
Preface

Several computational analytic tools have matured in the last 10 to 15 years that
facilitate solving problems that were previously difficult or impossible to solve. These
new analytical tools, known collectively as computational intelligence tools, include
artificial neural networks, fuzzy systems, and evolutionary computation. They have
recently been combined among themselves as well as with more traditional approa-
ches, such as statistical analysis, to solve extremely challenging problems. Diagnos-
tic systems, for example, are being developed that include Bayesian, neural network,
and rule-based diagnostic modules, evolutionary algorithm-based explanation facil-
ities, and expert system shells. All of these components work together in a "seamless"
way that is transparent to the user, and they deliver results that significantly exceed
what is available with any single approach.

At a system prototype level, computational intelligence (CI) tools are capable
of yielding results in a relatively short time. For instance, the implementation of a
conventional expert system often takes one to three years and requires the active
participation of a "knowledge engineer" to build the knowledge and rule bases.
In contrast, computational intelligence system solutions can often be prototyped
in a few weeks to a few months and are implemented using available engineering
and computational resources. Indeed, computational intelligence tools are capable
of being applied in many instances by "domain experts" rather than solely by
"computer gurus."

This means that biomedical engineers, for example, can solve problems in
biomedical engineering without relying on outside computer science expertise such
as that required to build knowledge bases for classical expert systems. Furthermore,
innovative ways to combine CI tools are cropping up every day. For example, tools
have been developed that incorporate knowledge elements with neural networks,
fuzzy logic, and evolutionary computing theory. Such tools are able to solve quickly
classification and clustering problems that would be extremely time consuming
using other techniques.

The concepts, paradigms, algorithms, and implementation of computational
intelligence and its constituent methodologies~evolutionary computation, neural
networks, and fuzzy logic~are the focus of this book. In addition, we emphasize
practical applications throughout, that is, how to apply the concepts, paradigms,
algorithms, and implementations discussed to practical problems in engi-
neering and computer science. This emphasis culminates in the real-world case

i m m

XIII

Preface

studies in a final chapter, which are available on this book's web site at
hap://www.computelligence.org/issue/CICI/CICI, html.

Computational intelligence is closely related to the field called "soft computing."
There is, in fact, a significant overlap. According to Lotfi Zadeh (1998), the inventor
of fuzzy logic and one of the leading proponents of soft computing:

Soft computing is not a single methodology. Rather, it is a consortium of computing
methodologies which collectively provide a foundation for the conception, design
and deployment of intelligent systems. At this juncture, the principal members of soft
computing are fuzzy logic (FL), neurocomputing (NC), genetic computing (GC),
and probabilistic computing (PC), with the last subsuming evidential reasoning,
belief networks, chaotic systems, and parts of machine learning theory. In contrast to
traditional hard computing, soft computing is tolerant of imprecision, uncertainty
and partial truth. The guiding principle of soft computing is: "exploit the tolerance
for imprecision, uncertainty and partial truth to achieve tractability, robustness, low
solution cost and better rapport with reality."

Zadeh also believes that soft computing is serving as the foundation for the emerg-
ing field of computational intelligence, and that "In this perspective, the difference
between traditional AI [artificial intelligence] and computational intelligence is that
AI is based on hard computing whereas CI is based on soft computing" (Zadeh
1994). We believe that soft computing is a large subset of computational intelligence.
We heartily agree with him when he says, "Hybrid intelligent systems are definitely
the wave of the future" (Zadeh 1994).

Some of the material in this book is adapted from Computational Intelligence
PC Tools by Eberhart, Dobbins, and Simpson (Academic Press 1996). The extensive
rewrite and reorganization of that material reflect the change in our perception of
computational intelligence that has occurred over the years. That change is reflected
in an increased emphasis on evolutionary computation as providing a foundation
for CI. It also features significant recent developments in particle swarm optimiza-
tion and other evolutionary computation tools.

The primary intended audience for Computational Intelligence: Concepts to
Implementations comprises researchers and graduate students with engineering or
computer science backgrounds and those with a special interest in computational
intelligence and/or system adaptation. One ofthe authors [RE] has taught a CI intro-
ductory course for several years; the material in this book was developed to support
that course. Other audiences include researchers in fields such as cognitive science
and the physical sciences and those who are motivated to learn about computational
intelligence via self-study. We assume this book's users understand the basic con-
cepts of classical (two-valued) logic, classical set theory, and elementary probability
theory. We also assume that readers have a familiarity with computers and a very
basic familiarity with calculus. Knowledge of a computer language such as Java, C,
or Visual BASIC is very helpful but not required.

Preface ~ . " ~

The implementation chapters frequently refer to and list portions of computer
code. In Chapters 4 and 6 we use the most common general-purpose, procedural
programming language, C, to implement the evolutionary algorithms and the arti-
ficial neural networks. Data structures, routines, and finite state machines are used
extensively in the C programming. In Chapters 8 and 9, reflecting programming lan-
guage evolution trends, we use an object-oriented programming language instead of
the procedural programming language C to implement the fuzzy systems and evolu-
tionary fuzzy systems. There are a variety of object-oriented languages, such as C++,
Java, and C#. We use C++ here primarily because it can be looked at as an extension
of the C language.

Organization of the Book

This book is divided into twelve chapters. Chapters 1 and 2 lay the groundwork for
the topic, introducing computational intelligence and its foundations. The next por-
tion of the book includes the "backbone" chapters on the three main constituents of
CI: evolutionary computation, neural networks, and fuzzy logic, in that order. This
order provides an initial focus on evolutionary computation, which is presented as
providing a foundation for development of computational intelligence tools involv-
ing neural networks and fuzzy logic. For instance, when we discuss neural networks,
we see how evolutionary computation can be used to evolve the weights and struc-
ture of feedforward neural networks, and with fuzzy logic, we examine evolutionary
computation applications to tools built using fuzzy logic. In other words, the evo-
lutionary computation theme pervades this book. Within each backbone chapter,
we discuss the histories of computational intelligence, evolutionary computation,
neural networks, and fuzzy logic.

We follow each backbone chapter with a chapter discussing implementation and
examples. Each one contains a section on implementation considerations that
addresses features frequently incorporated into these implementations, which fea-
tures we chose and why we chose them, and the guidelines to using them, as well
as interactions among them. The implementation chapters are intended to provide
readers with the insight to clearly understand "canned," commercially packaged
software applications and to enable a more thorough understanding of software and
hardware implementation issues for CI paradigms.

Each chapter ends with exercises.

Chapters" Contents
Chapter 1, Foundations, defines terms used throughout the book and briefly reviews
biological and behavioral motivations for the constituent methodologies of compu-
tational intelligence. This is followed by a brief review of the major application areas

Preface

for each methodology, as well as of CI. The chapter concludes with a review of major
computational intelligence application areas.

Chapter 2, Computational Intelligence, launches directly into the core subject
of this book. We first review the concepts of adaptation and self-organization, key
to our view of computational intelligence. Then we summarize the brief history of
the CI field, viewing it from the perspectives of other researchers. This leads us into
a discussion of the relationships among the three major components and how they
cooperate and/or are integrated into a computational intelligence system. We present
our definition of computational intelligence, supported by diagrams that place it
into context.

Chapter 3, Evolutionary Computation: Concepts and Paradigms, has been
adapted from the Evolutionary Computation Theory and Paradigms chapter in
Swarm Intelligence (Kennedy, Eberhart, and Shi 2001) with updates and augmen-
tations, including recent developments in particle swarm optimization and other
evolutionary computation approaches. After reviewing the history of evolutionary
computation and giving an overview of the field, we discuss its main paradigms:
genetic algorithms, evolutionary programming, evolution strategies, genetic pro-
gramming, and particle swarm optimization.

Chapter 4, Evolutionary Computation Implementations, discusses factors to con-
sider when implementing evolutionary computation paradigms and presents two
implementation examples: a canonical genetic algorithm and a real-valued particle
swarm that can be run in single-swarm or multiswarm configurations.

Chapter 5, Neural Network Concepts and Paradigms, first briefly presents an
overview of the history of neural networks, then examines what they are and why
they are useful. A discussion of neural network components and terminology fol-
lows, with a review of neural network topologies. A more detailed look at neural
network learning and recall comes next, focusing on three of the most common neu-
ral network paradigms: back-propagation, learning vector quantization, and self-
organizing feature map networks. These networks represent the two basic learning
types: supervised learning (back-propagation) and unsupervised learning (learning
vector quantization and self-organizing feature maps). We also briefly discuss hybrid
networks and recurrent networks. Finally, considerations ofpreprocessing and post-
processing are evaluated.

Chapter 6, Neural Network Implementations, discusses factors to consider when
implementing artificial neural networks and presents four implementation exam-
ples: back-propagation, learning vector quantization, self-organizing feature maps,
and evolutionary neural networks.

Chapter 7, Fuzzy Systems Concepts and Paradigms, leads off with a brief review
of the history of the field, followed by an examination of fuzzy sets and fuzzy logic,
the concepts of fuzzy sets, and approximate reasoning. We stress the differences
between fuzzy logic and probability, and we present both Mamdani and Takagi-
Sugeno-Kang approaches to the design and analysis of fuzzy systems. The chapter

Preface ~ ~)

concludes with a look at some design considerations and special topics related to
fuzzy systems.

Chapter 8, Fuzzy System Implementations, discusses factors to consider when
implementing fuzzy systems and presents two implementation examples: a tradi-
tional fuzzy rule system and an evolutionary fuzzy rule system. The evolutionary
fuzzy rule system provides a transition into computational intelligence systems.

Chapter 9, Computational Intelligence Implementations, reflects recent devel-
opments in the field, including evolutionary fuzzy systems and approaches to sys-
tem adaptation using computational intelligence. We expand the discussion of the
interaction and cooperation among the three basic components of CI and include a
section on adaptive evolutionary computation using fuzzy systems.

Chapter 10, Performance Metrics, includes a number of system performance
measures not generally used in other disciplines. Included are percent correct, sum-
squared error, absolute error, normalized error, receiver operating characteristic
curves, recall and precision, confusion matrices, and the chi-squared test.

Chapter 11, Analysis and Explanation, presents several tools that are helpful in
assessing and explaining how well a computational intelligence tool is doing its job.
Included are sensitivity analyses, Hinton diagrams for neural networks, and the use
of evolutionary computing tools for analysis. An example of using particle swarm to
develop an explanation facility is included in this chapter.

The book concludes with Chapter 12, Case Study Summaries, which provides
examples of practical applications. This "virtual" chapter is located on the book's
web site. Having it there makes it a "living" chapter that can be updated periodi-
cally. We will add new case studies from time to time and delete older ones as they
become obsolete. We invite you, the reader, to submit case studies you would like to
have considered for inclusion. (Please see the web site for more information about
this.) Among the initial case studies posted are two based on recent work by us,
the authors, including one on human EEG analysis and another on optimization of
logistics operations. Other case studies discussed in detail are schedule optimization
and control system design. Several other case study examples are briefly reviewed.

A bibliography concludes the book. The glossary is a "virtual" one that is located,
with Chapter 12, on this book's web site http://www.computelligence.org/issue/CICI/
CICI.html.

Our Approach" What This Book is, and Is Not, About

This book asserts that computational intelligence rests on a foundation of evolution-
ary computation. This is certainly not the only way to view computational intelli-
gence, but so far in the authors' experience, it has proved useful and effective.

It is about computational tools that you can use in practical applications. Although
the authors have backgrounds in engineering and computer science, CI tools are just
as applicable to problems in other fields such as cognitive science and business.

Preface

This book is about self-organization, which is closely related to emergent
computation. Self-organization involves simple processes that lead to complex
results, and the whole being greater than the sum of its parts. As Stephen Wolfram
(1994) said, "It is possible to make things of great complexity out of things that
are very simple. There is no conservation of simplicity."

It is about complex adaptive systems, a term that describes nonlinear systems com-
prising the interaction of numerous adaptive elements, or entities. The concepts of
self-organization and complexity are related, as we discuss later.

This book is not an exhaustive treatise on all permutations and variations of com-
putational intelligence and its constituent methodologies. If you want an exhaustive
discussion of artificial neural network paradigms, for instance, you'll need to turn to
another book. We present only those paradigms we believe provide the most useful
tools for someone solving practical problems.

It is not a compendium of mathematical derivations and proofs. We present only
those few we believe are essential to gaining a working-level understanding of how
and why the computational tools work.

This book is not about agents. Most of our computational intelligence tools do
not qualify as "agents" because they lack the required autonomy and specialization.
They can, however, be incorporated into intelligent agents and agent systems.

It is not about life. We nip around the edges of artificial life in a few places, but
we don't address the question "What is alive?" (We do, however, share some pre-
liminary thoughts on that subject.) We also do not address the search for artificial
intelligence (whatever that is) or even for a computational intelligence tool from
which intelligent behavior will emerge. Our focus is on solving problems.

Throughout the text, additional aspects of our approach and philosophy should
become evident, perhaps a little bit at a time. First, when considering computa-
tional intelligence tools and systems, traditional distinctions between hardware and
software get a bit blurred; distinctions between data and program are often almost
nonexistent. Second, our emphasis is on problem solving and applications rather
than physiological, biological, or behavioral plausibility. We do not pay too much
attention to whether the CI tools reflect what actually goes on in the brain or any
other part of a biological organism. Third, we believe that the activities of a com-
putational intelligence application developer and user are often somewhat different
from those in other technical areas.

Developing computational intelligence applications requires the developer to
play two roles. The first is the hands-on active design, develop, test, and debug role
that is fairly common in other technical areas. The second, as important as the first,
is a more passive observation and analytical thinking role. Results from a compu-
tational intelligence tool are often not what was expected. Most of the time, if the
developer takes the time to observe and think, rather than "bash to fit and paint to
match," something very useful can be learned.

Preface ~ . , ~ ~

Web Site Details

The authors' web site for this book is http://www.computelligence.org/issue/CICI/
CICI.html. (There is a link to this site from the publisher's web site.) Software imple-
mentations are written for the Windows and/or lava environment, and executable
versions of software described in the implementation chapters are located and main-
tained on the web site. Included as part of each implementation are the ancillary
files~a run file and a data file~needed to run the implementation. In addition, out-
put (results) files, obtained by the authors using the executable and ancillary files,
are provided. You may want to rename these output files, or move them to another
directory, so that you can compare your results with those of the authors.

We'd like to emphasize that the software is not just for demonstration; you can
use it for many real-world applications. The C and C++ source code has been written
using the Borland C++ 4.5 development environment. The lava code will run on any
computer that supports the lava Virtual Machine; this includes machines running
Windows, Unix, and Macintosh operating systems.

Of special note are the recent variations of particle swarm optimization that have
been integrated into the EC theory and paradigms chapter and the EC implementa-
tions chapter. Source code is provided on the web site for some of the implementa-
tions so that you can modify the software for specific applications.

Some of our software can be run using a web browser. Other software, including
source code, is useful only after downloading it from the book's web site. Approx-
imately 600 slides that cover the material in this book are available to instructors
(or anyone else) at no cost. These slides, configured as Word files, are downloadable
from the web site. The site also contains hyperlinks to other resource information
on the Internet related to subjects in this book.

A significant amount of source code is also on the web site. A total of eight
software modules are available, both as executables and as source code:

m Genetic algorithm

m Particle swarm optimization (including multiple swarms)

m Back-propagation neural network

m Learning vector quantization neural network

[] Self-organizing feature map neural network

[] Evolutionary back-propagation neural network

[] Fuzzy rule system

. Evolutionary fuzzy rule system

We ask that you send the authors a payment of US $25 per software module of source
code ($150 for all of the source code) if you find it useful. We are relying on your
honesty. (The address is on the web site with the software.)

Preface

Finally, as described previously, Chapter 12, Case Studies, is available on the
web site.

Acknowledgments

Each of us has numerous people who should be acknowledged; we mention
only a few.

Russ Eberhart:. First, I want to acknowledge my wife Francie and son Sean who
put up with a higher than usual absence rate of their spouse and father, respectively.
I also want to acknowledge my son Mark, a three-time cancer survivor, who has
taught me what courage is. Special thanks go to my students in ECE 536, Intro-
duction to Computational Intelligence. They were the guinea pigs. Sometimes, just
from their eyes glazing over, I knew that a section needed to be rewritten (or deleted).
Their patience is appreciated, and their input has been invaluable.

Yuhui Shi: I would like to thank my parents and parents-in-law for taking good
care of my daughter Melissa Xueyin Shi and my son Nicholas Yuge Shi so that
I had plenty of quality time to work on this book. My thanks also go to profes-
sors Zhenya He of Southeast University, M. N. S. Swamy and M. Omair Ahmad of
Concordia University, Xin Yao of the University of Birmingham, Jinhyung Kim ofthe
Korean Advanced Institute of Science and Technology, and to Russell C. Eberhart,
who are my mentors and have paved the way for me in my career development.

Both of us acknowledge the contributions of our technical reviewers. Their
insights resulted in improvements in both the organization and content of this book.
Finally, we are grateful to the team at Morgan Kaufmann Publishers who worked dili-
gently with us throughout the process of writing, editing, and production. Working
with Denise Penrose, Diane Cerra, Emilia Thiuri, Marilyn Rash, and Mary James has
been a pleasure and a learning experience.

chapter
o n e

Foundations

This chapter introduces general terms
used to discuss computational intelligence
as well as component methodologies~
computational intelligence (Cl), including
artificial neural networks, fuzzy logic, and
evolutionarycomputation~as they are used
in this text. We review the biological bases
for artificial neural network and evolution-
ary computation analysis tools, including

the differences between biological struc-
tures and these analysis tools, and we
discuss the behavioral motivations for fuzzy
systems. The chapter ends with a review of
myths related to implementations and appli-
cations of Cl and its component technolo-
gies, and a review of major application areas
for each of the three main computational
intelligence methodologies, m

Chapter One--Foundations

Definitions

This section defines some of the most important terms used in this book. These
definitions set the stage for more detailed analyses; more comprehensive definitions
appear in subsequent chapters. Often, the first time a term is used in the book, it is
in italics. In addition, whenever a term is italicized, you can find its definition in the
glossary.

We begin with a general definition of intelligence and then focus on the issues
relevant to computational intelligence. A standard dictionary (Webster's New Colle-
giate Dictionary, 1975) definition of intelligence is: "1 a (1): The ability to learn or
understand or to deal with new or trying situations : REASON; also : the skilled use
of reason (2): the ability to apply knowledge to manipulate one's environment or to
think abstractly as measured by objective criteria (as tests)."

"Intelligence is the capability of a system to adapt its behavior to meet its goals in a
range of environments. It is a property of all purpose-driven decision-makers." This
definition, perhaps more relevant to the subject matter of this book, was published
by David Fogel (1995).

An artificial neural network (ANN) is an analysis paradigm that is roughly mod-
eled after the massively parallel structure of the brain. It simulates a highly inter-
connected, parallel computational structure with many relatively simple individual
processing elements (PEs). Henceforth in this text the terms artificial neural network
and neural network are used interchangeably.

As used in this text, fuzziness refers to nonstatistical imprecision and vagueness
in information and data. Most concepts dealt with or described in the "real world"
are fuzzy. For example, "It is kind of foggy outside now, but it should be fairly sunny
before too long" is an example of a statement that incorporates three fuzzy concepts:
"kind of," "fairly," and "before too long." (It could even be argued that the word
"now" is imprecise and vague enough to be fuzzy.)

Fuzzy sets model the properties of imprecision, approximation, or vagueness. In
conventional logic, known as crisp logic, an element either is or is not a member ofthe
set. It can be said, therefore, that each element has a membership value of either 1 or
0 in the set. In a fuzzy set, fuzzy membership values reflect the membership extents
(or grades) of the elements in the set. It will be shown that a membership function
is the basic idea in fuzzy set theory; a fuzzy membership function is identical to a
fuzzy set.

Fuzzy logic is the logic of "approximate reasoning." It comprises operations on
fuzzy sets including equality, containment, complementation, intersection, and
union; it is a generalization of conventional (two-valued, or crisp) logic.

Evolutionary computation comprises machine learning optimization and clas-
sification paradigms roughly based on mechanisms of evolution such as biolog-
ical genetics and natural selection. The evolutionary computation field includes
genetic algorithms, evolutionary programming, genetic programming, evolution

Definitions (~ ~ ~

strategies, and particle swarm optimization. All of these paradigms use populations
of individuals (potential solutions), rather than single data points or vectors.

Genetic algorithms are search algorithms that incorporate natural evolution
mechanisms, including crossover, mutation, and survival of the fittest. They are
more often used for optimization, but also are used for classification. Evolutionary
programming algorithms are similar to genetic algorithms, but do not incorporate
crossover. Rather, they rely on survival of the fittest and mutation. Evolution strate-
gies are similar to genetic algorithms but use recombination to exchange information
between population members instead of crossover, and often use a different type of
mutation as well. Genetic programming is a methodology used to evolve computer
programs. The structures being manipulated are usually hierarchical tree structures.
Particle swarm optimization flies potential solutions, called particles, through the
problem space. The particles are accelerated toward selected points in the problem
space where previous fitness values have been high.

Computational intelligence is a methodology involving computing that provides
a system with an ability to learn and/or to deal with new situations, such that the
system is perceived to possess one or more attributes of reason, such as general-
ization, discovery, association, and abstraction. Computational intelligence systems
usually incorporate hybrids of paradigms such as artificial neural networks, fuzzy
systems, and evolutionary computation systems, augmented with knowledge ele-
ments. They are often designed to mimic one or more aspects ofbiologiacal intelli-
gence. Computational intelligence is also closely related to adaptation. In fact,
another definition of CI is that it comprises practical adaptation concepts,
paradigms, algorithms, and implementations that enable or facilitate appropriate
actions (intelligent behavior) by systems in complex and changing environments.
We discuss adaptation in more detail in the next chapter.

A paradigm is a particular example of computational intelligence attributes--in
the case of a neural network, the architecture, activation and learning rules, update
procedure, and so on--that exhibits a certain type of behavior. Put another way, it
is a clear and specific example of a concept. Back-propagation is one example of a
neural network paradigm because it implies a certain set of attributes, for example,
the architecture and the learning rule. A paradigm is a particular set of choices for all
attributes. Development of a new paradigm involves assembling a set of attributes
that define the intended behavior of the CI tool.

An implementation is a computer program written and compiled for a specific
computer or class of computers that implements a paradigm. The back-propagation
neural network application on the book's web site (described in Chapter 4) is an
implementation of the back-propagation paradigm.

The discussion in this book deals with semantics, as well as with concepts. To an
extent, we are the prisoners of our terminology. For example, consider the term arti-
ficial intelligence. It is the authors' opinion that labeling some subset of intelligence
artificial is somewhat analogous to calling what an airplane does "artificial flight."

Chapter One--Foundations

There are also terms that require careful usage. One example is neural networks, for
which it is necessary to specify whether we are referring to biological wetware or
artificial neural network analytical tools. We must also be aware of what Bezdek
(1994) calls "seductive semantics," which are words and phrases that are often inter-
preted tOO literally, resulting in meanings being inferred that are more profound
and important than are warranted. Examples are cognitive and genetic. With that
caveat, and having presented the basic definitions we use, let us now review the
theory and technology foundations of computational intelligence tools and com-
ponent methodologies.

Biological Basis for Neural Networks

Every day of our lives, each of us carries out thousands of tasks that require us to keep
track of many things at once and to process and act on these things. Relatively simple
actions, such as picking up a glass of water or dialing a telephone number, involve
many individual components requiring memory, learning, and physical coordina-
tion. The complexity of such "simple" tasks, which most of us do all the time with-
out consciously "thinking" about them, is underscored by the difficulty involved in
teaching robots to perform them. Performance of these tasks is facilitated by our
complex adaptive biological structure.

Neurons

Studies in fields such as biology and biophysics over the past few decades have shed
some light on the construction and operation of our brains and nervous systems,
which helps us understand how these tasks are performed. Living organisms are
made up of cells, and the basic building blocks of the nervous system are nerve
cells called neurons. The major components of a neuron include a central cell body,
dendrites, and an axon.

Figure 1.1 is a conceptual diagram of a neuron. 1 The signal flow goes from left
to right, from the dendrites, through the cell body, and out through the axon. The
signal from one neuron is passed on to others by means of connections between the
axon of the first and dendrites of the others. These connections are called synapses.
Axons often synapse onto the trunk of a dendrite, but they can also synapse directly
onto the cell body.

The human brain has a large number of neurons, or processing elements (PEs).
Typical estimates ofthe total number are on the order of 10 to 500 billion (Rumelhart
and McClelland 1986). According to one estimate by Stubbs (1988), neurons a r e

1 There are many kinds of neuron; for detailed information on their configuration and functioning,
refer to a book on neuroanatomy or neurology, such as Kandel, Schwartz, and]essell (2000).

Biological Basis for Neural Networks

Axons
from Other

Neurons

Figure 1.1 Conceptual diagram of a neuron.

/
Cell Body

Dendrites

Axons

Information Flow v

arranged into about 1,000 main modules, each with about 500 neural networks. Each
network has on the order of 100,000 neurons. The axon of each neuron connects to
anywhere from hundreds to thousands of other neurons; the value varies greatly
from neuron to neuron and from neuron type to neuron type. According to a rule
called Eccles's law, each neuron either excites or inhibits all neurons to which it is
connected.

Biological versus Artificial Neural Networks

While the processing element in an artificial neural network (ANN) is generally con-
sidered to be very roughly analogous to a biological neuron, there are significant dif-
ferences between a neural biological structure (as it is currently understood) and the
implementation or representation of this structure in artificial neural networks. We
summarize the most important differences here, recognizing there are many others.

Eccles's Law
In a typical implementation of an ANN, connections among PEs can have either
positive or negative weights. These weights correspond to excitatory and inhibitory
neural connections, so Eccles' law is not usually implemented in ANNs.

AC versus DC
Information about the state of activation, or excitation, of a PE generally is passed
to other PEs to which it is connected as a value that roughly corresponds to a direct
current (DC) level. In biological neural networks (BNNs), a train of pulses across
a synapse carries the information, and higher absolute values of activation result
in higher pulse rates, so that something analogous to alternating current (AC) fre-
quency, or pulse repetition rate, generally corresponds to activation level. There are
exceptions to the pulse rate carrying information in biological networks, but they
are relatively unimportant for our discussion.

Chapter OnemFoundations

PE Types
While there are many kinds of neuron in biological systems, an artificial neural
network is typically implemented with only one type of PE. Occasionally, two
or three types of PE are used, and as the technology of ANNs develops, more
sophisticated tools may make use of several PE types in each implementation. On
the other hand, some studies indicate that any required implementation can be
carried out with as few as two types of PE (Rumelhart and McClelland 1986).

Speed
It is reported widely in the literature that neurons in BNNs typically operate on
individual cycle times of about 10 to 100 milliseconds. The basic clock frequency
in a personal computer is a few gigahertz, which results in a basic cycle time for
the computer of less than a nanosecond. Even taking into account the number of
multiply-accumulate operations needed to calculate and propagate a new value for
a PE (typically 10-100), the basic cycle time for an individual PE is still only about
10 to 100 nanoseconds. In some ways, however, speed is deceptive. Despite its slower
cycle, the brain is still able to perform some tasks orders of magnitude faster than
today's fastest digital computer. This, most likely, is because of the brain's massively
parallel architecture. (Recent research related to neural processing in echo-locating
bats, however, indicates that these creatures are physiologically processing signals in
a time span of a few hundred nanoseconds, so it seems obvious that we still have
much to learn about how the brain functions.)

Quantity of PEs
There is a significant difference between the number of PEs in the typical ANN and
the number of biological neurons involved in any task in a BNN. Typical ANNs are
implemented with something like a few dozen to several hundred PEs. Each of the
1,000 main modules in the human brain described by Stubbs (1988) contains about
500 million neurons, and it is almost certain that several (perhaps many) of these
main modules are involved in any simple task. Of course, for any practical appli-
cation, most engineers and computer scientists might be hard pressed to figure out
how to effectively use a neural network tool (NNT) with 500 million PEs!

Some biologically oriented scientists have criticized artificial neural networks
because they don't model all the activities of the brain sufficiently well. Our primary
goal as engineers and computer scientists, however, is to solve complex problems,
not to model the brain. Our interest, then, is in adapting relevant concepts to solve
difficult problems. As an oft-quoted saying (oft-quoted in engineering circles, any-
way) puts it, "Scientists study what is. Engineers create what has never been." This
statement is not meant to be antagonistic toward scientists. What scientists do is just
as noble and worthwhile as what engineers do; they just have a different mission and
a different perspective.

Biological Basis for Neural Networks

Biological Basis for Evolutionary Computation
Whereas individuals adapt and learn over their lifetimes using their neural networks
to accomplish tasks, species survive by reproducing and evolving over time by pass-
ing on new information through their genes. In a manner somewhat analogous to
neural networks' ties with biology, the field of evolutionary computation has roots
in biological genetics. The concept of chromosomes is central to both genetics and
evolutionary computation. 2

Chromosomes
All living organisms are made up of cells such as neurons, as described earlier. Chro-
mosomes are structures in cell nuclei (cell bodies) that transmit genetic information.
Each representative of a given species has a characteristic number of chromosomes.
Humans normally have 46, occurring as 23 homologous (corresponding) pairs in
the female and 22 homologous pairs and one nonidentical pair in the male. One of
each pair is derived from the father, one from the mother. A sketch of three pairs of
human chromosomes appears in Figure 1.2.

Individual patterns, or strings, in evolutionary computation systems are basi-
cally analogous to chromosomes in biological systems. In fact, the term chromo-
some is commonly used in most genetic algorithm and evolutionary programming
systems. In genetics, the collection of chromosomes required to completely specify

Figure 1.2 Sketch of three pairs of human chromosomes. The patterns of bands along the
chromosomes are the result of a staining technique and allow identification of
the individuals of chromosome pairs. Source: :Drawing by Mark C. Eberhart.

2 In this text, the term genetics refers to biological genetics, which is "a branch of biology that deals
with the heredity and variation of organisms" (Webster's New Collegiate Dictionary, 1975).

Chapter OnemFoundations

an organism is called the genotype. In evolutionary computation, the collection of
patterns or strings needed to completely specify a system is known as a structure.
Most of the systems considered in this text are specified by one pattern, or string, or
state vector; the terms chromosome and structure are thus generally interchangeable.

In the biological world, chromosomes are made up of genes, each of which is
identified by its location (locus) and its function, such as a person's hair color gene.
In other words, genes are specific segments of chromosomes associated with specific
functions. Individual values a gene may assume are called alleles; a hair color allele
value may be "brown hair." In the artificial chromosomes of evolutionary compu-
tation systems, the chromosome patterns or strings are made up of parameters, or
features, that can vary over a specified range of values. A given parameter or feature
occupies a fixed location in the artificial chromosome. The chromosome therefore
is encoded to represent a set of parameters.

Biological versus Artificial Chromosomes
Just as artificial neural networks are only roughly analogous to collections of bio-
logical neurons, so artificial chromosomes are only approximately modeled after
biological ones.

Composition
Biological chromosomes contain linear threads of DNA, nucleic acids that make up
an extremely complex double helix structure. Artificial chromosomes are typically
strings of binary and/or real values. Each occurrence of the string typically represents
a system state vector.

Length
The biological chromosomes that define an organism vary in length, although a spe-
cific chromosome is generally the same length from one organism to another. Each
artificial chromosome in a population is the same length, that is, contains the same
number of bits.

Reproduction
Biological chromosomes duplicate themselves during cell division, which occurs
during a normal cell's lifetime. Many cell divisions (duplications) occur within an
organism for every event of sexual reproduction. During reproduction, the egg and
the sperm each contribute one chromosome for each homologous pair. In evolu-
tionary computation, the duplication of chromosomes analogous to what occurs
during biological cell division is generally called "reproduction." Also, the synthe-
sis of new chromosomes from two "parents" is called crossover, or recombination,
in evolutionary computation. Furthermore, during crossover (or recombination),
any number of bits or real values can be exchanged between two parent artificial

Behavioral Motivations for Fuzzy Logic

chromosomes, as compared with the fixed 50 percent contribution of chromosomes
by each parent in human reproduction. 3

This section has primarily discussed the biological basis of evolutionary compu-
tation from a genetics point of view. Concepts such as survival of the fittest, associ-
ated with Darwinian evolution, also play an important role in CI and are
discussed in Chapter 3.

Behavioral Motivations for Fuzzy Logic

The biological motivation or basis for fuzzy logic does not originate at the cellular
and subcellular level, as is the case with neural networks and evolutionary compu-
tation, respectively. It is reflected at the behavioral level of the organism, that is,
in the ways the organism interacts with its environment. While the previous two
methods are deeply rooted in biology, fuzzy logic deals mainly with uncertainty
and vagueness. We do not live in a world of ones and zeros, black and white, true
and false, or other absolutes. Our observations, communications, and experiences
almost always include a large measure of uncertainty. For example, a statement
such as "Next year I will visit Hawaii" cannot be categorized in terms of truth and
falsehood. It is uncertain.

Two main types of uncertainty exist. One is statistical, based on the laws of prob-
ability. An example of statistical uncertainty is the outcome of the toss of a coin.
Observations or measurements can be used to resolve statistical uncertainty. For
example, once the coin is tossed, no statistical uncertainty remains. The other type
of uncertainty is nonstatistical and is based on vagueness, imprecision, and/or ambi-
guity. Nonstatistical uncertainty is illustrated by statements such as "Go to bed pretty
soon" and "Jim is very tall" and "That car is going around 75 kilometers per hour."
The concept of fuzziness is associated with nonstatistical uncertainty.

Those of you who are experts in the English language may have noticed that,
particularly in the first statement, the imperative state does not mesh very well with
the vague qualifier "pretty soon." This, however, is exactly the kind of vague, messy
English we often use for communication. One of the primary attributes of fuzzy
logic is its ability to efficiently capture and manipulate these vague, messy concepts.

Fuzziness is an inherent property of a system. It is not resolved or altered by
observation or measurement. Allowing uncertainty in the description of a complex
system makes it more tractable to analysis. Fuzzy logic thus provides a framework
within which nonstatistical uncertainty can be defined, described, and analyzed.
A similar perspective on fuzzy logic is articulated by George Klir (Klir and Folger
1988), who refers to fuzziness as arising from what he calls "linguistic imprecision."

3 For more information on natural genetics, refer to a genetics text. A good choice is one written by
Mange and Mange (1998).

Chapter OnemFoundations

Myths about Computational Intelligence

There are a number of myths regarding computational intelligence. First, it is a myth
that the only way to achieve results with CI tools is with a vast sum of money, a
supercomputer, and an interdisciplinary team of Nobel laureates, as some commer-
cial vendors imply. Having a supercomputer or a parallel processing machine isn't
required to do something useful with CI tools. It's not even necessary to have a
Sun workstation. A personal computer is a perfectly adequate hardware base for
most implementation and application projects. So, with relatively simple hardware
and software tools, it is possible to solve problems that are otherwise impossible or
impractical. Computational intelligence tools do offer solutions to some problems
that aren't feasible to solve in any other way known to the authors. That isn't a myth!

What is a myth is that some combination of CI tools can solve all difficult engi-
neering or computer science problems faster and cheaper than anything previously
available. It is also a myth that CI tools can solve most problems single-handedly.
They are often inappropriate for problems requiring precise calculations. For exam-
ple, it is unlikely that anyone will ever successfully balance a checkbook with a neural
network.

Another statement that qualifies as mostly myth is that no programming is
needed to use artificial neural networks. This is at best misleading. It is true that
a neural network trains (adapts) and runs on input data and according to a set of
rules that update the weights that connect the processing elements, or nodes, and
that the learning of the network is not, strictly speaking, programmed. It is also
true that computer-aided software engineering (CASE) tools are becoming more
available and that little or no programming expertise may be required to use these
tools to generate executable neural network code.

It is also true, however, that in the real world of neural network applications,
some programming is required to get from the specification of the problem to
a solution. Neural network applications significantly reduce the requirement for
reprogramming. Once the problem is specified, it is not unusual to reuse the net-
work code repeatedly, making changes in data preprocessing and network runtime
parameters.

Furthermore, although it is accurate to say that computational intelligence tools
such as neural networks can play a key role in the solution of several classes of
problems that are difficult if not impossible to solve any other way currently known,
it is almost always true that the CI portion of the solution is only a relatively
small part of the overall system. For example, in terms of the total amount of
computer code in a neural network-based solution, the network often accounts
for only about 10 percent of the total solution. It is an absolutely indispensable
10 percent, and success would not be possible without it, but it is important to
keep it in perspective. Preprocessing and further manipulation of the data to form

Computational Intelligence Application Areas

pattern files for presentation to the network typically involve much of the code
(although we'll show you a way to develop a neural network that eliminates much
of the preprocessing). Interpreting and displaying the results often account for
another large portion. 4

Another myth about neural network and evolutionary computation applications
is that it is necessary to know something about neural biology or biological genetics,
respectively, to understand them. Nothing could be further from the truth. In fact,
for most engineers and computer scientists, neural network and evolutionary com-
putation tools can be considered just another (powerful) set of resources in the CI
analysis toolkit. Furthermore, a good case can be made for the argument that neural
networks are technical descendants of analog computing just as much as they are
descended from biology or neurology.

A myth about fuzzy logic is that it is really fuzzy, or imprecise. It is not. The inputs
to a fuzzy system are precise values for input parameters. Likewise, outputs from a
fuzzy system are "crisp" (exact) values, capable, for instance, of being used as precise
inputs to control systems.

Another myth about fuzzy logic is that it is just another version of probability. It
isn't. Probability deals with statistical uncertainty, whereas fuzzy logic is related to
nonstatistical uncertainty, as we discussed previously.

Finally, it is a myth that optimization exists. This is being said somewhat with
tongue in cheek, but it is important to realize that very seldom does a real-world CI
implementation find the absolute optimum of anything. It is almost always sufficient
to get within a specified region of the optimum, if it is known. Often, in fact, the
optimum value is not even known. Note that we use the term optimization in its
pure "dictionary definition" sense: Optimization is the identification of the very best
solution, or, in the case in which multiple optima exist, the identification of all of
the multiple optima.

Computational Intelligence Application Areas

Each component methodology of computational intelligence has application areas
for which it is particularly well suited. We briefly review these areas in this section.
Keep in mind that application areas may overlap; that is, a given problem may be
solvable by either a neural network or a fuzzy system, albeit with different levels of
performance. In later chapters we examine combinations of the methodologies that
can produce different results. This compilation of application areas is not meant

4 The 10 percent of the code typically represented by the neural network often takes a dispropor-
tionately large percentage of the development effort, perhaps 20 percent, but that effort associated
directly with neural network application development is usually still a relatively small portion of
the total project.

Chapter OnemFoundations

to be complete. It is not necessarily even representative of all of the major areas of
applications. It is meant to convey some sense of the range of problems to which CI's
component methodologies have been applied.

Neural Networks

There are five application areas for which neural networks are generally considered
to be best suited. The first three are related.

Classification
This area analyzes which of several predefined classes best reflects an input pattern.
The number of classes is typically small compared with the number of inputs. One
example is a decision whether or not a given segment of EEG data represents an
epileptiform spike waveform. Neural networks' ability to construct nonlinear map-
pings between high-dimensional spaces is another type of classification analysis.
Some types of video image processing by neural networks (such as diagnoses of
tumors) are examples of this application area.

Content Addressable Memory or Associative Memory
A typical example is obtaining the complete version of a pattern at the output of the
network by providing a partial version at the input. (The input and output nodes of
the network may sometimes be the same nodes.) This process is sometimes described
as obtaining an exemplar pattern from a noisy and/or incomplete one.

Clustering or Compression
This area involves classification but can also be considered a form of encoding. An
example is the significant reduction of the dimensionality of an input, as in the case
of speech recognition. Another is the reduction of the number of bits that must
be stored or transmitted to represent, within some allowed error margin, a block
of data; in other words, the original block of data can be reconstructed within the
allowed error with fewer bits than were in the original data.

Generation of Sequences or Patterns
This fourth area is somewhat different from the first three in that no classification
is involved. This generation of patterns is done by a network trained to examples.
For instance, if a network is trained to reproduce a certain style of musical sequence,
then it is possible for the network to compose "original" versions of that type of
music. Or a neural network may be trained to model, or simulate, something. Grow-
ing numbers of applications in the financial world, becoming known as "financial
engineering" applications, are being reported. Because of inherent randomness in
the process being simulated, there may be no "right" answers, but the system can
perhaps be described statistically. The network simulation may then be designed

Computational Intelligence Application Areas

to reproduce these statistical qualities. This area can be extended to many areas of
application and represents the ability of a neural network system to be "creative."

