamics of global on-center/off-surround connections to perform the
classification.

Multilayer Networks

A multilayer neural network has more than two layers, possibly several more. A
genera] description of a multilayer neural network is shown in Figure 5.9, where
there is an input layer of PEs, Fx, L hidden layers of Fy PEs (Fy1, Fy», ., Fyz), and a
final output layer, Fz. The Fy layers are called hidden layers because there are no
direct weights (connections) between the input or output patterns to these PEs;
rather, they are always accessed through another set of PEs such as the input and
output PEs.

Although Figure 5.9 shows weights only from one layer to the next, it is possible
to have weights that skip over layers, that connect the input PEs to the output PEs,
or that connect PEs within the same layer. The added benefit of these weights is not
generally understood, but some implementations use them.

Multilayer neural networks are used for pattern classification, pattern match-
ing, and function approximation. By adding a continuously differentiable PE
activation function, such as a Gaussian or sigmoid function, it is possible for the
network to learn practically any nonlinear mapping to any desired degree of accuracy
(White 1989).

Computed Outputs

Inputs

Figure 5.9 General form of a multilayer neural network.

Neural Network Adaptation Q ; @

The mechanism that allows such complex mappings to be developed is not fully
understood for each type of multilayer neural network, but in general the network
partitions the input space into regions, and a mapping from the partitioned regions
to the next space is performed by the set of weights to the next layer of PEs, eventually
producing an output response. This capability allows some very complex decision
regions to be formed for classification and pattern matching problems, as well as for
applications that require function approximation.

Several issues must be addressed when working with multilayer neural networks.
How many layers are sufficient for a given problem? How many PEs are needed in
each hidden layer? How much data is needed to produce a sufficient mapping from
the input layer to the output layer?

Some of these issues have been addressed successfully. For example, several
researchers have proved that three layers are sufficient to perform any nonlinear
mapping (with the exception of a few remote pathological cases) to any desired
degree of accuracy with only one layer of hidden PEs. See White (1989) for a review
of this work. Although this is a very important result, it does not indicate the proper
number of hidden layer PEs, or if the same solution can be obtained with more
layers but fewer hidden PEs and weights overall. Note that throughout this book,
the input is counted as a layer, so that a “three-layer” network has one hidden
layer.

There are several ways that multilayer neural networks can have their weights
adjusted to learn mappings. The most popular technique is the back-propagation
algorithm (Parker 1982; Rumelhart et al. 1986; Werbos 1974) and its many variants
(see Simpson 1990 for a list). Other multilayer networks include the neocognitron
(Fukushima 1980), the probabilistic neural network (Specht 1990), the Boltzmann
machine (Ackley et al. 1985), the Cauchy machine (Szu 1986), and radial basis func-
tion networks.

Neural Network Adaptation

Arguably the most appealing quality of neural networks is their ability to adapt.
Adaptation in this context is defined as changes in connection weight values that
result in the capture of information that can later be recalled. There are several
procedures for changing the values of connection weights. After an introduction
to some terminology, we describe two adaptation methods. For continuity of dis-
cussion, we describe the adaptation algorithms in pointwise notation (rather than
vector notation). In addition, we describe the algorithms using discrete-time equa-
tions (rather than continuous time). The use of discrete-time equations makes them
more accessible to computer simulations.

1 ’O Chapter Five—Neural Network Concepts and Paradigms

Terminology

As discussed in Chapter 2, adaptation can be classified into three categories:
supervised, unsupervised, and reinforcement adaptation. We first focus on super-
vised and unsupervised adaptation. Supervised adaptation is a process that uses an
external teacher and/or global information. The supervised adaptation algorithms
discussed in the following sections include Hebbian, competitive, and error correc-
tion adaptation. Examples of supervised adaptation issues include deciding when
to turn off the adaptation, deciding how long and how often to present each asso-
ciation for training, and supplying performance (error) information.

Supervised adaptation is further classified into two subcategories: structural
and temporal. Structural adaptation is concerned with finding the best possible
input-output relationship for each pattern pair. Examples include pattern matching
and pattern classification. The majority of adaptation algorithms used in practi-
cal applications involve structural adaptation. Temporal adaptation is concerned
with capturing a sequence of patterns necessary to achieve some final outcome.
In temporal adaptation, the current response of the network depends on previ-
ous inputs and responses. In structural adaptation, there is no such dependence.
Examples of temporal adaptation include prediction, simulation, and control. The
primary example of supervised adaptation included in this book is the back-
propagation neural network, for which an implementation is discussed in the next
chapter.

Unsupervised adaptation, also referred to as self-organization, incorporates no
external teacher or supervisor and relies only on local information during the entire
adaptation process. Unsupervised adaptation algorithms perform clustering of the
data. They organize presented data and discover its emergent collective properties.
Examples of unsupervised adaptation that are discussed in this book include self-
organizing feature maps and competitive adaptation. Implementations of the self-
organizing feature map and learning vector quantization neural networks are
discussed in the next chapter .

We next consider off-line and on-line adaptation. Most adaptation techniques
can use off-line adaptation. When the entire pattern set is used to condition the
weights prior to the use of the network, it is called off-line adaptation. For example,
the back-propagation algorithm is used to adjust weights in multilayer neural net-
works, but it sometimes requires thousands of cycles through all the pattern pairs
until the desired performance of the network has been achieved. Once the network
is performing adequately, the weights are frozen and the resulting network is there-
after used in recall mode. Off-line adaptation systems have the intrinsic requirement
that all the patterns be resident for training. Such a requirement does not make it
possible to have new patterns automatically incorporated into the network as they
occur; rather, these new patterns must be added to the entire set of patterns and the
neural network must be retrained.

Neural Network Adaptation O‘ @

Not all neural networks perform off-line adaptation. Some networks can
perform on-line adaptation, adding new information “on the fly” nondestructively.
If a new pattern needs to be incorporated into the network’s connections, it can
be done immediately without loss of stored information. The advantage of off-line
adaptation networks is that they usually provide superior solutions to difficult prob-
lems such as nonlinear classification, but on-line adaptation allows the neural net-
work to adapt in situ. A challenge in the future of neural network computing is the
development of adaptation techniques that provide high-performance on-line adap-
tation without high costs.

Hebbian Adaptation

The simplest form of adjusting weight values in a neural network is based on the cor-
relation of PE activation values. The motivation for correlation-based adjustments
has been attributed to Donald O. Hebb (1949), who hypothesized that the change
in a synapse’s efficacy (its ability to fire or, as we are simulating it in our neural
networks, the connection weight) is prompted by a neuron’s ability to produce an
output signal. If a neuron, A, was active, and A’s activity caused a connected neuron,
B, to fire, then the efficacy of the synaptic connection between A and B should be
increased. Hebb’s work is discussed in the history section of this chapter.

This form of adaptation, now commonly referred to as basic Hebbian adap-
tation (or Hebbian learning), has been mathematically characterized as the correla-
tion weight adjustment described in equation 5.15, where i=1,2,...n;
j=12,...,p;n is a constant that represents an adaptation rate; x; is the value
of the ith PE in the Fx layer of a two-layer network; y; is the value of the jth Fy
PE; and the connection weight between the two PEs is Wji.

Wi = W;ild + nxiy; (5.15)

In general, the values of the PEs can range over the real numbers, and the weights
are unbounded. When the PE values and weights are unbounded, these two-layer
neural networks are amenable to linear systems theory. Neural networks, such as
the linear associative memory (Anderson 1970; Kohonen 1972), employ this type of
adaptation and we can analyze the capabilities of these networks using linear systems
theory. The number of patterns that a network trained using equation 5.15 with
unbounded weights and connections can recognize is limited to the dimensionality
of the input patterns (cf. Simpson 1990).

A special case of Hebbian adaptation is the delta rule, also sometimes called
the Widrow~Hoff rule (Sutton and Barto 1981). It is called the delta rule because
the amount of weight adjustment is proportional to the delta (the difference)

'~ ’O Chapter Five—Neural Network Concepts and Paradigms

between the target PE activation value provided by the “teacher” (bx;) and the
actual activation value calculated by the PE (7k)- The delta rule is described in
equation 5.16, where &; = by; — i), and 7 is the adaptation coefficient, which
typically takes on values between 0 and 1. Since the subscript k denotes a pattern,
and the subscript j in this case denotes an output PE, the value of delta calculated
is for one pattern presented to one PE, and ay; is the ith component of the kth
input pattern. Implementation of the delta rule is discussed in the later section on
multilayer error correction adaptation.

Wi = W]‘.’i1d + nékjaxi (5.16)

Competitive Adaptation

Competitive adaptation (competitive learning), introduced by Grossberg (1970) and
Von der Malsburg (1973), and extensively studied by Amari and Takeuchi (1978),
Amari (1983), and Grossberg (1982), is a method of automatically creating classes
for a set of input patterns. Competitive adaptation is a two-step procedure that cou-
ples the recall process with the adaptation process in a two-layer neural network.
Each Fx PE represents a component of the input pattern, and each Fy PE represents
a class.

Step 1

Determine the winning Fy PE. An input pattern, Ay, is passed through the connec-
tions from the input layer, Fx, to the output layer, Fy, in a feedforward fashion using
the dot-product update equation y; = £Y_ | x;w;;, where x; is the ith PE in the input
layer Fx,i= 1,2, ..., n,y;is the jth PE in the output layer Fy,j = 1,2, . . ., p,and w;;
is the value of the connection weight between x; and y;. Each set of connections that
abuts an Fy PE, say y;, is a reference vector W; = (wj1, wjp, . . ., Wj,) representing the
class j. The reference vector, W;, that is closest to the input, A, should provide the
highest activation value.

If the input patterns Ay, k=1,2,...,m and the reference vectors W,
j=1,2,...,p are normalized to Euclidean unit length, then the relationship of
equation 5.17 holds, where the more similar Ay is to W, the closer the dot-product
is to unity. The dot-product values, y;, are used as the initial values for winner-
take-all competitive interactions. The result of these interactions is identical to
searching the Fy PEs and finding the one with the largest dot-product value.

n
0< (}'; =Ar o W;= Z akini) <1 (5.17)

i=1

Neural Network Adaptation O‘ ¥ @

Using equation 5.18, it is possible to find the Fy PE with the highest dot-product
value, called the winning PE. The reference vector associated with the winning PE is
the winning reference vector.

lify; >y forall j #k
yi = Yi >y J# (5.18)

0 otherwise

Step 2

Adjust the winning Fy PE’s weights. In competitive adaptation with winner-take-
all dynamics like those described earlier, there is only one set of weights adjusted:
those of the winning reference vector. The formula to adjust the winning reference
vector and no others is equation 5.19, where a(t) is a nonzero, decreasing function
of time. The result of this operation is the motion of the reference vector toward the
input vector. Over many presentations of the data vectors [on the order of O(r)
(Hertz et al. 1990)], the reference vectors will become the centroids of data clusters
(Kohonen 1986).

Wi = Wfild + a(t)yj(axi — wji) (5.19)

There have been several variations of this algorithm (cf. Simpson 1990), but one
of the most important is the “conscience” mechanism (DeSieno 1988). By adding
a conscience to each Fy PE, it is only allowed to become a winner if it has won
equiprobably. The equiprobable winning constraint improves both the quality of
solution and the training time. Neural networks that employ competitive adaptation
include learning vector quantization (Kohonen 1988), self-organizing feature maps
(Kohonen 1988), adaptive resonance theory I (Carpenter and Grossberg 1987a), and
adaptive resonance theory II (Carpenter and Grossberg 1987b). Implementations in
the next chapter are devoted to the learning vector quantization paradigm, which
includes a conscience mechanism, and to the self-organizing feature map.

Multilayer Error Correction Adaptation

Error correction adaptation (also called error correction learning) adjusts the con-
nection weights between PEs in proportion to the difference between the desired
and computed values of each output layer PE. Two-layer error correction adaptation
is limited to capturing linear mappings between input and output patterns. Multi-
layer (> 2 layers) error correction adaptation is able to capture nonlinear mappings
between the inputs and outputs.

A problem that once plagued error correction adaptation was its inability to
extend adaptation beyond a two-layer network. Because it remained a two-layer
adaptation rule, only linear mappings could be acquired. There were several attempts

@ ’O Chapter Five—Neural Network Concepts and Paradigms

to extend the two-layer error correction adaptation algorithm to multiple layers, but
the same problem kept arising: For how much of an output-layer PE error is each
hidden-layer PE responsible? Using the three-layer neural network in Figure 5.10 to
illustrate, the problem of multilayer adaptation (in this case, three-layer adaptation)
is calculating the amount of error each hidden-layer PE, y;, should be assigned for
an output-layer PE’s error. Note that the output layer of PEs has activation values
21, 22, - - - 24> and that the weight matrix from the input layer to the hidden layer is
denoted V.

This problem, called the credit assignment problem (Barto 1984; Minsky 1961),
was solved through the realization that a continuously differentiable activation func-
tion for the hidden-layer PEs would allow the chain rule of partial differentiation to
be used to calculate weight changes for any weight in the network. Using the three-
layer network in Figure 5.10 to illustrate the multilayer error correction adaptation
algorithm, the output error across all the Fz PEs and for all m input patterns is found
using the cost (error) function of equation 5.20.

m 9
E=05Y Y (by-z)’ (5.20)
k=1j=1

(a,d, a2, g3, see, ak,,) = Ak

Figure 5.10 A network illustrating multilayer error correction adaptation.

Neural Network Adaptation O‘ @

The output of an Fz PE for one pattern k, zj, is computed using equation 5.21,
and the output of each Fy (hidden-layer) PE for one pattern, yxi, is computed using
equation 5.22. The output layer thus comprises linear PEs, and fi(ry;) is a linear func-
tion. Since the hidden PE functions are nonlinear, f,(rx;) is a nonlinear function.
Note that the subscript 4 is used for the input PE layer x. Since the input layer serves
as just a pass-through layer, ai; = xx. Also note from Figure 5.10 that there are p
hidden PEs and g output PEs.

P b
zkj = Z}’kiwji =ﬁ(7‘kj), Where Tkj = Zykini (5°21)

i=1 i=1

n

n
Vi = fa (Z athih) = fu(rxi), where r; = Z AkhVik (5.22)

h=1 h=1

The hidden-layer PE activation function is defined in equation 5.23. The hidden PE
activation function is thus the sigmoid function, which is nonlinear, and f,(ry;) is a
nonlinear function,

1

— (5.23)

fn(ri) =

The weight adjustments are performed by moving along the cost function in the
opposite direction of the gradient to a minimum (where the minimum is considered
to be the input-output mapping producing the smallest amount of total error). The
connection weights between the Fy and Fz PEs are adjusted using the chain rule of
partial differentiation, yielding equations 5.24(a) and (b).

OEy; OEj; oz

= (5.24a)
ow;; 0zkj owj;
Ey o [1 (v ? 3 ZP:
— I — -— ; — Z . — w.‘ .
owj; 0zkj |2 K~ ki oWji - ik
= —(byj — z)yxi (5.24b)

= —OkiVki

Next, the adjustments to the connection weights v between the input Fx and
hidden Fy PEs are calculated using the chain rule of partial differentiation. We define

@ ’O Chapter Five—Neural Network Concepts and Paradigms

the error assigned to a hidden PE as &x; = —9E / ri;, where ry; is the net input to the
hidden PE, thus yielding equation 5.25.

oEy OEp ory
—_— — = —5k-akh 5.25

Vi Ofgi OVip 1 (5.23)
The key is how to compute the d; ’s for the hidden PEs. From equation 5.22, we see
that dyy; / drii = f (i), or the derivative of the sigmoid activation function of the
hidden PE. We now apply the chain rule again, as shown in equations 5.26(a) and
(b), to arrive at a value for §; in equation 5.26(c).

JoE; _ OE} oyki 0Ex

Sk = — (rk‘) (5.263
' ork; 9Yki OTki 0)’kif" l)
oEx oE; oryj oE; 0
bt —=) ——=) —— Wi | = —) Swii 5.26b
Wi 3 Orkj ki - Orkj Ok Z}’ iWii ; GWii ()
therefore &k = f (1) 2 Wi (5.26¢)
j

But it is straightforward to show that f,'(rw) = dyki/or = yu (1 - yk,-) , so the
error assigned to a hidden PE is given in equation 5.27. The calculation of the error
assigned to an output PE with a sigmoid activation function is described in the later
section on back-propagation.

& = yii (1= yii) Z kjWiji (5.27)
j

The multilayer version of this algorithm is commonly referred to as the
back-propagation of errors adaptation rule, or simply back-propagation. Using the
chain rule, it is possible to calculate weight changes for an arbitrary number of lay-
ers. The number of iterations that must be performed for each pattern in the dataset
is generally large, making this off-line adaptation algorithm relatively slow to train.

Although the cost function is computed with respect to only a single pattern for
the single weight, it has been shown (Widrow and Hoff 1960) that the motion in the
opposite direction of the error gradient for each pattern, when taken in aggregate,
acts as a noisy gradient motion that still achieves the proper end result. Therefore,
0E;j / owj; = Y, (3Ex; / ow;), which applies to one weight attached to one output PE,
and the total error for an output PE is E; =), Ei;. Analogous equations apply to
hidden PEs.

Using equations 5.24(b) and 5.25, with the preceding relationships, the weight
adjustment equations are given by equations 5.28 and 5.29, where a and g are

Neural Network Adaptation O‘ @

positive, constant-valued adaptation rates that regulate the amount of adjustments
made with each gradient move. In practice, « and g are usually identical and are set
equal to an adaptation rate » that is uniform for all weight layers.

w;ew = w;)ild - a——: = W dtq 2 OkjYki (5.28)
e = old ﬂ—(z-lzj— OId + 5 z SkiGkh (5.29)
ih ih Wi

The back-propagation algorithm was introduced by Werbos (1974) and later
independently rediscovered by Parker (1982) and Rumelhart, Hinton, and Williams
(1986). The algorithm explanation presented here has been brief. There are several
variations on the algorithm (c¢f. Simpson 1990), including alternative multilayer
topologies, methods of improving the training time, methods for optimizing the
number of hidden layers and the number of hidden-layer PEs in each hidden layer, and
many more. Although many issues remain unresolved with the back-propagation of
errors adaptation procedure, such as the proper number of training parameters, the
existence of local minima during training, the relatively long training time, and the
optimal number and configuration of hidden-layer PEs, the ability of this adaptation
method to automatically capture nonlinear mappings remains a significant strength.

Summary of Adaptation Procedures

We have described two main classes of neural network adaptation algorithms: com-
petitive adaptation and multilayer error correction adaptation (back-propagation).
Now we briefly examine five attributes of these algorithms. This information is meant
as a guide and is not intended to be a precise description of the qualities of each
neural network.

Training time. How long does it take the adaptation algorithm to adequately
capture information? Neither of the algorithms is fast. Competitive adaptation
is usually described as slow and back-propagation as very slow.

Off-line/on-line. Competitive adaptation can be used either off-line or on-line;
back-propagation is strictly an off-line algorithm.

Supervised/unsupervised. Back-propagation is a supervised adaptation procedure;
competitive adaptation is unsupervised.

Linear/nonlinear. Back-propagation is capable of capturing nonlinear mappings;
competitive adaptation is limited to linear mappings.

’O Chapter Five—Neural Network Concepts and Paradigms

Storage capacity. Competitive adaptation is capable of fairly high information
storage capacity relative to the number of weights in the network; back-
propagation has a very high capacity.