Control Systems
The use of neural networks in control systems is one of the fastest-growing appli-
cation areas. It is enjoying widespread implementation for several reasons. First,
a neural network-based control system can deal with all of the nonlinearities of a
system. (The system doesn't have to be approximated as linear.) Second, a network
can be used to model the nonlinear system in the process of designing the con-
trol system. Third, the development time for a neural network control system is
typically much shorter than it is for other more traditional techniques.

The number of specific neural network applications for each of the five areas
grows, it seems, daily. Some applications are specific to a discipline. For exam-
ple, applications in medicine include EEG waveform classification and appendicitis
diagnosis. In business and finance, neural networks are part of systems for trading
options on commodity futures contracts and finance company credit application
processing. Military-related applications include target tracking and recognition,
fault diagnoses in aircraft, and the detection of trace amounts of explosives. In
the automotive industry, neural networks can determine the battery pack state-of-
charge in an electric vehicle, help determine the proper distance a car should follow
another, and, in fact, simultaneously control the positions of a number of cars on
an expressway. Artistic endeavors are supported as well, with neural networks that
can compose music. Other applications cut across disciplines, such as networks for
speech recognition, text-to-speech conversion, and image processing.

Evolutionary Computation
The two main areas of application for evolutionary algorithms are optimization and
classification. Most of the discussion in this text focuses on optimization, since most
engineering applications of evolutionary computation are related to optimization.

Optimization
One of the early applications that popularized genetic algorithms was the control
of gas pipeline transmission (Goldberg 1989). Evolutionary algorithms have also
been applied to multiple-fault diagnosis, robot track determination, schedule opti-
mization, conformal analysis of DNA, load distribution by an electric utility, neural
network explanation facilities, and product ingredient mix optimization. (In some
of these cases, other CI paradigms have been used, too.)

Classification
A use of evolutionary computation that has applications across many fields,
including both classification and optimization, is the evolution of neural networks.
This computational intelligence-based methodology is discussed in detail in

Chapter OnemFoundations

Chapter 6. Other classification applications include rule-based machine learning
systems, such as that used to learn control of pipeline operations by Goldberg (1989)
(which also had an optimization element) and classifier systems for high-level
semantic networks.

Fuzzy Logic
Fuzzy logic is being applied in a wide range of applications in engineering areas
ranging from robotics and control to architecture and environmental engineering.
Other areas of application include medicine, management, decision analysis, and
computer science. As with neural networks, new applications appear almost daily.
Two of the major application areas are fuzzy control and fuzzy expert systems.

Control Systems
Fuzzy control systems have been applied to subway systems, cement kilns, traffic
signal systems, home appliances, video cameras, and various subsystems of auto-
mobiles including the transmission and brake systems. One application familiar to
many is the circuitry inside a video camera that stabilizes the image in spite of the
unsteady holding of the camera.

Expert Systems
Fuzzy expert systems have been applied in the areas of medical diagnostics, for-
eign exchange trading, robot navigation, scheduling, automobile diagnostics, and
the selection of business strategies, just to name a few. We present an example of the
role of fuzzy logic in a scheduling system in Chapter 12.

S u m m a r y

This chapter provides background information from which to learn about CI and
its implementation. We introduce the definitions and component methodologies of
CI, and we debunk some of the myths you may have heard. Having understood the
biological basis for the component methodologies, you will be able to better con-
ceptualize how these systems work. Briefly reviewing some application areas offers
an idea of the types of problem that computational intelligence tools can be used
to solve.

Exercises

1. What are some alternative terms for processing element? Discuss the choices,
listing advantages and disadvantages for each.

Exercises

2. State a myth relative to neural networks, fuzzy systems, or evolutionary
computation, in addition to those discussed in this chapter. Why is it a myth?

3. How do you think adaptation and self-organization are interrelated?

4. Survey recent technical publications and the Internet for these additional areas
to which one of the component technologies of CI has been successfully applied:
face recognition, health screening, creating art.

a. What motivated the use of the technology in these applications?
b. What technical tools, in addition to CI, were required to solve the problems?
c. What was the role of the CI component technology in each case?

5. What is the difference between fuzziness and probability? Provide an example to
illustrate the difference.

6. What is the definition of artificial intelligence? List some differences between
computational intelligence and artificial intelligence.

chapter

Computational Intelligence

This chapter covers the key elements of
computational intelligence and how com-
putational intelligence fits into the larger
picture comprising machine intelligence
and biological intelligence. We examine
adaptation and learning, how they differ,
and what that means for computational
intelligence (el). We build from the bot-
tom up, identifying each element in turn.
First we discuss three main types of
adaptation that are incorporated into a
variety of computational models: super-
vised, unsupervised, and reinforcement
adaptation. Next we briefly examine the
concept of self-organization, which we
believe plays an important role in evo-
lution. We then look at how computa-
tional intelligence has been perceived and
defined by various researchers. Finally, we
discuss our view of computational intel-
ligence and how it fits into a model of
intelligent systems.

Despite the relatively widespread use of
the term computational intelligence, there
is no commonly accepted definition of the
term. The definitions offered in Chapter 1
include assumptions about the nature of
what are called the "constituent method-
ologies" of computational intelligence. As
will be seen, other researchers make dif-
ferent assumptions and arrive at different
perspectives.

As is true for researchers in any develop-
ing, maturing field, we are standing on the
shoulders of those who have preceded us.
Of particular influence has been work pub-
lished by Marks (1993) and Bezdek (1981,
1992, 1994, 1998). An extension of their
work presented in this chapter is a new
model of biological and machine intelli-
gence that defines the context for compu-
tational intelligence.

This chapter is not meant to be the
final word on any aspect of computational

17

Chapter Two---Computational Intelligence

intelligence. It is intended only to be a snapshot in time, and a relatively subjective
snapshot at that. If it stimulates discussion and further development, it will
accomplish our objective.

With those caveats, the chapter is initiated by discussing adaptation and pre-
senting several definitions. None of these definitions is meant to be particularly
controversial. Rather, they are intended to provide the framework for the remain-
der of the book. •

Adaptation

We discuss adaptation and, later, self-organization because they play an important
role in our view of computational intelligence. The concept of adaptation is central
to computational intelligence. One definition stated in Chapter 1 is that computa-
tional intelligence comprises practical adaptation concepts, paradigms, algorithms,
and implementations that enable or facilitate appropriate actions (intelligent behav-
ior) in complex and changing environments.

Webster's New Collegiate Dictionary's (1991) definition of adaptation provides a
useful beginning to our discussion:

1: the act or process of adapting: the state of being adapted 2: adjustment to envi-
ronmental conditions: as a: adjustment of a sense organ to the intensity or quality
of stimulation b: modification of an organism or its parts that makes it more fit for
existence under the conditions of its environment.

The same source defines the word adapt as follows: "to make fit (as for a spe-
cific or new use or situation) often by modification." To be fit is to be suitable,
that is, adapted so as to be capable of surviving and acceptable from a particular
viewpoint.

Thus, we define adaptation as the ability of a system to change, or evolve, its
parameters in order to better meet its goal. Dynamic adaptation is the ability of a
system to adapt "online," that is, in essentially real time, in a changing environment.
In dynamic adaptation, the system adapts while it is running (online), rather than
being taken offline to be retrained. For a system to exhibit adaptation, its trajectory
through the problem space must depend on the state of its environment.

Accordingly, a number of factors can make adaptation difficult (Holland 1992):

1. A large problem space (the hyperspace comprising the dynamic ranges of
all problem variables), which contains many alternative (candidate)
solutions, called structures.

2. A large number of variables in each structure, making difficult the deter-
mination of which variables, and which combinations of variables,
contribute to good solutions.

Adaptation (~, :. ~

3. The function used to measure the performance of the system (which we
call the fitness function) is very complex and nonlinear, having many local
optima and/or discontinuities.

4. The fitness function landscape of global and local optima varies with time
and over the problem space.

5. A complex and changing environment in which the system exists.

We are making certain assumptions when we say that a system is adaptive. First,
we assume that the system is converging to a sufficiently good solution. Second, we
assume that adaptive processes drastically shorten the time required to arrive at a
solution when compared with enumerative methods that must explore significant
portions of the problem space (Kennedy, Eberhart, and Shi 2001).

We believe that most engineering and computer science applications are driven
by what we call the law of sufficiency: If a solution is good enough, fast enough, and
cheap enough, it is sufficient. (Being good enough simply means it meets specifica-
tions.) We believe that for most "optimization" applications, it is more appropriate
to use the term "adaptation" because we generally do not actually find the optimum
solution and often do not even know where it is.

In the remainder of this section, we look at adaptation from three perspectives.
First, we examine and compare the concepts of adaptation and learning. Next, we
review the three main types of adaptation paradigm: supervised adaptation, unsu-
pervised adaptation, and reinforcement adaptation. Finally, we consider the three
spaces with which we must deal when working with adaptive systems: problem space,
function space, and fitness space.

Adaptation versus Learning
The preceding definitions of adaptation describe and apply to computational intel-
ligence systems extremely well. Too often, the process of altering structures such as
neural networks, evolutionary computation tools, and fuzzy systems is described
as learning. The word learning, in fact, appears throughout this book. This usage
is in accordance with that of many researchers.

Learning, however, is defined as "knowledge or skill acquired by instruction or
study," and the synonym listed for learning is knowledge. Likewise, to learn is defined
as "to gain knowledge or understanding of or skill in by study, instruction or
experience" (Mish 2001).

Instead, learning is what an entire intelligent system does. All of the main com-
ponents of an intelligent system participate in the learning process; all exchange
information with the component of the system that is the repository of the system
knowledge. Learning thus applies to the entire intelligent system, while adaptation
mainly applies to the portion of the system we address in this book~the portion
where computational intelligence exists.

Chapter Two--Computational Intelligence

Adaptation must overcome numerous barriers, including local optima and
nonlinearities. The problem hyperspace landscape (topography, environment) is
constantly changing. The adaptive systems with which we are dealing are complex,
and the fitness or performance measure is often complicated and varying over time.

Adaptive systems answer this challenge by progressively modifying population
structures, using a set of operators that themselves evolve (adapt) over time. These
adaptive processes drastically shorten the time required to arrive at a solution when
compared with enumerative methods that must explore significant portions of the
problem space.

As you continue through this chapter, you will see that we assert that adaptation
is arguably the most appropriate term for what computational intelligence systems
do. In fact, it is not too much of a stretch to say that computational intelligence and
adaptation (with self-organization) are synonymous. Adaptation, thus, is the leitmotif
of this book.

Three Types of Adaptation
There are various ways to categorize adaptation, l Each of the following sections dis-
cusses one of three categories pertinent to computational intelligence: supervised
adaptation, reinforcement adaptation, and unsupervised adaptation. 2

Note that in all three cases we separate the adaptation algorithm from the adap-
tive system. Usually, the algorithm is used to adapt (tune) the system and is then
removed. The adaptive system (with its parameters frozen) then responds to input
vectors from the environment. This is traditionally called offiine adaptation. Some-
times the adaptation algorithm, or a portion of it, remains active as the system is
used. This is traditionally called online adaptation. Unlike offline adaptation, there
are various degrees of online adaptation.

Supervised Adaptation
Compared to the other two categories of adaptation, supervised adaptation is well
defined. A "teacher" that provides relevant input/output (I/O) examples is always
present. In addition, it has a number of characteristics, including:

[] Adaptation is often carried out one step (iteration) at a time. The system
adapts so that it emulates the training I/O examples while acquiring the
ability to generalize.

1 In many textbooks, the title of this section would be "Three Types of Learning." Based, however,
on the reasoning earlier in this section, we generally use the term adaptation in this book to describe
what computational intelligence systems do. We realize that this is somewhat unconventional, but we
believe that the reasoning is sound, and that "adaptation," more accurately than "learning," describes
what is going on in a computationally intelligent system.
2 Other authors might call these supervised learning, reinforcement learning, and unsupervised
learning.

Adaptation (~.2~
The system's performance metric is often inversely proportional to some
function of the sum of errors over the I/O examples. Examples include
sum-squared error, mean-squared error, and sum of absolute error. The
supervised adaptation algorithm often uses information about the gradient
of the error with respect to an error surface that is averaged over all I/O
examples to adapt the current point.

An example of supervised adaptation appears in Figure 2.1. In Figures 2.1
through 2.3, an arrow going through the adaptive system box indicates the ability
to adjust the parameters of the system. Supervised adaptation often results in an
adaptive system that is used for what is, or amounts to, function approximation.
The system is good at mapping input vectors to output vectors over its domain.

One example of supervised adaptation that we examine in this book is a neural
network adapted by the back-propagation algorithm. Input patterns for which the
output patterns are known are presented to the network. The difference between
what was expected at each output and what was actually there (defined as the error)
is calculated for each output and each pattern. Some function of the error at each
output is then used to adjust system parameters. In the case of a neural network, the
weights of the network are adjusted in an attempt to minimize the error.

Environment

"" Teacher ""
(dataset with I/0

examples)

Desired Outputs
(responses)

Input
(state)
Vector

/
Ada ~tive
System

Supervised
Adaptation
Algorithm

System : 0 Outputs

Error Values

Figure 2.1 Supervised adaptation example. An arrow going through the adaptive system
box indicates the ability to adjust the parameters of the system.

Chapter TwomComputational Intelligence

Reinforcement Adaptation
Reinforcement adaptation of a system is achieved through its interaction with a
"critic" that provides heuristic reinforcement information. An illustration of
reinforcement adaptation appears in Figure 2.2. The input variable information
often includes the dynamic range of each variable and perhaps other variable infor-
mation such as the precision required. Some sort of goal or fitness metric is also nec-
essary. For example, in a multiple-city delivery-scheduling problem (e.g., the trav-
eling salesman problem), the goal may be to minimize the total distance traveled to
visit all of the cities. The critic provides some fitness measure based on the goal~
for example, a scaled number inversely proportional to the total distance traveled.
So, although some kind of goal or fitness metric is required, the fitness cannot be
obtained directly, but only a suggestion on how good the solution is relative to other
solutions. (A direct fitness metric is possible only with supervised adaptation.)

Of the three types of adaptation, reinforcement adaptation is most closely
related to biological systems. One very simple illustration is that animals (including
humans) tend to avoid behavior that causes us discomfort and tend to seek or repeat
behavior that brings us comfort. Reinforcement adaptation has roots in the opti-
mal control theory area called dynamic programming (Bellman 1957). Sequential
decision making obtains much of its mathematical foundation from dynamic
programming.

Environment

"" Critic ""
Input Variable
and Fitness
Information

Input
(state)
Vector

Adaptive
System

Reinforcement
Adaptation
Algorithm

.

System
Output

Heuristic
Reinforcement

Information

Figure 2.2 Reinforcement adaptation example. An arrow going through the adaptive
system box indicates the ability to adjust the parameters of the system.

Adaptation ~ . ., ~~.3~

Characteristics of reinforcement adaptation often (but not always) include

m The system often deals with a time series of input (state) vectors, waiting
until the sequence is complete to judge the fitness of the system.

[] The critic looks at only the outcomes (the results), not at some error
measure due to each input.

An example of a paradigm using reinforcement adaptation is particle swarm
optimization, which is introduced in Chapter 3. A particle swarm explores the
problem space, keeping track of the fitness of its particles and also remembering
where in the problem space the best solutions have so far been found. We probably
do not know where the optimal solution is. We may not even know whether a single
optimal solution exists (there may be multiple optima). There may be a number
of constraints, making the problem very complex. All we can tell the system is
whether one solution is better than another; sometimes, as in the case of particle
swarm optimization, we can calculate how much better it is. But that's about the
extent of it.

Unsupervised Adaptation
In the case of unsupervised adaptation, no external teacher or critic is involved
in system adaptation. Instead, a dataset comprising example vectors of the sys-
tem's variable parameters is provided. That is operated on by the unsuper-
vised learning algorithm. A representation of unsupervised adaptation appears in
Figure 2.3. Characteristics of unsupervised adaptation algorithms include:

m There is no indication of fitness whatsoever incorporated into the
unsupervised adaptation algorithm. It just plods along with blinders on,
executing its job, which may involve clustering or "competitive learning."

m The interpretation of what the unsupervised algorithm did, and how well it
did it, and whether it is even appropriate and/or usable, is done after the
algorithm stops running. This offline evaluation is typically done by a
human or other intelligent system.

Clustering aggregates similar input patterns into distinct, mutually exclusive
subsets referred to as clusters. As stated by Anderberg (1973), "the objective is to
group either the data units or the variables into clusters such that elements within
a cluster have a high degree of 'natural association' among themselves while the
clusters are 'relatively distinct' from one another." Clustering is generally consid-
ered a two-phase process. In the first phase, the number of clusters in the data is
determined or assumed. The second phase assigns each data point (pattern) to a
single cluster.

Chapter Two--Computational Intelligence

Environment

" " Database ""
Dataset of

Input Vectors

Input
Vectors

Adaptive
System

/

Unsupervised
Adaptation
Algorithm

Figure 2.3 Unsupervised adaptation example. An arrow going through the adaptive
system box indicates the ability to adjust the parameters of the system.

Examples of unsupervised adaptation are two types of neural network we
discuss in this book, self-organizing feature maps and learning vector quantization
neural networks, which we examine in Chapter 6, Neural Network Implementa-
tions. When a set of patterns is presented to either of these types of network, the
adaptation algorithm clusters patterns that are similar, perhaps subject to some
constraints. With the proper algorithm and constraints, the output distribution
will accurately represent the probability distribution of the input patterns, but
there is no hint of a "teacher" telling the network what the answer is pattern by
pattern, or even a "critic" giving the network qualitative fitness hints.

Summary
In summary, what are the differences, and the implications of these differences,
among the three types of adaptation? Our thoughts on this comprise a thread that
runs through the book. For now, we confine our comments to a few relatively
straightforward observations.

What does it mean to use a "teacher," a "critic," or a "dataset"? A teacher has
detailed input/output information, which consists of a number of specific exam-
ples. Typically, the more of these examples that are available, the better a system will
be able to adapt to emulate the structure underlying them. This is not always true,
of course. For instance, it is impossible to build a multiclass classifier if all of your

Adaptation ~ ~ 2~

examples are from one class. (A multiclass classifier specifies which of several output
classes represents an input pattern best. For example, a medical diagnostic classifier
decides which disease in its inventory best represents a given a set of medical symp-
toms comprising an input pattern.) So the distribution of the input/output patterns
over the problem space is important.

A critic has some notion that one solution is qualitatively better than another, but
can't calculate a fitness metric specific to the problem. Furthermore, a critic doesn't
inherently know where an optimum is, or even if there is one; a teacher may know
the optimum location of a solution in the problem space.

The dataset is just that: a dataset. There is no fitness information, qualitative or
quantitative, within it.

Does that make one kind of adaptation, say supervised, better than another, say
unsupervised? We believe that one kind can be better than another only when con-
sidered from the perspective of a specific application. If all we have is a dataset with
no fitness information, then we will use unsupervised adaptation to find features,
or clusters, in the data. We can then apply other analytic techniques to these clus-
ters or features. Even if we have output information with our input vectors, we may
use unsupervised adaptation to find new ways to look at the data or as a sort of
preprocessing step to reduce the problem's dimensionality to facilitate a supervised
adaptation application.

Now that we've looked at the three main types of adaptation, we look at the spaces
in which these adaptation methods operate.

Three Spaces of Adaptation
No matter which type of adaptation is implemented, we typically refer to three kinds
of space when we work with adaptive systems. We call them input parameter space,
system output space, and fitness space. As there is no standard terminology, however,
other authors call our input parameter space problem space, and our system output
space function space.

The inputparameter space is defined bythe dynamic ranges ofthe input variables.
In general, these dynamic ranges are specified. However, sometimes all we have to
work with are example patterns, and we may not have a valid basis for constraining
the input parameters to the ranges represented by the example vectors.

The system output space is defined by the dynamic range(s) of the output vari-
able(s). It is not unusual for the output dynamic ranges to be specified as either
a hard or a soft constraint. (A hard constraint is one that cannot be violated;
a soft constraint can be violated, but a penalty is applied to the system perfor-
mance measure.) We prefer to name this space system "output" rather than "func-
tion" since it is common not to know what function, if any, is represented by the
data. Often, we aren't interested in finding the function, at least not as our first
objective.

Chapter Two---Computational Intelligence

The fitness space is the space we use to define the "goodness" of the solutions
(in the output space) generated by the adaptive system. It is common practice
to scale the fitness to values between 0 and 1, with the optimal value being 0 or
1 depending on whether the goal is to minimize or maximize the fitness value.
Sometimes the fitness space and the system output space are the same. A sim-
ple example of this is maximizing the function sin(~rx/256) for integer values of
x between 0 and 255 (the input parameter space). This is the example we use in
Chapter 3 to illustrate the step-by-step process of a genetic algorithm. In this case,
the output values vary between 0 and 1, and the maximum fitness value of I occurs
at an input value of 128.

In general, however, the system output and fitness values do not coincide. Con-
3

sider another simple example of minimizing ~ ~ given a dynamic range for xi
i=1

of [-10, 10]. In this case, the system output space is [0, 300]. We often trans-
form the output space to a better representation for the purposes of calculating
fitness, frequently in the range of [0, 1]. One possible simple fitness function is
just 1/(abs(output)), which ranges from 1/300 (fairly close to 0) to 1.0 for a perfect
answer.

Always keep these three spaces of adaptation in mind. And always know which
one you are dealing with!

Now that you have some understanding of the concept of adaptation, with its
three main types and three spaces, we'll discuss another concept central to compu-
tational intelligence: self-organization.

Self-organization and Evolution

Although self-organization's inclusion as a key concept in computational intelli-
gence is, for the authors, relatively recent, the term self-organization was apparently
used for the first time in the literature relevant to computational intelligence by
W. Ross Ashby (Ashby 1945, 1947). He first used the term "self-organization" in his
1947 paper, but he was writing about the same concept in 1945. He cited the ner-
vous system as an example of self-organization. He wrote that the nervous system,
when in contact with a new environment, tends to develop an internal organization
that leads to behavior that is adapted to that environment. (Note the reference to
adaptation!)

Ashby maintained that self-organization has two methods of implementation
(Dyson 1997). The first is illustrated by a system that starts with its parts separate
(so that the behavior of each is independent of the others' states) and whose parts
then act so that they change in order to form connections. An example of the sec-
ond is where a system's interconnected components become organized in a produc-
tive or meaningful way. An example is an infant's brain, where self-organization is

Self-organization and Evolution

achieved less by the growth of new connections and more by allowing meaningless
connections to die out.

Farley was an early contributor to the investigation of self-organizing systems.
In Farley and Clark (1954), the subject is the simulation of self-organizing systems
by digital computer. In Farley (1960), he said that self-organizing systems "auto-
matically organize themselves to classify environmental inputs into recognizable
percepts or 'patterns,"' and that "this self-organizing ability is called 'learned per-
ception."' Kleyn (1963), another early contributor, wrote: "A system is said to be
self-organizing if, after observing the input and output of an unknown phenomenon
(transfer relation), the system organizes itself into a simulation of the unknown
phenomenon."

Today, there are almost as many ways to define self-organization as there are writ-
ers on the subject, but summaries of attributes and descriptions of self-organization
often include the following points (Kennedy, Eberhart, and Shi 2001):

Self-organizing systems usually exhibit what appears to be spontaneous
order.

m Self-organization can be viewed as a system's incessant attempts to organize
itself into ever more complex structures, even in the face of the incessant
forces of dissolution described by the second law of thermodynamics.

m The overall system state of a self-organizing system is an emergent property
of the system.

m Interconnected system components become organized in a productive or
meaningful way based on local information; global dynamics emerge from
local rules.

m Complex systems can self-organize.

m The self-organization process works near the "edge of chaos."

Bonabeau et al. (1999) define self-organization as "a set of dynamical mecha-
nisms whereby structures appear at the global level of a system from interactions
among its lower-level components. The rules specifying the interactions among the
system's constituent units are executed on the basis of purely local information,
without reference to the global pattern, which is an emergent property of the system
rather than a property imposed on the system by an external ordering influence."
This definition illustrates the close ties between self-organization and the emergent
property of a system.

Examples of self-organization are all around us. A simple example is the for-
mation of ice crystals on the surface of water as it begins to freeze. Another simple
example happens in a salt solution when the water is dried and crystals are observed
forming. Yet another example is the often complex and beautiful patterns generated

Chapter TwouComputational Intelligence

by cellular automata (CAs), which are specified by very simple mathematical
functions. These CAs are not programmed to produce these patterns; rather, the
patterns are an emergent feature of the system.

As a more complex example, the evolution of the human brain has been
described as a self-organizing process (McKee 2000). McKee uses the term auto-
catalysis to describe how the design of an organism's features at one point in time
affects or even determines the kinds of designs it can change into later. Thus the
evolution of the organism is determined not only by selection pressures but by
the constraints and opportunities offered by the structures that have evolved so
far (Kennedy, Eberhart, and Shi 2001).

The concept of self-organization has had a profound effect on how the authors
view evolution, and the way evolution is viewed has had a profound effect on how
we perceive computational intelligence. The following section reviews this new per-
spective of evolution and illustrates why we believe that evolutionary computation
provides the foundation of computational intelligence.

Evolution beyond Darwin
What is usually described as the Darwinian view of evolution is perhaps bet-
ter described as the neo-Darwinian view. For example, chromosomes weren't
even known in Darwin's time, so the prevailing view is a sort of amalgam of
Darwinian and Mendelian ideas. (In 1865 Gregor Johann Mendel, an Augustinian
priest in the Brno Monastery in the Czech Republic, described to the Brno Nat-
ural Science Society the transfer of genetic material in pea plants. Unfortunately,
the fundamental importance of Mendel's finding was not understood by the Soci-
ety. Until about 1900 it was not recognized that Mendel had discovered the "law
of heredity.")

The neo-Darwinian view of evolution reflects three main observations. First is
that chromosome composition is determined by the parents (at least in animals and
humans). Second is that random mutation expands the search space of the species,
providing the desirable attribute of diversity. Third is that fitter individuals have a
higher probability of surviving to the next generation.

According to modern researchers, including Kauffman (1993, 1995), there are
two fundamental shortcomings of the existing theory. The first is that the ori-
gin of life by "chance" or mutation is highly improbable in the time frame
of earth's history. The second is that evolution of complex life forms solely
through mutation is also highly improbable. A detailed discussion of these points
is beyond the scope of this book, but Kauffman (1993, 1995) offers compelling
arguments.

This leads to a new view of evolution, in which, due primarily to self-organization,
complex systems can "appear" over a relatively short time frame compared with

Historical Views of Computational Intelligence

Darwinian evolution. In this new perception of evolution, it appears that natural
selection and self-organization work hand-in-hand. That is,

evolution = natural selection + self-organization

It is the authors' opinion that the neo-Darwinian view of evolution tends to con-
strain evolutionary computation to a supporting role in computational intelligence,
while the incorporation of self-organization facilitates the viewpoint that evolution-
ary computation is computational intelligence's foundation.

Self-organization remains an active area of inquiry. See, for example, the works
of Stuart Kauffman (1993, 1995).

It should be evident to you by now that adaptation and self-organization are
intertwined, an idea that we return to at various points in this book. It should also
be evident that we consider adaptation and self-organization to play important
roles in computational intelligence. With our discussions of adaptation and self-
organization complete, it is time to look at computational intelligence, starting
with early work in the field.

Historical Views of Computational Intelligence

As is the case with adaptation and self-organization, there is no universally accepted
definition of computational intelligence. In this section, we present views of com-
putational intelligence by other researchers. As you will see, these views are not the
same. In the next section, we present our view of computational intelligence. It is
somewhat different from the views presented in this section.

In an editorial in IEEE Transactions on Neural Networks, then editor-in-chief
Robert Marks wrote, "Neural networks, genetic algorithms, fuzzy systems, evolu-
tionary programming, and artificial life are the building blocks of CI." He further
stated, "Although seeking similar goals, CI has emerged as a sovereign field whose
research community is virtually distinct from AI" (Marks 1993).

David Fogel said in 1995 that CI generally describes "methods of computation
that can be used to adapt solutions to new problems and do not rely on explicit
human knowledge."

Walter Karplus of the University of California at Los Angeles, who was then pres-
ident of the IEEE Neural Networks Council (NNC), offered the following comment
at the June 2, 1996, meeting of the ADCOM of the NNC: "CI substitutes inten-
sive computation for insight into how the system works. NNs, FSs, and EC were all
shunned by classical system and control theorists. CI umbrellas and unifies these
and other revolutionary methods."

Bezdek (1998), who has probably thought about computational intelligence
more than most other researchers, asserts that computational intelligence is a
proper subset of artificial intelligence but that artificial intelligence is not a subset of

Chapter Two--Computational Intelligence

the much more complex biological intelligence. Rather, he believes that biological
intelligence is used to guide artificial intelligence (and thus computational intel-
ligence) models of it. He also views computational pattern recognition as one of
many subsets of computational intelligence. In Bezdek's scheme, biological intelli-
gence is organic (carbon-based), while computational intelligence (and its subsets)
and artificial intelligence are examples of machine intelligence and are thus silicon-
based. He believes that some computational models lack biological equivalents.

Now that we've briefly toured the historical views of computational intelligence,
let's see how the concepts we discussed previously, adaptation and self-organization,
fit into it.

Computational Intelligence as Adaptation
and Self-organization

This section discusses the authors' view of computational intelligence, in which
adaptation and self-organization play key roles. The authors have a different view
with respect to several aspects of computational intelligence presented above.

We assert that intelligence is manifested both in carbon-based and silicon-based
systems, and sometimes in hybrids of the two. In fact, intelligence need not be lim-
ited to systems based on carbon and silicon: Other substances are the active subjects
of inquiry in fields such as molecular computing. It does not matter what kind of
system produces the intelligence for it to exist.

It follows that the statement that some computational models do not have bio-
logical equivalents is irrelevant to this discussion. (It could be argued that compu-
tational models implemented by humans have biological analogies since humans
conceived of, designed, developed, and tested them. The validity of this statement,
however, is also irrelevant.) What is relevant is that no distinction should be made
between biological and nonbiological intelligence. Thus, we assert that statements
arguing biological equivalency, one way or the other, are not relevant to the discus-
sion of intelligence or computational intelligence.

In this book, computational intelligence is defined as a methodology involving
computing that provides a system with an ability to learn and/or to deal with new
situations, such that the system is perceived to possess one or more attributes of
reason, such as generalization, discovery, association, and abstraction. The output
of a computationally intelligent system often includes predictions and/or decisions.
Put another way, CI comprises practical adaptation and self-organization concepts,
paradigms, algorithms, and implementations that enable or facilitate appropriate
actions (intelligent behavior) in complex and changing environments.

Computational intelligence systems in silicon often comprise hybrids of para-
digms such as artificial neural networks, fuzzy systems, and evolutionary compu-
tation systems, augmented with knowledge elements. Silicon-based computational

Computational Intelligence as Adaptation and Self-organization

.

r -

I
I

I 1 Inputs I i~ Sensing
I
I I Raw

Iii Data, /

I [Prepr cessing
II gorithmS
I
I I Intelligent System

S
S

S

World . ~ Output
Model Generation (knowledge).

" " " ' " Decision ,,,'" Reaction ~ Prediction
," =Reason

Processed Data,
Clusters, Classes,

Features

I
I
I
I
I

Intelligent I
Behavior I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Env i ronment (wor ld) I L . --"

Figure 2.4 Relationships among components of intel l igent systems. Thick arrows represent
the main pathway through the system.

intelligence systems are often designed to mimic one or more aspects of carbon-
based biological intelligence.

The relationships among the components of intelligent systems are repre-
sented very approximately by Figure 2.4. To make the figure easier to understand,
we have emphasized pattern recognition, a common computational function.
Many additional functions would be needed to make the figure more com-
plete. Examples include function approximation, pattern association, filtering,
and control.

The inputs to the intelligent system from the environment can be sensory in the
case of biological systems or they can be via a computer keyboard, in the case of a
silicon-based system. The output of an intelligent system via the output generation
node is intelligent behavior. (The main pathway through the system is represented
by the thick arrows.)

What is intelligent behavior? In the movie named after him, Forest Gump says,
"Stupid is as stupid does." We believe that intelligence is as intelligence does. Intelli-
gent behavior has an effect on the system's environment, perhaps via communica-
tion or action. If there is no action or communication that affects the environment,
then there is no intelligent behavior. In Figure 2.4, one arrow goes directly from
sensing to output generation; another goes from preprocessing and algorithms to

Chapter TwomComputational Intelligence

output generation. These represent processes that include actions related to safety
and survival. For example, the arrow from sensing to output generation could
represent a person's reflex actions when touching a hot stove. The arrow from
preprocessing and algorithms to output generation could represent reactions of
someone who happens upon a rattlesnake while hiking. Each of the arrows passes
through the outer shell of the world model (embedded knowledge).

In addition to reactions, outputs of the preprocessing and algorithms node
include processed data and clustering, which may be used as inputs for the adap-
tation and self-organization node. Products of adaptation and self-organization
include reason, as described previously, as well as prediction and decision. Note
that it is quite possible to reason, predict something, or decide to do something
without actually taking action. Only when the reason, prediction, or decision is
implemented, resulting in an action on or communication with the environment,
is intelligent behavior said to have occurred.

Complexity is often described as an attribute of intelligence (see, for example,
Fogel 1995 and Bezdek 1994); for a discussion of complex adaptive systems that
is applicable to intelligent systems, see Holland (1992). In Figure 2.4, complexity
may generally be considered to increase as we move from sensing through prepro-
cessing and algorithms, and through adaptation and self-organization to output
generation. A note of caution is appropriate here. Without a complete definition
and characterization of complexity, and subsequent application to intelligent sys-
tems, which is beyond the scope of this book, it may be premature to characterize
systems that effect intelligent behavior as more complex than, say, sensing systems
such as human sight.

Stochasticity, or randomness, is also sometimes listed as an attribute of intelli-
gent systems. It is somewhat uncertain whether the attribute should be represented
as randomness, pseudorandomness, or chaos. (Note that computer systems cannot
generate randomness, just pseudorandomness.) However it is represented, it seems
to permeate many aspects of carbon-based intelligent systems, from basic biology
to behavioral intelligence, as well as most silicon-based intelligent processes and
systems.

In the representation in Figure 2.4, nodes at the tails of arrows need not be
subsets of those at the heads, and any node can provide input to the output
generation node. For example, sensing is not necessarily a subset of preprocessing
and algorithms. Furthermore, sensing can provide an input to output generation
via reflex.

The world model at the top center of the diagram (which includes data and
knowledge) and the arrows going to and from it require additional explanation.
For each of the four nodes (sensing, preprocessing and algorithms, adaptation
and self-organization, and output generation) arrows run both to and from the
world model, signifying a flow of "information" in both directions.

Computational Intelligence as Adaptation and Self-organization

Figure 2.5 An expanded view of the world model.

The sizes of the arrowheads are meant to very roughly reflect the relative
quantities of the flows. For example, the flow from sensing to the world model
is much greater than the flow to sensing from the world model. And, as we move
from the sensing node through preprocessing and algorithms, and then through
adaptation and self-organization to output generation, a greater proportion of the
flow comes from the world model to the node.

Figure 2.5 is an expanded view of the world model, within which some of the
categories of "information" are stored. Note that the world model is dynamic, con-
stantly being revised and updated. In Figure 2.5, the knowledge complexity generally
increases moving from left to right (keeping in mind the previous note of caution
about complexity). Only a few components of the model are given.

The diagrams in Figures 2.4 and 2.5 are simplistic, but they are meant to convey
the authors' belief that there should be no distinction between carbon- and silicon-
based intelligence. A system simply possesses one or more of the attributes shown in
the figures, and the actions on and communications to the environment are intelli-
gent to some degree, depending on the system attributes.

So, where's the computational intelligence? In accordance with our earlier def-
initions, it resides primarily in the adaptation and self-organization node. We also
believe that elements of computational intelligence can be found in the preprocess-
ing and algorithm node and in the output generation node. As represented, com-
putational intelligence is buried deeply in the core of the system, be it biological or
machine, perhaps the furthest from the interface with the environment. It is an area
in which developments are occurring that will lead to exciting new analytical tools.

At the risk of oversimplifying the concept of computational intelligence as illus-
trated in Figure 2.4, we extract the portion of the figure most closely associated
with computational intelligence and depict it with Figure 2.6. This prompts another
definition, as follows: Computational intelligence comprises adaptation and self-
organization using processed data and embedded knowledge as input and produc-
ing predictions, decisions, generalizations, and reason as output. The embedded
knowledge resides within the system, while the processed data originates outside the
system.

Chapter TwomComputational Intelligence

Processed Data

Embedded Knowledge

Figure 2.6 A simplif ied view of computat ional intelligence.

Predictions,
,~ Decisions,
" Generalizations,

Reason

We have presented our view of computational intelligence in this section. We
hope you now understand something about our model of CI and the important
roles played by adaptation and self-organization. We discuss one capability of a
CI system, the ability to generalize, in more detail in the next section.

The Ability to Generalize

One key capability of a computational intelligence system is the ability to generalize.
This ability is one of the aspects of computational intelligence that distinguishes it
from hard computing. This section briefly reviews what is meant by the term gener-
alization and some of its implications.

Often, when developing a computational intelligence implementation, we are
provided with, or obtain ourselves, a dataset comprising a number of input/output
patterns. Usually, these pattern pairs comprise only a very small portion of all pos-
sible pattern pairs in the problem space. For the sake of this discussion, assume that
there is only one input and one output in each pattern pair; more inputs and/or
outputs do not change what we are discussing, and the single input/output version
makes the representation easier.

We generally assume that there is some (probably nonlinear) function f(x) that
maps each input to an output in the problem space: y = f(x) for the input space
X and the output space Y. We can represent our dataset as S = { (xi, yi) e X x Y},
i = 1, K, n, where n is the number of pattern pairs.

The goal of the computational intelligence system, then, is to build a model f*
that will map other values of x into Y such that f* (x) ~ f(x) for x* ~ S. This is
usually what we mean by generalization. It is the ability to correctly map examples
in the problem space to which the system was not exposedduring training.

What the generalization metric is, however, can vary from problem to problem.
Most of the time it is assumed that, for a "perfect" system, y = f(x) V x e S and
f* (x) = f(x) V x e S. The first assumption may not be valid because of errors and/or
noise that almost inevitably appear in even the most "gold-plated" datasets.

The second assumption can be troublesome if we split our dataset S into training
and test datasets, as is usually done. The dataset is usually split because we don't have

Computational Intelligence versus Artificial Intelligence

any values of x* ~ S for which we know the correct f(x*). So we use some of the
dataset for training and some for testing.

We usually assume that the ability of a model to generalize is best measured by
the system performance on the test set. It is quite possible that the best test set per-
formance does not coincide with the best performance on the training set. A neural
network, for example, can be overtrained on the training set (it is said to "memorize"
it) so that it performs relatively poorly on the test set.

In summary, it is important to define what you mean when you use the term
generalization and what metric you will use to measure it. Remember that the size
n of the dataset S has to be large enough to have sufficient input/output patterns
for both training and testing. It is impossible to say anything about generalization
if you can't train the system (build the model) in the first place; it is difficult to
say much about generalization with insufficient testing patterns.

With definitions of computational intelligence under our belts and having dis-
cussed a key concept of computational intelligence, generalization, we now consider
where computational intelligence fits in the overall picture, which includes artificial
intelligence and hard computing.

Computational Intelligence and Soft Computing versus
Artificial Intelligence and Hard Computing

This section summarizes where computational intelligence belongs in the overall
scheme of computing and its relationship to artificial intelligence (AI). We concur
with Lotfi Zadeh's assertion (1998) that soft computing is the basis of computa-
tional intelligence and that hard computing is the basis of artificial intelligence.
(We discuss Zadeh's considerable contributions to computational intelligence in
Chapter 7, Fuzzy Systems Concepts and Paradigms.)

Where, then, does "traditional AI" fit? The authors' perception is that some
of it is at the outer level, or near the interface surface, of the adaptation and self-
organization node in Figure 2.4, where arrows depart for the output generation
node and the world model. Some of it resides in the world model. At the heart of
the adaptation and self-organization node are (in silicon-based systems) such com-
putational intelligence tools as the hybrid neural network/genetic algorithm/fuzzy
logic tools described in the definition of computational intelligence near the begin-
ning of this chapter. These tools have access to, and use, embedded knowledge.
There is, therefore, a difference between artificial intelligence and computational
intelligence, albeit a somewhat "fuzzy" one.

And what about hard computing? If truth be told, the authors don't consider
very much of what is defined as hard computing to be eligible for inclusion in an
intelligent system, and Figure 2.4 is our concept of an intelligent system.

Chapter TwomComputational Intelligence

So what is the bottom line with respect to hard computing versus soft computing,
traditional AI versus computational intelligence? Which attributes of a CI system do
not hold for traditional AI and hard computing? We believe that four important ones
are

[] The ability to generalize, as discussed previously

m The ability to deal successfully with partial truths and uncertainty

[] Tolerance for errors and noise, which results in graceful degradation of
system performance

m The ability to perform well in changing and complex environments

Which attributes of a hard computing system do not hold for a computational intel-
ligence (soft computing) system? We believe that two important ones are

[] Precision

m Certainty

It is unlikely that any of us will ever use a computational intelligence system to
balance our checkbook or calculate our taxes. So there is definitely a place for hard
computing.

On the other hand, real life and real systems are replete with impreci-
sion, uncertainty, partial truths, and nonlinearity. We are finding that many
very difficult jobs, such as developing optimization and diagnostics systems in
complex and changing environments, can be accomplished with computational
intelligence implementations. Hard computing doesn't stand a chance in these
arenas.

Summary

This chapter presents basic information on computational intelligence. It discusses
adaptation and self-organization and examines their roles in computational intelli-
gence.

We look at adaptation from three perspectives. We first examine and compare
the concepts of adaptation and learning. As defined in this book, learning applies to
the entire intelligent system, while adaptation mainly applies to the portion of the
system where computational intelligence is relevant.

Summary ~)*"~
Next we review the three main types of adaptation paradigms: supervised

adaptation, reinforcement adaptation, and unsupervised adaptation. The three
types of adaptation use a "teacher," a "critic," or an algorithm operating on the
dataset with no feedback, respectively.

A teacher has detailed input/output information comprising a number of
specific examples. Typically, the more of these examples that are available, the better
a system will be able to adapt to emulate the structure underlying them. This is not
always true, of course. For instance, it is impossible to build a multiclass classifier
if all of your examples are from one class. So the distribution of the input/output
patterns over the problem space is important.

A critic has some notion that one solution is qualitatively better than another but
can't calculate a fitness metric specific to the problem. Furthermore, a critic doesn't
inherently know where an optimum is or even if there is one; a teacher may know
the location of an optimum solution in the problem space.

The algorithm operating on a dataset with no fitness feedback is just that. There
is no fitness information, qualitative or quantitative, that results from running the
unsupervised algorithm.

How, then, do we decide which type of adaptation to use? We believe that the
choice should be made from the perspective of a specific application. If all we have
is a dataset with no fitness information, then we will use unsupervised adaptation to
find features, or clusters, in the data. We can then apply other analytic techniques to
these clusters or features. Even if we have output information with our input vectors,
we may use unsupervised adaptation to find new ways to look at the data or as a
preprocessing step to reduce the problem's dimensionality to facilitate a supervised
adaptation application.

Additionally in this chapter, we consider the three spaces with which we must
deal when working with adaptive systems: problem space, function space, and fitness
space. Always be aware which space you're in at any given time.

There is no universally accepted definition of computational intelligence (CI).
Several views of computational intelligence are presented, followed by the authors'
view of computational intelligence. That is, computational intelligence comprises
practical adaptation and self-organization concepts, paradigms, algorithms, and
implementations that enable or facilitate appropriate actions (intelligent behavior)
in complex and changing environments. The inclusion of self-organization in our
definition of computational intelligence is a relatively recent development; inspi-
ration and insight came from the current views of evolution as natural selection
plus self-organization by researchers such as Kaufmann.

In the next chapter, we look at the methodology we believe provides the foun-
dation of computational intelligence: evolutionary computation. We explore genetic
algorithms, evolutionary programming, evolution strategies, genetic programming,
and particle swarm optimization.

Chapter Two---Computational Intelligence

E x e r c i s e s ..

1. What other elements might be appropriate for inclusion in the world model of
Figure 2.5?

2. Read other discussions of computational intelligence, including Bezdek (1998).
Develop your own one-paragraph definition of computational intelligence.

3. Find an article or a chapter in another book on emergent computing. Compare
the concept of emergent computing as presented there with the concept of
self-organization presented in this chapter.

4. Find another source of information on cellular automata. Discuss the relationship
between cellular automata and self-organization.

5. Randomness is sometimes listed as an attribute of intelligent systems. Why?

6. Give a real-world example of each type of adaptation: supervised, reinforcement,
and unsupervised.

chapter
IZ F e e

Evolutionary Computation
Concepts and Paradigms

One of the component methodologies of This chapter also provides basic infor-
computational intelligence, and the one mation needed to use evolutionary compu-
we believe provides its foundation, is evo- tation tools to solve practical problems.
lutionary computation. This chapter goes The terminology and key concepts are
into some detail in reviewing the field presented, followed by paradigms that
of evolutionary computation, which con- are developed from and illustrate the
sists of machine learning optimization and key concepts. The chapter is written
classification paradigms that are roughly largely from the perspective of an engi-
based on evolution mechanisms such as neer or computer scientist, emphasizing
biological genetics, natural selection, and the application potential of evolutionary
emergent adaptive behavior. Evolution- computation tools and drawing compar-
ary computation paradigms provide tools isons with other applied problem-solving
to build intelligent systems that model techniques, m
intelligent behavior.

39

Chapter ThreeBEvolutionary Computation Concepts and Paradigms

History of Evolutionary Computation

There are a number of ways to address the history of almost any subject, evolu-
tionary computation included. We choose to focus on people rather than theory
or technology for two main reasons. First, it seems a more interesting way to look
at history. History is, after all, just a record of people doing things. Second, the
evolutionary computation field, particularly in the early days, revolved arOund
a few key individuals. These individuals and their followers seem to us to have
sometimes resembled minicultures.

Having said that, the selection of individuals is somewhat arbitrary because the
intent is to provide a broad sample ofpeople, rather than an exhaustive list, who con-
tributed to current technology. Some well-known researchers are mentioned only
briefly, and others are omitted. The fact that someone is discussed only briefly, or
even omitted altogether, is not meant to reflect the authors' opinion of that person's
contribution. The selected people and their contributions are discussed roughly in
chronological order. We organize our history according to the main evolutionary
computation areas.

The evolutionary computation field considered in this book includes the
following five areas 1"

[] Genetic algorithms

m Evolutionary programming

m Evolution strategies

[] Genetic programming

[] Particle swarm optimization

Of the five methodologies, more work has been done in genetic algorithms than
in any other area, and so we focus on that field. (We realize that the emphasis on
genetic algorithms is fading somewhat. In fact, hybrids of the five methodologies
are becoming increasingly popular.) Contributors to the other four areas are also
discussed but in somewhat less detail. Although it might be argued that work in
the early twentieth century on Darwinian synthesis by Haldane (1990) and others is
the place to start, what is now known as evolutionary computation really began to
take shape about 50 years later. We begin our journey looking at the roots of genetic
algorithms in the 1950s.

Genetic Algorithms
The development of genetic algorithms (GA) has its origins in work done in the
1950s by biologists using computers to simulate natural genetic systems. One of

1 There are other ways to look at the field, such as considering genetic programming as a branch of
genetic algorithlns, but we choose this approach.

History of Evolutionary Computation

those doing work most closely related to our current concepts of genetic algorithms
was A. S. Fraser, an Australian who began publishing in the field in the late 1950s
(Fraser 1957). Our history of evolutionary computation thus (arbitrarily) begins
with him.

Fraser was working in the area of epistasis (suppression of the effect of a gene)
and represented each of three parameters of an epistatic function as 5 bits in a 15-bit
string. He then based his selection of"parents" by choosing those strings whose vari-
able values produced function values between -1 and + 1. Fraser was working with
natural systems, and although his work somewhat resembles function optimization
as currently done by genetic algorithms, he apparently did not consider the possi-
bilities of applying his methodology to artificial systems (Fraser 1960, 1962).

Also beginning to publish in the early 1960s was the man who, together with his
students, has probably had more influence on the field of genetic algorithms than
any others: John H. Holland of The University of Michigan. Holland attended MIT
as an undergraduate, where he was influenced by such luminaries as Norbert Weiner
and John McCarthy. He was part of a team that programmed the prototype of the
IBM 701 to "learn" something about running a maze, prompting Holland to regard
the computer as a sort of"simulated lab rat." After working at IBM, Holland went to
the University of Michigan, where, under Arthur Burks, he obtained the first Ph.D.
in the United States in computer science (Levy 1992).

Davis (1991) stated:

John Holland... created the genetic algorithm field. The field would not exist if
he had not decided to harness the power inherent in genetic processes in the early
1970s and functioned as the technical and political leader of the genetic algorithm
field from its inception to the present time. Our understanding ofthe unique features
of genetic algorithms has been shaped by the careful and insightful work of Holland
and his students from the field's critical first years to the present time. (p. vi)

Holland's interest is in machine intelligence, and he and his students developed
and applied the capabilities of genetic algorithms to artificial systems. He taught
courses in adaptive systems in the early 1960s while laying the groundwork for
applications to artificial systems with his publications on adaptive systems theory
(Holland 1962). Holland's systems were adaptive because of their robustness in spite
of changes and uncertainty in the environment. Further, they were self-adaptive in
that they could make adjustments based on their interaction with the environment
over time.

The GA metaphor is genetic inheritance at the level of the individual. A problem
solution is considered as an individual's chromosome, or pattern of genetic alleles,
and low-level operations such as those in the nuclei of cells are proposed for devel-
oping new solutions.

One of Holland's many contributions was his use of a population of individ-
uals, conceptualized as chromosomes, in the search process, rather than single

Chapter ThreemEvolutionary Computation Concepts and Paradigms

individuals, as was common at the time. (Fraser used populations but, as stated
previously, didn't apply his methodology to artificial systems.) He also derived
the schema theorem, which shows that schema (fundamental building blocks of
individual chromosomes) that are more "fit" with respect to a defined fitness func-
tion are more likely to reproduce in successive generations of the population of
chromosomes. We go into more detail about the schema theorem later in this
chapter.

Chromosomes in nature are formed of twisted strands of DNA, composed
of the four proteins adenine, cytosine, guanine, and thymine. These strands are
presently understood as a kind of computer program that gives instructions to the
cells that comprise the organism; the DNA sequence contains instructions about
how to develop and what to do. While our digital computers use the base-2, or
binary, number system to encode program instructions and data, chromosomes use
a base-4 method, encoded in the ordering of the four proteins. Genetic algorithms
usually use base-2 chromosomes, though the methods developed by Holland and
his followers can be applied to any base number system, including floating-point
decimals.

Beginning in the 1960s Holland's students routinely used selection, crossover,
and mutation in their applications. Several of Holland's students made significant
contributions to the genetic algorithm field, often starting with their Ph.D. disserta-
tions. We mention only a few.

The term genetic algorithm was used first by Bagley (1967) in his dissertation,
which utilized genetic algorithms to find parameter sets in evaluation functions for
playing the game of Hexapawn, which is played on a 3 x 3 chessboard on which
each player starts with three pawns. Bagley's genetic algorithm resembled many used
today, with selection, crossover, and mutation.

In 1975, Holland published one of the field's most important books, entitled
Adaptation in Natural and Artificial Systems. In the first five years after it was
published, the book sold 100 to 200 copies per year and seemed to be fading
into oblivion. Instead, between 1985 and 1990, the number of people working
on genetic algorithms~and interest in Holland's book~increased sufficiently to
persuade Holland to update and reissue it (Holland 1992).

Also in 1975, K. A. De]ong, one of Holland's students, published his Ph.D.
dissertation entitled, "An Analysis of the Behavior of a Class of Genetic Adaptive Sys-
tems." As part of his work, De]ong put forward a set of five test functions designed
to measure the performance of any genetic algorithm. Two metrics were devised,
one to measure the convergence of the algorithm, the other to measure the ongoing
performance. De]ong examined the effects of varying four parameters (population
size, crossover probability, mutation probability, and generation gap) on the perfor-
mance of six main kinds of genetic algorithm paradigm (De]ong 1975). Although
a number of other benchmark functions have emerged, De]ong's five-function test

History of Evolutionary Computation

bed and two performance metrics are still among frequently referenced criteria for
genetic algorithm performance.

From Michigan De Jong went to the University of Pittsburgh, where he taught
genetic algorithms to a number of students, among them Steve Smith and John
Grefenstette. Smith published a significant dissertation on machine learning involv-
ing a classifier system that became known as "Smith's Poker Player" (Smith 1980).
After graduation, Grefenstette began teaching yet another generation of students at
Vanderbilt University, including J. David Schaffer, who was the first to develop
a multiobjective algorithm (Schaffer 1984), work that has enjoyed a revival in
popularity.

Grefenstette developed a genetic algorithm implementation called GENESIS
that, in its various incarnations and reincarnations, became perhaps the most
widely used genetic algorithm implementation in the late 1980s (Grefenstette
1984a, 1984b). He also was instrumental in founding and editing the proceedings
of the first International Conference on Genetic Algorithms, a premier conference
in the field (Grefenstette 1985).

David E. Goldberg, another of Holland's students, has concentrated on engi-
neering applications of genetic algorithms. He is a former gas pipeline worker
whose Ph.D. dissertation considered a 10-compressor, 10-pipe, steady-state, serial
gas pipeline problem (Goldberg 1983). The goal was to provide a strategy that
minimizes the power consumed in the pumping stations, subject to pressure-
related constraints. He summarized the power the genetic algorithm brought to
the pipeline problem when he wrote, "If we were, for example, to search for the
best person among the world's 4.5 billion people as rapidly as the GA, we would
only need to talk to four or five people before making our near optimal selection"
(Goldberg 1987). Goldberg's 1989 volume is one of the most influential books
on genetic algorithms: Genetic Algorithms in Search, Optimization and Machine
Learning (Goldberg 1989). He continues to be an important contributor to the
field.

The author of another significant genetic algorithm book is self-taught in genetic
algorithms. Lawrence (Dave) Davis got interested in them while working at Texas
Instruments, where he obtained support to evaluate genetic algorithms for 2D
bin packing in a chip layout application. He published the Handbook of Genetic
Algorithms after moving to the Boston area, where he worked for BBN. His book
comprises two main parts. The first is a tutorial on genetic algorithms; the second
is a collection of case studies contributed by a number of researchers (Davis 1991).
In the mid-1990s, two of the most widely read books by people wanting to learn
about genetic algorithms were those by Goldberg and Davis.

At approximately the same time that Holland and his students were developing
genetic algorithms, two groups were working on opposite sides of the Atlantic on
different approaches that do not use crossover, a main feature of genetic algorithm

Chapter Three--Evolutionary Computation Concepts and Paradigms

implementations. These approaches are evolutionary programming and evolution
strategies. We begin with evolutionary programming.

Evolutionary Programming
In the United States, Larry]. Fogel and his colleagues developed what they named
evolutionary programming. Evolutionary programming uses the selection of the
fittest, but the only structure-modifying operation allowed is mutation~there is
no crossover. Fogel and his colleagues mainly worked with finite state machines
and were interested in machine intelligence; they were able to solve some problems
that were quite difficult for genetic algorithms.

Fogel (1994) described evolutionary programming as taking a fundamentally
different approach from that of genetic algorithms:

The procedure abstracts evolution as a top-down process of adaptive behavior, rather
than a bottom-up process of adaptive genetics. It is argued that this approach is more
appropriate because natural selection does not act on individual components in iso-
lation, but rather on the complete set of expressed behaviors of an organism in light
of its interaction with its environment.

Philosophically, then, evolutionary programming researchers consider each point in
the population to represent an entire species, with species competing to fill environ-
mental niches.

Fogel summarizes evolutionary programming as implementing "survival of the
more skillful" rather than the "survival of the fittest" emphasized by genetic algo-
rithm developers. In the mid-1960s a book documenting this approach proved to
be quite controversial (Fogel et al. 1966). Misunderstandings and misinterpretations
related to the book have been identified as a contributing factor to problems expe-
rienced by researchers in obtaining funding for evolutionary computation in the
late 1960s and 1970s (Goldberg 1989). It is probable, however, that another signifi-
cant factor was the well-known symbolics versus numerics controversy (temporarily
won by Minsky and the symbolics researchers). One of the leading evolutionary pro-
gramming researchers during the 1970s was at New Mexico State University. Don
Dearholt and his students were responsible for a significant number of publications
on evolutionary programming during this decade.

Evolution Strategies
At the same time that Fogel and his group were working on evolutionary pro-
gramming, across the Atlantic Ocean Ingo Rechenberg and Hans-Paul Schwefel
were experimenting with mutation in their attempts to find optimal physical con-
figurations for a series of hinged plates in a wind tunnel and a tube that delivered
liquid~the usual gradient-descent techniques were unable to solve the sets of

History of Evolutionary Computation

equations for reducing wind resistance. They began experimenting with mutation,
slightly perturbing their best problem solutions to search randomly in the nearby
regions of the problem space.

Rechenberg and Schwefel used the first computer available at the Technical
University of Berlin to simulate various versions of the approach that became
known as evolution strategies (Rechenberg 1965; Schwefel 1965). In the early 1970s,
Rechenberg published a book that is considered the foundation for this approach
(Rechenberg 1973), and evolution strategies continue to experience significant
activity, especially in Europe. Research developments in Germany and the United
States continued in parallel, with each group unaware of the other's findings until
the 1980s (although they may have known about each other [Fogel 2000]).

Genetic Programming
The fourth major area of evolutionary computation is genetic programming.
Some of the earliest related work (Friedberg 1958; Friedberg et al. 1959) dealt with
fixed-length computer programs that were coded by another program designed to
optimize their performance. Their programs, dubbed "Herman" and "Ramsey,"
each comprised a set of 64 instructions, with each instruction being 14 bits
long. The programs were defined such that every arrangement of the 14 bits
was a valid instruction, and each set of 64 instructions was a valid program.
Unfortunately, the results of the efforts did not live up to expectations; and, in
retrospect, there were probably three main reasons for this. First, the programs
were limited in length to 64 instructions: A "failure" was tallied if the program
did not terminate successfully by the end of the 64th instruction (even if there
was a loop). Second, there was only one program; thus, there was a population
of just one that evolved. Third, it is not clear that the fitness function used was
appropriate.

These limitations were successfully dealt with by Stanford's John Koza (yet
another former student of Holland), who developed genetic programming in its
current form in the late 1980s. Whereas the other three evolutionary computation
approaches use string-shaped chromosomes, Koza evolved computer programs in
a population of tree-shaped ones. The units used for crossover were LISP sym-
bolic expressions that are essentially subroutines. Koza has been a prolific pro-
ducer of documentation, including books (Koza 1992) and videotapes related to
genetic programming, which is one of the fastest-growing and most fascinating
areas of evolutionary computation. The idea of evolving computer programs has
been around for decades; it is now becoming a reality.

Particle Swarm Optimization
The fifth major area of evolutionary computation is the "new kid on the block,"
particle swarm optimization, which has roots in three main component areas.

Chapter ThreemEvolutionary Computation Concepts and Paradigms

Perhaps most obvious are its ties to artificial life (A-life) in general and to bird
flocking, fish schooling, and swarming theory in particular. It is also related to evo-
lutionary computation, with ties to both genetic algorithms and evolution strategies
(B/ick 1995). The third component area is social psychology. This brief history
focuses on three of the main contributing paradigms from social psychology. The
A-life and evolutionary computation roots are reviewed in the introduction to the
section on particle swarm optimization later in this chapter. 2

The first social psychology paradigm is Latan6's dynamic social impact theory
(Latan6 1981). Summarized, this theory states that the behaviors of individuals
can be explained in terms of the self-organizing properties of their social system,
that clusters of individuals develop similar beliefs, and that subpopulations diverge
from one another (polarize). There are four major characteristics of social impact
theory: consolidation, clustering, correlation, and continuing diversity. Consolida-
tion means that opinion diversity is reduced as individuals are exposed to majority
arguments. Clustering means that individuals become more like their neighbors
in social space. Correlation means that attitudes that were originally independent
tend to become associated. Finally, continuing diversity means that clustering
prevents minority views from complete consolidation. In summary, individuals
influence one another and, in doing so, become more similar, and patterns of
belief held by individuals tend to correlate within regions of a population. This
theory is consistent with findings in the fields of social psychology, economics,
and anthropology.

The second paradigm is Axelrod's culture model (Axelrod 1984). In this model,
populations of individuals are represented as strings of symbols, or "features." The
probability of interaction between two individuals is a function of their similarity,
and individuals become more similar as a result of their interactions. The observed
dynamic is polarization, that is, homogeneous subpopulations that differ from one
another.

The third paradigm is Kennedy's adaptive culture model (Kennedy 1998). In this
model, there is no effect of similarity of individuals on the probability of their inter-
action. In fact, the effect of similarity is negative in that it is dissimilarity that creates
boundaries between cultural regions. Interactions between individuals occur if their
fitnesses are different. Kennedy's work in culture and cognition can be summarized
as follows:

[] Individuals searching for solutions learn from the experiences of others
(individuals learn from their neighbors).

m An observer of the population perceives phenomena of which the
individuals are the parts (individuals that interact frequently become
similar).

2 For a more detailed account of all three component areas, see Kennedy, Eberhart, and Shi (2001).

Evolutionary Computation Overview

Culture affects the performance of individuals that comprise it (individuals
gain benefit by imitating their neighbors).

Jim Kennedy and Russ Eberhart both worked at Research Triangle Institute
in North Carolina in the early 1990s. Kennedy was interested in exploring the
possibility that an evolutionary computation paradigm might play a role in his
modeling of social systems. The two continued to collaborate even after Kennedy
moved to Washington, D.C., and Eberhart moved to Indianapolis (both moved in
1994). The first two papers were published in 1995 (Kennedy and Eberhart 1995,
Eberhart and Kennedy 1995). One was delivered in Nagoya, Japan; the other, in
Perth, Australia. The international flavor of the work in the field continues. As
of the writing of this book, the authors are aware of work being done in over 30
countries on particle swarm optimization.

Toward Unification
As the 1980s came to a close, the first four areas of evolutionary computation con-
tinued to develop relatively independently, with little cooperation or communica-
tion among them. In 1994, however, an important meeting was held that brought
together researchers from all four evolutionary computation areas: the IEEE World
Congress on Computational Intelligence, held at Walt Disney World, Florida. The
World Congress comprised a mini-symposium on computational intelligence and
three conferences: The International Conference on Neural Networks; the fuzzy
logic conference (FUZZ/IEEE 1994); and the First IEEE Conference on Evolution-
ary Computation (ICEC), chaired by Zbigniew Michalewicz of the University of
North Carolina at Charlotte. A total of 96 papers were presented orally in ICEC
and 63 in poster sessions, representing authors from 23 countries worldwide. The
two volumes of proceedings from this evolutionary computation conference are a
landmark in the field (Michalewicz et al. 1994).

At the second World Congress, held in Anchorage, Alaska, in 1998, parti-
cle swarm optimization joined the program. The third World Congress, held in
Honolulu, Hawaii, featured a significant number of papers from each of the five
main areas, as well as interesting and promising hybrids. Researchers in the five
areas of evolutionary computation are now communicating and working signifi-
cantly more with each other.

Now that we've looked at the history of evolutionary computation, let's look at
what it is and how to use it.

Evolutionary Computation Overview

The five areas of evolutionary computation (EC) share attributes and implemen-
tation procedures, which we now discuss before moving on to separate overviews

Chapter ThreenEvolutionary Computation Concepts and Paradigms

of each area. EC paradigms generally differ from traditional search and optimiza-
tion paradigms in three main ways:

1. EC paradigms utilize a population of points (potential solutions) in their
search.

2. EC paradigms use direct "fitness" information instead of function
derivatives or other related knowledge.

3. EC paradigms use stochastic, rather than deterministic, transition rules.

In addition, EC implementations sometimes encode the parameters in binary or
other symbols, rather than working with the parameters themselves. We now exam-
ine these differences in more detail, beginning with the attributes of EC paradigms.

EC Paradigm Attributes
How do traditional optimization methods differ from EC paradigms? Most tradi-
tional optimization paradigms move from one point in the decision hyperspace to
another, using some deterministic rule. One of the drawbacks of this approach is
the likelihood of getting stuck at a local optimum. For example, if the fitness land-
scape resembles some hills surrounding a mountain that represents the optimum,
it is likely that a traditional paradigm will get stuck at the top of a hill and never
find the mountain (global optimum). EC paradigms, on the other hand, start with
a population of points (hyperspace vectors). They typically generate a new popu-
lation with the same number of members each epoch, or generation. Thus, many
maxima or minima can be explored simultaneously, lowering the probability of get-
ting stuck. Operators such as crossover and mutation effectively enhance this parallel
search capability, allowing the search to directly "tunnel through" from one promis-
ing hyperspace region to another. (An operator is a rule for changing a proposed
problem solution.)

Evolutionary computation paradigms do not require information that is aux-
iliary to the problem, such as function derivatives. Many hill-climbing search
paradigms, for example, require the calculation of derivatives in order to explore
the local maximum. In EC optimization paradigms the fitness of each member of
the population is calculated from the value of the function being optimized, and it
is common to use the function output as the measure of fitness. Fitness is a direct
metric of the individual population member's performance on the function being
optimized.

The fact that EC paradigms use probabilistic transition rules certainly does
not mean that a strictly random search is being carried out. Rather, stochastic
operators are applied to operations that direct the search toward regions of the
hyperspace that are likely to have higher values of fitness. Thus, for example,

Evolutionary Computation Overview

reproduction (selection) is often carried out with a probability that is proportional
to the individual's fitness value.

Some EC paradigms, particularly genetic algorithms, use special encodings for
the parameters of the problem being solved. In genetic algorithms, the parameters
are often encoded as binary strings, but any finite alphabet can be used. These
strings are almost always of fixed length, with a fixed total number of ls and 0s,
in the case of a binary string, being assigned to each parameter. By "fixed length"
it is meant that the string length does not vary during the running of the EC
paradigm. The string length (number of bits for a binary string) assigned to each
parameter depends on its maximum range for the problem being solved and on
the precision required.

Now that we've discussed the attributes of the paradigms, let's see how to
implement them.

Implementation
Regardless of the paradigm implemented, evolutionary computation applications
often follow a similar procedure:

1. Initialize the population.

2. Calculate the fitness for each individual in the population.

3. Reproduce selected individuals to form a new population.

4. Perform evolutionary operations, such as crossover and mutation, on the
population.

5. Loop to step 2 until some condition is met.

Initialization is commonly done by seeding the population with random values.
When the parameters are represented by binary strings, this simply means gener-
ating random strings of ls and 0s (with a uniform probability for each value) of
the fixed length described earlier. It is sometimes feasible to seed the population
with "promising" values that are known to be in the hyperspace region relatively
close to the optimum. (Based on our experience, however, we caution you against
using this approach. Randomly generated populations tend to be more reliable.)
The number of individuals chosen to make up the population is both problem and
paradigm dependent, but it is often in the range of a few dozen to a few hundred.

The fitness value is often proportional to the output value of the function being
optimized, though it may also be derived from some combination of a number
of function outputs. The fitness function takes as its inputs the outputs of one or
more functions, and then it outputs some probability of reproduction. Sometimes
it is necessary to transform the function outputs to produce an appropriate fitness
metric; sometimes it is not.

Chapter Three--Evolutionary Computation Concepts and Paradigms

Selection of individuals for reproduction to constitute a new population (often
called a new generation) is usually based on fitness values. The higher the fitness,
the more likely it is that the individual will be selected for the new generation.
Some paradigms that are considered evolutionary, however, such as particle swarm
optimization, can retain all population members from epoch to epoch.

Now that we've discussed the step-by-step process, let's consider the process as
a whole. In many, if not most, cases, a global optimum exists at one point in the
decision hyperspace. (Sometimes multiple optima exist.) Furthermore, stochastic or
chaotic noise might be present. Occasionally the global optimum changes dynam-
ically because of external influences; frequently there are very good local optima as
well. For these and other reasons, the bottom line is that it is often unreasonable to
expect any optimization method to find a global optimum (even if it exists) within
a finite time. The best that can be hoped for is to find near-optimum solutions
and that the time it takes to find them increases less than exponentially with the
number of variables. We agree with one leading EC researcher who suggests that
the focus should be on "meliorization" (improvement) rather than on optimization
(Schwefel 1994).

Put another way, evolutionary computation is often the second-best way to
solve a problem. Classical methods such as linear programming should often be
tried first, as should customized approaches that take full advantage of knowl-
edge about the problem. (It is also possible that a hybrid approach that uses ele-
ments from classical methods with elements of evolutionary computation will
work well.)

Why should we be satisfied with second best? For one thing, classical and cus-
tomized approaches are frequently not feasible, while EC paradigms are feasible
in a vast number of situations. Also, a real strength of EC paradigms is that they
are generally quite robust. In this field, robustness means that an algorithm can
be used to solve many problems, and even many kinds of problems, with a mini-
mum amount of special adjustments to account for special qualities of a particular
problem. Typically an evolutionary algorithm requires specification of the length
of the problem solution vectors, some details of their encoding, and an evaluation
function; the rest of the program does not need to be changed. Finally, robust
methodologies are generally fast and easy to implement. This is especially true of
EC paradigms, which are often one or more orders of magnitude faster than other
approaches (if other approaches exist).

We've completed our overview of evolutionary computation. The next sections
review five areas of evolutionary computation: genetic algorithms, evolutionary
programming, evolution strategies, genetic programming, and particle swarm opti-
mization. Genetic algorithms, discussed in the next section, receive a majority of
the attention, as they currently account for most of the successful applications in
the literature (although this is changing).

Genetic Algorithms

Genetic Algorithms

It seems that every technology has its jargon, and genetic algorithms are no excep-
tion. Therefore, we begin by reviewing some of the basic terminology that is needed
to understand the genetic algorithm (GA) literature. A sample problem is then
presented to illustrate how GAs work; a step-by-step analysis illustrates a GA appli-
cation, with options discussed for some of the individual operations. The section
concludes with a more detailed look at the fundamental Schema theorem and at
approaches for improving GA performance in some situations.

In this book, unless otherwise specified, we deal with canonical genetic algo-
rithms, a basic version of GAs that feature binary parameter encoding, one- or
two-point crossover, and bit-by-bit mutation. (We discuss these attributes later in
this section.)

Details of implementing GAs are discussed in Chapter 4, where a specific
GA implementation is summarized. We begin here by looking at the general
features of GAs.

Overview of Genetic Algorithms
One perspective of genetic algorithms is that they are search algorithms that reflect
in a very primitive way some of the processes of natural evolution. (As such, they
are analogous to artificial neural networks' status as primitive approximations of
biological neural processing.) Engineers and computer scientists do not care as
much about the biological foundations of GAs as about their utility as analysis
tools (another parallel with neural networks). GAs often provide very effective
search mechanisms that can be used in optimization or classification applications.

EC paradigms work with a population of points rather than a single point; each
"point" is actually a vector in hyperspace representing one potential, or candidate,
solution to the optimization problem. A population is thus just an ensemble, or
set, of hyperspace vectors. Each vector is called an individual in the population;
sometimes an individual in a GA is referred to as a chromosome because of the
analogy to genetic evolution of organisms.

Because real numbers are often encoded in GAs using binary numbers, the
dimensionality of the problem vector might be different from the dimensionality
of the bitstring chromosome. The number of elements in each vector (individ-
ual) equals the number of real parameters in the optimization problem. A vector
"element" generally corresponds to one parameter, or dimension, of the numeric
vector. Each element can be encoded in any number of bits, depending on the
representation of each parameter. The total number of bits defines the dimension
of hyperspace being searched. If a GA is being used to find "optimum" weights for
a neural network, for example, the number of vector elements equals the number

Chapter ThreemEvolutionary Computation Concepts and Paradigms

of weights in the network. If there are w weights, and it is desired to calculate each
weight to a precision of b bits, then each individual will consist of w. b bits, and
the dimension of the binary hyperspace being searched is 2 wb. Thus we can see
that even for a fairly modest problem involving the optimization of three vari-
ables to a resolution of three decimal places each (10 bits), the search space is 2 3°.
The variables being optimized comprise what is called the phenotype space, and
the behavior of the system given certain values of the variables is the phenotype.
The binary strings on which operators such as crossover and mutation work
comprise what is called the genotype space, and the strings themselves are the
genotypes.

The series of operations carried out when implementing a canonical (basic)
GA paradigm is:

1. Initialize the population.

2. Calculate fitness for each individual in the population.

3. Reproduce selected individuals to form a new population.

4. Perform crossover and mutation on the population.

5. Loop to step 2 until some condition is met.

In some GA implementations, operations other than crossover and mutation are
carried out in step 4. We will further explore GAs by applying a basic GA to a
simple problem.

A Sample GA Problem
Because implementing a canonical (basic) GA paradigm is so simple, a sample
problem (also simple) seems to be the best way to introduce most of the basic GA
concepts and methods. As will be seen, implementing a basic GA involves only
copying strings, exchanging portions of strings, and flipping bits in strings.

Our sample problem is to find the value of x that maximizes the function
f(x) = sin(xx/256) over the range 0 _< x _< 255, where values of x are restricted
to integers. This is just the sine function from zero to x radians, as illustrated in
Figure 3.1. Its maximum value of 1 occurs at x/2, or x = 128. The function value
and the fitness value are thus defined to be identical for the sample problem.

There is only one variable in our sample problem: x. We assume for the sample
problem that the GA paradigm uses a binary alphabet. The first decision to be made
is how to represent the variable. It is easy in this case because the variable can only
take on integer values between 0 and 255. It is therefore logical to represent each
individual in our population with an 8-bit binary string. Using standard binary
encoding, the binary string 00000000 will evaluate to 0; 11111111, to 255.

Figure 3.1

Genetic Algorithms

128 255

Function to be optimized in example problem.

The determination of the number of bits needed is usually more complex than
this case. There is generally more than one variable, and the number of bits for
each variable must be chosen to yield the desired precision. For example, a real
variable that varies between 0 and 1 and has a precision of three decimal places
(one part in a thousand) can be represented by a string of 10 bits (one part in
1,024).

We must decide next how many individuals will make up the population.
In an actual application, it is common to have between a few dozen and a few
hundred individuals. For the purposes of this illustrative example, however, the
population consists of eight individuals.

The next step is to initialize the population, which is usually done randomly.
A random number generator is thus used to assign a 1 or 0 to each of the eight
positions in each of the eight individuals, resulting in the initial population in
Figure 3.2. Also shown in the figure are the values of x and f(x) for each binary
string.

After fitness calculation, the next step is reproduction. Reproduction consists
of forming a new population with the same number of individuals by selecting
from members of the current population with a stochastic process that is weighted
by each of their fitness values. In the sample problem, the sum of all fitness values
for the initial population is 5.083. Dividing each fitness value by 5.083, then, yields
a normalized fitness value fnorm for each individual. The sum of the normalized
values is, of course, 1. The normalized values are shown in an accumulated fashion
in the cumulative fnorm column in Figure 3.2.

Chapter ThreemEvolutionary Computation Concepts and Paradigms

Individuals x f (x) fnorm cumulative fnorm
1 0 1 1 1 1 0 1 189 0.733 0.144 0.144

1 1 0 1 1 0 0 0 216 0.471 0.093 0.237

0 1 1 0 0 0 1 1 99 0.937 0.184 0.421

1 1 1 0 1 1 0 0 236 0.243 0.048 0.469

1 0 1 0 1 1 1 0 174 0.845 0.166 0.635

0 1 0 0 1 0 1 0 74 0.788 0.155 0.790

0 0 1 0 0 0 1 1 35 0.416 0.082 0.872

0 0 1 1 0 1 0 1 53 0.650 0.128 1.000

Z,f(x) = 5 . 0 8 3

Figure 3.2 Initial population and f(x) values for GA example.

These normalized fitness values are used in a process called "roulette wheel"
selection, where the size of the roulette wheel wedge for each population member,
which reflects the probability of the individual being selected, is proportional to
its normalized fitness value.

The roulette wheel is "spun" by generating eight random numbers between
0 and 1. If a random number is between 0 and 0.144, the first individual in the
existing population is selected for the next population. If it is between 0.144 and
(0.144 + 0.093) = 0.237, the second individual is selected, and so on. Finally, if
the random number is between (1 -0 .128) = 0.872 and 1.0, the last individual
is selected. The probability that an individual is selected is thus proportional to
that individual's fitness value. It is possible, though highly improbable, that the
individual with the lowest fitness value could be selected eight times in a row
and make up the entire next population. It is more likely that individuals with
high fitness values are picked more than once for the new population. (Note that
roulette wheel selection works as described here only when all fitness values are
positive. Modifications must be made to accommodate negative fitness values.)

The eight random numbers generated (presented in random order) are 0.293,
0.971, 0.160, 0.469, 0.664, 0.568, 0.371, and 0.109. As shown in Figure 3.3, this
results in initial population member numbers 3, 8, 2, 5, 6, 5, 3, and 1 being chosen
to make up the population after reproduction.

The next operation is crossover. To many evolutionary computation practi-
tioners, crossover of binary encoded substrings is what makes a genetic algorithm
a genetic algorithm. Crossover is the process of exchanging portions of the strings
of two "parent" individuals. An overall probability is assigned to the crossover
process, which is the probability that, given two parents, the crossover process will
occur. This crossover ra te is often in the range of 0.65 to 0.80; a value of 0.75 is
selected for the sample problem.

First, the population is divided randomly into pairs of parents. Because the
order of the population after reproduction in Figure 3.3 is already randomized,

Genetic Algorithms

0 1 1 0 0 0 1 1

0 0 1 1 0 1 0 1

i i 0 1 1 0 0 0

I 0 1 0 1 1 1 0

0 1 0 0 1 0 1 0

I 0 1 0 1 1 1 0

0 1 1 0 0 0 1 1

i 0 1 1 1 1 0 1

Figure 3.3 Populat ion af ter reproduct ion.

1 2 Individuals x f(x)

0 1 ii0 0 011 1 0 1 1 1 0 1 1 1 119 0.994

0 0 IIi 0 110 1 0 0 1 0 0 0 0 1 33 0.394

1 2
111 o ~ 11o 0 0 1 0 1 0 1 0 0 0 168 0 . 8 8 2

ii0 i 0 111 1 0 1 1 0 1 1 1 1 0 222 0.405

2 1
0 110 0 1 0 11o 1 0 0 0 1 0 1 0 138 0 . 9 9 2

i o11 o 1 1 11o 0 1 1 0 1 1 1 0 i i 0 0 . 9 7 6

0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 99 0.937

(a) (b) (c) (d)

Figure 3.4 Populat ion before crossover showing crossover points (a); af ter crossover (b);
and values of x (c) and f(x) (d) af ter crossover.

parents will be paired as they appear there. For each pair, a random number is
generated to determine whether crossover will occur. It is thus determined that
three of the four pairs will undergo crossover.

Next, for the pairs undergoing crossover, two crossover points are selected
at random. (Other crossover techniques are discussed later in this chapter.) The
portions of the strings between the first and second crossover points (moving from
left to right in the string) will be exchanged. The paired population, with the first
and second crossover points labeled for the three pairs of individuals undergoing
crossover, is illustrated in Figure 3.4(a) before the crossover operation. The portions
of the strings to be exchanged are in bold. Figure 3.4(b) illustrates the population
after crossover is performed.

Note that, for the third pair from the top, the first crossover point is to the
right of the second. The crossover operation thus "wraps around" the end of the
string, exchanging the portion between the first and the second, moving from

Chapter Three--Evolutionary Computation Concepts and Paradigms

left to right. For two-point crossover, then, it is as if the head (left end) of each
individual string is joined to the tail (right end), thus forming a ring structure. The
section exchanged starts at the first crossover point, moving to the right along the
binary ring, and ends at the second crossover point. The values of x and f(x) for
the population following crossover appear in Figure 3.4(c) and (d), respectively.

The final operation in this plain vanilla genetic algorithm is mutation. Mutation
consists of flipping bits at random, generally with a constant probability for each
bit in the population. As is the case with the probability of crossover, the probability
of mutation can vary widely according to the application and the preference of
the researcher. Values between 0.001 and 0.01 are not unusual for the mutation
probability. This means that the bit at each site on the bitstring is flipped, on
average, between 0.1 and 1.0 percent of the time. One fixed value is used for each
generation and is often maintained for an entire run.