Comparing Neural Networks and Other Information
Processing Methods

Several information processing techniques have capabilities similar to the neural net-
work adaptation algorithms described earlier. Despite the possibility of comparable
solutions to a given problem, several additional aspects of a neural network solution
are appealing, including fault tolerance through the large number of connections,
parallel implementations that allow fast processing, and on-line adaptation that
allows the networks to constantly change according to the needs of the environ-
ment. The following sections briefly describe some alternative methods of pattern
recognition, clustering, control, and statistical analysis.

Stochastic Approximation

The method of stochastic approximation was first introduced by Robbins and Monro
(1951) as a method for finding a mapping between inputs and outputs when the
inputs and outputs are extremely noisy (i.e., they are stochastic variables). The
stochastic approximation technique has been shown to be identical to the two-layer
error correction algorithm (Kohonen 1988) and the multilayer error correction
algorithm (White 1989) presented in previous sections.

Kalman Filters

A Kalman filter is a technique for estimating, or predicting, the next state of a
system based on a moving average of measurements driven by additive white noise.
The Kalman filter requires a model of the relationship between the inputs and the
outputs to provide feedback that allows the system to continuously perform its
estimation. Kalman filters are used primarily for control systems. Singhal and Wu
(1989) have developed a method using a Kalman filter to train the weights of a
multilayer neural network. Ruck and colleagues (1992) have shown that the back-
propagation algorithm is a special case of the extended Kalman filter algorithm and
have provided several comparative examples of the two training algorithms on a
variety of datasets.

Linear and Nonlinear Regression

Linear regression is a technique for fitting a line to a set of data points such that the
total distance between the line and the data points is minimized. This technique,

Comparing Neural Networks and Other Information Processing Methods O‘ ; @

used widely in statistics (Spiegel 1975), is similar to the two-layer error correction
adaptation algorithm described previously.

Nonlinear regression is a technique for fitting curves (nonlinear surfaces) to
data points. White (1990) points out that the activation function used in many
error correction adaptation algorithms is a family of curves, and the adjustment of
weights that minimizes the overall mean-squared error is equivalent to curve fitting.
In this sense, the back-propagation algorithm described earlier is an example of an
automatic nonlinear regression technique.

Correlation

Correlation is a method of comparing two patterns. One pattern is the template and
the other is the input. The correlation between the two patterns is the dot-product.
Correlation is used extensively in pattern recognition (Young and Fu 1986) and
signal processing (Elliot 1987). In pattern recognition the templates and inputs are
normalized, allowing the dot-product operation to provide similarities based on the
angles between vectors. In signal processing, the correlation procedure is often used
for comparing templates with a time series to determine when a specific sequence
occurs (thistechniqueiscommonly referred toas cross-correlation or matched filters).
The Hebbian adaptation techniques described earlier are correlation routines that
store correlations in a matrix and compare the stored correlations with the input
pattern using inner products.

Bayes Classification

The purpose of pattern classification is to determine to which class a given pattern
belongs. If the class boundaries are not cleanly separated and tend to overlap, the
classification system must find the boundary between the classes that minimizes
the average misclassification (error). The smallest possible error (theoretically) is
referred to as the Bayes error, and a classifier that provides the Bayes error is called a
Bayes classifier (Fukunuga 1986). Two methods are often used for designing Bayes
classifiers: the Parzen approach and k-nearest-neighbors. The Parzen approach uses
a uniform kernel (typically the Gaussian function) to approximate the probability
density function of the data. A neural network implementation of this approach is the
probabilistic neural network mentioned previously (Specht 1990). The k-nearest-
neighbors approach uses k vectors to approximate the underlying distribution of
the data. The learning vector quantization network (Kohonen 1988) is similar to the
k-nearest-neighbor approach.

Vector Quantization

The purpose of vector quantization is to produce a code from an n-dimensional input
pattern. The code is passed across a channel and then used to reconstruct the original

’O Chapter Five—Neural Network Concepts and Paradigms

input with a minimum amount of distortion. Several techniques have been proposed
to perform vector quantization (Gray 1984), with one of the most successful being
the LBG algorithm (Linde et al. 1980). The learning vector quantization algorithm
described earlier in this chapter is a method of developing a set of reference vectors
from a dataset and is quite similar to the LBG algorithm. A comparison of these
two techniques can be found in Ahalt et al. (1990).

Radial Basis Functions

A radial basis function is a function that is symmetric about a given mean (e.g.,
a Gaussian function). In pattern classification, a radial basis function is used in
conjunction with a set of n-dimensional reference vectors, where each reference
vector has a radial basis function that constrains its response. An input pattern is
processed through the basis functions to produce an output response. The mean-
variance connection topologies that employ the back-propagation algorithm (Lee
and Kil 1989; Robinson et al. 1988) are methods of automatically producing the
proper sets of basis functions (by adjustment of the variances) and their placement
(by adjustment of their means).

Computational Intelligence

Neural networks are not the only method of adaptation that has been proposed for
machines (although they are probably the most biologically related). Examples of
other methods are evolutionaryalgorithms and fuzzy systems. Increasingly, engineers
and computer scientists implementing applications are finding it useful to combine
two or more of these machine adaptation techniques into an effective solution. This
hybrid approach, which usually includes knowledge elements, has evolved into the
field of computational intelligence, which is the focus of this book.

Preprocessing

In this section we describe the most important considerations in selecting and
preparing data for training neural networks. Many of these considerations are also
valid for other computational approaches.

Before data can be processed in a neural network, it must be prepared, using
data editing tools and methods of data transfer, to get the data into the network.
Generally, training sets, test sets, and validation sets must be selected from the
available application data or obtained during a data gathering phase. Once a neural
network has been trained, tested, and validated, it is put into production to process
live data or to recall data directly from the application. Throughout the lifetime of

Preprocessing O‘ .

the project, it is normally necessary to revisit the training and validation phases to
ensure continued correct performance of the neural network. Proper selection and
maintenance of the training and test sets are therefore an ongoing concern.

The training set data is almost never in a form that can be accepted directly by
the neural network, and some form of normalization, scaling, or transformation
must be done first.

Selecting Training, Test, and Validation Datasets

Selection and preparation of the training datasets, as well as the test and validation
datasets, are crucial steps in successfully completing and deploying a project. If the
datasets are selected or prepared improperly, the network will usually fail to train
correctly or it might yield disappointing results during testing and production.

We first consider training datasets. All neural networks must be trained, tested,
and validated before they can be reliably used to recall information. Neural networks
that require off-line adaptation absolutely must be trained before they can be used;
otherwise, they will be incapable of producing any results at all. At least a minimum
level of training has to be completed first. Even neural networks employing on-line
adaptation require preliminary training and test phases to validate their performance.

A neural net is trained with a training dataset, consisting of typical samples
and patterns from the application data. The training set should be sufficiently
representative of the patterns that the network s expected to encounter, once deployed
in the application environment. The objective is to present sufficient examples of the
application data so that the net adapts to recognize important features and also to
generalize. Training patterns should cover the intended application data hyperspace
reasonably well and especially should include patterns close to decision boundaries
of the hyperspace. This will allow the net to be able to distinguish different pattern
classes, even in cases where some samples fall close to the decision boundaries. If
gross areas of the total data hyperspace are left out of the training set, the net is
unlikely to recognize patterns that fall into those areas when put into production.

We now look at test datasets. The performance of a neural network is measured
and evaluated using a test dataset, consisting of samples or patterns obtained using
the procedures outlined for constructing the training set. The test set should be
distinct from the training set; otherwise, testing will not reveal the true nature of
the net’s adaptation and generalization ability.

The normal procedure is to assemble and prepare a large dataset and then split
it into training, test, and validation sets. Patterns can be selected randomly for each
set; however, it is important that the training set be composed of samples that cover
the range of expected patterns, as outlined earlier.

Once the training set has been composed, remaining patterns can be selected
and placed in the test set and the validation set. The purpose of the test set is to
evaluate net performance and determine how well the trained net is expected to

@ ’O Chapter Five—Neural Network Concepts and Paradigms

perform in the production environment. Sometimes, when more training variety is
sought, the training and test sets can be exchanged. That is, the original training set
takes on the role of test set, while the original test set takes on the role of training
set. For the training and test sets to be exchangeable in this way, it is necessary that
both meet the criteria for selection of samples, described earlier. Each set should
be similarly composed of representative samples from each class of data. Test sets
generally should reflect the probability distribution of patterns expected in the
running environment if it is known.

Once a neural network has been trained and tested, the performance is validated
against an independent validation dataset, consisting of unused samples or patterns
fromtheapplication data. The validation set should be distinct from, and independent
of, both the training and test sets. It is important not to influence the method of
training and testing through the use of the validation set (Masters 1993). Validation
can also be used to determine when to stop training (when the error for the validation
data hits a minimum) and/or to prune PEs from a network (Reed 1993).

The neural network, once trained and validated, can be used on-line to process
real-time (live) patterns (real-time datasets) directly from the application environ-
ment. This processing primarily involves the multiplication of the input vectors by
network weight vectors, which can often (usually) be done in real time, given the
speed of today’s microprocessors.

Preparing Data

The characteristics of the data determine how the neural net is structured and how
data is presented to it. The data also needs to be compatible with the neural net, in
terms of number of parameters (elements) and dynamic range.

Many neural nets and other computational intelligence tools require data to be
scaled before it is presented. The raw data values are scaled so that they fall into
a defined range acceptable to the neural network. Often, this will be the range
0 to 1 or, alternatively, —1 to +1. Scaling consists of applying a scale factor and
an offset to each raw value. The scale factor and offset should be chosen such that
they are applicable to training, test and validation sets, and live datasets. The factors
should be the same in all cases so that data elements are not clipped and do not
lose significant digits. This can occur if, for example, some large samples occur in
one of the datasets and nowhere else. Equation 5.30 suggests a method for scaling
a dataset.

A = (Aki — Akmin)(Hi—Lo)
ki (Akmax - Akmin)

+ Lo (5.30)

Here, A;a. is the ith element of the scaled input data vector; Ay; is the ith element of
the raw data vector; Ajy;, is the minimum raw data value; Agmay is the maximum

Preprocessing O‘ ; @

raw data value; (Agmax — Akmin) is the divisor, normalizing the raw input vector to
the range 0-1; Hi is the highest desired input value; Lo is the lowest desired input
value, defining the minimum value to be presented to the neural net; and (Hi ~ Lo)
is the scale factor, mapping the raw data into the desired input range. For example,
to scale raw data patterns in the range 0 to 1, set Hi = 1, and Lo = 0. To scale raw
data patterns in the range —1 to +1, set Hi = 1, and Lo = ~1.

Other neural networks, such as the LVQ-I network presented in the next chapter,
require n-dimensional vector representations of the data rather than groups of inde-
pendent values. The networks view the data as vectors in n-dimensional hyperspace.
The data is normalized to unit length vectors, using equation 5.31.

A .
A =K (5.31)

K VY (Ar)?

Here, A;{i is the ith element of the normalized input vector, A, is the ith element

of the raw data vector, and (3} Aii)ll 2 is the length of the raw data vector. Dividing
each element by the length of the original raw input vector gives a normalized
vector of unit length, which is input to the network. A similar normalization step
is often employed for weight vectors during training to ensure that they are also
normalized. This is necessary for the Euclidean distance measure, which is used to
determine the winner, to be valid. See Chapter 6 for more details on this aspect of
normalization.

Normalization as described above, which is used to prepare data for presentation
to the LVQ-I network, has its drawbacks. It requires that the length of input vectors be
the same for all training and testing patterns, and therefore it loses information about
the absolute magnitude of the parameters. Only relative magnitudes are retained.
For example, the four-dimensional input vectors —1, 1, 2, 3 and -5, 5, 10, 15 will
each be normalized to identical input vectors.

Z-axis normalization is an approach to solve this problem. Prior to carrying out
z-axis normalization, each parameter must be scaled. For purposes of this discussion,
assume each is individually scaled to the range [—1, 1]. This means, of course, that
the minimum value for each parameter in the dataset is -1 and the maximum
value for each parameter is 1. The Euclidean length L of the scaled input vector is

L= (Z?:x Aii)lh, where Ay; is the scaled input vector. Since each component is
limited to a maximum absolute value of 1, the maximum Euclidean length for an
n-dimensional vector is v/n.

Z-axis normalization is similar to creating another dimension in the input data
(Masters 1993). In the process, an additional input parameter, called a synthetic
parameter, is created. The value of the synthetic parameter for each pattern is a
function of the input parameters for that pattern.

‘~ ’O Chapter Five—Neural Network Concepts and Paradigms

The total length of the input vector with the synthetic parameter must, of course,
still be 1. The z-axis normalization process is described by equations 5.32(a) and
(b), where s is the synthetic variable.

A'k,:ﬂ
i Vn

2
s= V 1- % (5.32b)

Note that the absolute magnitude information regarding each parameter is
preserved. Also note that the synthetic parameter becomes an additional input
to the network, so that there are now n + 1 inputs instead of n.

To see how z-axis normalization works, consider a simple case where there are two
(already scaled) four-dimensional input patterns: —1, 1, —1, 1 and —0.6, 0.6, —0.6,
0.6. They would, of course, normalize to identical input vectors using the method
outlined in the previous section. Using z-axis normalization, the first pattern trans-
forms into the input vector 0.5, 0.5, 0.5, 0.5, 0, where 0 is the value of the synthetic
parameter. The second pattern (L = 1.2) transforms into —0.3, 0.3, 0.3, 0.3, 0.8,
where s = 0.8.

The only cases where z-axis normalization is counterproductive are those in which
a vast majority of individual parameter values stay at or near 0 for most patterns.
In these cases, the synthetic parameter will consistently be the most significant
component of the input vector. For many applications, however, including the
preparation of inputs for the LVQ network, z-axis normalization can be beneficial.

The presentation of patterns is an important issue. The order in which patterns
are presented to the network should be considered during the design and training
phase of implementation. Patterns are presented to the network during training
from the training sets constructed by the researcher or directly from the application
environment, for recall. In the case of training, it is usually possible for the developer
or researcher to control the order of presentation to optimize adaptation. However,
in the case of recall, the order of presentation is usually controlled outside the neural
network implementation and determined by the application environment.

During training, presentation order can dramatically affect the way adaptation
is accomplished. If patterns are presented sequentially in the order they happen to
occur in the training set, the network may be biased by the occurrence of samples
early in the training set. This may prevent the net from being able to recognize subtle
differences in later samples. Therefore, it is necessary to select patterns randomly
from the training set, especially for networks employing on-line adaptation (that is,
weight adaptation after every pattern presentation). For batch (off-line) adaptation,
in which weights are adapted only at the end of each epoch, presentation order is not

(5.32a)

Postprocessing O‘ @

likely to have an effect. Another approach sometimes used is the shuffling of the data
after each epoch (as opposed to random selection). The results of different training
runs, each with randomly or sequentially selected patterns, should be compared for
the effect of presentation order on the outcome of training.

Another important consideration in preparing data for training a neural network
is the addition of noise to perturb the data. By adding noise (jitter) to the data, the
result is a convolutional smoothing of the target (Reed, Marks, and Oh 1995). This is
a technique that may be helpful when only a relatively small number of patterns are
available for training the network; additional patterns may be generated by adding
noise to existing patterns.

Postprocessing

Thissection describes the most common technique encountered in postprocessing the
outputs of neural networks and other computational approaches: denormalization.
Much of postprocessing is covered by the topics discussed in Chapter 10, Performance
Metrics. This section concentrates on some of the basic concerns for obtaining the
outputs in a usable form.

Denormalization of Output Data

Denormalization produces real-world output data from the internal form of the
network or other computational tool. Denormalization is the reverse of the nor-
malization procedure described earlier. The network typically produces output
values in a limited range defined by the logistic or other activation function. These
values bear little resemblance to the real-world values of the application environ-
ment, and steps should be taken to denormalize the data back to the original data
domain. This procedure, suggested by equation 5.33, is analogous to that given in
equation 5.30.

(Cki - LO)(Ckmax - Ckmin)
C. = Cimi .
i (Hl — LO) + Ckmin (5 33)

Here, C,;. is the ith element of the real output vector; Cy; is the ith element of the raw
net output vector; Lo is the minimum network activation value; Hi is the maximum
network activation value; (Hi — Lo) is the divisor, normalizing the raw net output
vector to the range 0—1; Cimax is the upper limit of the output domain; Cypy is the
lower limit of the output domain; and (Cimax — Cikmin) is the scale factor, mapping
the net output into the desired output domain.

@ ’O Chapter Five—Neural Network Concepts and Paradigms

Summary

In this chapter we review the history of neural networks, discuss fundamental network
elements and topology, and describe some of the main adaptation methodologies.
We also describe data preprocessing and postprocessing approaches that should
help you present input data to neural networks and obtain required results. And we
compare neural network approaches and other information processing approaches.

The next chapter presents detailed implementation information for three neural
network paradigms: learning vector quantization, self-organizing feature maps, and
back-propagation. You will be able to apply the concepts discussed in this chapter.

Exercises

1. In a single-layer neural network with n processing elements (PEs), how many
unique weights are possible if the only restriction is that no self-feedback
connections are allowed? How many are possible if it is also specified that
weights are symmetric, that is, wj; = w;?

2. Show that a hidden layer doesn’t change (improve) network performance if all
PEs (hidden and output) have linear activation functions.

3. The sigmoid activation function is 1/(1 + e~™*). Derive the first derivative of
this function.

4. If one hidden layer of sigmoidal PEs can approximate any nonlinear function,
why might we decide to use more than one?

5. What are the differences among supervised adaptation, unsupervised adaptation,
and reinforcement adaptation?

6. Review White (1989). Summarize the reasoning behind the proof that one
hidden layer is sufficient to approximate virtually any nonlinear function.

7. Prove the convergence of the binary Hopfield network.

8. Derive a back-propagation (BP) adaptation algorithm for a four-layer BP neural
network. Assume the activation function of the hidden PEs is a sigmoid
function as expressed by equation 5.23. The activation function of the output
PEs is a linear function as expressed by equation 5.8 with a = 1.

9. Assume we want to scale inputs to {—1, 1] for z-axis normalization. One of the
input parameters varies over all the patterns from —4.2 to +10.0. How would
you scale this input? Why?

chapter
S1X

Neural Network Implementations

This chapter presents four neural network
implementations: back-propagation neu-
ral networks, the learning vector quan-
tizer, Kohonen's self-organizing feature
map networks, and evolutionary multilayer
perceptron neural networks. Executable
code and source code for each implemen-
tation, together with other useful utilities,
are available on the book’s web site.

The source code is particularly useful for
studying the implementation details of the
neural network paradigms and if you wish
to make changes to the code for your appli-
cations.

The source code is written in C and
is being distributed as shareware. You are
welcome to use it for classroom or per-
sonal learning in conjunction with the text-
book at no cost. If you use it, either as
is or with modification, for a project out-
side of your classroom (or learning on
your own), please submit a payment in
accordance with the shareware payment

instructions on the Internet site for the
book.

The backpropagation source code for
the neural network implementation is writ-
ten to support the implementation of
one or more hidden layers. The num-
ber of hidden layers and the number of
PEs in each layer can be specified in the
run file. The classification of Iris data is
included as a benchmark problem to be
solved.

The Iris dataset is a set of feature mea-
surements for iris flowers popularized by
Anderson (1935). It consists of 150 four-
dimensional vectors representing 50 plants
of each of three species: Iris sectosa, Iris
versicolor, and Iris virginica:

X; =X, X, X3, %), 1=1,...,150
where x;, is the sepal length, x,, is the sepal
width, x;; is the petal length, and x;, is
the petal width (Anderson 1935). All the
attribute values have been scaled into real
numbers in the range [0,1]. The problem

197

’O Chapter Six—Neural Network Implementations

here is to discriminate the species according to the feature vectors. This is a
well-known three-class classification problem. Three of the 150 four-dimensional
vectors are listed here as examples:

0.637500 0.437500 0.175000 0.025000 1 0 0
0.875000 0.400000 0.587500 0.175000 0 1 0
0.787500 0.412500 0.750000 0.312500 0 0 1

In each row, the first four elements correspond to the sepal length, sepal width,
petal length, and petal width; the last three columns correspond to the three
species, Iris sectosa, Iris versicolor, and Iris virginica, respectively. Value 0 means
the feature vector doesn‘t belong to this class and value 1 means it does.

The back-propagation neural network is an example of supervised neural net-
works; the learning vector quantizer is implemented as an example of unsuper-
vised neural networks.

The learning vector quantizer (LVQ), sometimes referred to as a Kohonen net-
work, is probably second only to back-propagation in the number of applications
for which it is being used. Kohonen networks (of which LVQ and self-organizing
feature maps are examples) were originally described by Teuvo Kohonen of the
Helsinki University of Technology in Finland.

Several versions of LVQ exist. The LVQ implementation included with this book
and described in this chapter is discussed in the 1988 edition of Kohonen'’s book
on self-organization and associative memory (Kohonen 1988). A good additional
source is the tutorial given at the 1989 International Joint Conference on Neural
Networks (Kohonen 1989). The book and tutorial also describe other versions
of LVQ, as well as Kohonen’s self-organizing feature map. Henceforth, the LVQ
implementation presented in this book is referred to as LVQ-I. Another algorithm,
LVQ-Il, is briefly discussed later. The Roman numerals | and Il are not synonymous
with Kohonen'’s designations LVQ1 and LVQ2.

The LVQ-I and self-organizing feature map paradigms are more biologically ori-
ented than the back-propagation model. One indication of this is that both net-
works learn without supervision. This roughly resembles learning in the neural cells
of the brain in that nobody applies electronic stimuli to brain neurons to train them
to, say, learn to walk or to speak. The self-organizing feature map—an extension
of LVQ-I, described by Kohonen—bears some rough resemblance to the way areas
of the brain are organized. n

Implementation Issues

This section discusses issues related to implementing neural networks on personal
computers. The implementation issues are explained step by step, with detailed
equations and explanations along the way. Some implementation issues, such as
topology, are relevant to a variety of networks. Others are specific to a network type.

Implementation Issues O‘ @

We describe the topologies of the neural network paradigms first. Then we
described the ways input is presented to a neural network implementation. We
also introduce normalization techniques and options.

We present equations describing the network training and operation. These
equations are divided into two main categories: feedforward calculations and adap-
tation calculations.

Finally, we describe issues related to evolutionary neural networks.

Topology

All four of the neural networks implemented are layered networks. The back-
propagation neural networks have more than two layers (at least one hidden layer),
and the Kohonen networks have only two layers (no hidden layers).

The back-propagation network is described in terms of the architecture of the
implementation. The term architecture, as applied to neural networks, has been used
in different ways by various authors. Often its meaning has been taken to be basically
equivalent to topology, that is, the pattern of PEs and interconnections, together with
other attributes such as direction of data flow and PE activation functions.

We use the term architecture in this volume to mean the specifications sufficient
for a neural network developer to build, train, test, and operate the network. The
architecture is therefore not related to the details of the implementation but rather
provides the complete specifications needed by someone for implementation.

A simple, three-layer back-propagation network is illustrated in Figure 6.1. This
represents the network in detail, with each PE represented by a circle and each inter-
connection, with its associated weight, by an arrow. The PEs with the letter “b” inside
are bias PEs.

We describe each network element a bit later. We also discuss the operation and
training of the back-propagation network of Figure 6.1, with a description of what
happens at each step. But first, we turn to presenting input to the network.

The LVQ-I and self-organizing feature map networks consist of a two-layer feed-
forward topology, where the input layer is fully connected to the output layer, as
shown in Figure 6.2. The input PEs simply distribute the inputs to the output layer;
the output PEs have linear activation functions.

Back-propagation Network Initialization and Normalization

Each neural network must be initialized first and the input data needs to be pre-
processed. Different networks have different requirements for network initialization
and input data preprocessing.

We first consider the back-propagation neural network. The left side of Figure 6.1
shows inputs to the input layer of the network, to a layer of PEs. The set of n inputs
is presented to the network simultaneously. (However, when implemented on a Von
Neumann computer, the network must process the data serially.)

@ ’O Chapter Six—Neural Network Implementations

Connection Connection
Weights Weights

Input, Output;

Input, Output,

Output,

Input Hidden Output
Layer Layer Layer

Figure 6.1 The back-propagation network structure.

Figure 6.2 An LVQ-I Kohonen network topology.

These inputs may be a set of raw data, or a set of parameters, or whatever has
been chosen to represent one single pattern of some kind. The way n, the number of
inputs, is chosen depends on the kind of problem being solved and the way the data
are represented. :

To deal with a relatively small segment of a sampled raw voltage waveform, for
example, one input PE may be assigned to each sampled value. On the other hand,

Implementation Issues O‘ @

to deal with a relatively large video image, a value averaged over several pixels may
be presented to each PE. Another approach is to present calculated parameters to
the input PE field.

Beware of the urge to “mix and match” input data in an attempt to reduce the
number of input PEs. For example, generally resist the urge to combine parameters
somehow before presentation to a PE. It will be a more efficient use of your and your
computer’s time if the network takes a little longer to train successfully than if it fails
to train at all.

For the back-propagation implementation, each input can take on any real value
between 0 and 1. That is, the input values are continuous and scaled between the
values of 0 and 1. The fact that continuous-valued inputs can be used adds significant
flexibility to the implementation.

Does the scaling between 0 and 1 constrain us in a significant way? Usually not.
Whenever we deal with a computer system that is receiving input, we are limited by
the size of numbers that can be processed.

As long as the resolution of the input data is not lost in the scaling process, the
system will be able to get reasonable results. In the standard implementation of back-
propagation, floating-point variables are used, called float in C. This type of variable
is 32 bits long, using 24 bits for the value and 8 bits for the exponent. There is there-
fore a resolution of about one part in 16 million, or seven decimal places. So, if your
data has seven or fewer significant digits, youll be okay. Input data from a 16-bit
analog-to-digital (A/D) converter requires a little less than five digits of resolution.
Many applications seem to require only three to five digits of resolution.

Another approach is to use double-precision variables, which extend the reso-
lution of computations considerably. This approach exacts a cost in performance
as well as memory space. It is feasible to adopt this approach, however, given the
gigahertz speed of personal computers and the gigabyte-sized RAMs available.

Scaling input patterns can actually provide a tool for preprocessing data in dif-
ferent way. The data can be scaled by considering all of the n inputs together, scaling
each input channel separately, or scaling groups of channels in some way that makes
sense. (Input channel means the stream of inputs to one input PE.) In some cases,
the way chosen to scale inputs can affect the performance of the implementation, so
this is one place to try different approaches.

If the input consists of raw data points, all channels are typically scaled together.
If the input consists of calculated parameters, each channel may be scaled separately,
or groups of channels representing similar parameters may be scaled together. For
example, if input patterns consist of parameters that represent amplitudes and time
intervals, then the amplitude channels might be scaled as a group and the time chan-
nels as a group.

Please note that so far we have talked only about scaling between values of 0
and 1. This is the most common type of scaling. However, for supervised adaptation,
the scaling as well as the target values for network outputs are tied to the activation

@ ’O Chapter Six—Neural Network Implementations

functions used in the network. Values of 0 and 1 are commonly used with a linear
activation function. We often will scale from 0 to 1, and have output target values of
0 and 1, when the sigmoid function is used, but sometimes we will use values of 0.1
and 0.9 with this activation function. Often, we scale from —1 to 1, and use these as
target values, when our network PEs have hyperbolic tangent activation functions.

This concludes our look at initialization and normalization for the back-
propagation neural network.

Learning Vector Quantizer Network Initialization
and Normalization

We now examine initialization and normalization for the learning vector quantizer
neural network. At the bottom of Figure 6.2, a set of n inputs comes into the input
layer of the network. The inputs are presented simultaneously, but bear in mind
that most personal computer implementations simulate this network algorithm by
processing the inputs serially.

The number of input processing elements selected depends, as in the case of the
back-propagation network, on the problem to be solved. There is, however, a differ-
ent emphasis than in back-propagation on how to think about the input and choose
the number of input processing elements. It is more common to use “raw” data than
precalculated parameters as inputs to the LVQ-I model. This is because one of the
main accomplishments of LVQ-1 is to cluster input data patterns into quasi-classes,
thus reducing the dimensionality of the data. In other words, the LVQ-I model auto-
matically parameterizes the data.

Another reason it is less common to use precalculated parameters is that most
researchers working with LVQ-I normalize each input vector. With back-
propagation, each individual input vector component is constrained to the range 0
to 1, without limiting the magnitude of the input vector, the square root of the sum
of the squares of each input component.

For input to the LVQ-I network, parameterized inputs can be distorted by
normalization in unpredictable ways. Carefully calculated parameters, perhaps
“normalized” by constraining their values to lie between 0 and 1, can have their
values changed in unforeseen ways during an input vector normalization process.

Several neural network researchers suggest that in some applications, input
vectors do not necessarily have to be normalized. It is sometimes a good idea
to try training with and without normalization and select the better method.
Others argue that if input vectors are not normalized, then the Euclidean distance
calculation cannot be used to select the “winning” processing element (Caudill
1989a).

There is general agreement on the need to initialize weight vectors by normaliza-
tion. What isn’t necessarily clear is the best way to do it. Typically, random values are
first assigned to each weight. We might start with random values in the range +0.3.

Implementation Issues O‘ 3 @

Some implementations choose values in the range 0 to 1. Other implementations
generate initial weight vectors lying at random locations on the unit hypersphere.

The weight vector normalization procedure is done for all weights connected to a
given output processing element, from all input processing elements. The most logi-
cal way to do this would seem to be to set the square root of the sum of the squares of
the weights from all of the inputs to each output to the same value, presumably 1. The
reason we say “would seem” and “presumably” is that various examples of Kohonen
implementations have normalized weights in different ways.

Kohonen’s ToPreM2 program uses a value of one-half times the sum of the
squares of the weights, called the “squared norm” of the weights. Caudill, on the
other hand, normalizes weight vectors in what appears to be a more logical way:
dividing each weight vector component by the square root of the sum of the squares
of all weight vector components (Caudill 1988). In this way, the total length of
each weight vector from all inputs to a given output is 1. If w;.i is the initial random

weight generated in the interval from 0 to 1, then the normalized weight, wj, is
given by equation 6.1.

(6.1)

Perhaps a two-dimensional geometric example of the process of initial normali-
zation might make things clearer. In Figure 6.3(a), the circle has a radius of 1; it is
what we call a unit circle. We show four unit-length two-dimensional weight vectors,
wi through wy, that have already been initialized randomly and normalized, perhaps
using Caudill’s method. They all terminate on the unit circle.

Now consider two inputs, i; and 7, that have the values (2.0, 1.0) and (—0.5, —0.5),
respectively. There are probably many more inputs, but we will consider just these
two so that the explanation is clearer. Now, when these two inputs are normalized,
they are modified so that they terminate on the unit circle, as shown in Figure 6.3(b).
Note that the angles made with the axes stay the same; all we do is adjust their length
to unit length.

Now we can see what we mean by “close to” in the sense of where the vectors
terminate on the unit circle. The tip of w; is the closest weight vector tip to the tip
of the normalized input 7;*, and the tip of w3 is closest to the tip of the normalized
input i*.

Feedforward Calculations for the Back-propagation Network

The feedforward calculations are used both in training (adaptation) operation mode
and in testing or recall operation mode of the trained network. The feedforward

@ ’O Chapter Six—Neural Network Implementations

(@ (b)

Figure 6.3 Weight vector and input vector initialization before (a) and after (b) input
vector normalization.

calculation of one neural network generally is different from that of another
network. We first consider the back-propagation network.

After the set of input patterns is scaled, what happens at the input layer? The
input PEs simply distribute the signal along multiple paths to the hidden-layer PEs.
The output of each input-layer PE is exactly equal to the input and is in the range
of 0 to 1. (Another way of looking at the input layer is that it performs scaling, even
though in most implementations this is done prior to presentation of the pattern to
the network.)

Note that a fully connected feedforward topology is used. That is, each PE of the
input layer is connected to every PE of the hidden layer. Likewise, each PE of the
hidden layer is connected to every PE of the output layer.

Also note that each connection weight, and all data flow, goes from left to right
in Figure 6.1. This is called a feedforward network. There are no feedback loops,
even from a PE to itself, in a feedforward network. Almost all back-propagation
implementations are feedforward.

For the remaining discussion on back-propagation networks in this chapter,
unless otherwise stated, we assume that a sigmoid activation function is being used.
Most back-propagation implementations today use the sigmoid function.

We present equations here that describe both the training (adaptation) and
testing or recall modes of a back-propagation implementation. They are presented
without derivations or proofs. This information can be found in Chapter 5, as well
as in Rumelhart and McClelland (1986), where much of it is in Chapter 8, which
focuses on internal representations.

Implementation Issues Q @

The signal presented to a hidden layer PE in the network of Figure 6.1 due to one
single connection is just the output value of the input PE (the same as the input of
the input PE) times the value of the connection weight.

The activation of the ith Fy (hidden) PE for a given input pattern k as a function
of its input connections, is described in equation 6.2, where xy, is the output of the
Fx layer, vi, the Fx to Fy connection, and f,(-) the sigmoid function, described in
Chapter 5. Note that h starts from 0, the bias PE.

Vi = fsig (Z Xih Vih) (6.2)
h=0

The nonlinear nature of the sigmoid transfer function plays an important role
in the neural network’s performance. Other functions can be used, as long as they
are continuous and possess a derivative at all points. Functions such as the trigono-
metric sine and the hyperbolic tangent have been used, but the exploration of other
transfer functions is beyond the scope of this book. For more information, refer to
Rumelthart and McClelland (1986) and McClelland and Rumelhart (1988). (Note
that the requirement that the function be continuously differentiable holds for the
back-propagation learning algorithm, but that PE activations with hard [step] non-
linearities can be trained using random search techniques, simulated annealing, or
evolutionary algorithms.)

The sigmoid (squashing) function can be viewed as performing a function simi-
lar to that of an analog electronic amplifier. The gain, or amplification, of the ampli-
fier is analogous to the slope of the line, or the ratio of the change in output for a
given change in input. The slope of the function (gain of the amplifier) is greatest
for total (net) inputs near 0. This serves to mitigate problems caused by noise and
by the possible dominating effects of large input signals.

Once the activations of all hidden-layer PEs have been calculated, the outputs
of the Fz layer are calculated in an analogous manner. The activation of the jth F
(output) PE as a function of its input connections is described in equation 6.3, where
yxi is the output of the Fy (hidden) layer, and wj; the Fy to Fz connection weight.

b
zj = fa (Z Vi Wji) (6.3)
i=0

This set of feedforward calculations, resulting in the output state of the network
(the set of activations of all output PEs), is carried out in exactly the same way
during the training phase as during the testing phase. The test operational mode
just involves presenting an input set to the input PEs and calculating the resulting
output state in one forward pass.

’O Chapter Six—Neural Network Implementations

Feedforward Calculations for the LVQ-I Net

As in the back-propagation neural network, the input PEs simply distribute the
signal along multiple paths to the output layer PEs. The Euclidean distance between
the input vector and the weight vectors associated with each output PE is first cal-
culated according to equation 6.4. The Euclidean distance is the square root of the
sum of the squares of the differences between each input vector component and its
associated weight vector component. Since relative magnitudes are what is impor-
tant, as is conserving computing time, square root calculations often are not done
in software implementations. The output PE with the minimum Euclidean distance
between the input vector and the weight vector associated with the output PE is the
winner and represents the cluster or class to which the input vector belongs.

i=1

d;= \ Y (o= wi)? (6.4)

Back-propagation Supervised Adaptation
by Error Back-propagation

Adaptation calculations are applied only during training. Back-propagation is an
example of a supervised adaptation model, while LVQ-I is a prime example of unsu-
pervised adaptation. (LVQ-II is a supervised version of a Kohonen network.)

With supervised adaptation models, input patterns are presented with targets to
the network, the targets being the desired output values for each input pattern. With
unsupervised adaptation models, on the other hand, input patterns are presented
without targets. The network adapts from the input patterns alone. In this section,
we look at back-propagation supervised adaptation.

During the training phase, the feedforward output state calculation is combined
with backward error propagation and weight adjustment calculations that represent
the network’s adaptation, or training. It is this adaptation process resulting from
the back-propagation of errors, and how it is implemented, that is the “secret to the
success” of the back-propagation implementation. Central to the concept of training
a network is the definition of network error. A measure of how well a network is
performing on the training set must be identified.

Rumelhart and McClelland (1986) define an error term that depends on the dif-
ference between the desired, or target, output value of an output PE, by;, and its
actual value, zi;. The error term is defined for a given pattern and summed over all
output PEs for that pattern.

Equation 6.5 presents the definition of the error. The subscript k denotes that the
value is for a given pattern. Note that the error calculation in the back-propagation
training algorithm generally is implemented PE by PE over the entire set (epoch) of

Implementation Issues O ; @

patterns, rather than on a pattern-by-pattern basis. The error is then summed over
all PEs, giving a grand total for all PEs and all patterns.

Then the grand total is divided by the number of patterns, to give an “average
sum-squared error” value. This makes sense because the number of patterns in our
training set can vary, and we want some sort of standardized value that allows us to
compare apples with apples, so to speak. And since the factor 0.5 is a constant, it is
often deleted from the calculations. (The 0.5 does, however, allow “neat” differentia-
tion that makes the math elsewhere easier. If not used, factors of two appear in other
terms.)

q
z b — 215) (6.5)

The goal of the adaptation process is to minimize this average sum-squared error
over all training patterns. Figuring out how to minimize the error with respect to
the hidden PEs was the key that opened up back-propagation models for widespread
applications.

The derivation is not presented here. It can be found in a nonrigorous format in
Chapter 5, or in Chapter 8 of Rumelhart and McClelland (1986). Even their deriva-
tion lacks absolute rigor, but reviewing it should provide an understanding of where
the equations come from and help make you more comfortable with using them.

A quantity called the error signal 6;, for sigmoid nonlinear output layer PEs, is
defined in equation 6.6, where the term zij(1 — z;) represents the first derivative of
the sigmoid function.

o = 2t (1 = 2¢)(bs = 25) (6.6)

It is necessary to propagate this error value back and perform appropriate weight
adjustments. There are two ways to do this:

On-line, or single-pattern, learning. Propagate the error back and adjust weights
after each training pattern is presented to the network.

Off-line, or epoch, learning. Accumulate the &’s for each PE for the entire training
set, add them together, and propagate the error back, based on the grand total 6.

The back-propagation algorithms in the implementation with this book are
implemented using both off-line and on-line learning, with emphasis on off-line
learning. In fact, Rumelhart and McClelland (1986) assumed that weight changes
occur only after a complete cycle of pattern presentations. As they point out, it’s all
right to calculate weight changes after each pattern as long as the learning rate 7 is
sufficiently small. It does, however, add significant computational overhead to do
that, and it is desirable to speed up training whenever possible.