As there are 64 bits in the sample problem's population (8 bits x 8 individuals),
it is quite possible that none will be altered as a result of mutation, so the population
of Figure 3.4(b) will be taken as the "final" population after one iteration of the
GA procedure. Going through the entire GA procedure one time is said to produce
a new generation. The population of Figure 3.4(b) therefore represents the first
generation of the initial randomized population.

Note that the fitness values now total 6.313, up from 5.083 in the initial random
population, and that there are now two members of the population with fitness
values higher than 0.99. The average and maximum fitness values have thus both
increased. It is important to note that in most GA applications the fitnesses don't
monotonically increase. There are times when the children have lower fitnesses
than their parents. If this situation continues, however, the individuals with lower
fitness will probably be eliminated through the selection process.

The population of Figure 3.4(b) and the corresponding fitness values in Figure
3.4(d) are now ready for another round of reproduction, crossover, and muta-
tion, producing yet another generation. More generations are produced until some
stopping condition is met. The researcher may simply set a maximum number of
generations for the algorithm to search, may let it run until a performance cri-
terion has been met, or may stop it after some number of generations with no
improvement.

This completes our simple application of the basic GA. It's time to back up
and review the GA's operations.

Review of GA Operations in the Simple Example
Now that one iteration of the GA operations (one generation) for the sample
problem has been completed, each operation is reviewed in more detail. Various
approaches, and reasons for each, are examined.

Genetic Algorithms

The representation of the values for the variable x was made (perhaps
unrealistically) straightforward by choosing a dynamic range of 256; an 8-bit
binary number was thus an obvious approach. Standard binary coding, however,
is only one approach; others may be more appropriate.

In this example, the nature of the sine function places the optimal value of x at
128, where f(x) is 1. The binary representation of 128 is 10000000; the represen-
tation of 127 is 01111111. Thus, the smallest change in fitness value can require
a change of every bit in the representation. This situation is an artifact of the
encoding scheme and is not desirable~it only makes the GA's search more diffi-
cult. Often, a better representation is one in which adjacent integer values have a
Hamming distance of 1; in other words, adjacent values differ by only a single bit.

Gray coding overcomes this impediment while retaining the advantages of binary
operations (Gray 1953). The challenge is to devise a scheme, using 0s and ls, to
encode integers where the Hamming distance between adjacent numbers equals 1;
this is called the "adjacency property." There are many ways to accomplish this for
any length bitstring; the most commonly used version is called "binary-reflected
Gray code." As shown Table 3.1, Gray coded integers that are one unit different in
value are also one unit distant in Hamming distance.

Table 3.1 Gray Codes and Binary Codes for Integers 0-15

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 O110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 11 O0

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

Chapter Three--Evolutionary Computation Concepts and Paradigms

t

The algorithm for generating Gray code from binary is quite simple. The length
of the Gray bitstring will be the same length as the binary version. Further, the
leftmost bit will be the same. Starting at the second position from the left, then,
the formula is

Gi = XOR(Bi, Bi-1)

where Gi is the bit in the ith position of the Gray code (G1 is the leftmost bit);
Bi is the bit in the ith position of the binary code; and the function XOR() returns
1 if the adjacent bits are different from one another, 0 if they are the same. In
other words, set the most significant bit on the Gray bitstring equal to the same bit
on the binary bitstring, and move to the right. Where a bit matches the bit to the
left of it on the binary bitstring, place a 0 in the Gray bitstring; otherwise, place a
1. Go down the line doing this at each position. With Gray coding, a movement
of one unit on the number line is performed by flipping a single bit, allowing an
optimizer to climb more gracefully toward optima.

Some GA software allows the user to specify the dynamic range and resolution
for each variable. The program then assigns the correct number of bits and the
coding. For example, if a variable has a range from 2.5 to 6.5 (a dynamic range
of 4) and it is desired to have a resolution of three decimal places, the product
of the dynamic range and the resolution requires a string 12 bits long, where the
string of 0s represents the value 2.5. A major advantage of being able to represent
variables in this way is that the user can think of the population individuals as
real-valued vectors rather than as bit strings, thus simplifying the development of
GA applications.

This kind of representation can present some challenges. If, for instance, the
dynamic range is 5 and resolution is 3 decimal places, we need 13 bits (same
as for dynamic range of 8) and some of the bitstrings resulting from crossover
and mutation will not be within the dynamic range. Provisions have to be made
to take care of such situations. One approach is to define "repair" functions that
move population members that are outside of the dynamic range back in. Another
approach is to assign particularly high penalties to locations outside the dynamic
range.

The "alphabet" used in the representation can, in theory, be any finite alphabet.
Thus, rather than use the binary alphabet of 1 and 0, we could use an alphabet
containing more characters or numbers. Engineers frequently represent variables
with real numbers. Many GA implementations, however, use the binary alphabet.

Turning our attention to the size of the population, De]ong's dissertation
(1975) offers guidelines that are still usually observed: Start with a relatively high
crossover rate, a relatively low mutation rate, and a moderately sized population
(though just what constitutes a moderately sized population is unclear). The main
trade-off is obvious: A large population will search the space more thoroughly

Genetic Algorithms

but at a higher computational cost. The authors have generally used populations
of between 20 and 200 individuals, depending primarily, it seems, on the string
length of the individuals. It also seems (in the authors' experience) that the sizes of
populations tend to increase approximately linearly with individual string length
rather than exponentially, but "optimal" population size (if an optimal size exists)
depends on the problem as well.

The initialization of the population is usually done stochastically, though it
is sometimes appropriate to start with one or more individuals that are selected
heuristically. The GA is thereby initially aimed in promising directions, or given
hints. It is not uncommon to seed the population with a few members selected
heuristically and to complete it with randomly chosen members. Regardless of the
process used, the population should represent a wide assortment of individuals.
The urge to skew the population significantly should generally be avoided if the
limited experience of the authors is generalizable.

The calculation of fitness values is conceptually simple, though it can be quite
complex to implement in a way that optimizes the efficiency of the GA's search
of the problem space. In the sample problem, the value off(x) varies (quite con-
veniently) from 0 to 1. Lurking within the problem, however, are two drawbacks
to using the "raw" function output as a fitness function: one that is common to
many implementations, the other arising from the nature of the sample problem.

The first drawback common to many implementations is that after the GA has
been run for a number of generations it is not unusual for most (if not all) of the
individuals' fitness values, after, say, a few dozen generations, to be quite high. In
cases where the fitness value can range from 0 to 1, for example (as in the sample
problem), most or all of the fitness values may be 0.9 or higher. This lowers the
fitness differences among individuals that provide the impetus for effective roulette
wheel selection; relatively higher fitness values should have a higher probability of
reproduction.

One way around this problem is to space the fitness values equally. For example,
in the sample problem the fitness values used for reproduction could be equally
spaced from 0 to 1, assigning a fitness value of 1 to the most fit population member,
0.875 to the second, and 0.125 to the least fit ofthe eight. In this case the population
members are ranked on the basis of fitness and then their ranks are divided by the
number of individuals to provide a probability threshold for selection. Note that the
value of 0 is often not assigned, since that would result in one population member
being made ineligible for reproduction. Also note that f(x), the function result, is
now not equal to the fitness and that, in order to evaluate actual performance of
the GA, the function value should be monitored as well as the spaced fitness.

Another way around the problem is to use what is called scaling. Scaling takes
into account the recent history of the population and assigns fitness values on
the basis of comparison of individuals' performance to the population's recent
average performance. When the GA optimization is maximizing some function,

Chapter ThreemEvolutionary Computation Concepts and Paradigms

scaling involves keeping a record of the minimum fitness value obtained in the last
w generations, where w is the size of the scaling window. If, for example, w = 5,
the minimum fitness value in the last five generations is kept and used, instead
of 0, as the "floor" of fitness values. Fitness values can be assigned a value based
on their actual distance from the floor value, or they can be equally spaced, as
described earlier.

The second drawback is that the sample problem exacerbates the compression
of fitness values situation described earlier because near the global optimum fitness
value of 1,f(x) (which is also the fitness) is relatively flat. There is thus relatively little
selection advantage for population members near the optimum value x = 128. If
this situation is known to exist, a different representation scheme might be selected,
such as defining a new fitness function, which is the function output raised to some
power.

What we have been talking about with respect to both drawbacks is selection
pressure, or how much reproduction advantage is given to population members
with higher fitness values. Too much pressure (advantage) can result in premature
convergence, and not enough may allow the population to wander aimlessly.

Note that the shape of some functions "assists" discrimination near the opti-
mum value. For example, consider maximizing the function f(x) = x 2 over the
range 0 to 10; there is a higher differential in values off(x) between adjacent val-
ues of x near 10 than near 0. Thus a slight change in the independent variable
results in great improvement or deterioration of performance~which is equally
informative~near the optimum.

In the discussion thus far, we have assumed that optimization implies finding a
maximum value. Sometimes, of course, optimization requires finding a minimum
value. Many versions of GA implementations allow for this possibility. Often, it
is required that the user specify the maximum value fmax of the function being

• optimized, f(x), over the range of the search. The GA can then be programmed to
maximize the fitness function fmax-f(x). In this case, scaling, described previously,
keeps track of f max over the past w generations and uses it as a "roof" value from
which to calculate fitness.

We now consider roulette wheel selection. In genetic algorithms, the expected
number of times each individual in the current population is selected for the new
population is proportional to the fitness of that individual relative to the average
fitness ofthe entire population. Thus, in the initial population ofthe sample problem,
where the average fitness was 5.083/8 - 0.635, the third population member had a
fitness value of 0.937, so it could be expected to appear about 1.5 times in the next
population; it appeared twice.

The conceptualization is that of a wheel whose surface is divided into wedges
representing the probabilities for each individual (see Figure 3.5). For instance, one
point on the edge is determined to be the zero point and each arc around the circle
corresponds to an area on the number line between 0 and 1. A random number

Genetic Algorithms

Figure 3.5 Roulette wheel selection, in which the probability of an individual being
selected is proportional to its fitness.

is generated, between 0.0 and 1.0, and the individual whose wedge contains that
number is chosen. In this way, individuals with greater fitness are more likely to
be chosen. The selection algorithm can be repeated until the desired number of
individuals has been selected. There are a number of variations to the roulette
wheel procedure. A few of them are reviewed next.

One variation on the basic roulette wheel procedure is a process developed by
Baker (1987) in which the portion of the roulette wheel is assigned based on each
unique string's relative fitness. One spin of the roulette wheel then determines the
number of times each string will appear in the next generation. To illustrate how
this is done, assume that the fitness values are normalized (sum of all equals 1).
Each string is assigned a portion of the roulette wheel proportional to its normalized
fitness. Instead of one "pointer" on the roulette wheel spun n times, there are n
pointers spaced 1/n apart; the n-pointer assembly is spun only once. Each of the n
pointers now points to a string; each place one of the n pointers points determines
one population member in the next generation. If a string has a normalized fitness
greater than 1/n (corresponding to an expected value greater than 1), it is guaranteed
at least one occurrence in the next generation.

In the discussion thus far, we have assumed that all of the population mem-
bers are replaced each generation. Although this is usually the case, sometimes
it is desirable to replace only a portion of the population~for example, the 80
percent with the worst fitness values. The percentage of the population replaced
each generation is sometimes called the generation gap.

Chapter Three--Evolutionary Computation Concepts and Paradigms

Unless some provision is made, with standard roulette wheel selection it is
possible that the individual with the highest fitness value in a given generation
may not survive reproduction, crossover, and mutation to appear unaltered in the
new generation. It is frequently helpful to use what is called the elitist strategy,
which ensures that the individual with the highest fitness is always copied into
the next generation. Most GA applications with which the authors are familiar
implement elitist strategy.

The most important operator in GAs is crossover, based on the metaphor of
sexual combination. Its purpose is to pass on information from population member
to population member. If a solution is encoded as a bitstring, then mutation may
be implemented by setting a probability threshold and flipping bits when a random
number is less than the threshold. As a matter of fact, mutation is not considered
by most GA practitioners to be an especially important operator in GA; it is usually
set at a very low rate and sometimes omitted. Crossover is generally considered
more important because it is considered to play a more important role in guiding
the population toward an acceptable solution.

Crossover is a term for the recombination of genetic information during sexual
reproduction. In GAs, offspring have equal probabilities of receiving any gene
from either parent because the parents' chromosomes are combined randomly.
In nature, chromosomal combination leaves sections intact~that is, contiguous
sections of chromosomes from one parent are combined with sections from the
other, rather than simply shuffling randomly. In GAs there are many ways to
implement crossover.

The two main attributes of crossover that can be varied are the type of crossover
that is implemented and the probability that it occurs. The following paragraphs
examine variations of each.

A crossover probability of 0.75 was used in the sample problem, and two-point
crossover was implemented. Two-point crossover with a probability of 0.60 to 0.80
is a relatively common choice, especially when Gray coding is used.

The most basic crossover type is one-point crossover, as described by Holland
(1992) and others, for example, Goldberg (1989), and Davis (1991). It is inspired
by natural evolution processes. One-point crossover involves selecting a single
crossover point at random and exchanging the portions of the individual strings to
the right of the crossover point. Figure 3.6 illustrates one-point crossover; portions
to be exchanged are in bold in Figure 3.6(a).

Figure 3.6

1 o 1 1 o l o z o 1 o 1 1 o 1 o o

0 i 0 0 l l Z 0 0 0 1 0 0 1 0 1 0

(a) (b)

O n e - p o i n t crossover be fo re (a) and a f te r (b) crossover.

Genetic Algorithms

Another type of crossover that has been found useful is uniform crossover,
described by Syswerda (1989). A random decision is made at each bit position in
the string as to whether or not to exchange (cross over) bits between the parent
strings. If a 0.50 probability at each bit position is implemented, an average of about
50 percent of the bits in the parent strings are exchanged. Note that a 50 percent
rate will result in the maximum disruption due to uniform crossover. Higher rates
just mirror rates lower than 50 percent. For example, a 0.60 probability uniform
crossover rate produces results identical to a 0.40 probability rate. If the rate were
100 percent, the two strings would simply switch places, and if it were 0 percent
neither would change.

Values for the probability of crossover vary with the problem. In general,
values between 60 and 80 percent are common for one-point and two-point
crossover. Uniform crossover sometimes works better with slightly lower crossover
probability. It is also common to start out running the GA with a relatively higher
value for crossover, then taper off the value linearly to the end of the run, ending
with a value of, say, one-half the initial value.

Inversion is a GA operation that is not generally used today. It is function-
ally related to crossover, but involves a single parent producing a single child.
Figure 3.7 illustrates the process, which consists of switching end for end a por-
tion of the parent structure, shown between the cut points in bold in Figure 3.7(a),
in the child. One reason it is not in general use is that it is perceived to destroy the
basic building blocks, or schemata, by inverting them. The term schemata usually
refers to substrings of an individual population member string; a more detailed
description appears in the next section, Schemata and the schema theorem.

In GAs, mutation is the stochastic flipping of bits that occurs in each generation.
Its purpose is to introduce diversity into the population and is generally done bit
by bit on the entire population. It is often done with a probability of something
like 0.001, but higher probabilities are not unusual. For example, Liepins and
Potter (1991) used a mutation probability of 0.033 in a multiple-fault diagnosis
application.

If the population comprises real-valued parameters, mutation can be imple-
mented in different ways. For instance, in an image classification application,
Montana (1991) used strings of real-valued parameters that represented thresh-
olds of event detection rules as the individuals. Each parameter in the string was
range-limited and quantized (i.e., could take on only a certain finite number of
values). If chosen for mutation, a parameter was randomly assigned any allowed
value in the range of values valid for that parameter.

Figure 3.7

1 olo 1 1 o 11o 1 o 1 o 1 1 o o

(a) (b)

Example of string before (a) and after (b) inversion operation.

Chapter ThreemEvolutionary Computation Concepts and Paradigms

The probability of mutation is often held constant for the entire run of the GA,
although this approach does not produce optimal results in many cases. It can be
varied during the run and, if varied, usually is increased. For example, mutation
rate may start at 0.001 and end at approximately 0.01 when the specified number
of generations has been completed. In the software implementation described on
this book's web site, a flag in the run file can be set that increases the mutation
rate significantly when the variability in fitness values becomes low, as is often the
case late in the run.

Selecting the number of generations for which the GA is run is often a trial-and-
error process. In general, given enough computing time, the number of generations
is adjusted until the desired response is obtained. Other factors, such as population
diversity and fitness improvement of the best population member, can enter into
the decision to end the GA run. For example, if the best fitness has not changed
for, say, 100 generations, we may choose to terminate the run.

The optimum number of generations is often a function of the problem. For
instance, if the GA is being used to train a neural network, the same caveats apply
as would apply if any neural network paradigm such as back-propagation were
being used. What is desired is optimum results with a test set, so conditions such
as overtraining must be avoided.

Whatever the application, given the stochastic nature of a GA, multiple runs
will probably be desirable. Then the best-performing individuals from each run
can be tested.

This completes our review of basic GA operations. In the next section, we
consider a theorem that provides some insight into how GAs work.

Schemata and the Schema Theorem

Exactly how do GAs do what they do? How is it possible to develop new population
members that, on average, are fitter than the previous generation while searching
new regions of the problem space? Since all that GAs have to work with are (often
binary) strings, there must be features related to the fitness inherent in the strings
that are used.

The string features that are relevant to the optimization process are called
schemata (singular: schema). The schema theorem describes why the canonical GA
paradigm is able to efficiently direct an optimization process. (This theorem also
applies to other proportional selection methodologies.)

First described for the GA field by Holland (1975, 1992), schemata are similarity
templates for strings. Each schema defines a subset of strings with identical values at
specified string locations. As used here, the word string usually refers to substrings
of an individual population member string, but it can refer to the entire string.
Schemata provide a means by which relevant similarities among the individual
population members can be described and exploited.

Genetic Algorithms

To define schemata, the alphabet of the strings is used to define values at
specified locations, and an additional character is used as a "don't care" symbol in
locations where the value doesn't matter. As is common in the GA literature, the
pound symbol (#) is used in this book as the "don't care" symbol. Schemata can
thus generally be thought of as comprising an alphabet of ao + 1 characters, where
ao is the number of characters in the GA representation. In most cases, as in the
example, the GA strings have a binary representation, so the schemata comprise
the characters {0, 1, #}.

As an example, consider the schemata of length 4 that may appear in, say, the
leftmost four positions of the population strings of the sample problem. One such
schema is #000, which has two member strings. That is, two strings match the
schema: 1000 and 0000. The schema 1##0 has four matching strings: 1000, 1010,
1100, and 1110.

Holland argues that adaptation can be thought of in terms of schemata. Genetic
optimization increases the likelihood that the schemata that most improve the
species' fitness will persist to the next generation. He also argues that crossover
among the fittest members of a population will result in the discovery and survival
of better schemata.

It should be noted that some researchers have recently found errors in Holland's
argument, and the issue is currently controversial. Even if the proof is shaky, it can
be observed empirically, simply by running GA programs, that crossover is quite
effective, if not always fast, for finding good solutions to highly complex problems.

How many schemata are possible for a string length of l and an alphabet of ao

characters? In the previous example, for ao = 2, there can be a 0, 1, or # at each string
position, resulting in a total possible number of schemata of 3 x 3 x 3 x 3 - 81.
Generalizing, there are (ao+ 1)l total possible schemata for any representation of
length l.

Another informative measure is the total number of unique schemata possible
in a population. Consider a specific string of length 8, taken from the example
problem: 01110111. Since each string position can assume the value it has or the
wild-card value, the string belongs to 28 = 256 schemata. Any binary string of
length l thus belongs to 2 l schemata. In a population of n individuals, then, there
are between 2 l (if all members are identical) and n2 l (if no two individuals are
the same) schemata. Populations with higher diversity have a greater number of
schemata.

Schemata that are part of an individual with high fitness have a higher than
average probability of reproducing. Therefore, highly fit schemata benefit from
differential reproduction relative to fitness. If selection were the only operator used,
though, no new regions of the search hyperspace would ever be explored. Crossover
and mutation provide new schemata to guide the search into new regions.

Crossover is a slightly more complicated matter than reproduction. Consider
two schemata: ##1####0 and ###10###. If both are part of strings of equal

Chapter ThreemEvolutionary Computation Concepts and Paradigms

fitness, which is more likely to be passed on to the new population? Either one- or
two-point crossover is more likely to disrupt the first, since it is quite likely that a
crossover point will occur between the two string endpoints. The second is more
compact and less likely to be disrupted by a one- or two-point crossover operation.

Mutation is not likely to disrupt either schema, since it typically occurs at a
very low rate. And since it is considered on a bit-by-bit basis, if it does occur it is
just as likely to disrupt one as the other.

Although crossover and mutation are potentially disruptive, they facilitate an
efficient search by introducing innovations. Furthermore, compact (short) sche-
mata that are part of highly fit individuals will, with high probability, appear in
ever-increasing numbers in future generations. The schemata are the elements from
which future generations are built; Holland (1992) named them "building blocks."
The schema theorem sums up all of this and provides a quantitative estimation of
one aspect of GA performance.

The schema theorem predicts the number of times a specific schema will appear
in the next generation of a GA, given the fitness of the population member(s) con-
taining the schema, the average fitness of the population, and other parameters. The
GA can be thought of as effectively working with a large number of schemata simul-
taneously, ranging from very short schemata to schemata as long as the individual
population members. This has been named "intrinsic parallelism" by Holland. The
schema theorem provides a quantitative prediction for all schemata, regardless of
length. It should be noted that the theorem applies only to "plain vanilla" GAs. As
soon as you do anything special, including something as simple as implementing
elitism, where the fittest population member is automatically copied into the next
generation, the schema theorem no longer applies.

The schema theorem appears as equation 3.1. 3

8(s)
r/t+ l(S) > rlt(S)~ S) 1 - Pc

- Javg l - 1
- o(S)pm] (3 . 1)

In equation 3.1, n is the total number of examples of a particular schema S. The
subscripts t + 1 and t refer to time steps, or generations. The parameter f(S) is
the average fitness of the individual population members that contain the schema
S, while favg is the average fitness of the entire population. The probabilities of
crossover and mutation are pc and Pm, respectively.

The parameter 8(S) is called the "defining length" of the schema; it is the
distance between the first and last specific string positions. For example, for the
schema #01#11#, the defining length is 4. The total length of the string is l, while
o(S) is the "order" of the schema, or the number of fixed positions (ls and 0s) in

3 The derivation of the theorem is beyond the scope of this book. The reader is referred to the
derivation in Goldberg (1989).

Genetic Algorithms

the schema. In the preceding example, the order of the schema is 4. The defining
length of a schema is just the number of potential "cut" points within the schema
that could be affected by crossover.

Summarized, equation 3.1 states that the expected number of occurrences of
schema S in generation t + 1 is the number in the current generation multiplied
by the average schema fitness divided by the average population fitness, less the
disruptive effects caused by crossover and mutation. Schemata with above-average
fitness values will be represented an increasing number of times as generations
proceed. Those with below-average values will be represented less and less; they
will "die out," just as happens in nature.

The schemata with small values for defining length are disrupted least by
crossover, so the most rapidly increasing representation in any population will
be of highly fit, short schemata, called building blocks, which will experience
exponential growth. Building blocks illustrate that it is often beneficial to keep
some parts of a solution intact. This is the most important consequence of the
schema theorem.

Note that the schema theorem, by itself, does not specify how well a GA will
solve a particular problem. It should also be noted that there is controversy in
the EC community with respect to the usefulness and validity of the theorem. We
include it, as have other recent books dealing with GAs such as (Mitchell 1996),
(Pedrycz 1998), and (Haupt and Haupt 1998), because we believe it provides useful
insights into GA processes.

We've now told you what we think you need to know about GAs, how they
work, and how to apply them to practical problems. All that is left are a few final
observations.

Comments on Genetic Algorithms

In sum, a genetic algorithm operates by evaluating a population of bitstrings
(there are real-numbered GAs, but binary implementations are more common)
and selecting survivors stochastically based on their fitness; thus, fitter members
of the population are more likely to survive. Survivors are paired for crossover,
and often some mutation is performed on chromosomes. Other operations might
be performed as well, but crossover and mutation are the most important ones.
Sexual recombination of genetic material is a powerful method for adaptation.

In Chapter 2, we discussed three spaces of adaptation: the parameter space,
the function space, and the fitness space. Much of the literature in evolutionary
computation treats the function space as if it were identical to the fitness space; that
is, the function output provides a number that indicates how close to the global
optimum the search algorithm is. There are, however, dangerous ambiguities in
the confusion of these two quantities. The fitness landscape can be very different
depending on the fitness function utilized. The fitness measure should probably

Chapter ThreemEvolutionary Computation Concepts and Paradigms

be scaled between 0 and 1 when possible, making it easy to understand as well as
an indication of the probability of a population member's survival.

The material on genetic algorithms in this chapter provides only an introduction
to the subject. We suggest that you explore GAs further by sampling the references
cited in this section. With further study and application, it will become apparent
why GAs have such a devoted following. In the words of Davis (1991):

[T]here is something profoundly moving about linking a genetic algorithm to
a difficult problem and returning later to find that the algorithm has evolved a
solution that is better than the one a human found. With genetic algorithms we
are not optimizing; we are creating conditions in which optimization occurs, as
it may have occurred in the natural world. One feels a kind of resonance at such
times that is uncommon and profound.

This feeling, of course, is not unique to experiences with GAs; using other evo-
lutionary algorithms can result in similar feelings. An implementation of a genetic
algorithm is presented in Chapter 4. The software for the GA implementation is
on the book's web site.

That's it for genetic algorithms. Let's now turn our attention to an evolutionary
computation paradigm that eschews crossover~evolutionary programming.

Evolutionary Programming

Evolutionary programming (EP) is similar to genetic algorithms in its use of a pop-
ulation of candidate solutions to evolve an answer to a specific problem; it differs
in its concentration on top-down processes of adaptive behavior. The emphasis
in evolutionary programming is on developing behavioral models, that is, models
of observable system interactions with the environment. Theories of natural evo-
lution heavily influence the development of evolutionary programming concepts
and paradigms.

Evolutionary programming is derived from the simulation of adaptive behavior
in evolution: GAs are derived from the simulation of genetics. The difference is
perhaps subtle but important. Genetic algorithms work in the genotype space of
the information codings, while evolutionary programming (EP) emphasizes the
phenotype space of observable behaviors (Fogel 1990). EP is therefore directed
at evolving "behavior" that solves the problem at hand; it mimics "phenotypic
evolution.

Evolutionary programming is a more flexible approach to evolution than some
of the other paradigms. Operators are freely adapted to fit the problem at hand.
Generally, the paradigm relies on mutat ion~not sexual recombination~to pro-
duce offspring. Whereas evolution strategies systems usually generate many more

Evolutionary Programming

offspring than parents (a ratio of seven to one is common, as we will see in the
next section), EP usually generates the same number of children as parents. Parents
are selected to reproduce using a tournament method; their features are mutated
to produce children who are added to the population. When the population has
doubled, the members~parents and offspring together~are ranked, and the best
half are kept for the next generation.

Now that we have a rough idea of what EP entails, let's see how to implement
it in an application. After that, we'll look at examples of specific application areas.

Evolutionary Programming Procedure
The process for implementing EP will look familiar to you; the process itself is
similar to the one we used for GAs. The procedure generally followed when imple-
menting EP appears in the following list:

1. Initialize the population.

2. Expose the population to the environment.

3. Calculate fitness for each member.

4. Randomly mutate each "parent" population member.

5. Evaluate parents and children.

6. Select members of the new population.

7. Go to step 2 until some condition is met.

The population is randomly initialized. For problems in real (computable) space,
each component variable of each individual's vector is generally a real value that
is constrained to some dynamic range. In the two EP examples that follow, the
variables (vector elements) represent finite state machine parameters and function
variables, respectively. The number of population members is problem dependent,
but is often a few dozen to a few hundred, as in to GA populations.

To better understand the remaining steps in the EP procedure, two examples
are examined. These two examples are representative of two main types of problem
to which EP paradigms are often applied. The first involves time series prediction
using a finite state machine. The second is the optimization of a mathematical
function.

Finite State Machine Evolution for Prediction
Remember that prediction is one of the attributes of computational intelligence sys-
tems we discussed in Chapter 2. Evolutionary programming paradigms are some-
times used for problems involving prediction. One way to represent prediction of

Chapter Three--Evolutionary Computation Concepts and Paradigms

the environment is with a sequence of symbols. As with GAs, the symbols must
be members of a finite alphabet. A system comprising a finite state machine, for
example, can be used to analyze a symbol sequence and to generate an output that
optimizes a fitness function, which often involves predicting the next symbol in
the sequence. In other words, a prediction is used to calculate a system response
that seeks to achieve some specified goal.

Afinite state machine is defined as "a transducer that can be stimulated by a finite
alphabet of input symbols, can respond in a finite alphabet of output signals, and
possesses some finite number of different internal states" (Fogel 1991). The input
and output symbol alphabets need not be identical. The initial state of the machine
must be specified. It is also necessary to specify, for each state and input symbol
combination, the output symbol and next state. Table 3.2 specifies a three-state
finite state machine with an input alphabet of two characters and three possible
output symbols.

Finite state machines are essentially a subset of Turing machines, developed
by the English mathematician and computer science pioneer Alan Turing (1937).
Turing machines are capable, in principle, of solving all mathematical problems
(of a defined general class) in sequence. Finite state machines, as used in EP, can
model, or represent, an organism or system.

Unlike GAs, where crossover is an important component of producing a new
generation, mutation is the only operator used in EP systems. Each member of
the current population typically undergoes mutation to produce a "child." Given
the specification of the finite state machine, and its operation, five main types of
mutation can occur: As long as more than one state exists, the initial state can
be changed and/or a state can be deleted. A state can be added. A state transition
can be changed. Finally, an output symbol for a given state-input symbol can be
changed.

Although the number of children produced by each parent is a system param-
eter, each "parent" typically produces one "child," and the population becomes
twice its original size after mutation. After measuring the fitness of each structure,
the best half are kept, maintaining the population size at a constant value from

Table 3.2 Specification Table for a Three-
State Finite State Machine

Existing state A A B B C C

Input symbol 1 0 1 0 1 0

Output symbol Y Y X Z Z Y

Next state A B C B A B

Source: Fogel (1991).

Evolutionary Programming

generation to generation. At some point in some applications, it is necessary to
predict the next symbol in a sequence. The structure with the highest fitness is
chosen to generate this new symbol, which is then added to the sequence. (It is
also possible to specify the problem so that the symbol predicted is farther in the
future than one time step.)

Unlike other evolutionary paradigms, in EP systems mutation can change the
size of structures (states can be added and deleted). This fact and the potential for
changing state transitions lead to another consideration: The specification table
for a finite state machine can have unfilled blanks. There can be mutations that
add states that are never utilized in a given problem; Fogel (1991) calls these
"neutral mutations." It is also possible to create the situation via mutation where
a specified state transition is not possible because the new state has been deleted.
These mutations and others, such as changing output symbols, tend to have less
effect the more states the machine has, but can still cause fatal errors in the finite
state machine if they are not handled properly.

Although Fogel (1995) usually allows a variable-length structure, it is also
possible to evolve a finite state machine with EP using a fixed structure. First,
the maximum number of states must be determined. For purposes of illustration,
using the three-state machine defined earlier as an example, we will assume that
no more than four states are allowed.

Each state can then be represented by a fixed 5-bit binary element as follows.
The first bit could represent the "activation" of the state: if it is 1, the state is
active; if 0, the state is inactive (that is, it does not exist). The next two bits can
represent the output symbol (X, Y, or Z) for an input of 0, and the final two bits
can represent the output symbol for an input of 1. (Note that our example above
has only three output symbols. With binary representation, we have to allow for
four and handle a nonexistent symbol the way nonexistent states are handled.) We
thus require a total element length of (1 + ni * bo) bits, where ni is the number
of possible inputs and bo is the number of bits needed to represent the output
symbols.

The population in our example is thus initialized with individuals 20 bits long.
For the example it may be a good idea to specify that only individuals with at least
two active states can be allowed in the initial population.

A child is now generated for each parent. Given the five possible kinds of
mutation outlined earlier, one possible mutation procedure is:

1. For each individual, generate a random number from 0 to 1.

2. If the number is between 0.0 and 0.2, change the initial state; if between
0.2 and 0.4, delete a state, etc.

3. The mutation selected in step 2 is done with a fiat probability across all
possibilities. For example, if the initial state is to be changed and there

Chapter Three--Evolutionary Computation Concepts and Paradigms

are a active states, then one active state is selected to be the initial state;
each active state has the probability of 1/a of being selected.

4. Infeasible state transitions are modified to be feasible. If a state transition
to an inactive state has been specified, one of the active states is selected
to be the object of the transition. As above, each active state has t h e
probability of 1/a of being selected.

5. Evaluate fitnesses and keep the best 50 percent, resulting in a new
population of the same size.

This scenario is only one of many possibilities. For example, it might be desirable
to lower the probability ranges (the ranges between 0 and 1 in step 2) for adding
and deleting states and correspondingly increase the mutation probability ranges
for changing input symbols and/or output symbols. It is also possible to evolve the
ranges, number of states, and so on.

One example of finite state machines is the development by Fogel (1995) using
evolutionary programming of finite state machines that do very well at playing
Axelrod's prisoner's dilemma game. As described in Kennedy, Eberhart, and Shi
(2001):

The prisoner's dilemma is a situation where two interacting players have opposite,
symmetrical motives. Each player has the choice to cooperate or compete with the
opponent: if both cooperate, their payoffs are high, and if both compete payoffs are
low. If one competes (the technical term is defecting) while the other cooperates,
the defector receives a very high reward while the cooperator's payoff is very low--
the lowest in the game, called the "sucker's payoff." When the game is played just
one time, the most reasonable thing to do is to defect, as there is no basis for
trusting the other player, and there is nothing to gain by being a sucker.

Usually though, the game is iterated, a series of games is played. A player would
score the highest if he always defected while his partner always cooperated--but
of course no sensible player would continue to cooperate while being hammered
repeatedly by a competitive opponent. Repeated trials require some consideration
of strategy, for instance, a player might end up with the highest score if he lulled his
opponent into cooperating, then struck with a defection, then lulled and defected,
and so on. It might be that the best approach would be just to cooperate from the
startmexcept that nothing then prevents the opponent from taking advantage. The
simple game then produces opportunities for many kinds of strategies. Axelrod
roughly grouped these into two kinds: "nice" strategies, which rely on cooperation
to keep the level of payoffs high for both parties, and strategies he refers to
as "mean" (specifically that includes only the all-defect strategy) or "not nice."
Strategies that are not nice include ones that might try to use cooperation as a
way to make the opponent vulnerable, then defect for the higher payoff.

The payoff function is that used by Axelrod (1980): If both cooperate, each
player gets 3 points; if both defect, each player gets 1 point; if one defects and one

Evolutionary Programming

cooperates, the cooperating player gets no points while the defecting player gets
5 points.

Fogel allowed the finite state machines to have up to eight states. This doesn't
represent all possible behaviors h la Axelrod, but it does allow a dependence on
sequences of greater than third-order. Fogel was able to evolve finite state machines
that had average scores slightly greater than 3.0, which is the score that is achieved
through mutual cooperation alone.

Figure 3.8 is the diagram for a seven-state finite state machine (one of many
evolved by Fogel) to play prisoner's dilemma. The start state is state 6, and play is
begun by cooperating. In the table, "C" denotes cooperate and "D" denotes defect.

C,C/C
D,C/C
D,D/D

C,D/D
D,D/C

u"

D,C/C

D,D/C

~:~ = Start state
C =Cooperate
D = Defect D,C/C C,D/D

C,C/C

Figure 3.8 A seven-state finite state machine to play prisoner's dilemma. Source: Fogel 1995;
(~) IEEE. Used with permission.

Chapter Three--Evolutionary Computation Concepts and Paradigms

The input alphabet comprises [(C,C), (C,D), (D,C), (D,D)], where the first letter
represents the finite state machine's previous move and the second the opponent's.
So, for example, a label of C,D/C on the arrow leading from state X to state Y
means that if the system is in state X and on the previous move the finite state
machine cooperated and the opponent defected, then cooperate and transition to
state Y. Sometimes, more than one situation can result in the same state transition.
For example, in Figure 3.8, assume the machine is in state 6, in which case if the
machine and opponent both defected on the previous move, the machine defects
(D,D/D) and transitions to state 2. Likewise, a transition from state 6 to state
2 occurs if the machine cooperated and the opponent defected on the previous
move; the machine cooperates in this case (C,D/C) as it moves into state 2.

Now that we've seen how to apply evolutionary programming to finite state
machines used for prediction, let's look at another main area of application, func-
tion optimization.

Function Optimization
The second example of a type of problem to which EP paradigms are applied is
function optimization. (Remember what we said previously about optimization:
Usually we really don't find the optimum and often we don't know much about
where it is or if it even exists. What we usually find is sufficiently good solutions to
problems.) The following example features the modification of each component
of the evolving individual structures with a Gaussian random function.

Consider, for the example, optimizing a function with two variables such as
F(x, y) - x 2 + y2. The extremum in this case is a minimum at x - y = 0. The first
step is to establish a random initial population and then to specify the dynamic
range of the two variables. One plausible approach might be to start with an initial
population of 50 individuals, each variable of which is initialized randomly over the
range [-5, 5]. The fitness value of each individual is then calculated. The inverse
of the Euclidean distance from the origin is one reasonable fitness measure.

Each "parent" individual is mutated to create one "child." The mutation method
used by Fogel (1991) is to add a Gaussian random variable with zero mean and
variance equal to the parent's error value (the Euclidean distance from the origin
in this example) to each parent vector component. The fitness of each child is then
evaluated the same way as the parents'.

The process of mutation is illustrated in equation 3.2:

Pi + k, j = Pi + N(O, fljfl~pi + zj), 'V'j = 1..., n, (3.2)

where
Pi, j is the j~h element of the i ~h organism

N(~, ~) is a Gaussian random variable with mean ~ and variance

Evolution Strategies

~bpi is the fitness score for Pi
pj is a constant of proportinality to scale q~p~
zj represents an offset

For the function used in the example, it has been shown that the optimum rate of

1.224 f ~ where n is the number of dimensions convergence is represented by a = n '
(B~ick and Schwefel 1993).

Another way to perform mutation involves a process known as self-adaptation.
In this variation, the standard deviations (and rotation angles, if used) are modified
based on their current values. As a result, the search adapts to the error surface
contours (Fogel 1995).

Fitness, however, is sometimes not used directly by itself to decide which half
of the augmented population will survive to the next generation. Tournament
selection is used, with each individual competing with a number, say 10, of other
individuals in the following way.

For each of the 10 competitions with other individuals, a probability of"scoring
a point" is set equal to the error score of the opponent divided by the sum of the
individual and opponent errors. For instance, if the error of the individual is 2
and that of the opponent (one of 10 opponents) is 3, the probability of scoring a
point is 3/5, or 60 percent. The total score is tallied over the 10 competitions for
each individual, and the one-half of the population with the highest total scores
is selected for the next generation.

This concludes our discussion of using evolutionary programming for opti-
mization. (Keep in mind that, as we discussed previously, we believe that it really
isn't optimization most of the time.)

Comments on Evolutionary Programming
The implementation of evolutionary programming concepts seems to vary more
from application to application than GA implementations. A number of factors
contribute to the differences in approach, but the most important factor seems to
be the top-down emphasis of EP. Another is the fact that selection is a probabilistic
function of fitness rather than being tied directly to it. One developer of EP (Fogel
1991) stated that EP is at its best when it is used to optimize overall system behavior.

Evolution Strategies

We begin our look at evolution strategies (ES) with the concept of the evolution
of evolution. As a biological analogy, evolution strategies model problem solutions
as species rather as they have been described earlier, as populations of normally
distributed multivariate points scattered around a fitness landscape. The aspect of

Chapter ThreemEvolutionary Computation Concepts and Paradigms

these populations that permits them to adapt to their environment (in research
this is often simulated by a test function or hard optimization problem) is their
ability to evolve their own evolvability.

If evolutionary programming is based on evolution, then, reasons Rechenberg
(1994), the field of evolution strategies is based on the evolution of evolution. Since
biological processes have been optimized by evolution, and evolution is a biological
process, then evolution must have optimized itself. Evolution strategies, although
utilizing forms of both mutation and crossover (usually called "recombination" in
the evolution strategies literature), have a slightly different view of both operations
than either evolutionary programming or genetic algorithms.