@ ’O Chapter Six—Neural Network Implementations

Before the weights can be updated, however, there must be something to update.
That is, each weight must be initialized to some value. You can’t just start out with all
weights equal to 0 (or all equal to any single number, for that matter), or the network
won’t be trainable. The reason can be seen by studying the weight update equations
presented next.

It is typical to initialize the weights in a back-propagation network to random
values between 0.3 and —0.3. Picking random numbers over some range makes
intuitive sense, and you can see how different weights go in different directions by
doing this. But why pick —0.3 and 0.3 as the bounds? To be honest, there is no better
reason than “it works.” Most back-propagation implementations seem to train faster
with these bounds than, say, 1 and —1. It may have something to do with the fact
that the bounds of the PE activation values are 1 and —1. This makes the products of
weights and activation values relatively small numbers. Therefore, if they start out
“wrong,” they can be adjusted quickly.

Neural network researchers have recommended a number of variations on the
initial weight range. For example, Lee (1989) has shown that in some instances ini-
tializing the weights feeding the output layer to random values between 0.3 and —0.3,
while initializing weights feeding the hidden layer to 0, speeds training. (Initializing
all weights feeding the hidden layer to 0 is permissible, as long as the next layer up is
initialized to random, nonzero values. This can be verified by working through the
weight updating equations that follow.) In most cases, however, the random num-
ber initialization to values from —0.3 to 0.3 works well and is almost always a good
place to start.

We now describe how to use &; to update weights that feed the output layer, wj;.
To a first approximation, the updating of these weights is described by equation 6.7.
Here, 5 (the lowercase Greek letter eta) is defined as the learning coefficient, with a
value between 0 and 1.

Wi = W;-ld + 112 8k Vki (6.7)
k
This kind of weight updating sometimes has a problem in that it gets caught in what
are called “local energy minima.” If you can visualize a bowl-shaped surface with a
lot of little bumps and ridges in it, you can get an idea of the problem, at least in
three dimensions.

The error minimization process is analogous to minimizing the energy of the
position in the bumpy, ridge-lined bowl. Ideally, we’d like to move the position (per-
haps marked by a very small ball bearing) to the bottom of the bowl, where the
energy is minimum; this position is the globally optimal solution.

Depending on how much or how little the ball bearing can be moved at one time,
however, it might get caught in some little depression or ridge that it can’t get out of.
This situation is most likely with small limits on each movement, which correspond
to small values of 5.

Implementation Issues Q‘ ; @

The situation can be helped by using the “momentum” of the ball bearing. Its
momentum (previous movement) is taken into account by multiplying the previous
weight change by a “momentum factor” that is labeled a, the lowercase Greek letter
alpha. The momentum factor a can take on values between 0 and 1. Equation 6.8,
which is just equation 6.7 with the momentum term added, becomes the equation
actually used in the back-propagation implementation to update the weights feeding
the output layer.

1d 1d
wj';ew = w;’i + ”Z 8k ki + aAw;’l. (6.8)
k

Watch out! We've just thrown another delta at you. This one, Aw®¢, stands for
the previous weight change. Stated in words, the new weight is equal to the old weight
plus the weight change. The weight change consists of the § error signal term and the
a momentum factor term. The momentum term is the product of the momentum
factor « and the previous weight change. The previous “movement” of the weight
thus imparts “momentum” to the ball bearing (the weight), and it is much more
likely to reach the globally optimum solution.

Keep in mind that there are “bias PEs,” indicated by the letter “b” in Figure 6.1,
which always have an output of 1. They serve as threshold units for the layers to
which they are connected, and the weights from the bias PEs to each PE in the follo-
wing layer are adjusted exactly like the other weights. In equation 6.8, then, for each
of the output PEs, the subscript 7 takes on values from 0 to p, which is the number
of hidden PEs. The Oth value is associated with the bias PE.

Now that we have the new values for the weights feeding the output PEs, we
turn our attention to the hidden PEs. What is the error term for these units? It isn’t
as simple to figure this out as it was for the output PEs, where it could intuitively
be reasoned that the error should be some function of the difference between the
desired and the actual output.

We really have no idea what the value for a hidden PE “should” be. Again, refer
to the derivation in Chapter 5, as well as to the one by Rumelhart and McClelland
(1986). Both show that the error term for a hidden PE is given by equation 6.9, where
the term yi;(1 — yy;) represents the first derivative of the sigmoid function.

q
8k = Yl — }’ki)z Wji 6k (6.9)
j=1

The weight changes for the connections feeding the hidden layer from the input
layer are now calculated in a manner analogous to those feeding the output layer, as
shown in equation 6.10.

1d
v =0+ ”2 ki Xkh + aAv?;d (6.10)
k

’O Chapter Six—Neural Network Implementations

For each hidden PE, the subscript 4 takes on values of 0 to 7, the number of input
PEs. As before, the bias PEs are represented in the calculations by the Oth value.

We now have all of the equations (6.6, 6.8, 6.9, and 6.10) to implement back-
propagation of errors and adjustment of weights for both groups of weights. First,
the error terms are calculated for each output PE using equation 6.6, then for each
hidden PE using equation 6.9 for each pattern in the training set. Then the error
terms are summed after all patterns have been presented once, and the weight adjust-
ments are calculated as in equations 6.8 and 6.10.

There are a few things to keep in mind.

® For updating using the off-line (epoch) mode, it is necessary, in equations
6.8 and 6.10, to sum over all patterns in the training set, whereas the &’s in
equations 6.6 and 6.9 are calculated pattern by pattern.

® Although values for 5 and « can be assigned layer by layer, or even PE by PE,
there is typically only one value selected for each in a given implementation.
These values are often adjusted in the process of getting a network to
successfully train, but once chosen are usually left alone.

B When &’s are calculated for the hidden layer in equation 6.9, the old
(existing) weights (rather than new ones that might have been calculated
from equation 6.8) from the hidden to the output layer are used in the
equation. This is really only a potential problem if the weights are updated
after each training pattern is presented. If epoch training is performed,
weights aren’t updated until all patterns have been presented, so there is no
cause for worry.

LVQ Unsupervised Adaptation Calculations

The unsupervised adaptation process consists of presenting pattern vectors from the
training set to the network one at a time. For each pattern presentation, select the
winning processing element and adjust the weights of the winner.

The result of unsupervised adaptation is that the outputs of the network fall into
class clusters reflecting the probability density of the input vectors. When the net-
work has adapted, the output-layer processing elements represent pattern class clus-
ters of the input pattern vectors. Note that the network isn’t adapted in a supervised
way by telling it what the “correct” answers are. The patterns are simply presented
to the network repeatedly, and the network adapts by adjusting its weights so as to
form pattern classes.

The winner is chosen by finding the PE with the minimum Euclidean distance
between the input vector and the weight vectors associated with each output PE.
The Euclidean distance is the square root of the sum of the squares of the differences
between each input vector component and its associated weight vector component,

Implementation Issues O‘@

as illustrated in equation 6.4. (See Chapter 10 for a discussion of other distance
metrics.)

The winner for the particular iteration of an input pattern is the processing ele-
ment with the smallest Euclidean distance. The calculation of this dimensionless
Euclidean distance has meaning because the input and weight vectors are normalized
before performing the calculations. The weights connected to the winner are then
adjusted according to equation 6.11, where the learning coefficient n is a decreasing
function of time. Note that equation 6.11 calculates the weight change that must be
added to the weight.

Awj; = n(t)(axi — wji) (6.11)

Equations 6.4 and 6.11 are calculated for each pattern presented to the network
during adaptation. Presentations continue until the weight adjustments become
acceptably small or a criterion for the maximum number of iterations is met.

Is it necessary to renormalize the weight vectors during or after training, given
what was said about the validity of the dot product? No, not as long as the changes
to the weight vector components carried out according to equation 6.11 are small
enough. Keeping them small keeps the length of the weight vectors near 1 (near the
surface of a unit hypersphere), and the dot product process remains valid.

Selection of training patterns for the LVQ-I network is the subject of much discu-
ssion in the literature (Kohonen 1988, 1989; Caudill 1989a). It is generally agreed
that each category, or classification, to which the network is trained should be rep-
resented by “gold standard” examples (i.e., right down the center of the category
space), as well as by examples near the decision surfaces with other categories. Exper-
imentation is needed to determine the training vector requirements for a particular
application.

The LVQ Supervised Adaptation Algorithm

The LVQ-II algorithm is a supervised adaptation extension of LVQ-I. The classifi-
cations of all patterns used for training must therefore be known. In implementing
LVQ-II, assuming that the output PE layer has p PEs, the weights to these PEs should
initially be set equal to p input patterns, such that the number of weights from each
pattern class reflects the probability distribution of the classes. If there are ¢ classes,
and the distribution is unknown, then instantiate p/c weight vectors of each class.

The updating of weights is done with a reward—punish scheme: The weight of the
winning PE is moved toward the pattern weight if the classification. Is correct and
moved away if it is incorrect. Assume that the winning class is Cy,;. Then the winning
PE’s weight vector is adjusted according to equation 6.12. (Only the winning PE’s
weight vector is modified.)

@4’@ Chapter Six—Neura! Network Implementations

new __
Wji =

1d
W;}ew = W;’i ~ n(t)(ax; — wji) for Cin # Cuin

1d
w3 +n(®)(ax = wji) for Cin = Cuin (6.12)

This is a useful scheme when the classifications of the training patterns are known
and it is desirable to reduce misclassifications. However, if classifications are known,
a back-propagation network is generally a better pattern classifier, so an LVQ-II
implementation is not included in this book. We include it here more for purposes
of completeness.

Issues in Evolving Neural Networks

The neural network adaptation presented in the previous section is based on con-
nection weight adaptation with fixed network architecture. Much of the time, it’s
hard to select the right network architecture for the application at hand. Both the
network architecture and the connection weights need to be adapted simultaneously
or sequentially.

Two of the general (nonevolutionary) approaches used to evolve network topo-
logy are constructive and destructive algorithms. A constructive algorithm starts with
a minimal topology and evolves the appropriate topology by adding weights, PEs,
and layers, as needed. The destructive approach starts with a large network and
evolves the appropriate topology by removing weights, PEs, and/or layers.

In this chapter, we provide an implementation of a back-propagation neural
network with an evolutionary algorithm (EA) using particle swarm optimization
(PSO). EAs have been shown to be superior to these constructive and destructive
approaches because of the large (often infinite) size, nondifferentiability, complex-
ity, and multimodality of the search space (Yao 1995).

Evolutionary computation methodologies have generally been applied to three
main attributes of neural networks: network connection weights, network architec-
ture, and network learning algorithms. A fourth area, the evolution of inputs (find-
ing the optimal set of inputs), has received a relatively minor amount of attention.

With respect to the architecture of a neural network, evolutionary algorithms
have been applied to evolve the network weights, the network topology (structure),
and the PE transfer function. Occasionally, they have been used for more than one
purpose—for example, evolving the network weights and the structure simultane-
ously. Furthermore, evolutionary computing methodologies are sometimes used
in combinations and sometimes with other methodologies. For example, it is pos-
sible for an EA such as a GA to find a set of weights in the global minimum’s
basin of attraction. A greedy local search algorithm can then be used to find the
globally optimal neural network weight matrix (Yao 1995). A number of approaches
have been used to encode the weights into the chromosome of a GA. Included
are direct encoding schemes, in which each weight is explicitly represented in the

Implementation Issues O‘ 213

chromosome, and indirect schemes, in which a compression scheme is used that
requires an expansion of the chromosome to derive the individual weights. We
cite a few specific examples of these approaches next. We chose them to be repre-
sentative only; an exhaustive survey is beyond the scope of this book.

As early as 1968, Bremmermann, a pioneer in the evolutionary computation
field, suggested in (Bremmermann 1968) that “we should be encouraged to try
[evolutionary search] procedures on more complex problems, where no efficient
algorithms are known (e.g., searching for strategies, optimizing ‘weights’ in a mul-
tilayer neural net, etc.).” Widespread efforts to evolve neural network parameters,
however, did not occur until the popularization of the back-propagation algorithm.

One of the first published works that described use of a GA and included exam-
ple applications was by Whitley (1989), in which a GA was used to learn the weights
in a feedforward neural network. He applied the technique to relatively small prob-
lems, such as the exclusive—or (XOR). Also in 1989, Montana and Davis (1989)
described the use of a GA to train a neural network of approximately 500 weights.
It wasn’t a “traditional” GA in that, instead of replacing the entire population each
generation, only one or two individuals were produced, which then had to com-
pete to be included in the new population. Also, network weights were represented
by real, rather than binary, numbers. This type of implementation is known as a
“steady-state” GA. Furthermore, Montana and Davis’s paradigm included an option
for improving population members using back-propagation. This was thus a truly
hybrid approach. (This hill-climbing capability, however, did not result in better
results than when using the GA alone.)

Another promising early result was that of Schaffer, Caruana, and Eshelman
(1990), which demonstrated that an evolved neural network had better generaliza-
tion performance than one designed by a human and trained with back-
propagation. A number of similar papers were also published. The reported network
training times were sometimes faster and sometimes slower than back-propagation
but were generally not as fast as network training algorithms noted for their speed,
such as quickprop.

Most of the work involving the evolution of network architecture has focused on
the network topological structure. Relatively little has been done on the evolution
of PE activation functions and even less on evolving topological structure and PE
activation functions simultaneously.

Reduced (indirect) coding schemes have been developed in which parameters
that specify the network topology are evolved. This approach often involves a dis-
crete number (limited set) of architectures. Other times, the number of PEs and/or
the number of hidden layers is encoded (Caudell 1990). These approaches result in
chromosome discontinuities between any two network configurations.

Another approach is to evolve developmental rules used to construct the net-
work topology. Kitano (1990) evolved a graph generation grammar, or rules for
generating weight connection matrices. His grammar included rules for obtaining

'O Chapter Six—Neural Network Implementations

2 x 2 matrices from 1 x 1 matrices, 4 x 4 matrices from 2 x 2 matrices, and so
on, until a matrix of the size necessary to specify the weight connectivity for the
network was obtained. Although Kitano reported better results than some direct
encoding methods, his method is not very good at fine-tuning connections among
single nodes.

Perhaps the first publication reporting the evolution of both network topology
and PE activation functions using a GA was that of Stork and colleagues (1990). They
were modeling a biological neuron in the tail-flip circuitry of a crayfish. Although
the network had only seven PEs, the activation function evolved was the very com-
plex Hodgkin—Huxley equation for neuronal activity. Chromosomes included coded
specifications for neuron type, cell surface molecules, neurotransmitter type,
synapse receptor types, cell channel densities, and other functional properties of the
network.

Koza and Rice (1991) used the genetic programming paradigm to find both the
weights and topology (number of layers, number of PEs per layer, and weight con-
nectivity pattern) of a neural network. They encoded a tree structure of Lisp
S-expressions in the chromosome. Special crossover and mutation operators were
used that preserved the syntax. This may be the first published report of using genetic
programming to evolve neural networks.

Some investigators have investigated the optimization of the EA operators used
to evolve neural networks. Research work reported by Whitley, Dominic, and Das
(1991) indicated that hill-climbing capabilities of GAs using real-valued encoding
for the network weights were increased significantly by a combination of increas-
ing the mutation rate, decreasing the crossover rate, and decreasing the population
size. Convergence was faster, too, but the probability of obtaining a usable solution
decreased by about 10 percent. It should be noted that “steady-state” GAs similar
to those of Montana and Davis (1989) were used, resulting in relatively monotonic
searches. This type of GA is referred to as a “genetic hill-climber” (Schaffer, Whitley,
and Eshelman 1992). GAs have thus been designed that emphasize either global or
local search. The trick, of course, is knowing which to use for a particular problem,
or, perhaps more important, how and when to switch from one to the other when
solving a problem.

Advantages and Disadvantages of Previous
Evolutionary Approaches

In this section, we briefly summarize some of the advantages and disadvantages
that have been discussed in the literature and that researchers have experienced
with respect to using evolutionary computation techniques with artificial neural
networks. The discussion is not meant to be thorough. Rather, we are highlighting
the successes and examining issues that should be addressed in order to make
progress. We do not review the advantages and disadvantages of neural networks

Implementation Issues O @

and evolutionary algorithms individually. Such reviews appear in a number of
places (Schaffer, Whitley, and Eshelman 1992; Yao 1995).

Let’s first look at the advantages. Evolutionary algorithms can be used to adapt
neural networks with nondifferentiable {(even discontinuous) PE transfer functions.
Step functions are an example. Additionally, not all of the transfer functions have to
be identical in a network trained by an EA.

Evolutionary algorithms can also be used in cases where gradient or error infor-
mation is not available (Schaffer, Whitley, and Eshelman 1992). (See, however, a
statement from the same reference in the section below on disadvantages.) EAs can
thus be applied to neural networks using many architectures and topologies. In
addition to back-propagation, EAs have been applied to networks using a variety
of learning algorithms, including reinforcement learning, recurrent learning, and
higher order learning.

Evolutionary algorithms have the capability to perform a global search in the
problem space.

The fitness of an architecture evolved by an EA can be defined in a way appro-
priate for the problem. For example, speed of learning, topological complexity, and
performance on the test set can all be incorporated into the fitness function.
Furthermore, the fitness function does not have to be continuous or differentiable.

Now, let’s look at the disadvantages. Schaffer, Whitley, and Eshelman (1992) state
that “Using a genetic algorithm as a replacement for back-propagation does not seem
to be competitive with the best gradient methods (e.g., quickprop).” GAs are known
to perform global search quite well but to be relatively inefficient in fine-tuned local
search (Yao 1995).

Evolution of network topology is generally done in ways that result in disconti-
nuities in the search space. Examples include removing and inserting connections
(weights), discrete changes in connections (weights), from 1 to —1 for example, and
removing and inserting PEs. These discontinuities usually require readaptation of
the network. Since the adaptation of a back-propagation network is sensitive to the
randomized initial weights, the fitness value used to measure the network’s per-
formance reflects noise as well as the network architecture. It is therefore usually
necessary to adapt the network several times and compute an average fitness value,
or partially adapt the network a number of times to get an indication of convergence
rates, Either approach is computationally intensive.

Selection of a representation for the weights in a chromosome is often difficult.
In addition to the basic decision whether to use binary or real representations, the
ordering of the weights must be considered, especially if an EA that uses crossover
or recombination is being used. For instance, should the heuristic (Yao 1995) that
weights connecting into the same hidden PE be adjacent in the chromosome be
implemented? If binary encoding is selected, which encoding method should be
selected (uniform, Gray, exponential, etc.)? Once the representation is selected,
the genetic operators (crossover, mutation, etc.) and their parameter values must

@ ’O Chapter Six—Neural Network Implementations

be selected or, in many cases, developed. Often, operators are designed specifically
for a problem.

If a real number representation for weights is used, a set of operators must be
selected or developed. These must generally be tailored to the application. In addi-
tion, the criterion for selection must be specified.

Finally, a problem that has consistently been reported in the literature is the
permutation problem (Yao 1995; Hancock 1992), also referred to as the competing
conventions problem (Schaffer, Whitley, and Eshelman 1992) and the isomorphism
problem (Hancock 1992). This situation arises whenever there exist multiple chro-
mosome configurations that represent equivalent optimum solutions. These con-
figurations are called permutations or competing conventions, and the error surfaces
are multimodal. For example, two neural networks that have a different order to
their hidden PEs (and thus have a different representation on the chromosome)
but are otherwise identical are equivalent. In fact, any permutation of the hidden
PEs produces an equivalent network in this case.

Hancock’s work was limited to the specification of the network connectivity,
not the weights associated with the connections. Nonetheless, he reported that
“The most unexpected result here was that permutations are apparently more of a
help than a hindrance” and that “It appears that, in practice, the permutation or
competing conventions problem is not as severe as had been supposed” (Hancock
1992). We agree.

Evolving Neural Networks with Particle Swarm Optimization

The benefits of evolving attributes of neural networks are clear. Multilayer percep-
trons (feedforward networks using the back-propagation algorithm as the learn-
ing algorithm) have been shown to be capable of being universal approximators
(Hornick et al. 1989). The most common transfer function used is the sigmoidal
function: output = 1/(1 + ¢~™P), The idea of being able to automatically evolve a
universal approximator is quite attractive, especially if it can be done as (or more)
quickly than training the network with back-propagation.

One of the first uses of particle swarm optimization (PSO) was for evolving
neural network weights. Eberhart, Simpson, and Dobbins (1996) reported using
particle swarm optimization to replace the back-propagation learning algorithm
in a multilayer perceptron.

The implementation reported in (Eberhart and Shi 1998) is the use of PSO to
evolve the network weights and, indirectly, to evolve the structure. The methodology
has the additional benefit of making the preprocessing (such as normalization or
scaling) of input data unnecessary.

This is accomplished by evolving, in addition to the network weights, the slopes
of the sigmoidal transfer functions of the hidden and output PEs of a feedfor-
ward network. In other words, if we now consider the transfer function to be

~

Implementation Issues O‘ 217

output = 1/(1 + 7Py then we are evolving k in addition to evolving the
weights. (The method is quite general and can be applied to other network topolo-
gies, such as recurrent networks, and to other transfer functions, such as radial
basis functions.)

Slopes are allowed to be either positive or negative. The output of a transfer func-
tion with a negative slope is just one minus the output with a positive slope of the
same absolute value. The effect of a transfer function with a negative slope is identi-
cal to that of a transfer function with a positive slope (with the same absolute value)
if the signs of the input weights are reversed. There is thus no reason to constrain
slopes to be positive, and by allowing them to take on negative values, the flexibility
of the network evolution process is increased, resulting in faster convergence.

This method can be used to evolve the network structure indirectly. If the evolved
slope is sufficiently small (the exact amount depends on the application), then the
output is essentially constant regardless of the input. (In the case of the sigmoidal
transfer function, the output would be 0.5, or very nearly so.) If the PE is in a hid-
den layer, it can therefore be removed. Its effect can be replicated by increasing the
weights from the bias PE in that hidden layer to each of the PEs in the next layer
by one-half the value of each weight from the PE being removed to the next-layer
PEs. The method therefore can be used to prune PEs from the network, reducing
network complexity.

Additionally, if the slope is sufficiently large (the exact amount depends on the
application), then the sigmoid transfer function can be replaced by a step transfer
function. A sigmoid with a large positive slope is thus replaced by a step transfer
function that has an output of 0 for inputs less than or equal to 0, and 1 for positive
inputs. A sigmoid with a large negative slope is replaced by a step function with an
output of 1 for inputs less than or equal to 0, and 0 for positive inputs. Sigmoidal
function PEs can thus evolve to be step function PEs, reducing the computational
complexity of the network significantly.

Since the slopes can evolve to large values (relative to 1, which is the slope used
in traditional back-propagation network transfer functions), input normalization
or scaling is generally not needed. Since data preprocessing requires a significant
amount of effort in most applications, this methodology can simplify the applica-
tions process and shorten development time.

Another feature of this methodology is the continuous nature of the PSO algo-
rithm. Transfer function slopes are evolved in a continuous way; that is, slopes
can vary continuously from large negative to large positive values. This results
in an evolution of network structures that is also continuous. For example, as a
hidden PE’s transfer function slope approaches 0, it is replaced with revised con-
nection weights from the bias PE; as the slope becomes very large, the sigmoidal
PE is replaced by a threshold PE. No significant discontinuities exist in the evo-
lutionary process such as those that plague other approaches to evolving network
structures.

O Chapter Six—Neural Network Implementations

Back-propagation Implementation

This section discusses the back-propagation implementation. This is an implemen-
tation of a fully connected feedforward layered network. Connections exist only
from the PEs in one layer to the PEs in the next layer. There are no feedback connec-
tions, even among PEs in the same layer. The number of hidden layers and number
of PEs in each layer can be specified in a run file. For the basics of back-propagation
neural networks, please refer to Chapter 5.

Programming a Back-propagation Neural Network

Figure 6.4 shows the state transition diagram used in the implementation of the
back-propagation neural network discussed in this section. First we define some new
data types in the next subsections.

We first look at general definitions for neural networks. In this section, some
data types applicable to several neural network implementations in this book are
defined as shown in Listing 6.1. In Listing 6.1 are the new enumeration data types.
These definitions are also used in the implementations of other neural networks, in
addition to the back-propagation neural network discussed in this section.

Listing 6.1 Enumeration data type definitions for neural networks.

/**/

/* Enumerations */
/**/
typedef enum NN_Operation_Mode_Type_Tag
{

NN_TRAINING,

NN_RECALL,

NUM_BP_OPERATION_MODES
} NN_Operation_Mode_Type;

typedef enum NN_Function_Type_Tag

{
NN_LINEAR_FUNCTION,
NN_GAUSIAN_FUNCTION,
NN_SIGMOID_FUNCTION,
NUM_NN_FUNCTION_TYPES

} NN_Function_Type;

typedef enum NN_Layer_ Type_Tag

{
NN_INPUT_LAYER,
NN_HIDDEN_LAYER,
NN_OUTPUT_LAYER,
NUM_NN_LAYERS

} NN_Layer_Type;

Back-propagation Implementation O‘ @

BP_GET_
PATTERN

BP_
FEEDFORWARD_

BP_UPDATE_
MOMENTUM_

training)

5
o Q
BP_UPDATE g¢ i
_ _ $= FEEDFORWARD
[4 -
LEARNING_RATE EE HIDDEN
gt
48]
£S5
o3
£v
-]
S5
£L
I
3 B

BP_TRAINING_
DONE

FEEDFORWARD_
OUTPUT

BP_NEXT_
GENERATION

BP_WEIGHT_
CHANGE

cur_gen
>= max_gen

%
P
)
.
D
%
D
A

BP_WEIGHT_
STEP_CHANGE

BP_BATCH_TEMP_
WEIGHT_STEP_
CHANGE

Figure 6.4 A back-propagation neural network state transition diagram in training mode.

The enumeration data type NN_Operation_Mode_Type defines the opera-
tion mode of the neural network. The neural network can be in training
mode or in testing or recall mode. The data type NN_Function_Type defines the
function types of the PE activation functions. Three kinds of activation functions
are included. More can be included later if necessary. These three activation

@ ’O Chapter Six—Neural Network Implementations

functions are the linear function, Gaussian function, and sigmoid function. The
NN_Layer_Type data type defines the nature of the neural network layer. Three
kinds of layers are included here. They are the input layer, hidden layer, and output
layer. This data type is more for layered networks than for other types of networks.

Now, let’s consider some definitions for the back-propagation neural network.
This section defines some date types applicable only to the implementation of the
back-propagation neural network (BP net). They are defined in Listings 6.2 and 6.3.
The new enumeration data types are in Listing 6.2. The new structure data types are
in Listing 6.3.

Listing 6.2 Enumeration data type for BP net.

/**/

/* Enumerations */
/**********************************‘k***************************/
typedef enum BP_Training_ Mode_Tag
{

NN_BATCH_MODE,

NN_SEQUENTIAL_MOCDE,

NUM_NN_TRAINING_MODES
} BP_Training_Mode_Type;

typedef enum BP_State_Tag

{
BP_GET_PATTERN,
BP_FEEDFORWARD__INPUT,
BP_FEEDFORWARD__HIDDEN,
BP_FEEDFORWARD_QUTPUT,
BP_BACK_PROPAGATION_OUTPUT,
BP_BACK_PROPAGATION_HIDDENS,
BP_BATCH_TEMP_WEIGHT_STEP_CHANGE,
BP_NEXT_PATTERN,
BP_WEIGHT_STEP_CHANGE,
BP_WEIGHT_CHANGE,
BP_NEXT_GENERATION,
BP_UPDATE_LEARNING_RATE,
BP_UPDATE_MOMENTUM_RATE,
BP_TRAINING_DONE,
BP_RECALL_DONE,
NUM_BP_STATES

} BP_State_Type;

The enumeration data type BP_Training_Mode_Type specifies the training
mode for the back-propagation implementation. It can be either in batch training
mode (off-line adaptation) or in sequential training mode (on-line adaptation). The
data type BP_State_Type defines all the states in the back-propagation
state machine. There are fifteen states, each with a corresponding state handling
routine.

Back-propagation Implementation O‘.@

Listing 6.3 Structure data type definitions for BP net.

/****‘k*********i')\'i'i'i'***************)\'***************************/

/* Structures */
/**i*****************/

typedef struct Neuron_Type_Tag
{

NN_Function_Type neuron_function; // neuron function
float in; // neuron input
float out; // neuron output
FVECTOR w;

// connection weights from the previous layers
double error; // error of neuron’s output
FVECTOR delta_w; // step change of weights
FVECTOR temp_delta_w; // temp. step change of weights

} Neuron_Type;

typedef struct NN_Layer_Arch_Type_Tag
{

int size; // number of neurons in the layer
Neuron_Type *neurons; // pointer to the array of neurons
NN_Layer_Type layer_type;

} NN_Layer_Arch_Type;

typedef struct BP_Arch_Type_Tag
{

int size; // number of layers
NN_Layer Arch_Type *layers; // pointer to the layers
int *hidden_number;

} BP_Arch_Type;

typedef struct BP_Env_Type_Tag
{

NN_Operation_Mode Type operation_mode; // training or recall

BP_Training_Mode_Type train_mode; // training mode if in training
float alpha; // learning rate 0.075

float gama; // momentum rate 0,15

float criterion; // error criterion for termination
int max_gen; // maximum number of generations

int cur_gen; // current generation index

int max_tra_pat; // total number of training patterns
int cur_pat; // current training pattern index

} BP_Env_Type;

typedef struct BP_Type_Tag
{

BP_Arch_Type arch;
BP_Env_Type env;

@'@ Chapter Six—Neural Network Implementations

double mse; // mean squared error
} BP_Type;

typedef struct BP_Pattern_Set_Type Tag
{

int size; // number of patterns

int dim_in; // input dimension

int dim_out; // output dimension

FMATRIX patterns; // pointer to the array of in/outpatterns

} BP_Pattern_Set_Type;

The structure data type Neuron_Type defines the parameters of the network’s
PEs (neurons)—the basic building components of the neural network. It consists of
an activation function (NN_Function_Type), input (float), output (float),
connection weights to a PE (FVECTOR), error (double), step change of weights
(FVECTOR), and temporary step change of weights (FVECTOR). The last three are
included for the purpose of training, especially when used in a back-propagation
neural network. The NN_Layer_Arch_Type defines the architecture of the neural
network layer. It consists of a layer type (NN_Layer_Type), a pointer to the PEs
(Neuron_Type) in the layer, and the number of PEs in the layer (int). (Note that
in the code PEs are referred to as neurons.)

The structure data type BP_Arch_Type defines the architecture of the back-
propagation neural network. The component size (int) specifies the number of
layers in the network; the component layers (NN_Layer_Arch_Type *) isa
pointer to the layers; and the component hidden_number (int *) is a pointer
to the number of PEs in hidden layers.

The BP_Env_Type defines all of the environment parameters for running the
back-propagation implementation. They are operation mode (operat ion_mode),
training mode (t rain_mode), learning rate (alpha), momentum (gama), train-
ing error criterion for termination (criterion), maximum number of genera-
tions (max_gen), current generation index (cur_gen), total number of training
patterns (max_tra_pat), and current training pattern index (cur_pat).

The BP_Type defines a struct data type, which specifies the back-
propagation neural network. It includes BP architecture data (arch), BP environ-
ment data (env), and mean squared error (mse).

The BP_Pattern_Set_Type defines the set of patterns that are fed to the BP
net. It consists of number of patterns (size), input dimension (dim_in), output
dimension (dim_out), and a pointer to the array of input/output pairs of patterns
(patterns).

The main () routine is shown in Listing 6.4. It is kept as simple as pos-
sible to make the back-propagation module as independent as possible. In the
BP_Start_Up () routine, all the necessary parameters for running the back-
propagation implementation are read from the input (run) file; the dynamic

Back-propagation Implementation O‘ .@

data storage variables are allocated memory space and initialized. In the
BP_Clean_Up () routine, the results are stored in an output file and the memory
space previously allocated is de-allocated. The BP_Main_Loop () routine is the
core of the back-propagation implementation, where the state machine is run.

Listing 6.4 Back-propagation main () routine.

void main (int argc, char *argvl[])
{

int idx_i;

// check command line

if (argc !'= 2)

{
printf("Usage: exe_file run_£file");
exit (1);

}

main_start_up(argvil]);
BP_Main_Loop(};
main_clean_up(};

}

static void main_start_up (char *dataFile)
{

BP_Start_Up(dataFile};
}

static void main_clean_up (void)
{

BP_Clean_Up{);
}

We now consider the BP_Main_Loop () routine. Before running the
BP_Main_Loop () routine, several BP module scope variables are defined as
follows:

static BP_Type bp;
static BP_Pattern_Set_Type patset;
static BP_State_Type bp_cur_state;

These three variables are defined as st at i ¢ to prevent them from being accidentally
changed by outside modules. The variable bp has information related to the back-
propagation net during the run.

The variable pat set stores all the input/output pairs of patterns. The variable
bp_cur_state records the current state of the back-propagation state machine.
When the BP_Main_Loop () routine is running, it keeps calling the current
state’s handling routine through bp_state_handler (bp_cur_state),
where the current state performs its action until it is transitioned to another state.
The BP_Main_Loop () keeps running until its current state is transitioned to either

’O Chapter Six—Neural Network Implementations

the state BP_TRAINING_DONE when BP is in the training operation mode or to the
state BP_RECALL_DONE when BP is in the recall/test operation mode.

void BP_Main_Loop (void)
{
BOOLEAN running;

running = TRUE;
while (running)
{
if ((bp_cur_state == BP_TRAINING_DONE) || (bp_cur_state ==
BP_RECALL_DONE))
{
running = FALSE;
}
bp_state_handler (bp_cur_state);

The Back-propagation State Handling Routines

We now examine the BP state handling routines. The most important part of the
BP state machine is its state handler, which is shown in Listing 6.5. As shown in the
listing, which state handler routine is called is based on the current BP state.

Listing 6.5 Main part of the BP state machine.

static void bp_state_handler (int state_index)
{
switch (state_index)
{

case BP_GET_PATTERN:
bp_get_pattern();
break;

case BP_FEEDFORWARD_INPUT:
bp_feedforward_input ();
break;

case BP_FEEDFORWARD_HIDDEN:
bp_feedforward_hidden () ;
break;

case BP_FEEDFORWARD_OUTPUT:
bp_feedforward_output ();
break;

case BP_BACK_PROPAGATION_OQUTPUT:
bp_back_propagation_output ();
break;

case BP_BACK_PROPAGATION_HIDDENS:
bp_back_propagation_hiddens{();
break;

case BP_BATCH_TEMP_WEIGHT_STEP_CHANGE:
bp_batch_temp_weight_step_change();
break;

case BP_NEXT_PATTERN:

Back-propagation Implementation O ,@

bp_next_pattern();
break;

case BP_WEIGHT_STEP_CHANGE:
bp_weight_step_change () ;
break;

case BP_WEIGHT_CHANGE:
bp_weight _change () ;
break;

case BP_NEXT_GENERATION:
bp_next_generation();
break;

case BP_UPDATE_LEARNING_RATE:
bp_update_learning_rate();
break;

case BP_UPDATE_MOMENTUM_RATE:
bp_update_momentum_rate{};
break;

case BP_TRAINING_DONE:
bp_training_done (};
break;

case BP_RECALL_DONE:
bp_recall_done();
break;

default:
break;

In the BP_GET_PATTERN state, the portion of the current pattern specified by

bp .env.cur_pat is copied to the input PEs in the input layer and to the target out-
put; then the current state is transitioned to the state BP_FEEDFORWARD_INPUT.
The state handler routine is shown here.

static void bp_get_pattern {(void)

{

int idx;

for (idx = 0; idx < (bp.arch.layers[0].size); idx++)
{
bp.arch.layers[0] .neurons[idx].in =
patset.patterns([bp.env.cur_pat] [idx];

for (idx = 0; idx < patset.dim_out; idx++)
target_out [idx] = patset.patterns{bp.env.cur_pat]
[patset.dim_in + idx];

}
bp_cur_state = BP_FEEDFORWARD_INPUT;

In the BP_FEEDFORWARD_INPUT state, the output of the input layer is calcu-

lated. Normally, the input layer is treated only as a path to the hidden layer. The
output of each PE in the input layer is equal to the input of the same PE. Certainly,

’O Chapter Six—Neural Network Implementations

a different type of activation function can be used for the PEs in the input layer, and
some data preprocessing can be encoded into the activation function of the PEs in
the input layer. Here, in our implementation, the data preprocessing is done out-
side of the neural network implementation and the input layer is a linear layer fea-
tured as an input path to the hidden layer. The current state transitions to the state
BP_FEEDFORWARD_HIDDEN. The state handler routine is shown here.

static void bp_feedforward_input (void)
{

int idx;

for (idx = 0; idx < (bp.arch.layers[0].size); idx++)
{
bp.arch.layers[0] .neurons{idx].out =
bp.arch.layers{0] .neurons[idx].in;
}
bp_cur_state = BP_FEEDFORWARD_HIDDEN;

In the BP_FEEDFORWARD_HIDDEN state, the outputs of PEs in the hidden
layer(s) are calculated. If there is more than one hidden layer, the outputs of the
PEs in the first hidden layer are first calculated, then the second hidden layer, until
all the hidden layer outputs have been calculated. In the calculation of the output
of a PE, first the net input to the PE is calculated; then the output is calculated by
calling the function activate_function (net_input, function_type).
Normally, in a back-propagation network, the activation function for PEs in the
hidden layer is the sigmoid function. The current state transitions to the state
BP_FEEDFORWARD_OUTPUT. The state handler routine is shown here.

static void bp_feedforward_hidden (void)
{

int idx, idx_prev,idx_cur;

float sum;

for (idx = 1; idx < (bp.arch.size - 1); idx++)
{ // loop through the hidden layers

for (idx_cur = 0; idx_cur < (bp.arch.layers{idx].size); idx_cur++)
{ // loop through the neurons of the current hidden layer
sum = 0.0;
for (idx_prev = 0; idx_prev < (bp.arch.layers
[idx - 1].size);idx_prev++)
{ // loop through the outputs of the previous layer
sum += (bp.arch.layers[idx - 1].neurons{idx_prev].out) *
(bp.arch.layers{idx] .neurons[idx_cur].w([idx_prev]);
}
sum += (bp.arch.layers{idx].neurons{idx_cur].
wlbp.arch.layers[idx - 1].sizel);
bp.arch.layers[idx].neurons{idx_cur].in = sum;
bp.arch.layers[idx] .neurons[idx_cur].out =
activate_function(sum,bp.arch.layers[idx].
neurons [idx_cur].neuron_function);

Back-propagation Implementation O‘ : .@

}
}
bp_cur_state = BP_FEEDFORWARD_OUTPUT;

In the BP_FEEDFORWARD_OUTPUT state, the outputs of PEs in the output
layer are calculated. The calculation procedure is the same as that in hidden lay-
ers. The current state transitions to the state BP_BACK_PROPAGATICN_OQUTPUT
if the operation mode is NN_TRAINING; otherwise, it transitions to the state
BP_NEXT_PATTERN to test the next pattern. The state handler routine is shown
here.

static void bp_feedforward_output (void)
{

int idx_out, idx_prev;

float sum;

for (idx_out = 0; idx_out < {(bp.arch.layers{bp.arch.size - 1}.size);
idx_out++)

{ // loop through the neurons of the output layer
sum = 0.0;

for (idx_prev = 0; idx_prev < (bp.arch.layers
[bp.arch.size - 2].size);idx_prev++)
{ // loop through the outputs of the previous layer
sum += (bp.arch.layers[bp.arch.size - 2].neurons
{idx_prev].out) * (bp.arch.layers[bp.arch.size - 1].
neurons{idx_out] .wlidx_prevl]};
}
sum +=(bp.arch.layers[bp.arch.size -~ 1l].neurons[idx_out].
w[bp.arch.layers[bp.arch.size - 2].size]l};
bp.arch.layers([bp.arch.size - 1].neurons[idx_out].in=sum;
bp.arch.layers(bp.arch.size - 1].neurons[idx_out].out =
activate_function(sum,bp.arch.layers[bp.arch.size - 1].
neurons {idx_out] .neuron_function);

}
if (bp.env.operation_mode == NN_RECALL)
{
print_recall_result();
}
if (bp.env.operation_mode == NN_TRAINING)
{
bp_cur_state = BP_BACK_PROPAGATION_OUTPUT;
}
else
{ // recall
bp_cur_state = BP_NEXT_PATTERN;
}

In the BP_BACK_PROPAGATION_OUTPUT state, the errors of the PEs in the
output layer are calculated for the current training pattern. The calculation depends

’O Chapter Six—Neural Network Implementations

on the type of activation function of the output PEs. For a back-propagation
network, the activation function is usually a linear function or one of several
S-shaped functions. The mean-square error is also accumulated for this training
pattern.