There are many similarities between evolution strategies and evolutionary pro-
gramming, and in fact the two paradigms are moving closer together as researchers
exchange techniques across the Atlantic. Evolution strategies, like evolutionary pro-
gramming, take a top-down view. They also stress the phenotypic behavior as
opposed to the genotypic. This means, for example, that the phenotypic behavior
ramifications of recombination are of importance, rather than what happens to
the genotypes. ES paradigms also usually use real values for the variables rather
than the binary coding favored in genetic algorithm implementations.

In evolution strategies the goal is to move the mass of the population toward
the best region of the landscape. Through application of the simple rule, "survival
of the fittest," the best individuals in any generation are allowed to reproduce; their
offspring resemble them but with some differences introduced through mutation.
An individual is a potential problem solution characterized by a vector of numbers
representing phenotypic features. Mutation is performed by adding normally dis-
tributed random numbers to the parents' phenotypic coordinates, their position
in the search space, so that the next generation of children explores around the
area in the landscape that has proven good for their parents.

The amount of mutation~the evolvability of the population~is controlled
in an interesting way in ES. An individual is typified by a set of features and
by a corresponding set of strategy parameters. These are usually variances or
standard deviations (the square root of the variance), though other statistics are
sometimes used. The strategy parameters are used to mutate the feature vectors
for the individual's offspring; for instance, standard deviations can be used to
define the variability of the normal distribution used to perturb the parent's fea-
tures. Random numbers can be generated from a probability distribution with
a mean of zero and a standard deviation defined by the strategy parameters;
adding these random numbers to the values in the parent's feature vector simu-
lates mutation in the offspring. They resemble the parents but differ from them
to some controlled extent. Since the evolutionary process is applied to the strategy
parameters themselves, the range of mutation, or the variability of the changes
introduced in the next generation, evolves along with the features that are being
optimized.

Evolution Strategies

Intuitively it can be seen that increasing the variance is like increasing the
step-size taken by population members on the landscape. High variance equals
exploration and wide-ranging search for good regions of the landscape, and it
corresponds to a high rate of mutation; low variance is exploitation, focused search
within regions. The strategy parameters stochastically determine the size of the
steps taken when generating offspring of the individual; a large variance means
that large steps are likely to be taken, that the children are likely to differ greatly from
their parents. As the children are randomly generated from a normal distribution,
though, a large variance can produce a small step size, and vice versa. It is known
that 68.26 percent of random normal numbers generated fall within one standard
deviation, 95 percent will fall within 1.96 standard deviations of the mean, and
so on. So widening the standard deviation widens the dispersion of randomly
generated points.

Evolution strategies' unique view of mutation includes the concept of an evo-
lution window. The theory behind the concept is that mutation operations result
in fitness improvement only if they land within a defined step-size band, or win-
dow (Rechenberg 1994). Crossover and mutation operations that land outside the
evolution window are not helpful. A theoretical derivation of Rechenberg states that
if mutations are carried out with an optimal standard deviation, the probability of
a "successful" (helpful) mutation is about one-fifth. Evolution strategies carry the
idea of the evolution window still further. They assert that dynamic adjustment
of the mutation size to a dynamic evolution window can provide benefits called
"meta-evolution," or evolution of the second kind (Rechenberg 1994).

Like evolutionary programming, ES employs Gaussian noise functions with
zero mean to determine mutation magnitudes for the variables. For the strategic
parameters, log normal distributions are sometimes used as mutation standard
deviations.

Evolution strategies theory states that mutation rates should be inversely pro-
portional to the number of variables in the individual population member and
should be proportional to the distance from the function optimum. In real-world
applications, of course, the exact value of the optimum is usually unknown. How-
ever, some knowledge often exists about the optimum. It is often known within
an order of magnitude, sometimes to within a factor of two or three. Even limited
knowledge such as this can be helpful in guiding the evolution strategy search.

In ES, recombination manipulates entire variable values. This is usually done
using one of two methods. The first and more common method (the local method)
involves forming one new individual using components (variables) from two ran-
domly selected parents. The second method, the global method, uses the entire
population of individuals as potential sources from which individual components
for the new individual can be obtained.

Each of the two methods, local and global, is generally implemented in one of
two ways. The first is called discrete recombination, which consists of selecting the

Chapter Three--Evolutionary Computation Concepts and Paradigms

parameter value from either parent. In other words, the parameter value in the child
equals the value of one parent. The second way, called intermediate recombination,
involves setting each parameter value for a child at a point between the values
for the two parents; typically, the value is set midway between those values. If the
parents are denoted byA and/3, and the ith parameter is being determined, then the
value established using intermediate recombination is X new i -- XA, i+C(XB , i - 'XA, i),
where C is a constant, usually set to 0.5 to yield the midpoint between the two
parent values.

Thus we see that evolution strategies contain a component representing sexual
combination of features. In intermediate recombination, for instance, the children's
features are computed as a kind of average of the two parents' features; in discrete
recombination, individual features may come intact or mutated from one parent
or the other.

In the experience of ES practitioners, the best results often seem to be obtained
by using the local version of discrete recombination for the parameter values and
the local version of intermediate recombination for the strategy parameter(s). In
fact, B/ick and Schwefel (1993) report that implementation of strategy parameter
recombination is mandatory for the success of any ES paradigm.

All of this is well and good; we know now how to transform individual popu-
lation members using recombination and mutation. How, then, do we select the
members of the next generation? How do we accomplish selection?

Selection

In evolution strategies, as in all Darwinian models, an individual's fitness deter-
mines the probability that it will reproduce in the next generation. There can be
many ways to decide this; for instance, we could rank all the individuals from best
to worst, chop off the bottom of the list, and save only the proportion that we
want to survive. This proportion depends on how many offspring they will have,
assuming the population size remains constant from one generation to the next.

In nature, of course, there is no ranking of individuals; the survival of each
depends on the environment and that individual's chance encounters. Imagine a
snowshoe hare that has a mutation that makes its fur turn black in the winter.
In the snow this hare is more visible than its camouflaged cousins. It might just
happen, though, that no predators come into the area where this hare lives, so
they don't see it and it subsequently reproduces, passing on the mutation. It can
happen; it is just that the likelihood is reduced relative to the alternative, which is
that a predator that comes into the area immediately notices this contrastive morsel
and eats him rather than his harder-to-see littermates. In nature, the measure of
fitness has a great amount of error in it; possible improvements are commonly
lost.

This suggests that selection needs to be probabilistic~you can't just propa-
gate the best so-many individuals to the next generation. A lesson learned from

Evolution Strategies

simulated annealing is that sometimes a step backward is productive in the long
run. In the same way, natural evolution lets some less-fit individuals reproduce,
and it is quite likely that eventual improvement is transmitted through the less
obvious route. Evolutionary computation researchers have come up with a num-
ber of techniques for stochastically selecting survivors for the next generation. In
order to better model the stochastic aspect of natural selection~what could be
called survival of the luckiest~several computational methods of selection have
been devised. Common methods include ranking, roulette wheel selection, and
tournament selection.

Ranking is the simplest procedure, though it does not have the advantage of
allowing selection of less-fit individuals. The population is sorted from best to
worst, and individuals above the cutoff in the list are chosen. One salient objection
to this method is that it requires global information. Knowledge of all fitness values
is needed in order to determine the rank of any individual. Obviously, nature does
not work this way; only local information is used in natural selection, and errors in
ranking~occasions where more-fit members fail to reproduce or less-fit members
succeed~contribute to the adaptation of the population. This might be a weaker
argument than it seems, though; there are plenty of times when a computer needs
to use global information in order to accomplish things that nature does without
it. For instance, to detect collisions in virtual worlds requires computation of the
relative positions of all objects in the world, but in the physical world things behave
appropriately without any such computations. Running into a brick wall stops you,
period. So evolution in a computer program might be acceptable even if it required
global information as a way to accomplish an end.

Roulette wheel selection was discussed in the section on genetic algorithms.
Recall that, in roulette wheel selection, each individual is given a probability of
selection proportional to its fitness. Tournament selection was discussed in the
section on evolutionary programming.

Tournament selection uses local competitions to determine survivors. In its
simplest form, individuals are paired at random and the better member of each
pair is selected to reproduce. This can be repeated until the next generation is
sufficiently populated. Other tournament methods pair up individuals in some
number of competitions, adding a point to their score each time they win, and
then keep individuals with more than a critical number of points; other methods
select subgroups at random from the population and allow the one with the highest
fitness to survive to the next generation.

The results of tournament selection correlate with the results of ranking~that
is, fitter individuals survive in general. One-on-one, winner-take-all tournaments
allow the most error in terms of less-fit individuals being selected; while the very
best individual is guaranteed to survive and the very worst is guaranteed not to, it
is entirely possible that the next-to-worse individual is paired with the worst one
and thus is selected. Repetitive and subgroup tournaments decrease the amount of
error while increasing the correlation with ranking results, until an algorithm where

Chapter Three--Evolutionary Computation Concepts and Paradigms

each individual engages in n-1 unique tournaments, where n is the population size,
is exactly equiValent to ranking.

Differences exist between evolution strategies and other paradigms of evolu-
tionary computation with respect to selection. ESs generally operate with a surplus
of descendants. Schwefel (1994) describes the most common versions of ES selec-
tion, known as the (u, ~) and (u + 2) ES. In both versions, the number of children
generated from u parents is ~ > u. Commonly used is a 2/u ratio of 7. In the
original (1 + 1) ES, one parent produces one offspring, with only the fitter of the
two surviving. This version is seldom used now.

The difference between the "plus" and "comma" versions comes in the next
step. In the (u, ;t) version, the u individuals with the highest fitness values out of the
Jt children are selected. Note that the u parents are not eligible for selection in this
scheme, only the children. In the (u + ;t) version, the best u individuals are selected
from a pool of candidates that includes both the u parents and the 2 children~that
is, the union of the two groups of individuals. Whichever method is used, the
individuals that are left have thus been selected completely deterministically and
have equal probabilities to mate and have descendants in the next generation.

The discussion of genetic algorithms mentioned the elitist strategy, in which
the individual in each generation with the highest fitness is guaranteed to survive
to the next generation. This individual may be carried over from the previous
generation or may appear as a result of operations in the current one. As can
be seen from the preceding discussion, the (~ + ;t) version implements elitism,
as the most-fit parent will be retained, while the (u, ,l) version does not. Elitism
is generally considered helpful in GA applications. With evolution strategies,
however, the (u, ;t) version is generally observed to yield better performance (B~ick
and Schwefel 1993).

The following list summarizes the procedure used in most evolution strategies.

1. Initialize population.

2. Perform recombination using the u parents to form ~ children.

3. Perform mutation on all children.

4. Evaluate ;t or u + ;t population members.

5. Select u individuals for the new population.

6. If the termination criterion is not met, go to step 2; otherwise, terminate.

Key Issues in Evolution Strategies
In sum, in evolution strategies mutation is applied to the parent's features to
generate children that resemble the parent but differ stochastically from it. Each
survivor's positional coordinates are entered as the mean of a normal distribution,

Genetic Programming

and the corresponding strategy parameter is entered as the variance or standard
deviation, and a child vector of numbers is generated for both positions and strategy
parameters. These are evaluated, selection is applied, and the cycle repeats. The
evolution of strategy parameters suggests the evolution of evolvability, adaptation
of the mutability of a species as it searches for, then settles into, a niche.

This completes our review of evolution strategies. Recall that evolutionary pro-
gramming, the area we discussed just prior to evolution strategies, does not use
crossover, only mutation. The area we discuss next, genetic programming, empha-
sizes crossover, relegating mutation to a minor supporting role. Genetic program-
ming also uses a somewhat different structure than we've seen up to now.

Genetic Programming

The three areas of evolutionary computation discussed thus far have involved indi-
vidual structures that are defined as strings. Some are strings of binary values and
some include real-valued variables, but all are strings, or vectors. The genetic pro-
gramming (GP) paradigm deals with evolving hierarchical computer programs that
are generally represented as tree structures. Furthermore, while individual struc-
tures used up to this point have generally been of fixed length, programs being
evolved by genetic programming generally vary in size, shape, and complexity.

One perspective is that GPs are a subset of GAs that evolve executable programs.
Differences between GPs and generic GAs include:

m Population members are executable structures (generally computer
programs) rather than strings of bits and/or variables.

m The fitness of an individual population member in a GP is measured by
executing it. (Generic GAs' measure of fitness depends on the problem
being solved.)

The goal of a genetic programming implementation is to "discover" a computer
program within the space of potential computer programs being searched that
gives a desired output for a given set of inputs. In other words, a computer is
figuring out how to write its own code.

Each program is represented as a parse tree, where the functions defined for
the problem appear at the internal tree points and the variables and constants
are located at the external points (leaves). The nature of the computer programs
generated makes genetic programming inherently hierarchical.

In preparation for running a genetic programming implementation, five steps
are carried out.

Chapter Three--Evolutionary Computation Concepts and Paradigms

1. Specify the terminal set.

2. Specify the function set.

3. Specify the fitness measure.

4. Select the system control parameters.

5. Specify termination conditions.

The terminal set comprises the variables (the system state variables) and constants
associated with the problem being solved. For example, consider a "cart center-
ing" problem, where the goal is to center a cart in the least amount of time on a
one-dimensional frictionless track by imparting fixed-magnitude forces that accel-
erate the cart left or right. The variables are the cart's position x and velocity v.
A constant such as -1 is also an appropriate terminal for this problem (see Koza
1992, Chapter 6).

The functions selected for the function set are limited only by the program-
ming language implementation used to run the programs evolved by the GP
implementation. They can thus include mathematical functions (cos, exp, etc.),
arithmetic operations (+, *, etc.), Boolean operators (AND, NOT; etc.), conditional
operators such as if-then-else, and iterative and recursive functions. Each function
in the function set requires a certain (fixed) number of arguments, known as the
function's arity. (Terminals are functions with arity 0.) One task of specifying the
function set is to select a minimal set that is capable of accomplishing the task.

This leads to two properties that are desirable in any GP application: closure
and sufficiency. For the closure property to be satisfied, each function must be able
to successfully operate on any function in the function set and on any value of
any data type assumable by a member of the terminal set.

This occasionally requires definition of special cases for functions. For example,
in arithmetic functions division by 0 can be defined for the purposes of a problem
as being equal to some constant value such as 1. If Boolean values returned by
conditional operators are not acceptable, the conditional operator can be redefined
in one of two ways: (1) Numerical values (such as 0 and 1) can be returned rather
than Boolean values (such as F and T), or (2) conditional branching and conditional
comparative operators can be defined to execute one of their arguments depending
on the evaluation of the test involving an external state or condition or on the
comparison test outcome. Functions that are redefined so as to return acceptable
values are called protected functions. If the closure property is not satisfied, some
method must be specified for dealing with infeasible population members and
with members whose fitness is not acceptable.

For the sufficiency property to be satisfied, the set of functions and set of
terminals must be sufficiently extensive to allow a solution to be evolved. In other
words, some combination of functions and terminals must be capable of producing

Genetic Programming

a solution. Some knowledge of the problem is generally required to be able to
judge when the sufficiency property is met. In some problem domains, sufficiency
is relatively easy to determine. For example, if Boolean functions are being used, it
is well known that the function set comprising AND, OR, NOT is sufficient for any
problem. For other problems, it can be relatively difficult to establish sufficiency.

Having more than the minimally sufficient number of functions has been found
to degrade performance somewhat in some cases and to significantly improve it in
others. Having too many terminals, however, usually degrades performance (Koza
1992).

The fitness measure often is selected to be inversely proportional to the error
produced by program output. Other fitness measures are also common, such as
the score a program achieves in the game.

The two main control parameters are the population size and the maximum
number of generations that will be run. Other parameters used include reproduc-
tion probability, crossover probability, and the maximum size allowed (as measured
by the depth, or number of hierarchical levels) in the initial and final program
populations.

The termination condition is usually determined by the maximum number of
generations specified. The winning program is usually the best program (in terms
of the fitness measure) created thus far in any generation.

After the five preparatory steps for running a GP are completed, the GP process
can be implemented as follows:

1. Initialize the population of computer programs.

2. Determine the fitness of each individual program.

3. Carry out reproduction according to fitness values and reproduction
probability.

4. Perform crossover of subexpressions.

5. Go to step 2 unless termination condition is met.

The population is initialized with randomly generated computer programs com-
prising functions and terminals from the selected sets. In other words, each pro-
gram in the initial population is created by building a rooted tree structure with
randomly selected functions and terminals from the defined sets. No restrictions
are placed on the size or shape (configuration) of acceptable programs, other than
the maximum depth, or number of hierarchical levels, allowed. Each structure
created is a hierarchically structured executable program. A population of 500 has
been reported to be sufficient for most problems solved with GP implementations
(Koza 1992).

Chapter ThreenEvolutionary Computation Concepts and Paradigms

Figure 3.9 Example of root of randomly created program in initial population. Other
functions continue down from the two branches.

The root of each program tree is a function randomly selected from the function
set. The root of a randomly created program appears at the top of Figure 3.9. The
number of lines, or branches, emanating from the function is equal to its arity. In
the figure, the multiplication function "*" takes two arguments.

Once the root function is selected, program population can be created in a
number of ways. Following is a description of what Koza (1992) calls the ramped
half-and-half method. It makes use of two approaches to building program trees:
the "grow" method and the "full" method.

In the grow approach, a random selection is made from the combined set of
functions and terminals for placement at the end of each line emanating from
the root function. If a function is selected, program creation continues recursively
with selections from the combined set. Whenever a terminal is selected, a leaf,
or endpoint, of the tree is established. Program creation alongthat line is thus
terminated. Except for the root function, therefore, all functions are at internal tree
locations. The leaves of the tree are all terminals. Any time the maximum depth
(number of hierarchical levels) is reached, the random selection is limited to the
terminal set. When the grow method is used, the program tree configuration is
guided by the ratio of the number of functions to the number of terminals. When
the ratio is higher, the average depth of each limb is higher.

In the full approach, each limb of the program tree extends for the full depth.
Only functions are selected for placement at the end of each line until the maximum
depth is reached, at which time only terminals are selected. All programs created
using the full approach thus have identical fully developed structures.

The ramped half-and-half approach produces a population of diverse sizes
and shapes. Koza (1992) reports using this method for almost all problems except
those involving Boolean functions. The method consists of creating programs with
evenly distributed depth parameters ranging from 2 to the maximum depth. For
example, if the maximum depth is 5, 25 percent of the population will have depth
2; 25 percent, depth 3, and so on. Within each subpopulation of a given depth,
one-half of the programs are created using the grow approach, one-half using the
full approach.

The fitness of each program is generally calculated for a number of cases, with
the average fitness value over the cases being defined as a program's fitness. For
example, if a program were being evolved to calculate y as some function of x,
each program might be tested over 50 or 100 cases, each representing a value of x

Genetic Programming ~ ~ 3 5 ~

in the domain. It is important to use a sufficient number of cases to represent this
domain. Although it is possible to use different cases in different generations, the
same fitness cases are usually used across all generations.

Fitness can be calculated in a number of ways. Koza (1992) defines four fitness
metrics: raw, standardized, adjusted, and normalized. Raw fitness can be calculated
in one of several ways, according to the problem being solved. For example, if the
objective is to maximize the score of a game, or a profit margin, the raw fitness
can be the score or the profit margin, respectively. Likewise, if the objective is to
minimize costs or miles traveled, raw fitness could be the cost or number of miles,
respectively. Another, more common, raw fitness metric is the sum over all cases
of the absolute value of error. The error can be calculated as the sum of the linear
differences between the correct values and the program values, or as the sum of the
squares of the differences. For programs that output Boolean or symbolic values,
the error can be calculated as the number of incorrect outputs for the test cases.
Note that desirable raw fitness values can be either larger or smaller, depending
on how the fitness calculation is formulated.

Standardized fitness is configured so that lower values are more desirable. In
fact, the fitness value is often mathematically adjusted such that the optimum
standardized fitness value is 0. In some problems, such as when cost or error
values are being minimized, raw fitness and standardized fitness are identical. If
raw fitness is calculated such that better values are greater, then standardized fitness
is calculated by subtracting the raw fitness from the maximum possible value of
raw fitness.

Adjusted fitness is calculated using standardized fitness: adjusted fitness fa =
1/(1 -f~), where f~ is standardized fitness. Values of adjusted fitness thus range
between 0 and 1, where 1 is the optimum value. Koza prefers adjusted fitness for
most of his applications (Koza 1992). One reason for this is its behavior as its
value approaches 1. Near the optimum, small changes in standardized fitnesses
have relatively more effect on adjusted fitness than similar changes that are distant
from the optimum. For example, consider a problem where standardized fitness
values can vary between 0 (optimum) and 20. A change in standardized fitness from
20 to 19 only moves the adjusted fitness from 0.0476 to 0.0500, while changing
standardized fitness from 3 to 2 results in an adjusted fitness increment from 0.25
to 0.33. The calculation of adjusted fitness is somewhat analogous to spacing and
scaling, discussed in the Genetic Algorithm subsection on fitness calculation.

Normalized fitness is the same as the normalized fitness used in GA applications.
It is the adjusted fitness value (for an individual program) divided by the sum of
adjusted fitness values for all programs that make up the population. As in GAs,
normalized fitness is used in roulette wheel selection.

Steps 3 and 4 of the GP process are often carried out in parallel. A probability
is assigned to reproduction, and another to crossover, so that the two sum to 1.
If, for example, the probability of reproduction is 10 percent (a typical value in

Chapter ThreemEvolutionary Computation Concepts and Paradigms

Koza's problems), then the probability of crossover is 90 percent. This means that
once fitness calculations have been made, and it is time to build the new program
population, a decision is made based on these probabilities whether to perform

reproduction or crossover.
If reproduction is selected, it is often carried out in a similar fashion to the

roulette wheel selection used in GAs. A candidate program is selected for repro-
duction with a probability proportional to its fitness divided by the sum of all of
the programs' fitnesses (its normalized fitness). For very large populations of 1,000
or more, highly fit individuals are sometimes given an even greater probability of
selection than their normalized fitness. This is called overselection.

If crossover is selected, it is accomplished by first selecting two parents using a
method based on normalized fitness similar to that used for reproduction. Then,
one point is randomly selected in each parent as the crossover point. The point
can be anywhere in each program, including the root and internal functions, or
the terminals. The entire substructure consisting of the crossover point root and
everything below it is exchanged between the two programs.

Note that the parent programs, as well as the exchanged substructures, are
usually of different sizes and configurations. Note also that the results of some
operations may not be what is usually expected of crossover. An example is when
the roots of the two programs are selected as crossover points, in which case the
results are identical to the two programs being selected for reproduction into the
new population.

When a crossover operation results in a program that exceeds the maximum
defined depth, the program that would exceed the depth limit as a result of
crossover is copied unaltered into the new population, while the crossover opera-
tion is carried out for the other program. In other words, the subtree at and below
the crossover point in the unaltered program replaces the program portion at and
below the crossover point in the other program.

Preprocessing and postprocessing as typically done when working with other
computational intelligence tools, such as artificial neural networks and genetic
algorithms, play a relatively minor role in GP implementations. The selection of the
function and terminal sets significantly depends on the problem domain, however,
so this selection could be thought of as preprocessing.

Formulating the approach to solving a problem with a GP implementation can
be difficult. Discovering what other people have done in similar circumstances
is often helpful. Chapter 26 of Koza's 1992 book presents tables to guide a user
in selection of terminal sets, function sets, population size, and so on. Koza's
videotapes are also useful sources of information.

Now that we've explored genetic programming, we turn to the youngest of the
evolutionary computation areas, particle swarm optimization. It has a number of
attributes in common with the areas discussed previously but is also different in
several ways.

Particle Swarm Optimization

Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary computation technique
developed by Kennedy and Eberhart in 1995 (Kennedy and Eberhart 1995;
Eberhart and Kennedy, 1995; Eberhart, Simpson, and Dobbins 1996). Thus, at
the time of the writing of this book PSO has been around for just over 10 years.
Already, it is being researched and used in more than 30 countries. This section
reviews developments related to PSO since its origin in 1995, along with resources
available to help you learn more about it. It is written from an engineering and
computer science perspective, and it is not meant to be comprehensive in areas
such as the social sciences.

Following the introduction, major developments in the particle swarm algo-
rithm since its origin in 1995 are reviewed. The original algorithm is presented first.
Following are brief discussions of constriction factors, inertia weights, and track-
ing dynamic systems. (Applications, both those already developed and promising
future application areas, are presented in Chapter 12. Those already developed
include human tremor analysis, power system load stabilization, and product mix
optimization.) Finally, particle swarm optimization resources are listed. Most of
them can be accessed via the book's web site.

Developments
The story of particle swarm optimization is still unfolding. We can report on only
the developments that have occurred as of the publication of this book. For now,
let's start at the beginning. The particle swarm concept originated as a simulation
of a simplified social system. The original intent was to graphically simulate the
graceful but unpredictable choreography of a bird flock. Initial simulations were
modified to incorporate nearest-neighbor velocity matching, eliminate ancillary
variables, and incorporate multidimensional search and acceleration by distance
(Eberhart and Kennedy 1995; Kennedy and Eberhart 1995). At some point in
the evolution of the algorithm, it was realized that the conceptual model was, in
fact, an optimizer. Through a process of trial and error, a number of parameters
extraneous to optimization were eliminated from the algorithm, resulting in the
very simple original implementation (Eberhart, Simpson, and Dobbins 1996).

Partical swarm optimization is similar to a genetic algorithm in that the system
is initialized with a population of random solutions. It is unlike a GA, however, in
that each potential solution is also assigned a randomized velocity and the potential
solutions, called particles, are then "flown" through the problem space.

Each particle keeps track of its coordinates in the problem space that are asso-
ciated with the best solution (fitness) it has achieved so far. (The fitness value is
also stored.) This value is called "pbest." Another "best" value that is tracked by
the global version of the particle swarm optimizer is the overall best value, and its

Chapter Three--Evolutionary Computation Concepts and Paradigms

location, obtained so far by any particle in the population. This location is called
"gbest."

The PSO concept consists of, at each time step, changing the velocity (acceler-
ating) each particle toward its pbest and gbest locations (in the global version of
PSO). Acceleration is weighted by a random term, with separate random numbers
being generated for acceleration toward pbest and gbest locations.

There is also a local version of PSO in which, in addition to pbest, each particle
keeps track of the best solution, called "lbest," attained within a local topological
neighborhood of particles.

The (original) process for implementing the global version of PSO is as follows:

1. Initialize a population (array) of particles with random positions and
velocities on d dimensions in the problem space.

2. For each particle, evaluate the desired optimization fitness function in d
variables.

3. Compare each particle's fitness evaluation with its pbest. If current value
is better than pbest, set the pbest value equal to the current value and the
pbest location equal to the current location in d-dimensional space.

4. Compare fitness evaluation with the population's overall previous best. If
the current value is better than gbest, reset gbest to the current particle's
array index and value.

5. Change the velocity and position of the particle according to equations
3.3 and 3.4, respectively:

via = via + Cl * rand() * (Pia - x ia)

+ c2 * Rand() * (Pea - xi,~)
(3.3)

xia = xia + via (3.4)

6. Loop to step 2 until a criterion is met, usually a sufficiently good fitness
or a maximum number of iteration generations.

Note that in equation 3.4 we appear to be adding a velocity to a position. However,
we are really adding a velocity occurring over a single time increment (iteration),
so the equation is valid.

Particles' velocities on each dimension are clamped to a maximum velocity
Vmax. If the sum of accelerations causes the velocity on that dimension to exceed
Vmax, which is a parameter specified by the user, then the velocity on that dimen-
sion is limited to Vmax.

Vmax is therefore an important parameter. It determines the resolution, or fine-
ness, with which regions between the present position and the target (best so far)

Particle Swarm Optimization

position are searched. IfVmax is too high, particles might fly past good solutions. If
Vmax is too small, on the other hand, particles may not explore sufficiently beyond
locally good regions. In fact, they could become trapped in local optima, unable to
move far enough to reach a better position in the problem space.

The acceleration constants cl and c2 in equation 3.3 represent the weighting
of the stochastic acceleration terms that pull each particle toward pbest and gbest
positions. Thus, adjustment of these constants changes the amount of "tension"
in the system. Low values allow particles to roam far from target regions before
being tugged back, while high values result in abrupt movement toward, or past,
target regions.

Early experience with particle swarm optimization (trial and error mostly)
led us to set each the acceleration constant Cl and c2 equal to 2.0 for almost all
applications. Vmax was thus the only parameter we routinely adjusted, and we
often set it at about 10 to 20 percent of the dynamic range of the variable on each
dimension.

Based on, among other things, findings from social simulations, it was decided
to design a "local" version of the particle swarm. In this version, particles have
information only of their own and their neighbors' bests, rather than that of the
entire group. Instead of moving toward a kind of stochastic average of pbest and
gbest (the best location of the entire group), particles move toward points defined
by pbest and lbest, which is the index of the particle with the best evaluation in
the particle's neighborhood.

If the neighborhood size is defined as two, for instance, particle(i) compares
its fitness value with part icle(/- 1) and particle(/+ 1). Neighbors are defined as
topological neighbors; neighbors and neighborhoods do not change during a run.
For the neighborhood version, the only change to the process defined in the six
steps given earlier is the substitution of Pla, the location of the neighborhood best,
for Pga, the global best, in equation 3.4. Early experience (again, mainly trial and
error) led to neighborhood sizes of about 15 percent of the population being used
for many applications. So, for a population of 40 particles, a neighborhood of six,
or three topological neighbors on each side, was not unusual.

The population size selected is problem-dependent. Population sizes of 20 to 50
are probably most common. It was learned early on that smaller populations than
were common for other evolutionary algorithms (such as GAs and evolutionary
programming) were optimal for PSO in terms of minimizing the total number of
evaluations (population size times the number of generations) needed to obtain a
sufficient solution.

We now look at the development of the inertia weight. The maximum velocity,
Vmax, serves as a constraint to control the global exploration ability of a parti-
cle swarm. As stated earlier, a larger Vmax facilitates global exploration, while a
smaller Vmax encourages local exploitation. The concept of an inertia weight was
developed to better control exploration and exploitation. The motivation was to

Chapter Three--Evolutionary Computation Concepts and Paradigms

be able to eliminate the need for Vmax. The inclusion of an inertia weight in the
particle swarm optimization algorithm was first reported in the literature in 1998
(Shi and Eberhart 1998a, 1998b).

Equations 3.5 and 3.6 describe the velocity and position update equations with
an inertia weight included. It can be seen that these equations are identical to
equations 3.3 and 3.4 with the addition of the inertia weight w as a multiplying
factor of Vicl in equation 3.3.

rid W * - viol 4- cl * r a n d () * (Picl - xicl)

+ c2 *Rand() * (P s i - Xid)
(3.s)

Xid = Xid + rid (3.6)

The use of the inertia weight w has provided improved performance in a number
of applications. As originally developed, w often is decreased linearly from about
0.9 to 0.4 during a run. Suitable selection of the inertia weight provides a balance
between global and local exploration and exploitation and results in fewer iterations
on average to find a sufficiently optimal solution. (A different form of w, explained
later, is currently being used by one of the authors, RE.)

After some experience with the inertia weight, it was found that although the
maximum velocity factor, Vmax, couldn't always be eliminated, the particle swarm
algorithm works well if Vmax is set to the value of the dynamic range of each
variable (on each dimension). Thus, you don't need to think about how to set
Vmax each time the particle swarm algorithm is used.

Another approach to using an inertia weight is to adapt it using a fuzzy system.
The first paper published reporting this approach used the Rosenbrock function
with asymmetric initialization as the benchmark function (Shi and Eberhart 2000).
The fuzzy system comprised nine rules, with two inputs and one output. Each input
and the output had three fuzzy sets defined. One input was the global best fitness
for the current generation; the other was the current inertia weight. The output
was the change in intertia weight. The results reported show that by using a fuzzy
adaptive inertia weight, the performance of particle swarm optimization can be
significantly improved in terms of the mean best fitness achieved in a given number
of iterations. We discuss fuzzy systems in Chapter 7.

The next major development we consider is the constriction factor. Because
particle swarm optimization originated from efforts to model social systems, a
thorough mathematical foundation for the methodology was not developed at the
same time as the algorithm. Within the last few years, a few attempts have been
made to begin to build this foundation.

Recent work done by Clerc (1999) indicates that use of a constriction
factor may be necessary to ensure convergence of the particle swarm algorithm.
A detailed discussion of the constriction factor is beyond the scope of this book,

Particle Swarm Optimization

but a simplified method of incorporating it appears in equation 3.7, where K is a
function of Cl and c2 as reflected in equation 3.8.

via = K* [rid + Cl * rand() * (Pid -- Xid)

+ C2 *Rand() *(Pga - xia)]
(3.7)

2
K = , where cp = Cl + c2, cp > 4 (3.8)

] 2 - c# - V/~o2 - 4cp [

Typically, when Clerc's constriction method is used, cp is set to 4.1 and the
constant multiplier K is thus 0.729. This results in the previous velocity being
multiplied by 0.729 and each of the two (p - x) terms being multiplied by
0.729 * 2.05 - 1.49445 (times a random number between 0 and 1).

In initial experiments and applications, Vmax was set to 100,000, because it
was believed that Vmax isn't necessary when Clerc's constriction approach is used.
However, from subsequent experiments and applications (Eberhart and Shi 2000),
it has been concluded that a better approach is to limit Vmax to Xmax, the dynamic
range of each variable on each dimension, while selecting w, Cl, and c2 according
to equations 3.7 and 3.8.

What we've discussed so far is fine as long as we're dealing with static systems.
Most applications of evolutionary algorithms are to the solution of static prob-
lems. Many real-world systems, however, change state frequently (or continuously).
These system state changes result in a requirement for frequent, sometimes almost
continuous, reoptimization.

It has been demonstrated that particle swarm optimization can be successfully
applied to tracking and optimizing dynamic systems (Eberhart and Shi 2001).
A slight adjustment was made to the inertia weight for this purpose. The inertia
weight w in equation 3.5 was set equal to [0.5 + (Rand()/2.0)]. This produces a
number randomly varying between 0.5 and 1.0, with a mean of 0.75. This was
selected in the spirit of Clerc's constriction factor described above, which sets w
to 0.729. Constants Cl and c2 in equation 3.5 were set to 1.494, also according to
Clerc's constriction factor.

The random component of the inertia weight is important because when track-
ing a dynamic system, it cannot be predicted whether exploration (a larger inertia
weight) or exploitation (a smaller inertia weight) will be better at any given time.
An inertia weight that varies roughly within our previous range addresses this.

For the limited testing done (Eberhart and Shi 2001) using the parabolic func-
tion, the performance of particle swarm optimization was shown to compare
favorably (faster to converge, higher fitness) with other evolutionary algorithms

Chapter ThreemEvolutionary Computation Concepts and Paradigms

for all conditions tested. The ability to track a 10-dimensional function was
demonstrated.

Now that we've seen how particle swarm optimization works and some of the
exciting developments that have occurred recently, let's look at how to get more
information about it.

Resources

Three main categories of resources are available with respect to particle swarm
optimization: books, web sites, and technical papers. The first book to include a sec-
tion on particle swarm optimization was Eberhart, Simpson and Dobbins (1996).
See Kennedy and Eberhart (1999) for a book chapter on PSO. An entire book is
now available, however, on the subject of swarms: Swarm Intelligence (Kennedy,
Eberhart, and Shi 2001) discusses both the social and psychological as well as
the engineering and computer science aspects of swarm intelligence. The web site
for the book, www.Computelligence.org, is a guide to a variety of resources related
to particle swarm optimization. Included are Java applets that can be run online
illustrating the optimization of a variety of benchmark functions. The user can
select a variety of parameters. Also on the web site is PSO software written in
C++, Visual BASIC, and Java that can be downloaded. A variety of links to other
web sites are also provided. The web site for this book is, obviously, another major
source of PSO information and pointers to other sites. With respect to conferences,
those related to evolutionary computation (such as the Congress on Evolutionary
Computation) sponsored or cosponsored by the IEEE provide the richest source
of publications on PSO. A special issue of the IEEE Transactions on Evolutionary
Computation devoted to particle swarm optimization was published in June 2004.

Summary

In this chapter, we first present a brief history of evolutionary computation, fol-
lowed by an overview of the evolutionary computation field. Five main evolu-
tionary algorithms are then discussed in detail in their own sections, respectively.
The five areas are genetic algorithms, evolutionary programming, evolution strate-
gies, genetic programming, and particle swarm optimization. Among the five, the
genetic algorithm is emphasized, with more detailed discussion on subjects such
as schemata and the schema theorem.

The five evolutionary algorithms share many features. First, all are
population-based search algorithms. The cooperation and/or competition among
the population move the potential solutions toward the better search areas. Second,
all are motivated by nature. Particle swarm optimization is motivated by social
behavior, and the other four main evolutionary algorithms are motivated by the

Exercises

survival of the fittest and/or evolution. Third, the five evolutionary algorithms
employ direct "fitness" information instead of function derivatives or other related
knowledge. Therefore, evolutionary algorithms can solve problems that are not
continuous, not differentiable, and multimodal. Fourth, randomness plays roles
in all of the algorithms. The search process is not deterministic. It is this random-
ness and the "fitness" information that gives evolutionary algorithms the ability
to enable individuals to move to anywhere and escape from local
optima.

Finally, they all generate the next generation from the previous generation. In
particle swarm optimization, the individuals (particles) "fly" through the search
space with dynamically changing velocities. That is, the individuals "fly" to the
next generation from the current generation. In the other four evolutionary algo-
rithms, the next generation is obtained by applying so-called evolution operators
to the current generation: In genetic algorithms and evolution strategies, the selec-
tion, mutation, and crossover (recombination) operators are applied; in genetic
programming, selection and crossover operators are used; and in evolutionary
programming, selection and mutation operators are utilized.

Comparisons of evolutionary computation tools (in these five areas) and other
processing methods are also discussed in each section, respectively. Evolutionary
algorithms are recommended to solve nonlinear problems for which the traditional
approaches are hard, if not impossible, to apply. It is usual and reasonable to expect
evolutionary algorithms to find near optimal solutions within a limited period of
t ime~a solution that is good enough to be acceptable.

E x e r c i s e s

1. Convert the following binary coded strings to Gray coding: 10101010,
10011100, 01100110.

2. How many schemata are possible for a 6-bit binary string?

3. According to the schema theorem, what happens to highly fit schemata in
successive generations? What are the effects of crossover and mutation
according to the theorem? Why use crossover and mutation?

4. Assume standard binary encoding of parameters is used for a genetic algorithm
implementation. Briefly discuss how the effects of uniform crossover and
two-point crossover change as the number of bits representing a parameter is
increased.

5. After running a genetic algorithm for a fairly long time, the fitness values
tend to cluster at the high end of the scale. For example, on a scale
of 0 to 1, they might cluster from 0.90 to 0.98. What is the main problem
with this? How can it be alleviated?

Chapter ThreemEvolutionary Computation Concepts and Paradigms

10.

11.

6. Assume that the average fitness of strings containing a particular schema S is
20 percent less than the average fitness of all schemata, and the schema appears
in 50 percent of the initial population. Assume that the probability of disrup-
tion of this schema by crossover or mutation is negligible. Calculate when S
will disappear from a population with 50 members. Repeat for a 100-member
population.

7. Assume each population member in a GA consists of 8 binary coded bits (as in
the GA example in the chapter), representing the integers 0 to 255. Briefly
describe or sketch the portion of the problem space covered by the following
schemata: 0"******, ******* 1, 10"*****, ****** 10, *** 11"**.

8. What is the main difference between evolutionary programming and evolution
strategies?

9. Assume you are going to use genetic programming to evolve a program to
classify the Iris dataset (pp. 197-198). Specify a function set and a terminal set
that are appropriate to solve the problem.

Sketch out a genetic programming representation of the best possible approxi-
mate solution to v - ~r2h, (v is the volume of a right cylinder, r is its radius,
and h is its height) given that the maximum depth of the program is five layers
and you may only use the constant values 0, 1, and 10. If you were going to
evolve programs to do this calculation using genetic programming, what would
you propose to use as a function set?

How is a particle swarm optimizer similar to a genetic algorithm? How is
it different? How does it resemble an evolution strategies implementation?

chapter
u r

Evolutionary Computation
Implementations

In the last chapter, we reviewed the concept
of evolutionary computation, seeing how it
can provide a foundation for computational
intelligence. We examined five main areas
of evolutionary computation: genetic algo-
rithms, evolutionary programming, evolu-
tion strategies, genetic programming, and
particle swarm optimization.

In this chapter, we discuss the com-
mon issues related to the implementation
of evolutionary algorithms. We present two
implementations of evolutionary computa-
tion: a genetic algorithm implementation
and a particle swarm optimization imple-
mentation.

The genetic algorithm (GA)implemen-
tation is basically a "plain vanilla" GA, but
with a few interesting options. It imple-
ments one-point, two-point, or uniform
crossover, and roulette wheel, tournament,
or ranking selection. It has an interesting

set of options for mutation, one of which is
reminiscent of evolution strategies.

Five benchmark functions are included
with the GA implementation: the parabolic
function (sometimes referred to as the
spherical function), the Rosenbrock func-
tion, the Rastrigrin function, the Griewank
function, and Schaffer's F6 function.

The function equations appear in
Table 4.1. All have optimal function (output)
values of 0 (f*(x) = O) except for Schaffer's
F6 function, for which the function value
at the optimum is 1.0. The parameter val-
ues (x*) at the optimum are all (0, 0,..., O) T
except for the Rosenbrock function, for
which x* = (1,1,..., 1)r.

Table 4.2 lists the dynamic range and
error criterion for each function. The
dynamic range is the range within which
the variables are initialized. Each dynamic
range is symmetrical; that is, for the

95

Chapter Four--Evolutionary Computation Implementations

Table 4.1 Functions Used in GA and PSO Implementations

Parabolic fo(x) = ~_
i=1

Rosenbrock f l(x) : ~ (100(x/÷ 1 _ ~)2 + (x i _ 1)2)
/--1

n

Rastrigrin f2(x) = ~'(x ~ - 10 cos(2~xi) + 10)
i=1

Griewank
, ,

Shifter's F6 f6 (x) = 0:5 -

(sin ~/x 2 + y2) 2 - 0:5

(1:0 + 0:001 (x 2 + y2)) 2

T a b l e 4 ,2 . Functions, with Their Typical Initialization Ranges
and Error Criteria

Parabolic 10 0.01

Rosenbrock 100 100

Rastrigrin 5.12 100

Griewank 600 0.05

Shifter's F6 10 0.00001

parabolic function the dynamic range is [-10, 10]. The error criterion is the
maximum error value generally acceptable (in the literature) as a stopping crite-
rion, if error value is used as a stopping criterion. The error value column gives you
a metric for how well the algorithm performed.

The particle swarm optimizer (PSO)is implemented to run multi-PSOs simul-
taneously. By doing so, it can be used both for the optimization of nonlinear
functions and for optimization problems that require multi-PSOs running simul-
taneously. An implementation of a co-evolutionary PSO is described that solves
rain-max problems.

The PSO implementation includes the same five benchmark functions, listed in
Table 4.1, as the GA implementation. In addition, for the multiple-swarm version

Implementation Issues

of the PSO implementation, functions have been added that require simultaneous
minimize~maximize operations (constraint satisfaction). These functions are listed
and described in the section on multi-PSOs near the end of the chapter, m

Implementation Issues

Before we get into specific evolutionary computation implementations, it is impor-
tant to understand some of the issues common to the implementations of all evo-
lutionary algorithms. These issues include chromosome representation methods,
learning strategies, programming strategies, and memory handling.

In this section, when the term "learning" is used, it is in accordance with what
is commonly found in the literature. However, our perspective is that "adaptation"
often describes what a computational intelligence system does better than "learning"
(see Chapter 2), so please consider mentally inserting the word "adaptation" when
you see "learning."

Homogeneous versus Heterogeneous Representation
Let's first look at homogeneous versus heterogeneous representation. Represen-
tation is an important factor that requires careful consideration. Traditionally,
homogeneous representations have been adopted; that is, all individuals are strings
of binary bits, integers, or real values. One advantage of homogeneous represen-
tations is that they are simple, and existing evolutionary operators can therefore
be employed (under the assumption that the same dynamic integer ranges are
used for each element when integer representation is utilized). But they may
result in inaccuracy and even difficulties in mapping from genotypes to phe-
notypes. For example, using binary representation to represent the optimization
functions' real-valued parameters can result in inaccuracy, and using real-valued
representation to represent discrete parameters can result in difficulties. (If you are
trying to build a rule-based system, it is difficult to decode the real valued-based
chromosomes into rules.) One way to overcome the inaccuracies and difficulties
is by using heterogeneous representations~for example, using real values to rep-
resent real value parameters and using integers or binary bits to represent discrete
parameters. The principal feature of the heterogeneous representations is that
they are intuitive and natural. But representation-specific evolutionary operators
have to be designed for each different representation, and the complexity of the
algorithm is increased.

Genetic algorithms originally used binary representations, on which the theo-
retical foundation of genetic algorithms is based. Binary representations are still
popular. It is natural and intuitive to represent everything using binary strings

Chapter FourmEvolutionary Computation Implementations

because computer computation is based on 0s and l s. A disadvantage of this kind
of representation is that the length of the chromosome will be extremely long when
the numbers or precision of variables is large. Also, inaccuracy is introduced when
binary strings are used to represent real-valued parameters. The advantage of the
binary representation is its simplicity and generality.

For the representation of multivalue discrete parameters, a more natural and
intuitive way is to use integer representation. Also, binary representation can be
easily transformed into integer representation. The advantage of integer representa-
tion is that the length of the chromosome is reduced compared with that of binary
representation. The disadvantage is that special evolutionary operators have to be
designed. Special care has to be taken in designing evolutionary operators, especially
when a different dynamic integer range is used for each element.

To overcome the inaccuracy problems introduced by using binary representations
for encoding real values, a more natural and intuitive way is to use real-valued rep-
resentations to encode real value parameters. The use of real-valued representations
makes it possible to use large domains (even unknown domains) for the variables,
which is difficult to achieve with binary and integer representations. The disadvan-
tage of this representation is that discrete parameters can't be represented easily.

Even though every parameter can be represented by binary strings, integer
strings, or real-valued strings, it is hard to say, generally, which representation is the
best. It depends on the problem to be solved and your objectives. The advantage
to using uniform representation is that it is simple, and existing evolutionary
operators can be employed directly except in the case of integer representation.
For integer representation, each element may have a different dynamic integer
range since different variables may have different multivalue discrete parameters.
In this case, the mutation operator should be position dependent and specially
designed.

Generally speaking, it will be more natural to represent the problem to be solved
in a chromosome in the way it appears in the system implementation. In this way,
the problem can be more finely adjusted. Certainly this may increase the complex-
ity of the evolutionary operators. There is a trade-off between representation and
complexity of the evolutionary operators. Now that we've considered the subject of
representation, let's look at adaptation.

Population Adaptation versus Individual Adaptation
One of the main questions with respect to adaptation is whether to use individual
or population adaptation. Evolutionary algorithms have been commonly imple-
mented as population adaptation algorithms, as in the Pittsburgh approach (Smith
1980), where a set of samples is available to be used as training examples. This
is the scenario for most function optimization and classification system designs

Implementation Issues

where the training examples can be obtained before training. For other cases,
individual adaptation approaches may have to be adopted. The best-known indi-
vidual adaptation approach is the so-called Michigan approach (Holland 1978).

In the Pittsburgh approach, each chromosome represents the problem to be
solved, and a set of samples is available to be used as training examples. Since the
training is often offline, some complicated and large systems can be evolutionarily
designed by using fast computers, or even a group of computers, where each one
evaluates only a small portion of the chromosomes and all of them communicate.
The most important feature of the Pittsburgh approach is that the performance of
each candidate solution is directly proportional to the fitness of its chromosome rep-
resentation, which makes evolutionary search more effective and efficient since the
search is guided by fitness.

In nature, not all components in a system behave in the same way; some may have
a "good" contribution while others have a "bad" contribution to the performance
of the system. All the components both cooperate and compete among themselves,
and, in theory, the "good" components should have more chance to survive than
the "bad" ones. In the Pittsburgh approach, all the components of a system are rep-
resented in a chromosome and treated the same regardless of their contributions.
This may bring difficulties into the search since the search process only reflects the
competition among chromosomes.

These are situations where the Michigan approach may be appropriate. In the
Michigan approach, each chromosome represents only a single component of the
system and the whole population represents the complete system. So there is both
cooperation and competition among all the components of the system, and there-
fore the strongest potential components have more of a chance to appear and sur-
vive. Since the whole population represents only one system, only that single system
needs to be evaluated in each generation, which makes it possible to evaluate the
chromosomes online. Since in the Michigan approach only one system is evaluated
for each generation, only a single fitness from the environment is obtained. There-
fore, special techniques have to be used to distribute the payback among all the
chromosomes.

The evolutionary computation implementations described in this chapter all use
the Pittsburgh approach.

Static versus Dynamic Adaptation
In addition to the population versus individual adaptation question, the choice of
static versus dynamic adaptation exists. The most common evolutionary algorithms
take a static adaptation approach; that is, the algorithms have fixed parameters
through the course of the running of the algorithm. For example, the probabilities
of the crossover and mutation operators, the population size, and so on, are kept

Chapter FourmEvolutionary Computation Implementations

constant through the run. But even though evolutionary algorithms with static
adaptation approaches have been applied to successfully solve problems, when
solving complicated and large problems, in order for evolutionary algorithms to
have sufficiently good performance to successfully evolve the systems, the relation-
ship between exploration and exploitation abilities should be kept balanced during
the run.

One way to maintain the balance is through the dynamic adaptation of the
algorithm parameters. Different levels of adaptation can be implemented, such as
environment-level adaptation, population-level adaptation, individual-level adap-
tation, and component-level adaptation. Which level of adaptation to use depends
on the problem and your objective, but population-level adaptation is the most
commonly used among the four. For instance, if an operator such as the mutation
operator is adapted during a run, the adapted mutation rate is most often applied
to the entire population.

Flowcharts versus Finite State Machines
Two of the primary ways to represent evolutionary computation (and other compu-
tational intelligence) systems are as flowcharts and finite state machines. Flowcharts
are straightforward and easy to understand. They have been used frequently in
programming systems, especially simple systems. Finite state machines have been
very useful for programming systems that require frequent interaction with the
environment (the user). An example is pressing the Pause button through a graphic
user interface to pause the running of a system. In state machine implementations,
a task (or a system with a single task) is divided into several states, with each state
performing only a simple action. The system is actually a transition process from
one state to another, and the system can be interrupted at each state transition.
Since, for each state, only simple action is performed, it can enable the system
to have real-time interaction. It is also very useful when multitasking is involved.
Also, finite state machines are often more suited to the structured (object-oriented)
approach to systems development.

Handling Multiple Similar Cases
How do we handler situations where several possible cases exist? Each case has its
associated function to handler the corresponding situation, and so which of the
functions to call depends on the situation or the case. In the C language, a com-
mon method is to use the switch statement. First, a new enumeration data type is
defined to index the cases. For example, there are several ways to do the crossover
operation: one-point crossover, two-point crossover, uniform crossover, and so on.
The new enumeration data type can be defined as that shown in Listing 4.1.

Implementation Issues

Listing 4.1 Enumeration data type for crossover operators.

Typedef enum crossover_type_tag
{

ONE_POINT_CROSSOVER,

TWO_POINT_CROSSOVER,

UNIFORM_CROSSOVER,

NUM_CROSSOVER

} crossover_type;

A new data type to record the index of the current crossover operator to be used
can be declared as

crossover_type crossover_index;

Which crossover operator to use, then, depends on the crossover_index as
shown in Listing 4.2.

Listing 4.2 Example of a crossover index.

static void crossover_handler(int crossover_index)
{

switch (crossover index)
{

case ONE_POINT_CROSSOVER :

one_point_crossover() ; break;

case TWO_POINT_CROSSOVER-

two_point_crossover() ; break;

case UNIFORM_CROSSOVER :

uniform_crossover () ; break;
}

}

In Listing 4.2, one_point_crossover (), two_pointcrossover (),

and uniform_crossover() are the routines actually handling the crossover
operations. In the above implementation, if the NUN_CROSSOVER is less than 3,
an if-then statement in the C language would generally be used instead of a switch
statement.

Another way to handler the multicase situation is to use a function pointer. Cor-
responding to the enumeration data type c r o s s o v e r t y p e , an array of function
pointers is defined as that shown in Listing 4.3.

Listing 4.3 An array of function pointers for crossover handlers.

static constant fptr crossover_handler[NUM_CROSSOVER] =
{

one_po int_c r o s sover,

Chapter Four--Evolutionary Computation Implementations

two_point_crossover,

uniform_crossover,

In Listing 4.3, f p t r is the function pointer data type. To invoke the crossover routine
now is as simple as passing the case index to the array of function pointers to point
to the right function. One disadvantage of using this is that the order of the function
pointers is critical, and it has to be in exactly the same order as in the definition of
the enumeration data type. Otherwise, a different function will be called. Cautions
thus have to be taken when deleting and/or adding cases.

Allocating and Freeing Memory Space
Handling memory is always a challenge when using the C language. In programming
a computational intelligence system, numerous arrays and vectors are typically used.
In order for the source code to be reusable and suitable for general use, these arrays
and vectors should be dynamically configured. The sizes of these arrays and vectors
are dynamically read in when the program is running, and the memory space can't
be reserved for them before runtime or during compile time. The memory space has
to be allocated to them during the run and freed after finishing the program run.
Listing 4.4 is an example of memory allocation and cleanup for a two-dimensional
integer array.

Listing 4.4 An example of memory allocation and cleanup.

/* declare an integer array */

int **population;

/* allocate memory space for the array */

population = (int **)calloc(number_of_row, sizeof(int *));

for (idx_i = O; idx_i < number_of_row ; idx_i++)

population[idx_i] = (int *)calloc(number_of_column, sizeof(int));

/* release the allocated space */

for (idx_i = O; idx_i < number_of_row; idx_i++)

free (population [idx_i]) ;

free (population) ;

Error Checking
In any application, it is a good habit to add error checking into your source code for
debugging. Generally, most runtime errors can be detected by doing this. From an
error message, you can (usually) easily locate the source of the error and fix it. For
example, when accessing an element in a vector, you should first check whether the

Genetic Algorithm Implementation

index is valid. You should also check whether the system has enough memory space
to be allocated to the array every time you are allocating memory space. You can use
the a s s e r t () routine defined in ASSERT. H or write your own error checking.
If a s s e r t () is used in your source code, it is recommended that you remove the
a s s e r t statements from the source code once your program has been debugged.
Listing 4.5 is an example of error checking for memory allocation.

Listing 4.5 An example of error checking for memory allocation.

/* allocate memory space for the array */

population = (int **)calloc(number_of_row, sizeof(int *));

assert (population != NULL);

for (idx_i = O; idx_i < number_of_row ; idx_i++)
{

population[idx_i] = (int *)calloc(number_of_column, sizeof(int));

if (population[idx_i] == NULL)
{

printf("file name: %s\t line number = %d\n", FILE , LINE);

exit (1) ;
}

Genetic Algorithm Implementation

Now that we've looked at issues common to the implementations of all evolution-
ary algorithms, let's get down to some specifics. This section discusses the genetic
algorithm implementation. The implementation is essentially a canonical genetic
algorithm that uses mutation and crossover operators. It closely resembles the basic
genetic algorithm described in the previous chapter, so material discussed there is
not repeated. Please refer to Chapter 3 for the basics of genetic algorithms. We begin
by examining some issues related to programming GAs.

Programming Genetic Algorithms
In genetic algorithm implementations, the evaluation/fitness function is an inte-
gral part of the algorithm. The selection of representation methods depends heavily
on the problem to be solved. The genetic algorithm implemented here is applied
to search for optima of several benchmark functions with real-valued parameters.
A good way to encode the problem is to use real-valued representation, but we
choose to use a binary representation instead, since binary representation is the orig-
inal type that has been studied and implemented in the literature and the genetic

Chapter Four--Evolutionary Computation Implementations

operators have been thoroughly studied and are mature. It is also the original
fundamental version of the genetic algorithm on which the schema theorem (dis-
cussed in Chapter 3) is based.

Figure 4.1 shows the flowchart of the GA implementation in this book.

Definition of Enumeration and Structure Data Types
Since C is not an object-oriented language, it's a good habit to define some enumer-
ation and structure data types at the beginning of the GA implementation. (It can be
argued that C is "object-based" since new objects and data types can be created via
enumerated types and structures.) This can make the implementation more closely

Figure 4.1

Start)

Y

(ga_evaluateO) (ga_store_resultsO)

(ga_selectionO) (ga_free_memoryO)

(ga_mutationO)

N

1

(End)

Flowchart of the binary genetic algorithm implementation. Routines in this
figure are discussed in the text.

Genetic Algorithm Implementation

resemble an object-oriented one, and make it more reusable. In Listing 4.6 are the
new enumeration data types used in the implementation.

Listing 4.6 Enumeration data type in the GA implementation.

typedef enum selection_type_tag
{

ROULETTE_WHEEL_SCALING,
BINARY_TOURNAMENT,
RANKING,
NUM_SELECTION

} selection_type;

typedef enum crossover_type_tag
{

ONE_POINT_CROSSOVER,
UNIFORM_CROSSOVER,
TWO_POINT_CROSSOVER,
NUM_CROSSOVER

} crossover_type;

typedef enum Evaluate_Function_Tag
{

F6,
PARABOL I C,
ROSENBROCK,
RASTRIGRIN,
GRIEWANK,
NUM_EVALUATE_FUNCTIONS

} Evaluate_Function_Type;

// 0 :F6: min
// 1 :Parabolic: min
// 2 :Rosenbrock: min
// 3 :Rastrigrin: min
// 4 :Griewank: min
// Total no. of eval. functions

Listing 4.7 Structure data type in the GA implementation.

typedef struct ga_binary_data_type_tag
{

unsigned char **population;

// double pointer to the population of binary GA
double *fit; // pointer to the fitness vector
int popu_size; // population size: popsize
int indi_length; // length of chromosome: length
int iter_max; // iter: maximum number of iterations
double crossover_rate; // crossover rate
double mutation_rate; // mutation rate
double termination_criterion; // criterion
int best_index;

// index of best individual of current population
unsigned char bits_per_para;

// each weight represented by bits_per_para bits
unsigned char mutation_flag;

// flag for mutation, I, variable, 0 constant
crossover_type c_type;

// crossover type: 0: one, I: uniform, 2: two

Chapter Four--Evolutionary Computation Implementations

selection_type s_type; // selection method
double *gau; // store gaussian function value for each bit
int gene_index; // index of current generation
double fit_variance;

// variance of fitness of the current generation
double fit_mean; // average of fitness of the current generation

} ga_binary_data_type;

typedef struct ga_env_data_type_tag
{

char resultFile[NAME_MAX];
int dimension;
Evaluate_Function_Type function;

} ga_env_data_type;

// result file name
// N:
// function to be solved

The enumeration data types selection_type, crossover_type, and
E v a l u a t e _ F u n c t i o n _ T y p e are defined to specify which types of selection
operators, crossover operators, and optimization functions will be implemented in
the software run, respectively.

Listing 4.7 shows the new structure data types in the GA implementation. In the
ga_binary_data_type definition, unsigned char **population is a
double unsigned char pointer pointing to the population. The unsigned
c h a r is used to represent a bit, which is a waste of memory space. The uns i g n e d
c h a r type occupies 1 byte, which consists of 8 bits. To save memory, a bit should be
used to represent a bit in the population member string. Since there is no data type
in the C language for bit, an uns i gned c h a r should be used to represent 8 bits in a
binary representation. For example, a binary representation with individual length
160 can be stored in 160/8 - 20 bytes, that is, an array of 20 u n s i g n e d c h a r s .

unsigned char *binary_individual;
binary_individual = (unsigned char*) calloc (20, sizeof(unsigned char));

The disadvantage of using a byte to represent eight elements in binary
representation is that the genetic operations involve bit manipulations, which
makes the computation more complex and generally consume more compu-
tation time. There are thus trade-offs between required memory space and
computation time/complexity and between code simplicity and complexity and
a programmer's time to write and test extra code. For generality, we use the
unsigned char type here.

The u n s i g n e d c h a r variable b i t s _ p e r _ p a r a is the number of bits used
to represent a real-valued parameter. The variable f i t is a double pointer
pointing to fitness values of the population; gau is a double pointer pointing to
the vector b i t s _ p e r _ p a r a number of real values, which are used to store the

Genetic Algorithm Implementation

probability of mutating each bit. These probabilities are used for implementation
of bit-position-based mutation.

The integer type variables p o p u _ s i z e , 2 n d i _ l e n q t h , and 2ter__max
are the population size, the length of the individual, and the maximum number of
generations. The double variables c r o s s o v e r _ r a t e , m u t a t i o n _ r a t e , and
t e r m i n a t i o n _ c r i t e r i o n are the crossover rate, the baseline mutation rate at
the population level, and the criterion for terminating the run, respectively. (The
only termination method implemented in the software on the book's Internet site is
reaching the maximum number of generations.) The integer type variables
b e s t _ i n d e x and g e n e _ i n d e x are the index of the best individual among the
population at the current generation and the index of the current generation, respec-
tively. The unsigned char m u t a t i o n _ f l a g specifies which kind of mutation is
going to be performed (explained later). The c r o s s o v e r _ t y p e and
s e l e c t i o n _ t y p e variables c _ t y p e and s _ t y p e specify which types of
crossover operator and selection operator are going to be used. The double types
f i t _ v a r i a n c e and f i t _ m e a n are the variance and mean of the fitness values of
the current generation.

Another defined s t r u c t data type is g a _ e n v _ d a t a _ t y p e , which includes
three data types: the first is a file name in which the results of the run are to be
stored; the second is the dimension of the problem (function). The length of each
individual is calculated by multiplying it with b i t s_pe r _ p a r a . The last one is the
function to be solved.

Two global data variables g a _ d a t a and g a _ e n v _ d a t a are defined, as shown
below, so the GA and its environment-related parameters are not required to
be passed from one routine to another within the GA module.

ga_binary_dat a_type ga_data;
ga_env_dat a_t ype ga_env_dat a;

The GA m a i n () Routine
Listing 4.8 is the main () routine, which is the entry point of the program. It is
a good habit to keep main () routines simple. In the GA__Start_Up (d a t F i l e)
routine, shown in Listing 4.8, all the GA problem-related parameters are read in from
the input file. For example, the variable "bits per parameter" b i t s _ p e r _ p a r a is
read in from the input file. This variable tells how many bits are used to encode one
parameter to be evolved. The larger b i t s _ p e r _ p a r a is, the higher the
resolution is and the longer the individual population member length is, and
therefore the more computation time it consumes. Also, memory space is allocated
to the dynamic data, and the population is initialized. In the GA__C 1 ean_Up () rou-
tine, the results are stored to an output file and the previously allocated memory
space is de-allocated.

Chapter Four---Evolutionary Computation Implementations

Listing 4.8 The m a i n () routine of the binary GA implementation.

void main(int argc, char *argv[])
{

if (argc != 2)
{

printf("usage: ga [datFile]\n");
exit (i) ;

}

GA_Start_Up (dataFile) ;
GA_Main_Loop () ;
GA_Clean_Up () ;

void GA_Start_Up (char *datFile)
{

int idx_i;
ga_read_parameter(datFile);

ga_data.indi_length = ga_env_data.dimension * ga_data.bits_per_para;
ga_allocate_memory();
ga_initialization();

for (idx_i = 0; idx_i < ga_data.bits_per_para; idx_i++)
ga_data.gau[idx_i] = gaussian(sqrt(idx_i));

void GA_Clean_Up (void)
{

ga_store_results () ;
ga_free_memory () ;

}

void GA_Main_Loop (void)
{

while ((++ (ga_data.gene_index)) < ga_data.iter_max)
{

ga_evaluate () ;
ga_selection () ;
ga_crossover () ;
ga_mut at e () ;

}

The GA_Main_Loop () routine is the main loop of the GA implementation.
All the genetic operations are performed here. These operations form the core of
the search process.

For each cycle (generation), first the population of solutions is evaluated, then
the next generation of solutions is selected using the selection operator according
to the fitness values obtained in the last step. The newly formed solutions then go
through crossover and mutation operations. This process is repeated until either the
specified maximum number of generations is reached or a termination criterion is
met. We didn't implement a termination criterion but left it as an exercise for the
student (see Exercise 6 at the end of this chapter).

Genetic Algorithm Implementation

The g a _ e v a l u a t e () Routine
In the g a _ e v a l u a t e () routine, shown in Listing 4.9, each individual is
evaluated. First the binary representation is decoded into the real-valued parameters
by calling the ge t_parameter () routine, then the evaluation function specified
in ga_env_data (ga_env_data . f u n c t i o n) is called, We have implemented
five benchmark functions: Shaffer's F6, Parabolic, Rosenbrock, the generalized
Rastrigrin, and the generalized Griewank functions. They all are minimum opti-
mization problems except Shaffer's F6 and have been transformed to the maximum
optimization problems by multiplying by-1 in the implementation.

Listing 4.9 The ga_e v a i u at e () routine.

void ga_evaluate (void)
{

int idx_i;

double *para; /* pointer to the parameters */

/* allocate memory space for the parameter matrix */

para = (double *)calloc(ga_env_data.dimension, sizeof(double));

/* fitness calculation */

for (idx_i = 0; idx_i < ga_data.popu_size; idx_i++)
{

/* convert binary vector to real valued parameters */

get_parameter(idx_i,para);

/* get fitness */

ga_data.fit[idx_i] =

OPT_Function_Routines (ga_env_data. function, ga_env_data, dimension, para) ;
}

free(para);

ga_data.best_index = maximum(ga_data.fit,ga_data.popu_size);

ga_data.fit_mean = average(ga_data.fit, ga_data.popu_size);

ga_data.fit_variance = variance(ga_data.fit,ga_data.fit_mean,

ga_data.popu_size);

double OPT_Function_Routines (int fun_idx, int dim, double *para)
{

double result;

switch (fun_idx)
{

case F6 :

result = f6(para); break;

case PARABOLIC:

result = parabolic (dim, para) ; break;

case ROSENBROCK :

result = rosenbrock(dim, para) ; break;

case RASTRIGRIN:

result = rastrigrin(dim, para); break;

case GRIEWANK :

Chapter Four--Evolutionary Computation Implementations

result = griewank(dim, para);

default :

)

return (result) ;

break;

break;

The g a _ s e l e c t i o n () Routine
The main objective of the selection operator in a GA is to give the candidate solu-
tions having better performance (higher fitness value) more chances to survive and
reproduce more copies into the next generation.

In the g a _ s e l e c t i o n () routine, shown in Listing 4.10, several selection
mechanisms are implemented. They are proportionate selection, binary tournament
selection, and ranking selection. All of them are combined with the elitist strategy;
that is, at least one copy of the best candidate solution will be reproduced into the
next generation.

For the proportionate selection operator, the quantity of each candidate solution
copied into the next generation is proportional to its fitness value. The simplest one
is called roulette wheel selection, with each solution occupying an area on the wheel
proportionate to its fitness value. (Roulette wheel selection is discussed in Chapter 3.)
The wheel is spun as many times as the size of the population. Each time, a solution
is selected according to where the pointer points. The advantage of this selection is
that the concept is simple and easy to implement. The disadvantage is that the fitness
value has to be positive, which generally can't be guaranteed, especially when there
is no a priori knowledge about the problem to be solved. A way to overcome this
problem is to shift the fitness values of the population. In our implementation, we
shift the raw (original) fitness values by moving the minimal fitness value to about
10 percent of the dynamic fitness range (m a x _ f i t n e s s - m i n _ f i t n e s s) "

new_fitness[i] = old_fitness - min_fitness + 0.i * (max_fitness -

min_fitness)

Another disadvantage of the roulette wheel selection operator is that this
approach can't be directly used for a minimization optimization problem. The prob-
lem has to be converted to a maximization problem. If the original fitness value is
positive, then the fitness value of the converted problem is negative. The shifting
approach then has to be applied to the fitness value of the converted problem in
order to use a roulette wheel selection operator. This shift approach is also useful for
relatively flat fitness surfaces and/or near the end of a run.

For the binary tournament selection operator, two individuals are randomly
picked and their fitness values are compared. The individual with the better fitness
is copied into the next generation. The advantages of this approach are that it is
easy to implement, there are no restrictions on fitness values, it is suitable for

Genetic Algorithm Implementation

parallel implementation and thus runs fast, and it can be applied to solve both
minimization and maximization optimization problems directly.

The ranking selection operator is similar to that for roulette wheel selection. First
the solutions are ranked, then each solution is assigned a predetermined ranked fit-
ness value based on its rank in the population. These values are usually evenly spaced,
often between 0 and 1. After that the operations are similar to that in roulette wheel
selection, so we don't repeat them here. This process is most useful when the fit-
nesses have become bunched together late in the run. As a simple example, consider
a ranked population of four individuals with fitnesses of 0.95, 0.96, 0.97, and 0.98.
As is, they have very similar probabilities of selection into the next generation. Now
evenly space their fitness values between 0 and 1, so that their ranked fitness values
are now 0.25, 0.50, 0.75, and 1.0. Now the probabilities of selection are 10 percent,
20 percent, 30 percent, and 40 percent, respectively, and the selection pressure has
been substantially increased.

Which selection operator to choose and how to implement it is critical since it
impacts the selection pressure and, therefore, the performance of the GA. In List-
ing 4.11, the source code of the implementation of a binary tournament selection
operator is shown. In this implementation, an integer pointer flag is defined and a
p o p u _ s i z e quantity of integer type memory space is allocated to it. F l a g [i] is
used to record the copies of the individual i that have been selected for the next
generation. At the beginning, no copies are selected for each individual; that is,
f 1 ag [i] : 0, Vi E{0,.. . , popu_s i ze - 1 }. Each time an individual i is selected
into the next generation, f l a g [i] increases by 1. This process is repeated until
total p o p u _ s i z e copies of individuals have been selected. Then the new popula-
tion is formed by checking each f l a g [i] . If f l a g [i] = 0, it means individual
i has not been selected for the next generation. It is then replaced by an individual
j with f l a g [j] > 1, and f l a g [i] increases by 1 and f l a g [j] decreases by 1.
This process is repeated until f l a g [j] = 1, Vj E{O,..., p o p u _ s i z e - 1}.

Listing4.10 The g a _ s e l e c t i o n () routine.

void ga_selection (void)
{

switch (ga_data.s type)
{

case ROULETTE_WHEEL_SCALING-
roulette_wheel_scaling(); break;

case BINARY_TOURNAMENT"
binary_tournament(); break;

case RANKING:
ranking(); break;

default:
binary_tournament(); break;

(~ ' . . ~ Chapter Four--EvolutionaryComputation Implementations

Listing 4.11 The Binary tournament selection operator.

static void binary_tournament (void)
(

int idx_i, idx_j, idx_k;
int kid_l, kid_2;

int *flag; /* information for selected times */
int no;

flag = (int *)calloc(ga_data.popu_size, sizeof(int));

/* set all flags to be zero, means no one has been selected */
for (idx_i = O; idx_i < ga_data.popu_size; idx_i++)

flag[idx_i] = O;

flag[ga_data.best_index] = i; /* keep the best */

/* set the flags for all individuals */

for (idx_i = O; idx_i < (ga_data.popu_size- i); idx_i++)
{

kid_l = rand()%(ga_data.popu_size);
kid_2 = rand()%(ga_data.popu_size);

if ((ga_data.fit[kid_l]) > (ga_data.fit[kid_2]))
flag[kid_l] +=i;

else

flag[kid_2] += i;

/* form the new population */

for (idx_i = O; idx_i < ga_data.popu_size; idx_i++)
{

if (flag[idx_i] == O)
{

no = O;

for (idx_j = O; idx_j < ga_data.popu_size; idx_j++)
{

if (flag[idx_j] > I)
{

idx_k = idx_j;

no = no + I;

break;
}

}

if (no == O)
{

printf("something wrong in selection \n");
exit (i) ;

)

flag[idx_k] = flag[idx_k] - i;

/* copy the selected individual to new individual */

for (idx_j = O; idx_j < ga_data.indi_length; idx_j++)

ga_data, population [idx_i] [idx_j] = ga_data, population

[idx_k] [idx_j] ;
flag[idx_i] += I;

Genetic Algorithm Implementation

}
}

/* check the selection */
for (idx_i = O; idx_i < ga_data.popu_size; idx_i++)
(

if (flag[idx_i] != I)
(

printf("something wrong with selection in") ;
exit (1) ;

}
}
free (flag) ;

The g a _ c r o s s o v e r () Routine
In the g a _ c r o s s o v e r () routine, as shown in Listing 4.12, three types of crossover
operator are implemented. Which one to use is specified in the input file. First, (pop-
ulation size)/2 pairs of individuals are randomly picked. Which pair of individuals is
going to experience the crossover operation is randomly determined, with crossover
occurring with a probability of c r o s s o v e r _ r a t e . In the implementation, all
the individuals have one chance to be selected to undergo the crossover operation.
An integer pointer store_index is defined and allocated popu_size quantity
of integer type memory space. Each element of s t o r e i n d e x stores an index of an
individual that has not been selected to go through the crossover operation. Another
integer data variable r e m a i n _ n u m b e r is defined to store the number of individ-
uals that have not been selected. At the beginning, store_index[j] - j and
r e m a i n n u m b e r - p o p u s i z e since no individuals have been selected yet.

Each time an individual j is selected through calling the s e a r c h () r o u t i n e ,
s t o r e _ i n d e x [_~], _~ - _j,..., r e m a i n n u m b e r is replaced byits next element
through calling the r e o r d e r () routine, that is, s t o r e i n d e x [j] =
s t o r e i n d e x [j + l] . Then r e m a i n n u m b e r decreases by 1. Each pair of
individuals selected has a chance (c r o s s o v e r _ r a t e) to undergo the crossover
operation. This process is repeated until r e m a i n n u m b e r < 2. To facilitate fast
computation, s t o r e _ i n d e x may be better defined as a linked list data type.

Listing4.12 The ga_crossover () routine.

void ga_crossover(void)
(

int idx_i, idx_j;

int *store_index;

int remain_number, kidl, kid2;
double prob;

store_index = (int *)calloc(ga_data.popu_size, sizeof(int)) ;

Chapter Four--Evolutionary Computation Implementations

for (idx_i = 0; idx_i < ga_data.popu_size; idx_i++)
store_index[idx_i] = idx_i;

remain_number = ga_data.popu_size;

/* begin crossover among population */

for (idx_i = 0; idx_i < (ga_data.popu_size/2 + i); idx_i++)

{ /* two kids are chosen each time */
if (remain_number >= 2)

/* at least two individuals remain unchosen */
{

idx_j = search(remain_number); /* find the first kid */

kidl = store_index[idx_j]; /* index to the first kid */

remain_number--; /* update number of remaining unchosen */

reorder (store_index, remain_number, idx_j) ;

/* reorder the sign vector */
idx_j = search(remain_number); /* find the second kid2

kid2 = store_index[idx_j]; /* index to the second kid */

remain_number--; /* update number of remaining unchosen */
reorder (store_index, remain_number, idx_j) ;

/* reorder the sign vector */
prob = (rand()%1000)/1000.0;

if (prob <= ga_data.crossover_rate)

/* probability for crossover */
{

if ((kidl != ga_data.best_index) && (kid2 !=

ga_data, best_index))
{ /* keep the best */

switch (ga_data. c_type)
{

case ONE_POINT_CROSSOVER:

onecross(kidl,kid2); break;
case UNIFORM_CROSSOVER:

unicross(kidl,kid2); break;

default :
twocross(kidl,kid2); break;

}
}

}
}

}

free (store_index) ;

static int search (int si)
{

int re;

re = rand()%(si);

return (re) ;
}

static void reorder (int *vec, int si, int ind)
{

int i;

if (ind<si)

for (i=ind; i<si; i++)

* (vec+i) =* (vec+i+l) ;
)

Genetic Algorithm Implementation

The ga_mutation () Routine
For a GA with binary representation, the mutation operation is generally performed
by independently, randomly, uniformly flipping bits with a small probability. In the
qa m u t a t i o n () routine, shown in Listing 4.13, two mutation methods are imple-
mented. Which one to use depends on a "mutation according to bit position" flag,
m u t a t i o n _ f l a g , which is read from the input file. When this flag is 0 (disabled),
mutation is carried out in the normal way: mutation is done bit by bit with a fixed
probability of mutation read in from the input file. When it is 1 (enabled), the prob-
ability of mutation mb varies with the bit position in each variable.

The variation in mutation across each variable is an exponential function; that
is, it is much more probable that the least significant bit will be mutated than it is
that the most significant bit will be. It is implemented according to equation 4.1,
where b is the bit position (b - 0 for the least significant bit, b - 1 for the next-
to-least significant bit, etc.) and m0 is the probability of mutation used when
mutation_flag = O.

1 _b2/2
mb = m o - ~ e (4.1)

Note that the calculation is done across each variable. So, for a variable
represented by 16 bits, the resulting probability of mutation is m0(1/2zr) 1/2, or about
(m0)(0.40) for the least significant bit and about (mo)(O.40)exp(-7.5) = (m0)(0.40)
(0.00055) for the most significant bit. The variance for the quasi-Gaussian function
can thus be seen to depend on the variables' dynamic range and how each variable
is represented by the binary string.

This mutation by bit position can be seen to be similar in concept to the Gaus-
sian mutation carried out in the evolutionary programming function optimization
example and to the mutation scheme employed in evolutionary strategies, both
described in Chapter 3. We therefore implement a hybrid GA/EP/ES algorithm with
this mutation option. Listing 4.13 lists the g a _ m u t a t i o n () C source code, where
gau [i d x _ i] records the bit-position-dependent probability for the ith bit, which
is obtained by equation 4.1.

Listing 4.13 GA mutation operation C source code.

void ga_mutate (void)
{

int idx_i, idx_j ;

double prob, rate_m;

for (idx_j = O; idx_j < ga_data.popu_size; idx_j++)

if (idx_j != (ga_data.best_index))

for (idx_i = O; idx_i < ga_data.indi_length; idx_i++)
{

Chapter FourmEvolutionary Computation Implementations

prob = (rand()%lO00)/lO00.O;

if ((ga_data.mutation_flag == i))

rate_m = ga_data.mutation_rate *

ga_data, gau [idx_i% (ga_data. bit s_per_para)] ;

else

rate_m = ga_data.mutation_rate;

if (prob <= rate_m)

if ((ga_data.population[idx_j] [idx_i]) == O)

ga_data.population [idx_j] [idx_i] = i;

else

ga_data.population [idx_j] [idx_i] = O;

Generally, values of mutation rate within [0.001, 0.01] are recommended for the
canonical binary genetic algorithm discussed in this section, especially when a fixed
mutation rate is used. The mutation operation, generally speaking, has a disruptive
impact on the population and therefore brings new information into the population.
It facilitates exploration of the search space.

Running the GA Implementation
Now that we've looked at the individual components of the GA implementation,
let's put them all together. To run the genetic algorithm implementation (the code
for which is on the book's web site) requires the executable file ga . e x e and an asso-
ciated run file, for example, ga . run. To run the implementation from within the
directory containing ga . e x e and ga . run, at the system prompt type ga g a . run.

One way to present the genetic algorithm implementation is to examine and dis-
cuss the contents of a typical run file, as shown in Listing 4.14, that can be invoked
with the executable file.

Listing 4,14 An example of a GA run file.

results.out

I0

4

i0000

16

20

0.75

0.005

0.02

0

2

1

Genetic Algorithm Implementation

The first entry, results, out, is the name of the data file where the results are
stored. The next two numbers are the dimension of the problem (10) and the func-
tion type (4--Griewank). These inputs are related to the GA's working environment;
that is, the function to be solved is the 10-dimensional generalized Griewank func-
tion. The results of the run will be stored in a file named r e s u l t s , out .

Following the environment inputs are numbers: the maximum number of
generations (10,000), the number of bits per variable (16), the population size
(20), the percent probability of crossover divided by 100 (0.75), the probability
of mutation (0.005), the acceptable fitness values to which the problem is to be
evolved (0.02), the "mutate according to bit position" flag (0), the crossover type
(2), and the selection type (1).

The maximum number of generations is the maximum number of epochs, that
is, the maximum number of times the problem will be evaluated for the fitness of all
individuals in the population.

The number of bits per variable allows the user to set the resolution for each
vector element; in this case, each element represents one function parameter. The
trade-offhere is that a relatively high number of bits provides the resolution needed
to successfully adjust parameters on a complex fitness surface, but it also increases
computational complexity significantly. This GA implementation provides a tool to
investigate this question with a variety of datasets representing various problems.