The current state transitions to the state BP_BACK_PROPAGATION_HIDDENS.
Following is the state handler routine.

static void bp_back_propagation_output (void)
{

lint idx;

double tempA, tempB;

for (idx = 0; idx < (bp.arch.layers{bp.arch.size - 1].size); idx++)
{
tempA = (target_out[idx] - bp.arch.layers[bp.arch.size - 1].
neurons [idx] .out);
switch (bp.arch.layers[bp.arch.size - 1].neurons{idx]
.neuron_£function)
{
case NN_LINEAR_FUNCTION:
bp.arch.layers[bp.arch.size - 1].neurons{idx].error =
tempA;
break;
case NN_GAUSIAN_FUNCTION:
printf ("BP net can’t have Gaussian Neurons, exit\n");

exit (1);
break;
default: // NN_SIGMOID_FUNCTION
tempB = (bp.arch.layers[bp.arch.size - 1].neurons{idx].out) *

(1.0 - (bp.arch.layers([bp.arch.size - 1]
.neurons[idx].out));
bp.arch.layers[bp.arch.size - 1].neurons[idx].error =
tempA * tempB;
break;
}
bp.mse += (tempA * tempd);
}
bp_cur_state = BP_BACK_PROPAGATION_HIDDENS;

In the BP_BACK_PROPAGATION_HIDDENS state, the errors of the PEs in all
hidden layers are calculated. The errors are calculated backward, from the last hid-
den layer to the first hidden layer. Since only one kind of S-shaped function, the
sigmoid function, is included in the enumeration data type NN_Function_Type,
the calculation is hard-coded into the function that is below. If more S-shaped
functions are included later, then either an if-else statement or a switch
statement should be used. The current state transitions to the state BP_BATCH_
TEMP_WEIGHT_STEP_CHANGE. The state handler routine is shown here.

static void bp_back_propagation_hiddens (void)
{

int idx_1, idx_cn, idx_nn;

Back-propagation Implementation Q

=

double tempAh, sum;

for (idx_1 = bp.arch.size - 2; idx_1 > 0; idx_1--}
{ // loop through all the hidden layers
for (idx_cn = 0; idx_cn < (bp.arch.layers[idx_1l].size);idx_cn++)
{ // loop through all the neurons in the current hidden layer
sum = 0.0;
for (idx_nn = 0; idx_nn < (bp.arch.layers([idx_1 + 1l].size);
idx_nn++)
{ // loop through the next layer’s neurons
sum += (bp.arch.layers{idx_1 + 1].neurons(idx_nn].error) *
(bp.arch.layers[idx_1 + 1] .neurons([idx_nn]
.wlidx_cnl);
}
tempA = bp.arch.layers[idx_1l].neurons[idx_cn].out *
(1.0 -~ (bp.arch.layers[idx_1l].neurons[idx_cn].out));
bp.arch.layers{idx_1].neurons{idx_cn].error = sum * temph;
}
}
bp_cur_state = BP_BATCH_TEMP_WEIGHT_STEP_CHANGE;

In the BP_BATCH_TEMP_WEIGHT_STEP_CHANGE state, the temporary con-
nection weight incremental changes are calculated. This state is added for the pur-
pose of batch mode training. If only the sequential training mode is used, this state is
unnecessary. The calculation is based on equation 6.8. The current state transitions
either to the state BP_NEXT_PATTERN if batch mode training is being used or to
the state BP_WEIGHT_STEP_CHANGE if sequential mode training is being used.
The state handler routine is listed here.

static void bp_batch_temp_weight_step_change (void)
{

int idx_layer, idx_cn, idx_pn;

double tempA;

for (idx _layer = bp.arch.size ~ 1; idx_layer > 0; idx_layer--)
{ // loop through layers
for (idx_cn = 0; idx_cn < {(bp.arch.layers[idx_layer].size);

idx_cn++)
{ // loop through neurons in the current layer
for (idx_pn = 0; idx_pn < (bp.arch.layers[idx_layer - 1l].size);
idx_pn++)

{ // loop through neurons in the previous layer
tempA = bp.arch.layers[idx_layer] .neurons[idx_cn].error *
bp.arch.layers[idx_layer - 1l].neurons[idx_pn].out;
tempA *= bp.env.eta;
bp.arch.layers{idx_layer] .neurons[idx_cn]
.temp_delta_w([idx_pn] += tempA;
}
bp.arch.layers{idx_layer].neurons(idx_cn].temp_delta_w[bp.arch
.layers[idx_layer - 1].size] += bp.env.eta *
bp.arch.layers[idx_layer].neurons[idx_cn].error;

’O Chapter Six—Neural Network Implementations

if (bp.env.train_mode == NN_BATCH_MODE)
{
bp_cur_state = BP_NEXT_PATTERN;

bp_cur_state = BP_WEIGHT_STEP_CHANGE;

The BP_NEXT_PATTERN state is used to determine which state to transition to
according to back-propagation network environment information. First, the current
training pattern index is increased by one.

If the back-propagation net is in training operation mode and the training
mode is batch mode training, then the current training pattern index is compared
with the maximum number of training patterns. If the current training pattern
index is less than the maximum number of training patterns, the current state
transitions to the state BP_GET_PATTERN; otherwise, it transitions to the state
BP_WEIGHT_STEP_CHANGE.

If the back-propagation net is in the training operation mode and the training
mode is sequential training, then if the current training pattern index is less than
the maximum number of training patterns, the current state transitions to the state
BP_GET_PATTERN. Otherwise, it transitions to the state BP_ NEXT_GENERATION.

If the back-propagation net is in recall/testing operation mode, then the cur-
rent training pattern index is compared with the maximum number of pat-
terns. If the current training pattern index is less than the maximum number
of patterns, the current state transitions to the state BP_GET_PATTERN; other-
wise, it transitions to the state BP_RECALL_DONE. The state handler routine is
listed here.

static void bp_next_pattern (void)
{
bp.env.cur_pat++;
if (bp.env.operation_mode == NN_TRAINING)
{
if (bp.env.train_mode == NN_BATCH_MODE)
{
if (bp.env.cur_pat < bp.env.max_tra_pat)
{
bp_cur_state = BP_GET_PATTERN;
}
else
{
bp_cur_state = BP_WEIGHT_STEP_CHANGE;
}
}
else // sequential learning
{
if (bp.env.cur_pat < bp.env.max_tra_pat)

Back-propagation Implementation O‘@

bp_cur_state = BP_GET_PATTERN;

bp_cur_state = BP_NEXT_GENERATION;

}
else // recall

{

if (bp.env.cur_pat < patset.size)
{

]

bp_cur_state BP_GET_PATTERN;

}

else

{

"

bp_cur_state BP_RECALL_DONE;

}

In the BP_WEIGHT_STEP_CHANGE state, the connection weight step changes
are calculated according to equation 6.8, and the temporary connection weight step
changes are cleared. The current state transitions to the state BP_WEIGHT_CHANGE.
The state handler routine is listed next.

static void bp_weight_step_change (void)
{

int idx_layer, idx_cn, idx_pn;

for (idx_layer = 1; idx_layer < (bp.arch.size); idx_layer++)
{ // loop through the layers
for (idx_cn = 0; idx_cn < (bp.arch.layers{idx_layer].size);

idx_cn++)
{ // loop through the neurons in the current layer
for (idx_pn = 0; idx_pn <= (bp.arch.layers(idx_layer-1).size);
idx_pn++)

{// loop through the connection weights of the current neurons
bp.arch.layers[idx_layer] .neurons[idx_cn].delta_w[idx_pn]*=
bp.env.alpha;

bp.arch.layers[idx_layer].neurons[idx_cn].delta_w{idx_pn}

+=(bp.arch.layers{idx_layer] .neurons[idx_cn]
.temp_delta_w{idx_pn]);
bp.arch.layers[idx_layer].neurons{idx_cn]
.temp_delta_w({idx_pn] = 0.0;

}
}
bp_cur_state = BP_WEIGHT_CHANGE;

In the BP_WEIGHT_CHANGE state, the connection weight changes are
calculated according to equation 6.8. The current state transitions to the state

@’O Chapter Six—Neural Network Implementations

BP_NEXT_GENERATION if in batch mode training; otherwise, to the state
BP_NEXT_PATTERN. The state handler routine is shown next.

static void bp_weight_change (void)

{

int idx_layer, idx_cn, idx_pn;

for (idx_layer = 1; idx_layer < (bp.arch.size); idx_layer++)
{ // loop through the layers
for (idx_cn = 0; idx_cn < (bp.arch.layers(idx_layer].size);
idx_cn++)
{ // loop through the neurons in the current layer
for (idx_pn = 0;idx_pn <= (bp.arch.layers[idx_layer - 1].size);
idx_pn++)
{ // loop through the connection weights of the current neurons
bp.arch.layers[idx_layer] .neurons[idx_cn]}
.wlidx_pn] += bp.arch.layers[idx_layer].neurons[idx_cn]
.delta_w(idx_pn];

}

if (bp.env.train_mode == NN_BATCH_MODE)
{

bp_cur_state BP_NEXT_GENERATION;
}
else
{
bp_cur_state = BP_NEXT_PATTERN;

}

In the BP_NEXT_GENERATION state, the errors of all PEs in the network are

first cleared for the next generation; then the mean-squared error is calculated
by dividing the accumulated mean-squared error by the total number of training
patterns. The current generation index is increased by 1 and compared with the
maximum number of generations. If the current generation number is less than the
maximum number of generations, the mean-squared error is cleared and the state
transitions to the state BP_UPDATE_LEARNING_RATE; otherwise, the current
state transitions to the state BP_ TRAINING_DONE.

static void bp_next_generation (void)

{

int idx_layer, idx_cn;

for (idx_layer = 0; idx_layer < ({(bp.arch.size); idx_layer++)
{ // loop through the layers
for (idx_cn = 0; idx_cn < (bp.arch.layers[idx_layer].size);
idx_cn++)
{ // loop through the neurons in the current layer
// clear the error
bp.arch.layers[idx_layer].neurons(idx_cn].error = 0.0;

Back-propagation Implementation O‘.@

bp.mse /= bp.env.max_tra_pat;

if ((++bp.env.cur_gen) < bp.env.max_gen) // add error criterion later
{

bp.mse = 0.0; //clear mean squared error

bp_cur_state = BP_UPDATE_LEARNING_RATE;

}
else

{
bp_cur_state = BP_TRAINING_DONE;

}

In the two states, BP_UPDATE_LEARNING_RATE and BP_UPDATE_
MOMENTUM_RATE, if a dynamic learning rate and/or momentum rate are
used, then the new learning rate and momentum rate are updated. In our implemen-
tation, rates are fixed. Therefore, these two state handler routines do nothing except
transition the current state to state BP_UPDATE_MOMENTUM_RATE and state
BP_GET_PATTERN, respectively.

In the two states BP_TRAINING_DONE and BP_RECALL_DONE, the post-
processing of data or results is performed. In the current implementation, nothing
is performed in either state.

Running the Back-propagation Implementation

To run the back-propagation neural network implementation requires the execu-
table file bp.exe and an associated run file, for example, iris_bp.run. To
run the implementation from within the directory containing bp.exe and
iris_bp.run, at the DOS system prompt type bp iris_bp.run.

The contents of the iris_bp. run file, an example of a run file for a back-
propagation network with one hidden layer, are listed here:

.075
.15
.01
10000
939

[= N =N Rl

(o]

iris.dat

The first entry (0) is for specifying the network operation mode, 0 for train-
ing and 1 for recall or testing. The second entry (0) tells which training mode is
going to be used if the operation mode is the training mode (0); otherwise, the

’O Chapter Six—Neural Network Implementations

value is ignored. 0 specifies batch mode training and 1 specifies sequential mode
training. The third value (0. 075) and the fourth value (0 . 15) are the learning rate
and momentum rate, respectively.

The next value, 0. 01, is the error termination criterion. In the current imple-
mentation, the only termination criterion is the maximum number of generations.
Implementing the error termination criterion is left as an exercise at the end of this
chapter.

The next value (10000) is the maximum number of generations followed by the
total number of training patterns (99). Note that the Iris dataset has 150 patterns;
here we are using 99 of them for training.

Following the total number of training patterns are the number of layers (3),
the number of PEs in the hidden layer (4), the total number of patterns (150), the
dimension of the input (4), the dimension of the output (3), and the filename of
the data file (iris.dat) where the patterns are stored. Note that this run file (with
three layers) is valid for a network with one hidden layer.

For a network with two hidden layers, see the contents of the
iris_bp2.runfile listed next.

iris.dat

In this example, following the total number of training patterns are the number of
layers (4), the number of PEs in the first hidden layer (4), the number of PEs in
the second hidden layer (3), the total number of patterns (150), the dimension of
the input (4), the dimension of the output (3), and the filename of the data file
(iris.dat) where the patterns are stored.

Following the training of the network, the results, which include the weights
of the trained network and the final mean-squared error for the training
pattern set, are in file BP_RES . TXT. After you run the test patterns, a summary of
the test results appears in BP_TEST . TXT, and a pattern-by-pattern listing of the
target values versus output values for the Iris dataset appears in irisres.txt.
Note that the weights of the trained network are the essential output of this
training step.

The Kohonen Network Implementations O‘.@

The Kohonen Network Implementations

In this section, we first present an implementation of another common neural
network paradigm, the learning vector quantizer (LVQ), sometimes referred to
as a Kohonen network. We then discuss the implementation of Kohonen’s self-
organizing feature map network, which is an extension of LVQ.

Programming the Learning Vector Quantizer

Figure 6.5 shows the state transition diagram for the implementation of the lear-
ning vector quantizer discussed in this section. First we define some new data
types.

We now present LVQ network definitions. This section defines some data types
applicable only to the implementation of the LVQ network. The general definitions
previously discussed in the General Definitions for Neural Networks subsection of
the Back-propagation Implementation section are still valid here. The new data
types are shown in Listings 6.6 and 6.7. The new enumeration data types are in
Listing 6.6, and the new structure data types appear in Listing 6.7.

Listing 6.6 Enumeration data types for the LVQ network.

/**/

/* Enumerations */
/***k**/
typedef enum LVQ_Training_Mode_Tag
{

LVQ_RANDOM_MODE,

LVQ SEQUENTIAL_MODE,

NUM_LVQ_TRAINING_MODES
} LVQ_Training_Mode_Type;

typedef enum LVQ State_Tag

{
LVQ_GET_PATTERN,
LVQ_WEIGHT_NORMALIZATION,
LVQ_FEEDFORWARD_INPUT,
LVQ_FEEDFORWARD_OUTPUT,
LVQ_WINNING_NEURON,
LVQ _WEIGHT_STEP_CHANGE,
LVQ_WEIGHT_CHANGE,
LVQ_NEXT_PATTERN,
LVQ_NEXT_ITERATION,
LVQ _UPDATE_LEARNING_RATE,
LVQ_UPDATE_CONSCIENCE_FACTOR,
LVQ_TRAINING_DONE,
LVQ_RECALL_DONE,
NUM_LVQ_STATES

} LVQ_State_Type;

’O Chapter Six—Neural Network Implementations

typedef enum LVQ_Conscience_Type_Tag
{

LVQ_NO_CONSCIENCE,

LVQ_CONSCIENCE,

NUM_LVQ_CONSCIENCE
} LVQ_Conscience_Type;

LVQ_GET_
PATTERN

LVQ_UPDATE_
CONSCIENCE_
FACTOR

FEEDFORWARD_
INPUT

cur_ite <

LVQ_UPDATE_) maxte/ o NEXT_\curte >=maxite |y TRAINING | (rpppeoats oo
LEARNING__ ITERATION oo -

RATE

LVQ_WINNING_
NEURON

LVQ_NEXT_
PATTERN

LVQ_WEIGHT_
STEP_CHANGE

Figure 6.5 A state diagram of the LVQ network in training operation mode.

The Kohonen Network Implementations O‘ .@

The enumeration data type LVQ_Training_Mode_Type defines two
training modes: LVQ_RANDOM_MODE and LVQ_SEQUENTIAL_MODE. In
LVQ_RANDOM_MODE training mode, the training pattern is randomly selected
from the training pattern set and presented to the LVQ network; in
LVQ_SEQUENTIAL_MODE training mode, the training pattern is selected in the
order of the patterns in the training pattern set and presented to the
network.

The data type LVQ_State_Type defines all the states in the LVQQ state machine.
There are a total of 13 states, each of which has a corresponding state handling
routine. The states transition to each other according to the state transition diagram,
as shown in Figure 6.5.

The data type LVQ_Conscience_Type defines two conditions: LVQ_NO_
CONSCIENCE and LVQ_CONSCIENCE. These two conditions, as explained in the
subsection describing the LVQ_UPDATE_CONSCIENCE_FACTOR state, specify
how the LVQ adapts with or without a conscience.

Listing 6.7 Structure data types for the LVQ network.