The number of population members (20 in this case) can be varied according to
the problem. A higher number allows a more thorough exploration of the problem
domain, but increases computing time. Typically, the value should be set between 20
and 200, but values outside the range may be appropriate for relatively simple prob-
lems that involve relatively short individuals (< 20) or for highly complex problems
that involve very large chromosomes (> 200).

The probability of crossover should be set between 60 and 80 percent for many
problems. The straightforward two-point crossover operator (as described in
Chapter 3) can be implemented, as can one-point and uniform crossover.

The next value (0.005 in the list) is the probability of mutation. Options for
mutation implemented in this GA were explained previously. The value listed here
is a sort of baseline value; it can be implemented in one of two ways. If not modi-
fied, however, the value represents the chance that mutation will occur determined
bit by bit.

The next value, 0.02, is the fitness target for the performance of the "evolved"
solution. The GA will terminate when this fitness level is achieved or when the max-
imum number of generations have been calculated, whichever occurs first. In either
case, the results are written to the specified output file. In this implementation, this
value is not used. We terminate the run only when the maximum number of gener-
ations is reached.

The next value (0) is the "mutation according to bit position" flag. The meaning
of this flag was explained in the previous section.

Chapter FourmEvolutionary Computation Implementations

The next-to-last value in the list (2) is the crossover type. The GA implementation
allows the user to choose one of three kinds of crossover. If the crossover type is
set to 0, one-point crossover is implemented. If it is set to 1, uniform crossover is
implemented, and a value of 2 implements two-point crossover.

The last value in the list (1) is the selection type. The GA implementation allows
the user to choose any of three kinds of selection mechanisms. If the selection type
is set to 0, the roulette wheel selection operator is implemented; if it is set to 1, the
binary tournament selection operator is implemented; and a value of 2 implements
the ranking selection operator.

The output file lists the input parameters specified in the run file. It then lists the
fitness value for each population member at the end of the run. Last, the parameter
values for the population member with the highest fitness are listed.

It is important to experiment with the GA implementation. Be aware that
because of its stochastic nature, a GA may converge to a different point each
time it is run. Researchers rely on computational experimentation to compare
the effectiveness of evolutionary algorithms. You are encouraged to use accepted
statistical tests such as t-tests and Tukey's method when you are reporting your
results.

You now know everything you need to know about running the GA implemen-
tation. We suggest you take the application for a trial run.

Particle Swarm Optimization Implementation

Now that we've reviewed the GA software, we discuss PSO implementation. The
PSO implementation is essentially an asynchronous version of particle swarm opti-
mization that uses global best and pbes¢ (see Chapter 3). The basic particle
swarm optimization discussed in the previous chapter is implemented first, then
the implementation is expanded to provide the capability of running multi-PSOs,
particularly co-evolutionary particle swarm optimization. We begin by looking at
some programming issues.

Programming the PSO Implementation
In contrast to the implementation of the genetic algorithm discussed in the last
section, the implementation of PSO is based on a state machine (SM) instead of
a flowchart. Figure 4.2 shows the state machine of this PSO implementation. The
arrow leading from one state to another state is called a transition. It describes how
the SM transitions from state to state. The label of a transition describes the condi-
tion that triggers the transition.

Particle Swarm Optimization Implementation

popu_index = popu_size opu_index < popu_size

~_1 \%

gene_io~ex<~ax_g~ne / UPDAVE_ ~ / , , ~ %

\ - - x
q

UPDATE_
LOCAL_BEST

C
o -cD

UPDATE_
GLOBAL_

PSO_
UPDATE_
VELOCITY

Figure 4.2 A state diagram of an asynchronous particle swarm optimization
implementation.

As in the GA implementation, some new data types are defined initially.
Listings 4.15 and 4.16 show these definitions.

Listing 4.15 Definition of some new data types in the PSO implementation.

typedef float *P_FLOAT;
typedef P_FLOAT FVECTOR;
typedef P_FLOAT *FMATRIX;

WW*WWW*WWWWWW*W*WW***WWWWWWWWWW.W./

/* Enumerations */
**

typedef enum PSO_State_Tag
{

PSO_UPDATE_INERTIA_WEIGHT, // Update inertia weight
PSO_EVALUATE, // Evaluate particles

Chapter Four--Evolutionary Computation Implementations

PSO_UPDATE_GLOBAL_BEST,
PSO_UPDATE_LOCAL_BEST,
PSO_UPDATE_VELOCITY,
PSO_UPDATE_POSITION,
PSO_GOAL_REACH_JUDGE,
PSO_NEXT_GENERATION,
PSOS_DONE,
NUM_PSO_STATES

} PSO_State_Type;

// Update global best
// Update local best
// Update particle's velocity
// Update particle's position
// Judge whether reach the goal
// Move to the next generation
// Finish one cycle of PSOs
// Total number of PSO states

typedef enum PSO_Initialize_Tag
{

PSO_RANDOM_SYMMETRY_INITIALIZE, // 0 :Symmetry Initialization
PSO_RANDOM_ASYMMETRY_INITIALIZE, // 1 :Asymmetry Initialization
NUM_PSO_INITIALIZE // Number of initialization methods

} PSO_Initialize_Type;

typedef enum MINMAX_Tag
{

MINIMIZATION,
MAXIMIZATION

} MINMAX_Type;

// 0 :Minimization problem
// 1 :Maximization problem

typedef enum Evaluate_Function_Tag

F6,
PARABOLIC,
ROSENBROCK,
RASTRIGRIN,
GRIEWANK,
NUM_EVALUATE_FUNCTIONS

} Evaluate_Function_Type;

// 0 :F6: min
// 1 :Parabolic: min
// 2 :Rosenbrock: min
// 3 :Rastrigrin: min
// 4 :Griewank: min
// Total number of evaluation functions

typedef enum Inertia_Weight_Update_Method_Tag
{

CONSTANT_IW, // 0 :Constant inertia weight
LINEAR_IW, // 1 :Linearly decreasing inertia weight
NOISE_ADDITION_IW, // 2 :Adding noise to the constant inertia weight
NUM_IW_UPDATE_METHODS // Number of inertia weight update methods

} IW_Update_Type;

Listing 4.16 Structure data type definitions for PSO.

/* Structures */
**

typedef struct PSO_Initialize_Range_Type_Tag
{

float left;
float right;

} P SO_Init iali ze_Range_Type;

Particle Swarm Optimization Implementation

typedef struct PSO_Environment_Type_Tag
{

MINMAX_Type opti_type;
Evaluate_Function_Type function_type;
IW_Update_Type iw_method;
PSO_Initialize_Type init_type;
PSO_Initizlize_Range_Type init_range;
float max_velocity;
float max_position;
int max_generation;
int boundary_flag;
FVECTOR low_boundaries;
FVECTOR up_boundaries;

} PSO_Environment_Type;

typedef struct PSO_Type_Tag // PSO parameters
{
PSO_Environment_Type env_data;
int popu_size;
int dimension;
float inertia_weight;
float init_inertia_weight;
int global_best_index;
FVECTOR pbest_values;
FMATRIX velocity_values;
FMATRIX position_values;
FMATRIX pbest_position_values;
float eva_fun_value;
int popu_index;
int gene_index;

} PSO_Type;

In Listing 4.15 the enumeration data type PSO_State_Type defines all the
states in the PSO state machine. There are nine states, with each state having a
handling routine corresponding to it. The P S O _ I n i t i a l i z e _ T y p e defines the
methods to initialize the population. There are two methods: symmetrical and
asymmetrical initialization. The MINMAX_Type defines the types of optimization
problems the PSO is going to solve: either a maximization problem or a mini-
mization problem.

Eva1 uat e _ F u n c t i on_Type defines the optimization functions to be solved
as in the GA implementation. The IW_Update_Type defines methods to update
the inertia weight dynamically. Three ways to deal with the inertia weight are imple-
mented. The inertia weight can be kept constant, decreased linearly, or added as
random noise through the course of the run.

In Listing 4.16 the struct data type PSO_Initialize_Range_Type
defines the data range within which the initialization is performed. The
PSO_Environment_Type defines a s t r u c t data type that includes parameters
related to the PSO environment. Included are optimization type (o p t i _ t y p e) ,

Chapter FourmEvolutionary Computation Implementations

optimization function (f u n c t i o n _ t y p e) , inertia weight updating method
(iw_method), PSO initialization method (i n i t _ t y p e) , PSO initialization range
(i n i t _ r a n g e) , maximum velocity allowed (m a x _ v e l o c i t y) , maximum posi-
tion allowed (m a x _ p o s i t i o n) , maximum number of generations
(m a x _ g e n e r a t i o n) , a flag telling whether there are boundaries for the para-
meters to be evolved (b o u n d a r y _ f l a g) , and the upper and lower boundaries
if the boundary_flag is TRUE (low_boundaries and up_boundaries).

The PSO_Type defines a struct data type that includes all PSO parameters.
Included are PSO environment data (env_da ta) , population size
(popu_s i ze) , dimension of the problem or length of the individual
(dimens i on), current inertia weight (i n e r t i a_we i gh t), initial inertia weight
(i n i t _ i n e r t i a _ w e i g h t) , index of the global best at the current generation
(g l o b a l _ b e s t _ i n d e x) , vector of pbest values (p b e s t _ v a l u e s) , matrix of
velocity values (v e l o c i t y _ v a l u e s) , matrix of position values (p o s i t i o n _
v a l u e s) , matrix of pbest position values (p b e s t _ p o s i t i o n _ v a l u e s) ,
fitness value of the current individual of the current generation (e v a _ f u n _
v a l u e) , population index (popu_index) , and index of the current generation
(gene_ index) .

A P SO_Type variable ps o, shown below, is defined at the PSO module scope so
it is unnecessary to pass the PSO-related parameters and variables from one routine
to another within the PSO module.

static PSO_Type pso;

The main () Routine
The main () routine is shown in Listing 4.17. As in the GA implementation, it is
kept as simple as possible to make the PSO module as independent as possible. In
the PSO_Star t_Up () routine, as shown in Listing 4.17, all the necessary param-
eters for running the PSO implementation are read from the input file, then the
dynamic data storage variables are allocated memory space and initialized. In the
P SO_Clean_up () routine, the results are stored in an output file and the previ-
ously allocated memory space is de-allocated. The PSO_Main_Loop () routine is
the core of the PSO implementation, where the state machine is run.

Listing 4.17 The PSO ma in () routine.

void main (int argc, char *argv[])
{

if (argc>=2)
{

printf("Too many command line parameters");

exit (i) ;
}

PSO_Start_Up () ;
PSO_Main_Loop () ;

Particle Swarm Optimization Implementation

PSO_Clean_Up () ;
}

void PSO_Start_Up (void)
{

read pso_parameters();
allocate_pso_memory();
pso initialize();

}

void PSO_Clean_Up (void)
{

pso_store_results () ;
free_pso_memory () ;

}

// allocate memory for particles
// initialize particles

// output results
// free memory space of particles

The P S O _ g _ a i n _ L o o p () Rout ine
Before running the P S O _ M a i n _ L o o p () routine, as shown in Listing 4.18, a PSO
module scope variable is defined as

static PSO_State_Type PSO_current_state;

This variable records the current state of the PSO state machine and is defined as
s t a t i c to prevent the state from being changed by an outside module acciden-
tally. When running the state machine, the current state calls its handling routine
through pso_state_handler (PSO_current_state), where the state per-
forms its action until a transition to another state occurs. The state machine keeps
running until it reaches the state P SOS DONE.

Listing4.18 The PSO_Main_Loop () routine.

void PSO_Main_Loop (void)
{

BOOLEAN running;
running = TRUE;
while (running)
{

if (PSO_current_state = = PSOS_DONE)
running = FALSE;

pso_state_handler(PSO_current_state);
}

State Handling Routines
The main part of the PSO state machine is its state handler, which is shown in
Listing 4.19. The state handler routine called is based on the current PSO state.

Chapter Four--Evolutionary Computation Implementations

For example, if the current state is PSO_EVALUATE, then the Pso_evaluate ()

handler routine, shown in Listing 4.20, is called. Within this routine, if the cur-
rent population index is less than the population size, the evaluation function is
called to evaluate the fitness of the current individual, and the state transitions to
PSO_UPDATE_LOCAL_BEST; otherwise, the current state transitions to the state
P SO_GOAL_REACH_JUDGE and the current population index is assigned the
value of O.

Listing 4.19 The PSO state handling routine.

static void pso_state_handler (int state_index)
{

switch (state_index)
{

case PSO_UPDATE_INERTIA_WEIGHT :

PSO_update_inertia_weight () ;

case PSO_EVALUATE :

PSO_evaluate () ;

case PSO_UPDATE_GLOBAL_BEST :

PSO_update_global_best () ;

case PSO_UPDATE_LOCAL_BEST :

PSO_update_local_best () ;

case PSO_UPDTAE_VELOCITY :

PSO_update_velocity () ;

case PSO_UPDATE_POSITION :

PSO_update_position () ;

case PSO_GOAL_REACH_JUDGE :

PSO_goal_reach_judge () ;

case PSO_NEXT_GENERATION :

PSO_next_generation () ;

case PSOS_DONE :

PSOs_done () ;

default :

break;

break;

break;

break;

break;

break;

break;

break;

break;

break;

Listing 4.20 The PSO_evaluate () routine.

static void PSO_evaluate (void)
{

if ((pso.popu_index) < (pso.popu_size))
{

evaluate_funct ions (pso. env_data, funct ion_type) ;

PSO_current_state = PSO_UPDATE_LOCAL_BEST;
}
else
{

PSO_current_state = PSO_GOAL_REACH_JUDGE;

pso.popu_index = 0;
}

Particle Swarm Optimization Implementation

Programming the Co-evolutionary PSO
In the previous section, we described the implementation of a basic PSO. In this
section, we expand it to provide the capability of running multi-PSOs. As we
know, evolutionary algorithms have been successfully applied to solve many opti-
mization problems. They have also been used to solve optimization problems with
constraints by converting the constrained problems into unconstrained problems,
which are what the evolutionary algorithms are good at. The most commonly
employed conversion method adds penalty functions to punish the infeasible
individuals.

Another, potentially better, approach is to employ the augmented Lagrangian
method to convert the constrained problem into min-max problems (Tahk and Sun
2000). Then two evolutionary algorithm populations are used to solve the min-max
problems. One is used to solve the minimization problem, with the maximization
problem treated as a fixed environment of the minimization problem; the other is
used to solve the maximization problem, with the minimization problem treated as
the fixed environment of the maximization problem. The only interaction between
these two algorithms is the fitness evaluations; that is, each is treated as an environ-
ment of the other.

Procedure for Running the Co-PSO
The procedure for running the co-PSO is (Shi and Krohling 2002):

1. Initialize two PSOs.

2. Run the first PSO for max_qen_l generations.

3. Reevaluate the pbe s tvalues for the second PSO if it is not the first
cycle.

4. Run the second PSO for max_qen_2 generations.

5. Re-evaluate the p b e s t values for the first PSO.

6. Loop to step 2 until a termination condition is met.

Each member of the first population is a vector of variables (elements), the values
of which we are trying to optimize, and each element is randomly initialized within
the range given for that variable when the problem is stated. Each member of the
second population represents a ;l vector, each element of which is initialized in the
range [0,1]. It is important to note that for both PSOs, the function that is evaluated
is the augmented Lagrangian. The first PSO is run as a minimization problem, and
the second as a maximization problem. The population sizes of the two populations
do not have to be the same (but they may be).

After initialization, the first PSO is run for max_qen_l generations, as
follows: The fitness of each population member vector of variables is evaluated

Chapter FourmEvolutionary Computation Implementations

with each ~ vector in the second PSO population. The highest fitness (lowest
function value) thus obtained among all of the member/a combinations is defined
as the fitness of that population member. Note that the a values are fixed
during this step; they are part of the "environment" within which the evaluation
o c c u r s .

In the first iteration, called a cycle, we then go to step 4 of the procedure.
If it is not the first cycle, the p b e s t values for the second PSO population are
recalculated.

In step 4, we run the second PSO for max_gen_2 generations. This time, we are
optimizing with respect to the ~ values in the second population. We evaluate the
fitness of each population member vector of ;t values with each vector of variables
(population member) in the first population. The highest fitness (highest function
value) thus obtained among all of the ~/member combinations is defined as the fit-
ness of that 2 population member. Note that all variable values are fixed during this
step; they are part of the environment.

In step 5, the pbe s t values for the first PSO population are recalculated. This is
the completion of one cycle of the procedure.

Benchmark Problems Selected for Implementation
Three benchmark-constrained optimization problems reported in (Michalewicz
and Schoenauer 1996), (Tahk and Sun 2000) and (Shi and Krohling 2002) were
selected for implementation in this book. The first optimization problem G1
consists of minimizing:

4 13

f(x) = 5Xl + 5x2 + 5x3 + 5x4 - 5 E g - E xi
i=l i=5

subject to

2Xl + 2x2 + Xl0 + Xll <_ 10

2Xl + 2x3 + Xl0 + X12 (_ 10

2x2 + 2x3 + Xl 1 + Xl 2 _ 10

--8Xl q" XlO _ 0

--8X2+Xll (_0

--8X3+X12 <_0

-2x4 - x5 + XlO ~ 0

-2x6 - x7 --!- Xll <_ 0

-2x8 - x9 + x12 _ 0

where

Particle Swarm Optimization Implementation

0 ~ X i ~ 1, i = 1, . . . , 9

0 < Xi ___ 100, i -- 10, 11, 12

0 < X i < 1, i = 13

The global m i n i m u m is known to be

X* = (1,1,1,1,1,1,1,1,1,3,3,3,1)

wi th f (x*) = - 1 5 .
The second opt imizat ion problem G7 consists of minimizing:

f(x) = x~ + x~ + xlx2 - 14xl - 16x2 + (x3 - 10) 2
2 + 4(X4 -- 5) 2 + (X5 -- 3) 2 + 2(x6 - 1)2 -4- 5x 7

+ 7(x8 - 11)2 + 2(x9 - 10) 2 + (Xl0 -- 7) 2 + 45

subject to

105 - 4 X l - 5x2 + 3x7 - 9x9 _> 0

-3(Xl - 2) 2 - 4 (x 2 - 3) 2 - 2x] + 7x4 + 120 _> 0

-10Xl + 8x2 + 17x7 - 2x8 >_ 0

- x 2 - 2x(x2 - 2) 2 + 2xlx2 - 14x5 + 6x6 >_ 0

8Xl - 2x2 - 5x9 + 2XlO + 12 >_ 0

- 5 x ~ - 8x2 - (x3 - 6) 2 + 2x4 + 40 >_ 0

3Xl - 6x2 - 12(x9 - 8) 2 + 7XlO _> 0

-0 .5(Xl - 8) 2 - 2(x2 - 4) - 3x 2 + x6 + 30 > 0

where

- 1 0 < Xi ~ 10, i = 1, . . . , 10

The global m i n i m u m is known to be

x*= (2.171996, 2.363683, 8.773926, 5.095984

0.9906548, 1.430574, 1.321644, 9.828726

8.280092, 8.375927)

with f(x*) = 24.3062091.

Chapter Four--Evolutionary Computation Implementations

The last optimization problem G9 consists of minimizing:

f(x) = (Xl - 10) 2 + 5(x2 - 12) 2 + x 4 + 3(x4 - 11) 2

+ 10x 6 + 7x ~ - 4x6x7 - 10x6 - 8x7

subject to

where

1 2 7 - 2Xl 2 - 3x 4 - x 3 - 4x42 - 5x5 _> 0

282 - 7Xl - 3x2 - lOx~ - x4 + x5 _> 0

196 - 23Xl - x 2 _ 6x 2 + 8x7 _> 0

-4Xl 2 -x22 + 3XlX2- 2 x ~ - 5x6 -1- l lx7 _> 0

- 1 0 < xi < 10;

The global min imum is known to be

i = 1 , . . . , 7

x* = (2.330499, 1.951372,-0.4775414, 4.365726,

-0.6244870, 1.038131, 1.594227)

with f(x*) = 680.6300573.
For all three benchmark problems, the population sizes can be set to 40 and 30,

respectively. The maximum number of generations for each PSO of one cycle is gen-
erally chosen to be 10. To test the convergence speed of the co-evolutionary PSO,
three maximum numbers of cycles can be tested, such as 40, 80, and 120. The parti-
cles are randomly initialized within the boundaries for each run. The inertia weight
of each PSO can be linearly decreased over the course of each run, starting from 0.9
and ending at 0.4. Each different parameter setting can be tested by running multiple
times, such as 50 times. Each run is terminated only when the maximum number of
cycles has been reached.

Modification of Data Types and Routines of PSO Implementation
To implement the co-evolutionary PSO, the PSO implementation in the previous
section is expanded so that multi-PSOs can co-exist. New states have been included
into the enumeration data type p50 s t a t e Type since there is now transition
between different PSOs. The new m s o _ S t a t e _ T y p e is defined as that shown in
Listing 4.21.

Listing 4.21 The PSO_State_Type for multi-PSOs.

typedef enum PSO_State_Tag
{

P SO_UPDATE_INERTIA_WE IGHT,
P SO_EVALUATE,

// Update inertia weight
// Evaluate particles

Particle Swarm Optimization Implementation

PSO_UPDATE_GLOBAL_BEST,
PSO_UPDATE_LOCAL_BEST,

PSO_UPDATE_VELOCITY,
PSO_UPDATE_POSITION,

PSO_GOAL_REACH_JUDGE,

PSO_NEXT_GENERATION,
PSO_UPDATE_PBEST_EACH_CYCLE,

P SO_NEXT_P SO,

PSOS_DONE,

NUM_PSO_STATES

} PSO_State_Type;

// Update global best
// Update local best

// Update particle's velocity
// Update particle's position

// Judge whether reach the goal

// Move to the next generation

// Update pbest each cycle for co-pso
// due to the environment changed

// Move to the next PSO in the same cycle or

// the first pso in the next cycle
// Finish one cycle of PSOs

// Total number of PSO states

The new added states are PSO_UPDATE_PBEST_EACH_CYCLE and
P SO_NEXT_P SO. The state P SO_UP DATE_P BEST_EACH_CYCLE is used to adjust
the p b e s t fitness value since the environment in which the p b e s t positions are
evaluated was changed when the multi-PSO% algorithm was transitioned from one
PSO to the other PSO; the state P SO_NEXT_P SO is used to start the new PSO eval-
uation. The state machine is shown in Figure 4.3.

The PSO_Type p s o has also been replaced by

static int NUM_PSO;

static PSO_Type *psos;

where NUM_P SO is read in from the input file at the beginning and tells how many
PSOs co-exist in the implementation. The variable p s o s is a PSO_Type pointer
pointing to the array of the NUM_P SO number of PSOs.

The P S O M a i n L o o p () also has to be modified to allow multi-PSOs to coexist,
as shown in Listing 4.22.

Listing 4.22 The PSO_Main_Loop () routine in multi-PSOs.

void PSO_Main_Loop (void)
{

BOOLEAN running;

while ((pso_cycle_index++) < total_cycle_of PSOs)
{

running = TRUE;

while (running)
{

if (PSO_current_state == PSOS_DONE)

running = FALSE;

pso_state_handler(PSO_current_state);
}

Chapter Four--Evolutionary Computation Implementations

E
c-
O -c-

.c-
L)

REACH -)~ popu_index = popu_size (PSO_
- EVALUATE

NEXT_
GENERATION

UPDATE_
INERTIA

0 v~

E

E
x I ~

E v
II 0 v~

"{3

e ' -

popu_index < popu_size
"k LOCAL_ /

%

' UPDATE_ '~ done
PBEST_EACH_~'

PSO_NEXT_
PSO

PSOS_DONE
next_pso = number_psos

Figure 4.3 State diagram of asynchronous version of multi-PSOs.

In Listing 4.22 the integer variable total_cycle_of_PSOs keeps track of
the number of cycles the multi-PSOs have run, with each running for the maxi-
mum number of generations specified in its corresponding P so_Type variable; the
integer p s o _ c y c l e _ i n d e x is the index of the PSO that is running. The variable
t o t a l _ c y c I e_o f_P s 0 s is specified in an input file and is read in at the beginning
of the run.

Particle Swarm Optimization Implementation

The Evaluate_Function_Type has also been expanded to include
constrained problems, and it is shown in Listing 4.23. Each constrained problem
is associated with two evaluation functions corresponding to the two PSOs in the
co-evolutionary PSO algorithms, respectively. For example, for the Gl-constrained
problem, GI_MIN is the case index corresponding to the evaluation function of the
PSO that is responsible for the minimum part of the min-max problem transformed
from the G1 problem; GI_MA× is that for the maximum part of the min-max
problem.

Listing 4.23 Expanded Evaluate_Function_Type.

typedef enum Evaluate_Function_Tag
{

GI_MIN, // 0: GI, min part
GI_MAX, // 1 : GI, max part

G7_MIN, // 2: G7, min part

G7_MAX, // 3: G7, max part
G9_MIN, // 4- G9, min part
G9_MAX, // 5: G9, max part
F6, // 6" F6: min
PARABOLIC, // 7: Parabolic: min

ROSENBROCK, // 8: Rosenbrock: min
RASTRIGRIN, // 9: Rastrigrin: min
GRIEWANK, // i0: Griewank: min
NUM_EVALUATE_FUNCTIONS // Total number of evaluation functions

} Evaluate_Function_Type;

The pso_state_handler (int state_index) also has to be modified to
include new cases for handling the new states, which is shown in Listing 4.24.

Listing 4.24 Modified pso_state_handler.

static void pso_state_handler (int state_index)
{

switch (state_index)
{

case PSO_UPDATE_INERTIA_WEIGHT:

PSO_update_inertia_weight(); break;
case PSO_EVALUATE:

PSO_evaluate(); break;

case PSO_UPDATE_GLOBAL_BEST:

PSO_update_global_best(); break;

case PSO_UPDATE_LOCAL_BEST:

PSO_update_local_best(); break;
case PSO_UPDATE_VELOCITY.

PSO_update_velocity(); break;
case PSO_UPDATE_POSITION:

PSO_update_position(); break;

Chapter Four--Evolutionary Computation Implementations

case PSO_GOAL_REACH_JUDGE :

PSO_goal_reach_judge () ; break;

case PSO_NEXT_GENERATION :

PSO_next_generation () ; break;

case PSO_UPDATE_PBEST_EACH_CYCLE :

PSO_update_pbest_each_cycle () ; break;

case PSO_NEXT_PSO :

PSO_next_pso () ; break;

case PSOS_DONE:

PSOs_done () ; break;

default : break;

The PSO_~.VALUAT~. State
As in the single PSO implementation, if all the individuals have been evaluated, the
state transitions to state P SO_GOAL_REACH_JUDGE, and the index of population
is set to 0. Otherwise, the current individual is evaluated and the state transitions
to state PSO_UPDATE_LOCAL_BEST since this is an asynchronous version of
multi-PSO implementation. For a synchronous version of PSO implementation,
the state stays at its current state P SO_EVALUATE until all the individuals have
been evaluated, at which time it transitions to state PSO_UPDATE_LOCAL_BEST.
For the co-evolutionary PSO, each PSO passes its function type to the
e v a l u a t e _ f u n c t i o n s () routine to call its corresponding function to evaluate
the PSO's performance. For example, if the problem to be solved is GT, one PSO
for solving the minimization problem calls G7_MIN (), and the other PSO for solv-
ing the maximization problem calls G7 EAX (). The e v a l u a t e _ f u n c t i o n s ()
routine is shown in Listing 4.25.

Listing4.25 The evaluate_functions () routine.

static void PSO_evaluate (void)
{

if ((psos[cur_pso].popu_index) < (psos[cur_pso].popu_size))
{

evaluate_functions (psos [cur_pso] . env_data, function_type) ;

PSO_current_state = PSO_UPDATE_LOCAL_BEST;
}
else
{

P S O_c u r r e n t_s t a t e = P S O_GOAL_REAC H_JUD GE;

psos [cur_pso] .popu_index = 0;
}

}

static void evaluate_functions (int fun_type)
{

Particle Swarm Optimization Implementation

switch (fun_type)
{

case GI_MIN:

gl_min () ; break;

case GI_MAX :

gl_max () ; break;

case G7_MIN:

g7_min () ; break;

case G7_MAX :

g7_max () ; break;

case G9_MIN:

g9_min () ; break;

case G 9_MAX •

g9_max () ; break;

case F6 :

f6 () ; break;

case PARABOLIC:

parabolic () ; break;

case ROSENBROCK :

rosenbrock() ; break;

case RASTRIGRIN:

rastrigrin(); break;

case GRIEWANK:

griewank () ; break;

default : break;

The PSO_UPDATE_LOCAL_BEST State
In this state, the handler routine, as shown in Listing 4.26, first checks whether it's a
minimization or a maximization problem according to the current PSO's optimiza-
tion type so that the implementation can be applied to solve both the minimization
and maximization problems. If the implementation is run as a co-evolutionary PSO,
one PSO is run to solve the minimization problem; the other is run to solve the max-
imization problem.

Ifthe optimization type ofthe current PSO is minimization, it first checks whether
it is the first generation ofthe first cycle. Ifit is, it assigns 0 as the global best index and
the evaluation value as the current individual's p b e s t value. It then checks whether
the current individual's evaluation value is less than its pbe s ¢ value. If it is, the cur-
rent position values are assigned to p b e s ¢ position values, and the p b e s ¢ value
is assigned to be the evaluation value of the current individual's evaluation value.
Finally, the state transitions to state P SO_UPDATE_GLOBAL_BEST.

Listing 4.26 The PSO_UPDATE_LOCAL_BEST state handler routine.

static void PSO_update_local_best (void)
{

int idx_i ;

Chapter Four--Evolutionary Computation Implementations

if ((psos[cur_pso] .env_data.opti_type) == MINIMIZATION)
{ // minimization problem

if ((pso_cycle_index == I) && ((psos[cur_pso] .gene_index) == 0))
{

psos [cur_pso] .global_best_index = 0;

psos [cur_pso] .pbest_values [psos [cur_pso] .popu_index] =

psos [cur_pso] . eva_fun_value;
}

if ((psos[cur_pso] .eva_fun_value) <

(psos [cur_pso] .pbest_values [psos [cur_pso] .popu_index]))
{

psos [cur_pso] .pbest_values [psos [cur_pso] .popu_index] =

psos [cur_pso] . eva_fun_value;

for (idx_i = 0; idx_i < (psos[cur_pso].dimension) ;idx_i++)
{

(psos [cur_pso] .pbest_position_values [psos [cur_pso] .popu_index] [idx_i]) =
(psos[cur_pso] .position_values[psos[cur_pso] .popu_index] [idx_i]);

}
}

}

else

{ // maximization problem
if ((pso_cycle_index == I) && ((psos[cur_pso] .gene_index) == 0))
{

psos [cur_pso] .global_best_index = 0;
psos [cur_pso] .pbest_values [psos [cur_pso] .popu_index] =

psos [cur_pso] . eva_fun_value;
}

if ((psos[cur_pso].eva_fun_value) >
(psos [cur_pso] .pbest_values [psos [cur_pso] . popu_index]))

{

psos [cur_/oso] .pbest_values [psos [cur_pso] .popu_index] =

psos [cur_pso] . eva_fun_value;
for (idx_i = 0; idx_i < (psos[cur_pso] .dimension) ;idx_i++)
{

(psos [cur_pso] . pbest_position_values [psos [cur_pso] . popu_index] [idx_i]) =

(psos [cur_pso] .position_values [psos [cur_pso] .popu_index] [idx_i]) ;
}

}
P SO_current_st at e = P SO_UPDATE_GLOBAL_BEST;

The PSO_UPDATE_GLOBAL_BEST State
Similar to the state PSO_UPDATE_LOCAL_BEST, this state first checks the opti-
mization type, then updates the global best index if the current individual of the
current PSO performs better than the global best. The state handler routine is shown
in Listing 4.27.

Particle Swarm Optimization Implementation

Listing 4.27 The P SO_UPDATE_GLOBAL_BEST state handler routine.

static void PSO_update_global_best (void)
{

if ((psos[cur_pso] .env_data.opti_type) == MINIMIZATION)

{ // minimization problem
if ((psos [cur_pso] .eva_fun_value) <

(psos [cur_pso] . pbest_values [psos [cur_pso] . global_best_index]))
{

psos [cur_pso] . global_best_index = psos [cur_pso] .popu_index;
}

}
else
{ // maximization problem

if ((psos[cur_pso].eva_fun_value) >
(psos [cur_pso] . pbest_values [psos [cur_pso] . global_best_index]))

{
psos [cur_pso] .global_best_index = psos [cur_pso] .popu_index;

}
}
PSO_current_state = PSO_UPDATE_VELOC I TY;

The PSO_UPDATE_VELOCITY State
In this state, the velocity values of the current individual of the current PSO are
updated according to equations 3.5 and 3.6 (in Chapter 3) and are checked with the
maximum velocity to keep the velocity values within the boundary. The state is then
transitioned to state P SO_UP DATE_POS I T I ON.

Listing 4.28 The P SO_UP DATE_VELOC I TY state handler routine.

static void PSO_update_velocity (void)
{

int idx_i;
for (idx_i = 0; idx_i < (psos[cur_pso] .dimension) ;idx_i++)
{

psos [cur_pso] .velocity_values [psos [cur_pso] .popu_index] [idx_i] =

psos [cur_pso] . inertia_weight) *

(psos [cur_pso] .velocity_values [psos [cur_pso] .popu_index] [idx_i]) +

2* (rand()/32767.0) *

(psos [cur_pso] .pbest_position_values [psos [cur_pso] . popu_index] [idx_i] -

psos [cur_pso] .position_values [psos [cur_pso] .popu_index] [idx_i]) +

2* (rand()/32767.0) *

(psos [cur_pso] . pbest_pos it ion_values [psos [cur_pso] . global_best_index]

[idx_i] - psos[cur_pso] .position_values[psos[cur_pso] .popu_index] [idx_i]);

if ((psos [cur_pso] .velocity_values [psos [cur_pso] .popu_index]

[idx_i]) > (psos [cur_pso] . env_data .max_velocity))
{

psos [cur_pso] . velocity_values [psos [cur_pso] . popu_index]

[idx_i] = psos [cur_pso] .env_data.max_velocity;
}

Chapter Four--Evolutionary Computation Implementations

else if ((psos[cur_pso] .velocity_values[psos[cur_pso] .popu_index]
[idx_i]) < (-(psos[cur_pso] .env_data.max_velocity)))

{
psos [cur_pso] .velocity_values [psos [cur_pso] .popu_index] [idx_i] =

- (psos [cur_pso] . env_data .max_velocity) ;
}

}
PSO_current_state = PSO_UPDATE_POSITION;

The PSO_CKaDATE_POSITION State
As in the previous state, the position values are updated according to equations 3.5
and 3.6. The position values are then checked to see whether they are within the
boundaries. If they exceed a boundary, they are assigned to the boundary value plus
a random value to force them to be within the boundary. The state transitions back to
the state v SO_EVALUATE to complete the remainder of the PSO operations for one
individual. The index of the population is increased by 1. The state handler routine
is shown in Listing 4.29.

Listing 4.29 The P so_uP DATE_POS I T I ON state handler routine.

static void PSO_update_position (void)
{

int idx_i ;
for (idx_i = 0; idx_i < (psos[cur_pso] .dimension) ;idx_i++)
{

psos [cur_pso] .position_values [psos [cur_pso] .popu_index] [idx_i] +=
psos [cur_pso] . velocity_values [psos [cur_pso] . popu_index] [idx_i] ;

if (psos [cur_pso] .env_data.boundary_flag)
{

if ((psos [cur_pso] .position_values [psos [cur_pso] .popu_index]

[idx_i]) < (psos [cur_pso] . env_data, low_boundaries [idx_i]))
{
psos [cur_pso] .position_values [psos [cur_pso] .popu_index] [idx_i] =

psos [cur_pso] . env_data, low_boundaries [idx_i] +

((psos [cur_pso] . env_data, up_boundaries [idx_i] -
psos[cur_pso] .env_data.low_boundaries[idx_i]) * rand()/(2 * 32767.0));

}
else if ((psos[cur_pso] .position_values[psos[cur_pso] .popu_index]

[idx_i]) > (psos [cur_pso] . env_data, up_boundaries [idx_i]))
{
psos [cur_pso] .position_values [psos [cur_pso] .popu_index] [idx_i] =

psos [cur_pso] . env_data, up_boundaries [idx_i] -
((psos [cur_pso] . env_data, up_boundaries [idx_i] -

psos[cur_pso] .env_data.low_boundaries[idx_i]) * rand()/(2 * 32767.0));
}

}
}

Particle Swarm Optimization Implementation

PSO_current_st ate = P SO_EVALUATE;

psos [cur_pso] .popu_index) ++;

The PSO_GOAL_RZACH_JUDGE State
In this state, all the criteria are checked. If the termination criteria are satisfied,
the state transitions to state P SOS_DONE; otherwise, it transitions to state
P SO_NEXT_GENERATION. Since we have not implemented criterion checking in
this implementation, it transitions to state P SO_NEXT_GENERATION uncondi-
tionally. The state handler routine is shown in Listing 4.30.

Listing 4.30 The P SO_GOAL_REACH_JUDGE state handler routine.

static void PSO_goal_reach_judge (void)
{

PSO_current_state = PSO_NEXT_GENERATION;
}

The PSO_NEXT_GENERATION State
In this state, the handler routine, as shown in Listing 4.31, first checks whether
the generation index of the current PSO has reached its maximum number of
generations. If it hasn't, the generation index increases by 1 to start the next
generation of the current PSO, and the state transitions to state
PSO_UPDATE_INERTIA_WEIGHT. Otherwise, it moves to the next PSO by
increasing the PSO's index by 1. If all the PSOs have completed their runs within
this cycle, the PSO's index is assigned to 0 to start from the first PSO for the next
cycle. The state transitions to state PSO_UPDATE PBEST_EACH_CYCLE.

Listing 4.31 The v SO_NEXT_GENERAT I ON state handler routine.

static void PSO_next_generation (void)
{

if ((++ (psos [cur_pso] .gene_index)) <

(psos [cur_pso] . env_data .max_generation))

{ // next generation of the same population of PSO

PSO_current_state = PSO_UPDATE_INERTIA_WEIGHT;
}
else
{

if ((++cur_pso) >= NUM__PSO)

Chapter Four--Evolutionary Computation Implementations

{ // end of the cycle

cur_pso = 0; // move to the first pso
}
PSO_current_state = PSO_UPDATE_PBEST_EACH_CYCLE;

// move to the next state

psos[cur_pso].popu_index = 0;

The PSO_UPDATE_INERTIA_WEIGHT State
In this state, the current PSO updates its inertia weight according to its inertia weight
updating method. The state transitions to the state P SO_EVALUATE. The index of
the population is set to 0 to start from the first individual. The state handler routine
is shown in Listing 4.32.

Listing 4.32 The P SO_UP DATE_I NERT IA_WE I GHT state handler routine.

static void PSO_update_inertia_weight (void)
{

iw_update_methods (psos [cur_pso] . env_data, iw_method) ;

PSO_current_state = PSO_EVALUATE; // move to the next state

psos[cur_pso] .popu_index = 0; // start with the first particle

The PSO_UPDATE_PBEST_EACH_CYCLE Sta te
In this state, if the PSO_UPDATE_PBEST_EACH_CYCLE_FLAG flag is dis-
abled, it transitions to the state P SO_NEXT_PSO by doing nothing. If the
PSO_UPDATE_PBEST_EACH_CYCLE_FLAG is enabled, it calls the evaluation
function to evaluate the current individual's p b e s t position. This state is main-
tained until all the individuals' pbe s t positions have been reevaluated. The reason
to do this is that when a new PSO is running, the environment of the new PSO may
have been changed after the last time it was run. The p b e s t values don't reflect the
true values within the current environment. For example, in the co-evolutionary
PSO, evaluating the current PSO will treat the other PSO's parameters as fixed val-
ues (environment), which have been changed since the last time the current PSO
was run. The state handler routine is shown in Listing 4.33.