/*************************************1\'************************/

/* Structures */
/******‘k***/

typedef struct Neuron_Type_Tag
{

NN_Function_Type neuron_function; // neuron function

float in; // neuron input

float out; // neuron output

FVECTOR w; // weights from the previous layers
FVECTOR delta_w; // step change of weights
float c_f; // conscience factor

float b_v; // bias value

int w_S; // winner status, y in equation

} Neuron_Type;

typedef struct NN_Layer_Arch_Type_Tag
{

int size; // number of neurons in the layer
Neuron_Type *neurons; // pointer to the neurons
NN_Layer_Type layer_type;

} NN_Layer_Arch_Type;

typedef struct LVQ_ Arch_Type_Tag
{

int size; // number of layers
NN_Layer_Arch_Type *layers; // pointer to the layers
} LVQ_Arch_Type;

’O Chapter Six—Neural Network Implementations

typedef struct LVQ_Env_Type_Tag
{
NN_Operation_Mode_Type operation_mode; // training or recall

LVQ_Training_Mode_Type train_mode; // training mode

float eta; // learning rate

float gama; // bias factor

float beta; /7

float shrink; // (eta) shrinking coefficient
float criterion; // criterion for termination
int max_ite; // maximum number of iterations
int cur_ite; // current iteration index

int max_tra_pat; // total number of training patterns
int cur_pat; // current training pattern index
int pat_counter;

LVQ_Conscience_Type conscience; // 0: no conscience, 1l: conscience
int winner; // index of winning neuron

int no_clusters; // number of clusters

} LVQ_Env_Type;

typedef struct LVQ_Type_Tag
{

LVQ_Arch_Type arch;
LVQ_Env_Type env;
} LVQ_Type;

typedef struct LVQ_Pattern_Set_Type_ Tag
{

int size; // number of patterns

int dim_in; // input dimension

int dim_out; // output dimension

FMATRIX patterns; // pointer to the array of patterns

} LVQ _Pattern_Set Type;

The structure data types for the LVQ network are shown in Listing 6.7. The
structure data type Neuron_Type defines PEs (neurons)—the basic building
components for the LVQ implementation. It is similar to the definition of PEs
in the back-propagation implementation. They share several identical elements
and have their own unique elements, which are put there for the purpose of
the corresponding learning algorithms’ implementation. In a more organized
way (left as a exercise), the common elements can be put together alone and
defined as a data type Neuron_Type, and the unique elements in each network
can be defined as data types BP_Neuron_Type and LVQ_Neuron_Type, as
shown in Listing 6.8. Other data types will then use BP_Neuron_Type and
LVQ_Neuron_Type instead of Neuron_Type.

The structure date type LVQ_Env_Type defines the environment parameters
for running the LVQ network in a manner similar to the BP implementation. It
includes operation mode (operation_mode), training mode (train_mode),

The Kohonen Network Implementations O‘ @

Listing 6.8 Alternative way to define the neuron (PE) data type.

typedef struct Neuron_Type_Tag
{

NN_Function_Type neuron_function; // neurcon function

float in; // neuron input

float out; // neuron output

FVECTOR Ww; // weights from the previous layers
FVECTOR delta_w; // step change of weights

} Neuron_Type;

typedef struct BP_Neuron_Type_Tag
{
Neuron_Type neuron; // basic neuron data type
FVECTOR temp_delta_w; // temp. step change of weights
} Neuron_Type;

typedef struct LVQ_Neuron_Type_Tag
{

Neuron_Type neuron; // basic neuron data type
float c_£; // conscience factor

float b_v; // bias value

int w_S; // winner status, y in equation

} LVQ_Neuron_Type;

learning rate (eta), bias factor (gama), constant value beta (beta), learning rate
shrinking rate (shrink), training criterion for termination (criterion), maxi-
mum number of iterations {max_ite), current iteration index (cur_ite), total
number of training patterns (max_tra_pat), current pattern index (cur_pat),
pattern learned counter within the current iteration (pat_counter), flag for
whether conscience is used (conscience), index of current winning neuron
(winner), and number of clusters {(no_clusters). Note that the number of clus-
ters is the number of output PEs.

The definition of structure date types NN_Layer_Arch_Type,
LVQ_Arch_Type, LVQ_Type, and LVQ_Pattern_Set_Type are the same as
defined in the BP implementation except that the mean-squared error (mse)
and hidden layers are not included in the data type definitions since LVQ is a
two-layered network and no error back-propagation-like learning algorithm is used.

The main () routine is shown in Listing 6.9. As in the back-propagation
implementation, it is kept as simple as possible to make the LVQ module as indepen-
dent as possible. In the LVQ_Start_Up () routine, all the necessary parameters for
running the LVQ implementation are read from the input file, and the dynamic
data storage variables are allocated memory space and initialized. In the
LVQ_Clean_Up () routine, the results are stored in a output file and the memory
space previously allocated is de-allocated. The LVQ_Main_Loop () routine is the
primary part of the LVQ implementation.

@ ’O Chapter Six—Neural Network Implementations

Listing 6.9 LVQ main () routine.

voild main (int argc, char *argv([])
{
// check command line
if (argc != 2)
{
printf("Usage: exe_file run_file");
exit (1);
}

main_start_upf{argv(l]);
LVQ_Main_Loop();
main_clean_up();

}

static void main_start_up (char *dataFile)
{

LVQ_Start_Up{dataFile);
}

static void main_clean_up (void)
{

LVQ_Clean_Up();
}

We now consider the LVQ_Main_Loop () routine. Before running this routine,
we define several LVQ file scope variables.

static LVQ_Type lvq;
static LVQ_Pattern_Set_Type patset;
static LVQ_State_Type lvg_cur_state;

As in the back-propagation implementation, these three variables are defined as
static to prevent them from accidentally being changed by outside modules. The
variable 1vq stores information related to the LVQ net during the run. The variable
pat set stores all the input/output pairs of patterns. The variable Lvg_cur_state
records the current state of the LVQ state machine. When the LvQ_Main_Loop ()
routine is running, it calls the current state’s handling routine through
lvg_state_handler (1vg_cur_state), where the current state performs its
action until it is transitioned to another state. The 1vg_Main_Loop () keeps run-
ning until its current state is transitioned to the state LvQ_ TRAINING_DONE when
the LVQ net is in training operation mode or the state LVQ_RECALL_DONE when
the LVQ net is in recall/test operation mode. The LVQ_Main_Loop () routine is
listed here.

void LVQ_Main_Loop (void)

{ BOOLEAN running;

running = TRUE;

The Kohonen Network Implementations O‘ ; @

while (running)
{
if ({lvg_cur_state == LVQ_TRAINING_DONE} ||
(lvg_cur_state == LVQ_RECALL_DONE))

{
running = FALSE;

}
lvg_state_handler (lvg cur_state);

LVQ State Handling Routines

We now examine the LVQ state handling routines. As in the BP implementation, the
most important part of the LVQ state machine is its state handler, which is shown
in Listing 6.10. The state handler calls its current state’s handling routine until the
current state is transitioned to a new state, where the new state’s handling routine is
called by the state machine.

Listing 6.10 Main part of the LVQ state machine.

static void 1lvg_state_handler (int state_index)
{
switch {(state_index)
{

case LVQ_GET_PATTERN:
lvqg_get_pattern();
break;

case LVQ_WEIGHT_NORMALIZATION:
lvg _weight_normalization{};
break;

case LVQ_FEEDFORWARD_INPUT:
lvg_feedforward_input {};
break;

case LVQ_FEEDFORWARD_OUTPUT:
1lvg_feedforward output () ;
break;

case LVQ_WINNING_NEURON:
lvg_winning_neuron();
break;

case LVQ_WEIGHT_STEP_CHANGE:
lvg_weight_step_change();
break;

case LVQ_WEIGHT_CHANGE:
ivg weight_change ();
break;

case LVQ_NEXT_PATTERN:
lvg _next_pattern();
break;

case LVQ _NEXT_ITERATION:
lvg_next_iteration{);
break;

case LVQ_UPDATE_LEARNING_RATE:
lvg_update_learning_rate(};
break;

’O Chapter Six—Neural Network Implementations

case LVQ_UPDATE_CONSCIENCE_FACTOR:
lvq_update_conscience_factor();
break;

case LVQ _TRAINING_DONE:
lvg_training_done();
break;

case LVQ_RECALL_DONE:
lvg_recall_done{);
break;

default:
break;

In the LVQ_GET_PATTERN state, the current pattern portion specified by
lvg.env.cur_pat is copied to the input PEs in the input layer and to the
target output; then the current state transitions to the state LVQ_WEIGHT_
NORMALIZATION if the operation mode is NN_TRAINING mode; otherwise, it
transitions to the state LVQ_FEEDFORWARD_INPUT. The state handling routine
is shown here.

static void lvg_get_pattern (void)
{

int idx;

for (idx = 0; idx < (lvg.arch.layers[0].size); idx++)
{
lvg.arch.layers[0] .neurons[idx].in = patset.patterns
[lvg.env.cur_pat] {idx];

for (idx = 0; idx < patset.dim_out; idx++)

target_out[idx] = patset.patterns[lvqg.env.cur_pat]
[patset.dim_in + idx];

}
if (lvg.env.operation_mode == NN_TRAINING)

{
lvg cur_state = LVQ _WEIGHT_NORMALIZATION;

}
else

{
lvg_cur_state = LVQ_FEEDFORWARD_INPUT;

}

In the LVQ_WEIGHT_NORMALIZATION state, the weight vector is normalized
according to equation 6.1. The if statement if (sum > 0.0) is added to avoid
the rare situation where all the weights connected to output neurons are 0s. The
current state transitions to the state LVQ_FEEDFORWARD_INPUT. The state han-
dling routine is shown here.

The Kohonen Network Implementations O‘ @

static void lvg weight_normalization (void)

{

int idx_cn, idx_pn;
double sum;
float temp_f£;

for (idx_cn = 0; idx_cn < (lvg.arch.layers[l].size) ; idx_cn++)
{ // loop through neurons in the output layer
sum = 0.0;
for (idx_pn = 0; idx_pn < (lvg.arch.layers[0].size) ; idx_pn++)
{ // loop through all the weights connected to this neuron
sum += lvqg.arch.layers{l].neurons[idx_cn].w[idx_pn] *
lvg.arch.layers[1] .neurons[idx_cn].w[idx_pn];
}
sum = sqrt (sum);
if (sum > 0.0)
{
for (idx_pn = 0; idx_pn < (lvg.arch.layers[0].size) ; idx_pn++)
{ // loop through all the weights connected to this neuron
temp_f = lvg.arch.layers[l].neurons(idx_cn].w[idx_pn]/sum;
lvg.arch.layers[l] .neurons[idx_cn].w[idx_pn] = temp_f;

}

}
lvg_cur_state = LVQ_FEEDFORWARD_INPUT;

In the LVQ_FEEDFORWARD_ INPUT state, the output of the input layer is calcu-

lated. As in the back-propagation implementation, the input layer is treated as only
a path to the next layer (the output layer). The output of each input PE equals its
input. The current state transitions to the state LvQ_FEEDFORWARD_OUTPUT. The
state handling routine is shown here.

static void lvqg_feedforward_input (void)

{

int idx;

for (idx = 0; idx < (lvg.arch.layers[0].size); idx++)
{
lvg.arch.layers[0] .neurons{idx].out = lvg.arch.layers[0]
.neurons[idx].in;
}
lvg_cur_state = LVQ_FEEDFORWARD_OUTPUT;

In the LVQ_FEEDFORWARD_OQUTPUT state, the Euclidean distance between the

input vector and the weight vector for each output PE (neuron) is first calculated
according to equation 6.4. Then the output of each output PE is calculated, which
is equal to the its Euclidean distance since the output PEs have a linear activation
function. The current state transitions to the state LVQ_WINNING_NEURON. The
state handling routine is shown here.

’O Chapter Six—Neural Network Implementations

static void lvqg_feedforward_output (void)
{

int idx_out, idx_prev;

double sum, temp_f;

for (idx_out = 0; idx_out < (lvg.arch.layers[l].size); idx_out++)
{ // loop through the neurons of the output layer

sum = 0.0;

for (idx_prev = 0; idx_prev < (lvg.arch.layers[0].size);

idx_prev++)
{ // loop through the neurons of the input layer
temp_f = (lvg.arch.layers[0].neurons([idx_prev].out -

lvg.arch.layers[1l] .neurons[idx_out] .w[idx_prev]);

sum += (temp_f * temp_f£);

}

temp_f = sqrt (sum);

lvg.arch.layers[1l] .neurons{idx_outl]l.in = temp_f;

lvg.arch.layers[1l] .neurons[idx_out].out = activate_function(
temp_f,lvg.arch.layers{l] .neurons{idx_out].neuron_function);

}
lvg _cur_state = LVQ_WINNING_NEURON;

In the LVQ_WINNING_NEURON state, the new winning PE for the current input
pattern is determined. The last and new winning neurons’ winning statuses are
updated. The current state transitions to the state LVQ_WEIGHT_STEP_CHANGE
if it is in training operation mode; otherwise, it transitions to the state
LVQ_NEXT_PATTERN and the recall/test result is recorded. The state handling
routine is shown here.

static void lvg_winning_neuron (void)
{

int idx, temp_w;

float min_v = 1000.0;

for (idx = 0; idx < {(lvg.arch.layers{l]).size); idx++)
{ // loop through the neurons in output layer
if ((lvg.arch.layers[l].neurons[idx].out -

lvg.arch.layers{l].neurons[idx].b_v) < min_v)

min_v = lvq.arch.layers{1l].neurons[idx].out -
lvg.arch.layers[1l].neurons[idx]}.b_v;
temp_w = idx;
}

}
lvqg.arch.layers[1l] .neurons[lvg.env.winner].w_s = 0;
lvg.env.winner = temp_w;
lvg.arch.layers[1l].neurons{lvg.env.winner].w_s = 1;

if (lvg.env.operation_mode == NN_TRAINING)
{

lvq_cur_state = LVQ_WEIGHT_STEP_CHANGE;
}
else
{ // recall

The Kohonen Network Implementations O‘..

update_recall_result (};
lvg _cur_state = LVQ_NEXT_PATTERN;

Inthe LVQ_WEIGHT_STEP_CHANGE state, the winning neuron’s weight change
increments are calculated according to equation 6.11. The state transitions to the
state LVQ_WEIGHT_CHANGE. The state handling routine is shown here.

static void lvg_weight_step_change (void)
{
int idx_pn;

for (idx_pn = 0; idx_pn < {(lvqg.arch.layers[0}].size)} ; idx_pn++)
{ // loop through the connect weights of the current neurons
lvg.arch.layers[1l] .neurons[lvg.env.winner].delta_w{idx_pn] =
lvg.arch.layers{0] .neurons{idx_pn].out -
lvg.arch.layers([l] .neurcons{lvqg.env.winner}.w{idx_pn];
lvg.arch.layers[1l].neurons[lvg.env.winner].delta_w[idx_pn] *=
lvg.env.eta;

}
1lvg_cur_state = LVQ WEIGHT_CHANGE;

In the LVQ_WEIGHT_CHANGE state, the winning neuron’s weights are updated
by adding its newly calculated weight change increments. The state transitions to the
state LVQ_NEXT_PATTERN. The state handling routine is shown here.

static void lvqg weight_change (void)
{
int idx_pn;

for (idx_pn = 0; idx_pn < (lvg.arch.layers[0].size) ; idx_pn++)
{ // loop through the connect weights of the current neurons
lvg.arch.layers{l] .neurons[lvg.env.winner].wlidx_pn] +=
lvg.arch.layers[l].neurons{lvqg.env.winner].delta_w{idx_pn];
}
lvg_cur_state = LVQ_NEXT_PATTERN;

The LVQ_NEXT_PATTERN state is used to determine which state is the next state
according to the LVQ network environment information.

If the LVQ is in training operation mode, first the next input pattern is selected. If
it is in random training mode, an input pattern is randomly selected from the train-
ing pattern set. Otherwise, the next pattern in the training pattern set is selected,
or the first pattern is selected if it is at the end of the training pattern set. The pat-
tern counter is then increased by one. If it is less than the total number of train-
ing patterns, the current state transitions to the LVQ_UPDATE_LEARNING_RATE.
Otherwise, it transitions to the state LVQ_NEXT_ITERATION.

If the LVQ is in recall operation mode, the current pattern index is increased
by one. If the current pattern index is less than the total number of training

’O Chapter Six—Neural Network Implementations

patterns, the current state transitions to the state LVQ_GET_PATTERN; otherwise,
it transitions to the state LVQ_RECALL_DONE. The state handling routine is
shown here.

static void lvg_next_pattern (void)
{

if (lvg.env.operation_mode =
{

NN_TRAINING)

if (lvg.env.train_mode =
{ // random training
lvg.env.cur_pat = rand()%(lvqg.env.max_tra_pat);

LVQ_ RANDOM_MODE)

}
else
{ // sequential training
if (++lvqg.env.cur_pat >= lvq.env.max_tra_pat)
{
lvg.env.cur_pat = 0;
}
}
if ((++lvg.env.pat_counter) <lvg.env.max_tra_pat)
{ // add other termination criterion here
lvg _cur_state = LVQ_UPDATE_LEARNING_RATE;
}
else
{
lvg _cur_state = LVQ NEXT_ITERATION;
}
}
else // recall
{
if ((++lvg.env.cur_pat) < patset.size)
{
lvg_cur_state = LVQ_GET_PATTERN;
}
else

{

lvg_cur_state LVQ_RECALL_DONE;

}

In the LVQ_NEXT_ITERATION state, the current iteration index is increased
by one. If the index is less than the maximum number of iterations, the current
state transitions to the state LVQ_UPDATE_LEARNING_RATE; otherwise, it
transitions to the state LVQ_TRAINING_DONE. The state handling routine is
shown here.

static void lvg_next_iteration (void)
{
lvg.env.pat_counter = 0;
if ((++lvg.env.cur_ite) < lvg.env.max_ite)
{ // add other termination criterion here
lvg_cur_state = LVQ_UPDATE_LEARNING_RATE;
}

The Kohonen Network Implementations O‘ i @

else

{
lvg.env.pat_counter = 0;
lvg_cur_state = LVQ_TRAINING_DONE;

In the LVQ_UPDATE_LEARNING_RATE state, the new learning rate n(t) dec-
reases over time. In this implementation, n(t) is shrinking over time (number of
patterns presented to the LVQ network) and is calculated according to equation 6.13.

n(t+1)=n(t) X u
7(0) = no

(6.13)

where both 5y and y are positive constants. Other decreasing functions of time can
also be used as functions to update learning rate n(t) , which is left as a exercise for
the student.

The current state transitionsto thestate LvQ_UPDATE_CONSCIENCE_FACTOR.
The state handling routine is shown here.

static void lvg_update_learning_rate (void)
{
lvg.env.eta *= lvg.env.shrink;
lvg_cur_state = LVQ_UPDATE_CONSCIENCE_FACTOR;

Inthe LVQ_UPDATE_CONSCIENCE_FACTOR state,a “conscience” isadded into
the network if a network conscience is specified in the input file. We now explain
what a conscience is and why it is often necessary for an LVQ network to incorporate
a conscience.

Optimally, in an LVQ network with n output PEs, each PE should represent
(should have been the winner for) exactly 1/n of the training patterns. Given a net-
work free to train constrained only by equation 6.11, however, it is not likely that
this evenly distributed representation will occur. It is especially unlikely to occur if
the distribution of the (randomized) initial weights does not match the probability
distribution of the pattern set used for training very well. The following example
should help you visualize this situation.

Consider a case of three-dimensional pattern vectors that all terminate on the
surface of a sphere. Assume that the pattern vectors are fairly evenly distributed over
the sphere’s surface. Further assume that the weight vectors are initialized so that
all but one terminate in, and are fairly evenly distributed over, one hemisphere; the
last weight vector is alone near the center of the other hemisphere. The lone weight
vector will thus be the “winner” for far more of the patterns than any other weight
vector; it will “dance” around its hemisphere trying to represent far more than its
share of patterns, and it will end up not representing them well at all. What is needed

@ 'O Chapter Six—Neural Network Implementations

is some mechanism that “punishes” the lone weight for winning too often and moves
other weight vectors into the lone weight’s hemisphere.

A method to accomplish this was developed by DeSieno (1988). He des-
cribes the method as adding a conscience to the network. First, for a given input pat-
tern, the Euclidean distance as described in equation 6.4 is calculated for each output
PE. Normally, the PE with the minimum distance would be declared the winner, and
the weights abutting it would be updated according to equation 6.11. Before a win-
ner is declared, however, the following calculations are made.

Before starting the training, a conscience factor f; is defined for each output
PE, and each is initialized to the value 1/n, where n is the number of output PEs.
Each time a pattern is presented to the network, the winning PE is selected
according to equation 6.14(a), where b; is a bias value calculated for each output
PE according to equation 6.14(b). (When training starts, each bias value is 0.) The
“bias factor” y in equation 6.14(b) is usually set to a value of approximately 10.

Only the single winning PE selected in equation 6.14(a) has its weights updated
according to equation 6.11. Following the winning PE’s weight updates, all PEs have
their conscience factors updated according to equation 6.14(c), where gis a constant
typically valued at about 0.0001.

y}”i“"er =1 for min(dj - bj), yj =0 forall other PEs (a)

1
b = 7(; -)5.> ®) (614
finew =]¢;Old + ﬂ(}’] _f}()ld) (C)

A brief example may clarify how the conscience works. Consider a network with
10 output PEs. The initial values of all f;’s are thus 0.1. When the very first training
pattern is presented to the network, the PE with the weight vector closest to the
pattern (minimum Euclidean distance) is the winner and has its weights updated (all
b;’s are 0 at this point). All output PEs then have their conscience factors updated.
For the winning PE, the new value of f; is [0.1 + 0.0001(1.0 — 0.1)] = 0.10009; for
all other PEs, the new conscience factor is 0.1 — 0.00001 = 0.09999. The value of b;
for the winner is now —0.0009; its value is 0.0001 for all other PEs. When the second
pattern is presented, the previous winner’s Euclidean distance is thus penalized by
having 0.0009 added to it; all others are enhanced by having 0.0001 subtracted from
them. Frequent winners will have negative b;’s, infrequent winners will have positive
b;’s, and the result will be a good model of the probability density function of the
input patterns.

The constant g should be picked so that the conscience factors f; do not reflect
random fluctuations in the data. The bias factor y determines the distance a losing

The Kohonen Network Implementations Q‘ .'

PE can move in order to enter the solution. A bias factor of 0 corresponds to a “plain
vanilla” Kohonen LVQ.

The LVQ_UPDATE_CONSCIENCE_FACTOR state transitions to the state
LVQ_GET_PATTERN. The state handling routine is shown here.

static void lvg_update_conscience_factor (void)
{
int idx;
float temp_f£;
if (lvg.env.conscience == LVQ_CONSCIENCE)
{
for (idx = 0; idx < (lvg.arch.layers[l].size); idx++)
{ // loop through the neurons in output layer
temp_f = lvqg.arch.layers[1l].neurons[idx].c_f£;
lvqg.arch.layers([l].neurons{idx}.c_f = temp_f + lvg.env.beta *
(lvg.arch.layers{l].neurons{idx].w_s - temp_f£);
lvg.arch.layers[1l] .neurons[idx].b_v = lvg.env.gama *
(1.0/1vg.env.no_clusters - lvg.arch.layers[l]
.neurons [idx].c_£f);
}
}
lvg_cur_state = LVQ _GET_PATTERN;

We now examine the states LVQ_TRAINING_DONE and LVQ_RECALL_DONE.
As in the back-propagation implementation, in these two states the post-
processing of the data or results can be performed. In our current implement-
ation, the lvg_weight_normalization() routine is called in the state
LVQ_TRAINING_DONE’s handling routine.

Running the LVQ Implementation

To run the learning vector quantizer implementation requires the executable
file 1vqg.exe and an associated run file, for example, iris_1vqg.run. To run
the implementation from within the directory containing 1lvg.exe and
iris_lvq.run, at the DOS system prompt type: lvq iris_lvgq.run.

The contents of the iris_1lvgq. run run file are shown in Listing 6.11.

Listing 6.11 Runfileiris_lvg.run.

0

0
0.3
0.999
10
0.0001
0.001

500

O Chapter Six—Neural Network Implementations

—

150

4

3
iris.dat

The file contains specifications for a run. The file specifies operation mode (0) (0 is
training, 1 is testing), training mode (0) (0 is random pattern selection, 1 is sequen-
tial), learning rate (0. 3), learning rate shrinking coefficient (0. 999), bias factor
(10), beta (0.0001), training termination criterion (0. 001), maximum number
of iterations (500), total number of training patterns (99), network conscience sta-
tus (1), maximum number of clusters (6), total number of patterns in the training
file (150), dimension of pattern input (4), dimension of pattern output (3), and
pattern data filename (iris.dat) from which the patterns are read.

At the end of the run, two output files are obtained. The file LVQ_RES.txt
contains the weights for the LVQ network. The file LvQ_TEST . TXT contains a sum-
mary of the results. The summary table lists how many patterns from each class were
put into each cluster.

Programming the Self-organizing Feature Map

The self-organizing feature map neural network is an extension of the learning vec-
tor quantizer. In this section, we discuss the implementation of the self-organizing
feature map (SOFM), starting with an introduction to SOFM concepts.

The self-organizing feature map neural network, like LVQ networks, was devel-
oped by Teuvo Kohonen (1982a, 1982b) of the Helsinki University of Technology.
Self-organizing feature maps pick up where LVQ-I, as described earlier in this chap-
ter, leaves off. All of the features of LVQ-I, including the conscience, are incorpo-
rated into self-organizing feature maps. In addition, the adaptation procedure used
by SOFMs incorporates what is called a neighborhood. In order to discuss neighbor-
hoods and how they are used, we introduce the notion of a PE slab, which examines
topology and notation for the network.

To facilitate understanding the adaptation process of a self-organizing feature
map network, we implement the concept of a slab in the context of neural networks.
Slabs can simplify network diagrams because groups of PEs can be represented by
one symbol.

Functionally, a slab of PEs is a collection of PEs with similar attributes and a
defined (and fixed) topology. These attributes include such things as activation func-
tion, learning coefficient, and, if applicable, momentum factor. (Some attributes
have meaning only for certain types of network.) In addition, all PEs in a given slab

The Kohonen Network Implementations O‘@

O// Single PE
O
O

re—_ Slab of PEs

GIOLL
Q0
CO>CO>OOOO

Figure 6.6 A rectangular slab of PEs.

receive their inputs from the same source(s) (slab(s) and/or input pattern) and send
their outputs to the same destination(s) (slab(s) and/or output pattern).

The main difference between a layer of PEs and a slab of PEs is that topology
plays an important role in a slab. In PE layers, PEs can be moved around if their
weights (and inputs or outputs, if applicable) are moved with them. This is not the
case with slabs. While there usually are no connections among PEs in a slab, their
topological relationships are important, and operations are carried out that depend
on that topology. We suggest that the term slab be used only when these topologically
dependent operations are present.

Figure 6.6 illustrates the concept of a slab. In the figure, the PEs are arranged in
a rectangular pattern. The geometrical arrangement of PEs in a slab can vary and
depends on the application. (Most implementations of slabs are two-dimensional;
the word slab implies a flat structure, such as a thick plate or slice.) In the self-
organizing feature map, a rectangular array is usually used to depict the PEs in the
input slab and is often used for the output slab as well. Another arrangement, the
hexagonal array (Figure 6.7), is also sometimes used to represent the output slab
in the self-organization model. The geometry chosen to represent the output slab
determines the configuration of the neighborhood of each PE, a subject we address
later.

A simple illustration of a self-organizing feature map appears in Figure 6.8. We
use essentially the same notation as we used for the LVQ-I network, except for the
input and output slabs.

The two-dimensional slab configuration makes it desirable, in some cases, to use
double subscripts for PEs and for the input and output vectors. We use the single
subscript version in this section, primarily for simplicity.

A learning coefficient that is defined later is represented by the lowercase Greek
letter n (eta). A few words of caution are appropriate here. This learning coeffi-
cient isn’t exactly the same as the one for the back-propagation implementation.

@4’@ Chapter Six—Neural Network Implementations

- Single PE

O O

O O O
ONONONC
ONONONONG
O O OO0

Slab of PEs

Figure 6.7 A slab of PEs in a hexagonal array.

Weight

Matrix W
Input Vector N Output Vector

Ay Bk

Input Output
Slab Slab

Figure 6.8 Self-organizing feature map network model.

(We discuss that later.) Also, Kohonen used the lowercase Greek letter a (alpha) for
his learning coefficient. We chose n for consistency with the back-propagation imple-
mentation. When you see 7 in this book in connection with neural networks, you
know that it’s a learning coefficient, and when you see a, you know it’s a momen-
tum term.

Let’s look at network initialization and input. On the left of Figure 6.8 a set
of inputs comes into the input slab of the network. As is the case with the LVQ-I
paradigm, you are more likely to use raw data and less likely to use precalculated
parameters as inputs to a self-organizing feature map. As with LVQ-I, most people
working with SOFM usually normalize each entire input vector (see equation 6.1).
Be careful of destroying useful information in the normalization process; you may
want to consider using the z-axis normalization process described in Chapter 5.

There is general agreement about the need to initialize the SOFM weight vec-
tors by normalization. What isn’t necessarily clear is the best way to do it. First,
random values are assigned to each weight. One common approach is to initially
assign random weight values between 0.4 and 0.6. However, if you refer to the initial

The Kohonen Network Implementations O‘ @

illustration of Figure 5.16 in Kohonen (1988), you see that he initialized his network
weights to values between 0.45 and 0.55. If you look at the Pascal code for a program
called ToPreM2, which he published with his 1989 tutorial notes (Kohonen 1989),
you find each weight initialized to a random value between 0.4 and 0.6. Meanwhile,
in Caudill (1989a) initial weight vectors are generated that lie at random locations
on the unit circle, in accordance with equation 6.1.

The adaptation process for SOFM is quite similar to that for LVQ-I. The winning
PE is selected based on the minimum Euclidean distance between the input and
weight vectors using equation 6.4. The update of the weight vectors, however, is dif-
ferent from the update in LVQ-I and involves a concept known as a neighborhood.
Weight adjustments are made using a PE neighborhood that shrinks over time and a
learning coefficient that also decreases with time. The result is that the values of the
weights form clusters that reflect the probability density of the input vectors. When
the network has self-organized and training is complete, PEs that are topologically
near each other react similarly to similar input patterns.

The neighborhood is the portion of the output slab (the PEs) within a specified
topological radius of a given winning PE. We must first define the initial size of the
neighborhood. All PEs in the neighborhood of the winning PE have their weights
adjusted. Each iteration of a complete training pattern dataset is a discrete step in
time, or epoch. Thus, the first epoch is at f, the next at #1, and so on. In a rectangular
output slab, the topology of the PEs may (or may not, depending on the user) wrap
around left to right and top to bottom.

For the moment let us suppose that the PE in the center of the slab illustrated in
Figure 6.6 is the winner. For the first group of iterations (epochs), the neighborhood
of the winning PE is relatively large, perhaps large enough to cover most or all of the
output slab. For example, in Figure 6.7 the initial neighborhood may consist of the
winning PE and the 18 PEs surrounding it. After further iterations, the neighbor-
hood is decreased in size. This smaller neighborhood could consist, in our example,
of the winning PE plus the six PEs immediately surrounding it. Finally, after another
set of iterations, the neighborhood could shrink to include only the winning PE. The
number of iterations between changes in neighborhood size varies appreciably with
the application but is often in the range of a few hundred to a few thousand.

Now that you know how to decrease the size of the neighborhood with time, what
do you do with the weights of the PEs inside the neighborhood? (Remember that the
weights of the PEs outside the neighborhood are not changed.) Figure 6.9 illustrates
three approaches to weight adjustment. To implement these functions, imagine that
the PE slab is significantly larger than those of Figures 6.6 and 6.7, so that the initial
neighborhoods can be eight to ten PEs in diameter.

Figure 6.9(a) illustrates the “Mexican hat” function described by Kohonen (1988).
The largest weight adjustment, which is positive, occurs for the winning PE. Some-
what smaller positive changes are made to adjacent PEs, and still smaller changes to
PE weights adjacent and just outside of these, and so on, until at some distance ry

’O Chapter Six—Neural Network Implementations

. N_/ (a) Mexican hat function
- (b) Stovepipe hat function
"o (c) Chef hat function

«—- Distance from Winning PE —>

Figure 6.9 Magnitude of weight correction versus distance from winning PE in a self-
organizing feature map.

the weight adjustments go to 0. The weight changes then become slightly negative
for a while, finally becoming 0.

The shape of the Mexican hat function is reminiscent of the on-center off-
surround excitation pattern observed in some biological systems and implemented
by Grossberg (1973) in his gain control system for a PE group (see the section in the
history of neural networks of Chapter 5). Although the Mexican hat function may
exhibit biological plausibility, it adds computational complexity to a set of calcula-
tions that is usually performed thousands of times while training a SOFM. There-
fore, most applications of SOFMs have used simplified functions.

In the “stovepipe hat” function of Figure 6.9(b), identical positive weight changes
are made to all PEs within a radius of ry of the winning PE, and identical negative
weight changes are made to PEs at a slightly larger radius. Taking the simplifica-

The Kohonen Network Implementations O‘ .@

tion even further, we arrive at the “chef hat” function, shown in Figure 6.9(c), in
which only identical positive weight changes are made to those PEs within the ry
radius. This simple method is often used in implementations of the SOFM network
(Kohonen 1988).

In addition to reducing computational complexity, the chef hat function is used
for a practical reason. If we assume ry is about three times as large as the region of
negative reinforcement beyond it, as in Figure 6.9(a and b), then there won’t be any
negative reinforcement for neighborhoods less than nine PEs across. For a neigh-
borhood nine PEs across, the winning PE and three PEs on each side will receive
positive weight reinforcement, while one PE on each side (and four PEs away)
will receive negative reinforcement. As soon as the neighborhood shrinks to five
across, all in the neighborhood will receive positive reinforcement. In the authors’
experience, we have seldom worked with output slabs larger than five across, and
never larger than eight across, so it is rare that we start with neighborhood larger
than five across.

In summary, training consists of finding the winning PE according to the mini-
mum Euclidean distance method (perhaps including the effects of a conscience), as
in LVQ-1, and then updating the PE weights in the neighborhood according to equa-
tion 6.15. Note that this equation is identical to that for weight updating for LVQ-I
with the addition of the neighborhood function n(#). In the simplest version (most
often implemented) n(¢) is 1.0 within the chef hat neighborhood and 0.0 outside the
neighborhood, and the neighborhood size shrinks over time.

wii(t + 1) = w;(0) + n(On(t) (e — wji) (6.15)

Iterations continue until the corrections in equation 6.15 become acceptably
small or the specified maximum number of iterations is reached. As with LVQ-I,
it is not necessary to renormalize the weight vectors during or after training as long
as the changes to the weight vector components carried out according to equation
6.15 are small enough. Keeping them small keeps the weight vector near the surface
of the unit hypersphere and the dot-product remains valid. See the discussion of
the selection of training patterns for the LVQ-I paradigm; similar guidance should
be followed for SOFM. Also remember that the same conscience mechanism as that
for LVQ-I should be implemented for SOFM.

Let’s now examine SOFM data type definitions. SOFM is an extension of LVQ.
Thus the data types defined for the LVQ implementation are utilized here with minor
changes and different names—for example, LVQ_Type is renamed SOFM_Type.
Since in the SOFM a neighborhood concept is incorporated and is the main dif-
ference between LVQ and SOFM, the neighborhood concept is programmed into
the SOFM implementation. For SOFM, for visualization, the output slab is most
often two-dimensional; the neighborhood is therefore two-dimensional. The PEs

’O Chapter Six—Neural Network Implementations

(neurons), at least in the output slab, use double subscripts. Certainly, one- or
three-dimensional output slabs can alsobe used. If the output slab isone-dimensional,
the source code for LVQ implementation, except the routines for updating weights,
can be used here, where now all the PEs within the neighborhood of the winning
PE, instead of only the winning PE as in LVQ), have their weights updated. Actually,
this can also be true even for a two- or three-dimensional output slab, but it involves
some conversion routines from one-dimensional subscript expression to double or
triple subscripts and from double or triple subscripts to one-dimensional subscripts.
In our implementation, the common two-dimensional slab and double subscripts
are used. Therefore, minor changes to the LVQ implementation are required for
the SOFM implementation. The new data types are listed in Listing 6.12 for
convenience.

Listing 6.12 Data type definitions for SOFM.

/**************‘k*****************************i*****************/

/* Enumerations */
/******i*****************i**:\'**********************************/
typedef enum SOFM_Training_Mode_Tag
{

SOFM_RANDOM_MODE,

SOFM_SEQUENTIAL_MODE,

NUM_SOFM_TRAINING_MODES
} SOFM_Training_Mode_Type;

typedef enum SOFM_State_Tag

{ :
SOFM_GET_PATTERN,
SOFM_WEIGHT_NORMALIZATION,
SOFM_FEEDFORWARD_INPUT,
SOFM_FEEDFORWARD_OUTPUT,
SOFM_WINNING_NEURON,
SOFM_UPDATE_NEIGHBORHOOD,
SOFM_WEIGHT_CHANGE,
SOFM_NEXT_PATTERN,
SOFM_NEXT_TITERATION,
SOFM_UPDATE_LEARNING_RATE,
SOFM_UPDATE_CONSCIENCE_FACTOR,
SOFM_TRAINING_DONE,
SOFM_RECALL_DONE,
NUM_SOFM_STATES

} SOFM_State_Type;

typedef enum SOFM_Conscience_Type_Tag

{
SOFM_NO_CONSCIENCE,
SOFM_CONSCIENCE,
NUM_SOFM_CONSCIENCE

} SOFM_Conscience_Type;

typedef enum Neighbor Function_Type_Tag

The Kohonen Network Implementations O‘ ,@

CHEF_HAT,
MEXICAN_HAT,
STOVEPIPE_HAT,
NUM_NEIGHBOR_FUNC

} Neighbor_Function_Type;

/*1\'*******‘k**/

/* Structures */
/**/
typedef struct SOFM_2D_Size_Type_Tag
{ // rectangular

int width;

int height;
} SOFM_2D_Size_Type;

typedef struct Neuron_Type_Tag
{

NN_Function_Type neuron_function;

float in;
float out;
FVECTOR w;
FVECTOR delta_w;
float c_f£;
float b_v;

int W_S;

} Neuron_Type;

typedef struct NN_Layer Arch_Type_Tag
{

SOFM_2D_Size_Type size;
Neuron_Type **neurons;
NN_Layer_Type slab_type;

} NN_Slab_Arch_Type;

typedef struct SOFM_Arch_Type_Tag
{
int size;
NN_Slab_Arch_Type *slabs;
} SOFM_Arch_Type;

typedef struct SOFM_Env_Type_Tag

{
NN_Operation_Mode_Type operation_mode;
SOFM_Training_Mode_Type train_mode;

float eta;

float gama;

float beta;

float shrink;
float criterion;
int max_ite;

int cur_ite;

int max_tra_pat;
int cur_pat;

int pat_counter;

’O Chapter Six—N