Listing 4.33 The P SO_UPDATE_PBEST_EACH_CYCLE state handler routine.

static void PSO_update_pbest_each_cycle (void)
{

if (P SO_UP DATE_PBE S T_EACH_CYCLE_FLAG)

Particle Swarm Optimization Implementation

}

else
{

pso_update_pbest_each_cycle_pending = TRUE;

if ((psos[cur_pso].popu_index) < (psos[cur_pso].popu_size))
{

evaluate_funct ions (psos [cur_pso] . env_data, funct ion_type) ;

psos [cur_pso] .pbest_values [psos [cur_pso] .popu_index] =

psos [cur_pso] . eva_fun_value;

psos [cur_pso] . popu_index++;
}

else // done with evaluation, move to the next state
{

PSO_current_state = PSO_NEXT_PSO;

pso_update_pbest_each_cycle_pending = FALSE;
}

PSO_current_state = PSO_NEXT_P SO;

The PSO_I~XT_PSO State
In this state, the handler routine, as shown in Listing 4.34, first checks whether
all PSOs have been run in this cycle. If they have, the state transitions to state
P SOS_DONE to end the current cycle. Otherwise, the state transitions to state
P SO_EVALUATE to start running the new PSO.

Listing 4.34 The P SO_NEXT_P SO state handler routine.

static void PSO_next_pso (void)
{

if (cur_pso > 0)

PSO_current_state = PSO_EVALUATE;
else

PSO_current_state = PSOS_DONE;

psos[cur_pso].popu index = 0;

psos[cur_pso].gene_index = 0;
}

// end of the cycle
// start with the first particle

// start with the first particle

The PSOS_DONE State
In this handler routine, as shown in Listing 4.35, the postprocessing is performed.
For example, the results for this cycle can be saved to an output file for later view.
Here we simply transition the state to P SO_EVALUATE, which makes the first PSO
start with the state ? SO_EVALUATE if the maximum number of cycles has not been
reached, as shown in the PSO__Main_Loop () routine.

Chapter Four--Evolutionary Computation Implementations

Listing 4.35 The PSOS_DONE state handler routine.

Static void PSOs_done (void)
{

PSO_current_state = PSO_EVALUATE;
}

Running the/'SO Implementation
Running the particle swarm optimization implementation requires the executable
file p s o s . e x e andan input file p s o s . run. To run the implementation from within
the directory containing p s o s . e x e and p s o s . run, at the system prompt type
psos psos.run.

The parameters required for running p s o s are read in from the input file
p s o s . run. One way to demonstrate how to run the PSO implementation is to
present and discuss the contents of a run file, as shown in Listing 4.36, that can
be invoked with the executable.

Listing 4.36 An example of a multi-PSOs run file.

2

1

300

0

6

1

1

0.0

50.0

I0

I00

I00

30

13

0.9

1

0

0

0

0

0

0

0

0

0
0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

I00.0

i00.0

I00.0

1.0

Particle Swarm Optimization Implementation

1

7

1

1

0.0

1.0

0.5

1

70

20

9

0.9

1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

The first entry (2) specifies that two PSOs are included in this run. If it is 1, only
one PSO will be run. Any number of PSOs can be specified here to make multi-PSOs
co-exist. The next number (1) is the p s o _ u p d a t e _ p b e s t _ e a c h _ c y c l e _ f l a q
flag. When it is enabled, it means that before starting to run the next PSO, its pbe s t
positions will be re-evaluated first, as in the co-evolutionary PSO algorithm dis-
cussed previously. Following this is the number that specifies the total number of
cycles to run the PSOs (300), which means the PSOs will be run for 300 cycles. These
three inputs relate to all PSOs (here two PSOs). Following them are inputs specify-
ing parameters for each PSO, starting with the first PSO, then the next, until all the
PSOs have been specified.

The fourth to fifteenth inputs are numbers for the first PSO" the optimization
type (0--minimization), the function type (O--(GI_MIN), the inertia weight
update method (I--linearly decreasing), the initialization type (1--asymmetry),
left initialization range (0 .0) , right initialization range (5 0 .0), maximum velocity
(10 .0) , maximum position (10 0 .0) , maximum number of generations for each
cycle (10 0), the population size (3 0), the dimension of the individual (13), and the
initial inertia weight (0 .9) .

The next value (in the list) is the boundary flag (1). If it is disabled (0), it means
no boundary values are required to be read from the input file. It is then the end
of the input for the first PSO. If it is enabled (1) as in the list, then the boundaries
must be provided in the input file. The first line after the boundary flag specifies the
upper and lower boundary values for the first parameter to be evolved, followed by
the second, and so on. Since the dimension in this example is 13, a total 13 lines of
boundaries values must be provided.

Chapter Four--Evolutionary Computation Implementations

Following the numbers for the first PSO are the numbers for the second PSO. All
of the numbers have similar meanings to those for the first PSO, so we don't repeat
the explanation here. Three points, however, should be noted. First, the optimization
type is 1 (maximization problem) instead of 0 (minimization problem) and the
corresponding function type is 1 (G1 lYnX) instead of 0 (GI_._MIN). Through this
kind of specification, the two PSOs work as two swarms in a co-evolutionary PSO
algorithm. Second, the number of dimensions (9) corresponds to the number of
constraints. Third, the upper and lower boundaries for all of the parameters to be
evolved are the same (0.0, 1.0) since they are the Lagrangian multipliers.

S u m m a r y

In this chapter, we first discuss the common issues related to the implementation
of evolutionary algorithms. These issues include chromosome representation meth-
ods, learning strategies, programming strategies, and memory handling.

We then present two implementations of evolutionary computation: genetic
algorithm implementation and a particle swarm optimization implementation. The
genetic algorithm implementation is basically a "plain vanilla" genetic algorithm.
The particle swarm optimization is implemented to be able to run either a single
PSO or multi-PSOs simultaneously. An implementation of co-evolutionary PSO
is described that solves min-max problems.

The genetic algorithm is implemented based on flowchart programming strat-
egy, and the particle swarm optimization is implemented based on the finite state
machine programming strategy. The strength and weakness of each strategy, there-
fore, are illustrated through the two implementations.

Five benchmark functions are included with both the GA implementation and
the PSO implementation. Also, additional constrained optimization problems are
included for the (co-evolutionary) PSO implementation.

Finally, how to run the implementations is specified in detail. Remember that
output (results) files are provided on the book's Internet site; they were obtained
by the authors using the executable and ancillary files provided. You may want to
rename these output files, or move them to another directory, so that you can com-
pare your results with the authors'. If you forget to do that, just go back to the Inter-
net site and download them again.

Exercises ...

1. In the implementation of mutation operator, a "mutation according to bit posi-
tion" flag is used to tell whether or not a mutation by bit position is implemented.

Exercises

Define an enumeration data type to replace the flag and make corresponding
changes in the implementation of the mutation operator.

2. Draw a state machine diagram for the GA implementation.

3. Draw a flowchart for the implementation of PSO.

4. Draw a state diagram for the synchronous version of PSO and compare it with the
asynchronous version.

5. Five benchmark functions are identified in Table 4.2. Identify an additional
benchmark function appropriate for evolutionary algorithms. Justify your choice.
Modify the source code for the GA to implement this benchmark function so
that it becomes an additional choice for the user.

6. Add the capability for specifying a termination criterion (acceptable error, for
example) to the GA source code.

7. Implement the benchmark function you identified in exercise 5 into the PSO
source code.

8. Run the GA implementation, optimizing the Griewank function. Try two different
crossover types and two different selection types (four combinations of
parameters). For each combination of parameters, how many total generations
are required to achieve a fitness of - l .3 or better? Turn in and discuss your results.
Based on your results, which combination of parameters would you select?

9. Run the PSO implementation as a single swarm, optimizing the F6 function. Note
that the run file example in Listing 4.36 is for two swarms, so make sure you have
an appropriate run file for a single swarm. Try two population sizes. Turn in and
discuss your results.

10. Run the PSO implementation using two swarms to optimize the G 1 function. Try
two different population sizes for each of the two swarms (four combinations
total). Turn in and discuss your results.

chapter
Ve

Neural Network Concepts
and Paradigms

In the previous two chapters, we reviewed
concepts, paradigms, and implementations
of evolutionary computation. Chapters 3
and 4 provide a foundation on which we
build our computational intelligence struc-
ture. Now we examine the second main
component of computational intelligence,
artificial neural networks.

Building intelligent systems that can
model human behavior has captured the
attention of the world for decades. So it
is not surprising that a technology such as
neural networks has generated great inter-
est. This chapter first discusses the history
of neural networks. It next provides an evo-
lutionary introduction to neural networks
beginning with the key elements and termi-
nology of neural networks and then devel-
oping the topologies, adaptation methods,
and recall dynamics from this infrastructure.

The perspective taken in this chapter
is largely that of an engineer or computer
scientist, emphasizing the application
potential of neural networks and draw-
ing comparisons with other techniques that
have similar motivations. As such, we rely
on mathematics in some of the discussions
to make points more precisely.

The chapter includes a review of what
neural networks are and why they are so
appealing. We introduce a typical neural net-
work to illustrate several key features. Using
this network as a reference, we describe
fundamental elements of a neural network
such as input and output patterns, process-
ing elements, connections, and activation
calculations, and then we describe neural
network topologies, adaptation algorithms,
and recall dynamics. Finally, we present a
comparison of neural networks and similar

145

Chapter FiveuNeural Network Concepts and Paradigms

non-neural information processing methods.Let's get started by traveling back to
the roots of neural networks and looking at their history, m

Neural Network History

As is the case with the other history sections in this book, the focus is on people rather
than just on theory or technology. Again, the selection of individuals is somewhat
arbitrary because the intent is to provide a broad sample, rather than an exhaus-
tive list, of people who contributed to current technology. We mention some well-
known researchers only briefly and omit others. The fact that someone is discussed
only briefly, or even omitted, is not meant to reflect the authors' opinion of that per-
son's contribution. We discuss the selected people and their contributions roughly
in chronological order.

We address neural network history first by examining how neural networks
got their name. Then we discuss the history of neural network development in
five time segments, which we call ages. The first age begins at the time of William
James, just over a century ago (1890). This is called the Age of Camelot. It ends
in 1969 with the publication of Minsky and Papert's book on perceptrons. Next
is the Dark Age, beginning in 1969 and ending in 1982 with Hopfield's landmark
paper on neural networks and physical systems. The third age, the Renaissance,
begins with Hopfield's paper and ends with the publication of Parallel Distributed
Processing, Volumes 1 and 2, by Rumelhart and McClelland, in 1986. The fourth
age, called the Age of Neoconnectionism after a review article on neural nets and
artificial intelligence (Cowan and Sharp 1988), runs from 1987 until 1998. The
final age, the Age of Computational Intelligence, runs from the second IEEE World
Congress on Computational Intelligence in 1998 until the present.

Where Did Neural Networks Get Their Name?

If artificial neural networks are so different from biological ones, why are they even
called neural networks instead of something else? The answer is that the background
and training of the people who first developed useful neural network implementa-
tions were generally in the biological, physiological, and psychological areas rather
than in engineering and computer science.

One of the most important publications that opened up neural network analysis
by presenting it in a useful and clear way was a three-volume set of books entitled
Parallel Distributed Processing (Rumelhart and McClelland 1986; McClelland and
Rumelhart 1986; McClelland and Rumelhart 1988). The chapters in the first two
volumes were authored by members of the interdisciplinary Parallel Distributed
Processing (PDP) research group, who were from a variety of educational institu-
tions. Several members of the PDP research group are cognitive scientists. Others

Neural Network History

are psychologists. Computer scientists are definitely in the minority, and judging
from the professional titles and affiliations of the PDP authors, none is an engineer.

Had the concept of massively parallel processing initially been developed and
made practical by electrical or computer engineers, we could be using "massively
parallel adaptive filter" implementations instead of neural network implementations,
or they might be called something that has no reference to the word neural. Neural
networks do have technical roots in the fields of analog computing and signal pro-
cessing that date back five or six decades and that rival in importance their roots in
biology and cognitive science. This engineering heritage is reviewed in this section.

Much of the neural network effort in biology, cognitive science, and related fields
resulted from efforts to explain experimental results and observations in behav-
ior and in brain construction. Why should engineers and computer scientists care
about experimental results in brain research and cognitive science? For one thing, as
Anderson and Rosenfeld (1988) point out, ifwe can find out what kind of"wetware"
runs well in our brains, we may gain insight into what kind of software to write for
neural network applications. In other words, cognitive scientists and psychologists
may provide some important information for reverse-engineering artificial neural
network software.

The Age of Camelot
We begin our look at neural network history in the Age of Camelot with a person
considered by many to be the greatest American psychologist who ever lived, William
James. James also taught, and thoroughly understood, physiology. It has been over a
century since James published his Principles of Psychology, and its condensed version
Psychology (Briefer Course) (James 1890).

James was the first to publish a number of facts related to brain structure and
function. He first stated, for example, some of the basic principles of correlational
learning and associative memory. In stating what he called his Elementary Principle,
James (1890) wrote: "Let us then assume as the basis of all our subsequent reason-
ing this law: when two elementary brain processes have been active together or in
immediate succession, one of them, on re-occurring, tends to propagate its excite-
ment into the other." This is closely related to the concepts of associative memory
and correlational learning.

He seemed to foretell the notion of a neuron's activity being a function ofthe sum
of its inputs, with correlation history contributing to the weight ofinterconnections:

The amount of activity at any given point in the brain-cortex is the sum of the
tendencies of all other points to discharge into it, such tendencies being proportion-
ate (1) to the number of times the excitement of each other point may have accom-
panied that of the point in question; (2) to the intensity of such excitements; and
(3) to the absence of any rival point functionally disconnected with the first point,
into which the discharges might be diverted. (James 1890)

Chapter FivemNeural Network Concepts and Paradigms

Over half a century later, McCulloch and Pitts (1943) published one of the most
famous neural network papers, in which they derived theorems related to models of
neuronal systems based on what was known about biological structures in the 1940s.
In coming to their conclusions, they stated five physical assumptions:

1. The activity of the neuron is an "all-or-none" process. 2. A certain fixed number
of synapses must be excited within the period of latent addition in order to excite a
neuron at any time, and this number is independent of previous activity and position
on the neuron. 3. The only significant delay within the nervous system is synaptic
delay. 4. The activity of any inhibitory synapse absolutely prevents excitation of the
neuron at that time. 5. The structure of the net does not change with time.

The period of latent addition is the time during which the neuron is able to detect
the values present on its inputs, the synapses. This time was described by McCulloch
and Pitts as typically less than 0.25 milliseconds. The synaptic delay is the time
between sensing inputs and acting on them by transmitting an outgoing pulse, stated
by McCulloch and Pitts to be on the order of half a millisecond.

The neuron described by the five preceding assumptions is known as the
McCulloch-Pitts neuron. The theories they developed were important for a num-
ber of reasons, including the fact that any finite logical expression can be realized
by networks of their neurons. They also appear to be the first authors since William
James to describe a massively parallel neural model.

Although the paper was very important, it is quite difficult to read. In particu-
lar, the theorem proofs presented by McCulloch and Pitts have stopped more than
a few engineers in their tracks. Furthermore, not all of the concepts presented in
the paper are being implemented in today's neural networks. In this book, compar-
isons are not made between the theories and conclusions of McCulloch and Pitts (or
anyone else) and the current theories of neural biology. The focus is strictly on the
implementation (or nonimplementation) of their ideas in current neural network
tools.

One concept that is not generally being implemented is their all-or-none neuron.
A binary, on or off, neuron is used as the processing element (PE) in neural networks
such as the Boltzmann machine (Rumelhart and McClelland 1986), but it is not
generally used in most neural network paradigms today. Much more common is
a PE whose output value can vary continuously over some range, such as [0, 1]
or [-1, 1].

Another example of an unused concept involves the signal required to "excite"
a PE. First, because the output of a PE generally varies continuously with the input,
there is no "threshold" at which an output appears. The PEs used in some neural
networks activate at some threshold, but not in most of the network implemen-
tations discussed in this text. For PEs with either continuous outputs or thresh-
olds, no "fixed number of connections" (synapses) must be excited. The net input

Neural Network History

to a PE is generally a function of the outputs of the PEs connected to it upstream
(presynaptically) and of the connection strengths to those presynaptic PEs.

A third example is that there is generally no delay associated with the connection
(synapse) in a neural network implementation. Typically, the output states (activa-
tion levels) of the PEs are updated synchronously, one layer at a time. Sometimes,
as in Boltzmann machines, they are updated asynchronously, with the update order
determined stochastically. There is almost never, however, a delay built into a con-
nection from one PE to another.

A fourth example is that the activation of a single inhibitory connection does
not usually disable or deactivate the PE to which it is connected. Any inhibitory
connection (a connection with a negative weight) has the same absolute magnitude
effect, albeit subtractive, as the additive effect of a positive connection with the same
absolute weight.

With regard to the fifth assumption of McCulloch and Pitts, it is true that the
structure of a neural network implementation does not change with time, with a
couple of caveats. First, it is usual to "train" neural networks prior to their use. Dur-
ing the training process, the structure doesn't usually change but the interconnect-
ing weights do. In addition, it is not uncommon, once training is complete, for PEs
and/or interconnecting weights that aren't contributing significantly to be removed.
This certainly can be considered a change to the structure of the network.

Given these examples, what are we left with of McCulloch and Pitts' five assump-
tions? If truth be told, when referring to today's neural network implementations,
we are in most cases left with perhaps one assumption, the fifth.

Then why is their 1943 paper so important? First, they proved that networks
of their neurons could represent any finite logical expression. Second, they used a
massively parallel architecture. And, third, they provided the stepping stones for the
development of the network models and adaptation techniques that followed.

Just because neural network implementations don't conform to McCulloch and
Pitts' work doesn't imply in any way that their work was bad. Current artificial neural
networks don't always reflect what we understand about biological neural networks,
either. For instance, it appears that a biological neuron acts somewhat like a voltage-
controlled oscillator, with the output frequency a function of the input level (input
voltage): The higher the input, the more pulses per second the neuron puts out.
Neural network implementations usually work with basically steady-state values of
the PE from one update to the next.

The next personality along our journey through the Age of Camelot is Donald O.
Hebb, whose 1949 book The Organization of Behavior (Hebb 1949) was the first to
define the method of updating synaptic weights that we now refer to as Hebbian. He
is also among the first to use the term connectionism. Hebb presented his method as a
"neurophysiological postulate" in his chapter entitled "The First Stage of Perception:
Growth of the Assembly" as follows: "When an axon of cell A is near enough to excite
a cell B and repeatedly or persistently takes part in firing it, some growth process or

Chapter FivemNeural Network Concepts and Paradigms

metabolic change takes place in one or both cells such that A's efficiency as one of
the cells firing B, is increased."

Hebb made four primary contributions to neural network theory:

1. He stated that in a neural network, information is stored in the weights of
the synapses (connections).

2. He postulated a connection weight training rate that is proportional to the
product of the activation values of the neurons. Note that his postulate
assumed that the activation values are positive. Because he didn't provide a
means for the weights to be decreased, they could theoretically go infinitely
high. Adaptation that involves neurons with negative activation values has
also been labeled Hebbian. This is not included in Hebb's original form-
ulation but is a logical extension of it.

3. He assumed that weights are symmetric. That is, the weight of a connection
from neuron A to neuron B is the same as that from B to A. Although this
may or may not be true in biological neural networks, it is often applied to
neural network implementations.

4. He postulated a cell assembly theory, which states that as adaptation occurs,
strengths and patterns of synapse connections (weights) change, and
assemblies of cells are created by these changes. Stated another way, if
simultaneous activation of a group of weakly connected cells occurs
repeatedly, these cells tend to coalesce into a more strongly connected
assembly.

All four of Hebb's contributions are generally implemented in today's neural net-
works, at least to some degree. We often refer to adaptation schemes implemented
in some networks as Hebbian.

In the late 1950s, a landmark paper by Frank Rosenblatt (1958) defined a neural
network structure called the perceptron. The perceptron was probably the first valid
neural network implementation because it was simulated in detail on an IBM 704
computer at the Cornell Aeronautical Laboratory. This computer-oriented paper
caught the imaginations of engineers and physicists, despite the fact that its mathe-
matical proofs, analyses, and descriptions contained tortuous twists and turns. Any-
one capable of wading through the variety of systems and modes of organization
in the paper will see that the perceptron is capable of "learning" to classify certain
pattern sets as similar or distinct by modifying its connections. It can therefore be
described as a "learning machine," or as we prefer to call it, an "adaptation machine."

Rosenblatt used biological vision as his network model. Input node groups con-
sisted of random sets of cells in a region of the retina, each group being connected
to a single association unit (AU) in the next higher layer. AUs were connected bidi-
rectionally to response units (RUs) in the third (highest) layer. The perceptron's

Neural Network History

objective was to activate the correct RU for each particular input pattern class. Each
RU typically had a large number of connections to AUs.

He devised two ways to implement the feedback from RUs to AUs. In the first,
activation of an RU would tend to excite the AUs that sent the RU excitation (positive
feedback). In the second, inhibitory connections existed between the RU and the
complement of the set of AUs that excited it (negative feedback), therefore inhibiting
activity in AUs that did not transmit to it. Rosenblatt used the second option for
most of his systems. In addition, for both options, he assumed that all RUs were
interconnected with inhibitory connections.

Rosenblatt used his perceptron model to address two questions. First, in what
form is information stored, or remembered? Second, how does stored information
influence recognition and behavior? His answers were as follows (Rosenblatt 1958):

• . . the information is contained in connections or associations rather than topo-
graphic representations.., since the stored information takes the form of new
connections, or transmission channels in the nervous system (or the creation of
conditions which are functionally equivalent to new connections), it follows that
the new stimuli will make use of these new pathways which have been created, auto-
matically activating the appropriate response without requiring any separate process
for their recognition or identification.

The primary perceptron adaptation mechanism is self-organizing or self-associative
in that the response that happens to become dominant is initially random. However,
Rosenblatt also described systems in which training or "forced responses" occurred.

This paper laid the groundwork for both supervised and unsupervised train-
ing algorithms as they are seen today in back-propagation and Kohonen networks,
respectively. The basic structures set forth by Rosenblatt are therefore alive and well,
despite the critique by Minsky and Papert that is discussed later.

Rosenblatt also worked in the area of the recognition of sequences of patterns.
His analyses showed that very long pattern sequences could be recalled if the num-
ber of neurons available was roughly equal to the number in the brain. The major
quantitative results of his model for long-term sequential memory in the brain are
summarized in Rosenblatt (1964).

Frank Rosenblatt died in a sailing accident on Chesapeake Bay in 1971 on his 43rd
birthday. We can only speculate what further significant contributions he might have
made had he lived longer.

The last stop in the Age of Camelot is with Bernard Widrow and Marcian Hoff.
In 1960 they published a paper entitled "Adaptive Switching Circuits" that, particu-
larly from an engineering standpoint, has become one of the most important papers
on neural network technology (Widrow and Hoff 1960). Widrow and Hoff are the
first engineers discussed in this history section. Not only did they design neural net-
work implementations that they simulated on computers, they implemented their

Chapter FivemNeural Network Concepts and Paradigms

designs in hardware. And at least a couple of the lunch-box-sized machines they
built "way back then" are still in working order!

Widrow and Hoff (1960) introduced a device called an adaline (for adaptive
linear). Adaline consists of a single processing element with an arbitrary number of
input elements that can take on values ofplus or minus one and a bias element that is
always plus one. Before being summed by a summing element, each input, includ-
ing the bias, is modified by a unique weight that Widrow and Hoff call a "gain."
(This name reflects their engineering background because the term gain refers to
the amplification factor that an electronic signal undergoes when processed by an
amplifier; it may be more descriptive of the function performed than the more com-
mon term weight.) Following the summer is a quantizer that has an output of plus
one if the summer output, including the bias, is greater than zero, and an output of
minus one for summer outputs less than or equal to zero.

What is particularly ingenious about the adaline is the adaptation algorithm. One
of the main problems with perceptrons is the length of time it takes them to learn
to classify patterns. The Widrow-Hoff algorithm yields adaptation that is faster and
more accurate. The algorithm is a form of supervised adaptation that adjusts the
weights (gains) according to the size of the error on the output of the summer (prior
to the quantizer).

Widrow and Hoff showed that the way they adjust the weights minimizes the
sum-squared error over all patterns in the training set. For that reason, the Widrow-
Hoff method is also known as the least mean squares (LMS) algorithm. The error
is the difference between what the output of the adaline should be and the output
of the summer. The sum-squared error is obtained by measuring the error for each
pattern presented to the adaline, squaring each value, and then summing all of the
squared values.

Minimizing the sum-squared error involves an error reduction method called
gradient descent, or steepest descent. Mathematically, it involves the partial deriva-
tives of the error with respect to the weights. Widrow and Hoff showed that it isn't
necessary to take the derivatives because they are proportional to the error (and its
sign) and to the sign of the input.

They further showed that for n inputs, reducing the measured error of the sum-
mer by 1/n for each input does a good job of implementing gradient descent. Each
weight is adjusted until the error is reduced by 1/n of the total error at the begin-
ning. For example, if there are 12 input processing elements, each weight is adiusted
to remove 1/12 of the total error.

This method provides for weight adjustment (adaptation) even when the out-
put of the classifier is correct. For example, if the output of the summer is 0.5, the
classifier output is 1.0. If the correct output is 1.0, there is still an error signal of 0.5
that is used to train the weights further. This is a significant improvement over the
perceptron, which adjusts weights only when the classifier output is incorrect. That
is one reason the adaptation of the adaline is faster and more accurate than that of
the perceptron.

Neural Network History

Widrow and Hoff's 1960 paper was prophetic, too. They suggested several
practical implementations of their adaline: "If a computer were built of adaptive
neurons, details of structure could be imparted by the designer by training (show-
ing it examples of what he would like to do) rather than by direct designing."

An extension of the Widrow-Hoff adaptation algorithm is used today in back-
propagation neural networks. In addition, their work in hardware implementation
of neural network implementations heralded cutting-edge work in very large-scale
integration (VLSI) by people such as Carver Mead and his colleagues at the
California Institute of Technology (Mead 1989).

Widrow is the earliest significant contributor to neural network hardware system
development who is still working in the area of neural networks. He and his students
also did the earliest work known to the authors in biomedical applications of neural
network tools. One of his doctoral students, Donald F. Specht (who later developed
the probabilistic neural network paradigm), used an extension of the adaline, called
an adaptive polynomial threshold element, to implement a vectorcardiographic diag-
nostic tool that used the polynomial discriminant method (Specht 1967, 1967a).
Widrow and his colleagues later did pioneering work using the LMS adaptive algo-
rithm for analyzing adult and fetal electrocardiogram signals (Widrow et al. 1975).

As the 1960s drew to a close, optimism was the order of the day. Many researchers
were working in artificial intelligence (AI), both in the area exemplified by expert
systems and in neural networks. Although many areas were still unexplored and
many problems were unsolved, the general feeling was that the sky was the limit.
Little did most folks know that, for neural networks, the sky was about to fall.

The Dark Age
In 1969 Marvin Minsky and Seymour Papert dropped a bombshell on the neural
network community in the form of a book called Perceptrons (Minsky and Papert
1969). Although it could be argued that neural network development in the late
1960s had suffered from an overdose of hype and a paucity of performance, nearly
all funding for neural networks (as well as for other computational intelligence
concepts) dried up after the book was published. This was the beginning of the
Dark Age.

Most of Minsky and Papert's book is about simple perceptrons, with only an
input layer and an output layer (no hidden layer). Furthermore, neurons are thresh-
old logic units, so only two states are allowed, on and off. The authors' analysis of
simple perceptrons was generally correct, but even this part of their book has a dis-
turbing undertone because of the authors' style of writing and because of what is
not said. Their writing style is illustrated by statements such as "Most of this writ-
ing [about perceptrons] is without scientific value" and "It is therefore vacuous to
cite a 'perceptron convergence theorem' as assurance that a learning process will
eventually find a correct setting of its parameters (if one exists)" (Minsky and Papert
1969). Words and phrases such as "vacuous" and "without scientific value" project

Chapter Five--Neural Network Concepts and Paradigms

an attitude not likely to make friends and influence people. The book doesn't say
much about perceptrons' good points; it isn't as much about what perceptrons can
do as what they can't do.

The coup de grace came in the last chapter, where Minsky and Papert wrote,
"[O]ur intuitive judgment [is] that the extension [to multilayer perceptrons with
hidden layers] is sterile." This statement has proved to be incorrect and, in the opin-
ions of some, a conscious "hatchet job" on a research area whose proponents were
competing with Minsky, Papert, and their colleagues for funding.

Perhaps the most serious effect of the book is that it drove a wedge between
the "traditional" AI folks (those who work with expert systems and symbolics) and
the neural network people. This is particularly disturbing because it is becoming
increasingly apparent that, at least in many areas, major breakthroughs in intelligent
systems require a combination of approaches. The approaches of expert systems are
being combined with neural networks, evolutionary computation, and fuzzy logic
to form computational intelligence systems that are beginning to play an important
role in complex systems such as those used for medical diagnosis, control systems,
and financial analysis.

In the decade following the publication of Minsky and Papert's book, the number
of researchers working in the neural network area dropped significantly. For those

J

who remained, progress continued but in smaller steps. Now we look at the work of
the Dark Age developers who have had a continuing impact on the field, particularly
those whose contributions led to current techniques in neural network implemen-
tations.

Stephen Grossberg of the Center for Adaptive Systems at Boston University, the
first Dark Age researcher discussed here, appeared on the neural network scene at
about the same time as Minsky and Papert published their book. He became a pro-
ductive, visible, and controversial personality in the field. His work is often abstract,
theoretical, and mathematically dense. It is relatively difficult to read his papers
because many of them refer to work described in several previous papers.

In his early work, Grossberg introduced several concepts that are used in a num-
ber of current neural network implementations. He and Gail Carpenter, his spouse,
introduced and developed a network architecture known as adaptive resonance the-
ory (ART). His early concepts include the "on-center off-surround" gain control
system for a group of neurons. This basically says that if a PE in a population of PEs
is strongly excited, the surrounding PEs will receive inhibition signals. This lateral
inhibition idea is also used in other network implementations, such as Kohonen's
self-organizing structures discussed later.

Grossberg also contributed much to the theories of network memories, that is,
how patterns can stay active after inputs to the network have stopped. He wrote of
short-term memory (STM) and long-term memory (LTM) mechanisms, how the
former are related to neuron activation values and the latter to connection weights.
Both activation values and weights decay with time, a feature called forgetting.

Neural Network History

Activation values decay relatively quickly (short-term memory) whereas weights,
having long-term memory, decay much more slowly.

Note that there is a basic difference between the Grossberg networks and the
network structures discussed earlier. In the latter, the interconnecting weights are
trained and then frozen, whereas Grossberg's patterns are presented to the networks
to classify without supervised training. In previous networks, activation values of
the PEs have no memory. The only thing determining the activation values is the
pattern currently being presented to the network.

Grossberg gives PEs (or groups of them, called cell populations) short-term mem-
ory so that the current activation value depends on the previous one as well as on the
average excitation of other connected populations. In accordance with on-center off-
surround, Grossberg's earlier papers (Grossberg 1973) describe an inhibitory effect
of activation values of connected populations.

He also wrote about a different kind of PE activation function (output versus
input) than had been discussed earlier: a sigmoid function. A typical sigmoid
response function, as described in Grossberg (1973), is illustrated in Figure 5.1.
In this paper, he shows that signal enhancement and decreased sensitivity to noise
can occur if the signals transmitted between cell populations are sigmoid functions
of the populations' average activity levels. This sigmoid function differs in several
respects from the one used with back-propagation networks described later. For one
thing, it only plays an inhibitory role, even when it is used as part of the shunting
self-excitation term for a population of PEs. For another, it is always nonnegative in
Grossberg's 1973 implementation.

Another concept incorporated into Grossberg's network models that differs
from those discussed previously is the adaptation algorithm. In models such as
Widrow-Hoffand the back-propagation network, the training signal is proportional

0 . 8 --

, - 0 . 6 -
Q .

o 0 . 4 -

0 . 2 --

0.0 I I

- 10 0 10
Input Value (x)

1 . 0 --

Figure 5.1 A sigmoidal activation function.

Chapter Five--Neural Network Concepts and Paradigms

to the error in the output, that is, the difference between the desired and actual
values. In Grossberg's models, adaptation is computed from the sum of the desired
and actual values, represented in some of his models by input and learned feedback
signals.

The adaptive resonance theory (ART) models developed by Grossberg and
Carpenter incorporate most of the features described. There are several versions of
the ART system, including ART1, ART2, and ART3. The ART network paradigms
have been described as some of "the most complex neural networks ever invented"
(Caudill 1989).

ART1 networks can process only binary input patterns. Almost all neural
network applications require continuous-valued patterns, which have to be approx-
imated (coded in binary) for input to ART1. ART2 networks are even more compli-
cated than those of ART1 and can process discrete-valued input data. Until recently,
many people have perceived the ART models as powerful research models rather
than available neural network tools. Recently, however, several implementations of
ART have been developed that are computationally efficient and feasible to run on
PCs. Actually, these implementations are approximations of ART but are satisfactory
for many applications.

Perhaps the most effective way to learn more about the ART2 and ART3 models
is to study the collections of papers by Grossberg and Carpenter (Grossberg 1982,
1988). Carpenter and Grossberg have also published a readable article that is pri-
marily focused on ART2 (Carpenter and Grossberg 1987b).

The Dark Age researcher discussed next is Shun-Ichi Amari, one of the most
prominent researchers of artificial neural network theory. He began combining bio-
logical neural network activity and rigorous mathematical expertise in his studies of
neural networks in the late 1960s.

One of Amari's earliest results was in the area of error correction adaptation,
where he found a way to use a single hidden PE to form nonlinear decision bound-
aries for a restricted class of functions (Amari 1967). He demonstrated optimal
weight vector convergence, even with nonseparable pattern distributions. He gener-
alized the theory to multicategory classifiers and showed that it applies to the case
with general discriminant functions, including piecewise-linear discriminant func-
tions. Had Amari's solution to this problem, known as the credit assignment prob-
lem, been widely known and accepted, Minksy and Papert's book Perceptrons would
probably not have had the negative impact it did on the neural network field. Other
neural network research that Amari has done includes the analysis of randomly
connected neural networks (Amari 1971) and studies of temporally associative
memories (Amari 1972).

One of his best-known papers was published in 1977 (Amari 1977). It discusses
both recurrent, autoassociative networks, which Amari calls concept forming net-
works, and pattern associators. The concept forming networks are precursors of the
famous Hopfield networks discussed in the Renaissance section of this chapter.

Neural Network History

An interesting feature ofAmari's 1977 paper is his concept of neuron pools. Unlike
most other researchers, Amari doesn't assume that the neuron is the fundamental
element in neural networks. Rather, he uses the idea of small mutually connected
groups of neurons, called neuron pools, as the fundamental units of his models.

In fact, there does not appear to be any reason why individual neurons should be
considered the fundamental element. That is one reason why almost all researchers
and developers today use terms such as processing element (PE), unit, processing
unit, and neurode. The ability to assume a higher-level computing unit as the funda-
mental network computing element allows much more flexibility in network design
and development.

In more recent work, Amari has extensively analyzed competitive adaptation,
including that used in the self-organizing types of networks developed by Kohonen,
described later. He is also well known for studies of the memory capacity of various
kinds of networks.

In 1972, two researchers on different continents published similar neural
network development results. One, Teuvo Kohonen of the Helsinki University of
Technology in Finland, is an electrical engineer; the other, James Anderson, is a
neurophysiologist and professor of psychology at Brown University in the United
States. Although Kohonen called his neural network structure "associative memory"
(Kohonen 1972) and Anderson named his "interactive memory" (Anderson 1972),
their techniques in network architectures, adaptation algorithms, and transfer func-
tions were almost identical. Despite the similarity oftheir results, the lists ofreferences
in the papers published by these two men do not contain a single item in common!

Kohonen is chosen as the focus here, partly because of the current implementa-
tions of his work in neural network implementations (discussed in detail in the next
chapter) and partly because of his interest in applications such as pattern recognition
and speech recognition. This is not to diminish in any way Anderson's work, which
was and continues to be significant and relevant. In fact, a two-volume set edited by
Anderson and Rosenfeld (1988) and by Anderson, Pellionisz, and Rosenfeld (1990)
is arguably the best compilation of the significant early work in the neural network
field. Each paper in the two volumes is prefaced by excellent introductory material
that places the paper in context. Anderson has been interested more in physiological
plausibility and models for his network structures and adaptation algorithms.

One of the most notable things about Kohonen's 1972 paper is the PE, or pro-
cessing element, that he uses. It is linear and continuous-valued rather than the
all-or-none binary model of McCulloch-Pitts and Widrow-Hoff. Not only is the
output continuous valued, but so are the connection weights and input values.
Remember that Widrow-Hoff used continuous values to calculate the error values,
but the output of the PE was binary.

Also notable is Kohonen's use of networks with many simultaneously active
input and output PEs, which are necessary when analyzing visual images or spectral
speech information. Rather than have the output of the network represented by

Chapter FivemNeural Network Concepts and Paradigms

the activation of a single "winning" neurode or the activation level of a single
multivalued PE, Kohonen uses activation patterns on a relatively large number of
output PEs to represent the input classifications. This tends to make the network
better able to generalize and less sensitive to noise.

Most notably, the paper lays the groundwork for a type of neural network very
different from that evolved from the perceptron. The current version of the mul-
tilayer perceptron most commonly used is the back-propagation network, which
is trained by giving it examples of correct classifications, an example of supervised
adaptation. Most current versions of Kohonen's networks, often referred to as self-
organizing networks, learn to classify without being taught. This is called unsuper-
vised adaptation and can frequently be used to categorize information when we
don't know what categories exist. It is also possible to combine Kohonen's unsu-
pervised architectures with architectures such as back-propagation to do interesting
and useful things.

The last researcher discussed in the review of the Dark Age is Kunihiko
Fukushima of the NHK Broadcasting Science Research Laboratories in Tokyo.
Fukushima has developed a number of neural network architectures and algorithms
but is best known for the neocognitron. The neocognitron was briefly described first
in English in a 1979 report, but the first thorough English-language description
appeared in Fukushima (1980). Subsequent papers reported developments and
refinements (Fukushima and Miyake 1982; Fukushima et al. 1983; Fukushima 1986).

The neocognitron is a model for a visual pattern recognition mechanism and is
therefore concerned with biological plausibility. As stated by Fukushima, the goal of
the work was "to synthesize a neural network model in order to endow it [with] an
ability to [perform] pattern recognition like a human being." The network originally
described is self-organized and thus able to learn without supervision.

Later versions of the model utilize supervised adaptation. Fukushima and col-
leagues (1983) admit that the supervised adaptation situation more nearly reflects
"a standpoint of an engineering application to a design of a pattern recognizer rather
than that of pure biological modeling." Because the network emulates the visual ner-
vous system, starting with retinal images, each layer is two-dimensional. An input
layer is followed by a number of modules connected in series. Each module consists
of two layers, the first representing S-cells (the more simple visual cortex cells) and
the second representing C-cells (the more complex visual cortex cells). Cell activa-
tions are nonnegative and continuous valued.

Weights from G-cells in one layer to S-cells in the next layer are modifiable, as
are those from the input to the first S-cells. Weights within a layer, from S-cells to
C-cells, are fixed. There are a number of"planes" within each layer. Each cell receives
input from a fixed, relatively small region of the layer preceding it. By the time the
output layer is reached, each output cell "sees" the entire input as a result of this
telescoping effect of decreasing the number of cells in each plane with the depth
into the network.

Neural Network History

It is beyond the scope of this summary to describe the neocognitron fully, but
it exhibits a number of interesting features. For example, the network response is
not significantly affected by the position of the pattern in the input field. It also
recognizes input correctly despite small changes in shape or size of the input pat-
tern. Later versions cope even better with deformation and positional shift than early
versions and, when presented with a complex pattern consisting of several charac-
ters, are able to pay selective attention to the characters one at a time, recognizing
each in turn (Fukushima 1986).

A comprehensive version of the neocognitron has not been implemented to any
significant degree on smaller computers such as PCs (although several of the con-
cepts have appeared in current neural network implementations), probably because
of the paradigm's complexity. For example, in the network described in Fukushima
(1980) an input layer of 256 cells (16x16) was followed by three modules of 8,544,
2,400, and 120 cells, respectively. In addition to the complexity introduced by more
than 11,000 PEs, the neocognitron has multiple feedforward paths and feedback
loops, resulting in a computing complexity that is daunting.

One important thing that Fukushima figured out, however, was how to deal with
adaptation of inner "hidden" cells (PEs) that are neither input nor output cells.
He assumes not only that you know what your desired response is but also that
you know what computational process needs to be followed stage by stage through
the network to get that response. Knowing the computational process is possible
only in certain well-defined cases, such as the one described by Fukushima in which
the 10 digits, 0 to 9, were being recognized in handwritten form. Nevertheless, it was
quite an accomplishment.

The Renaissance

Several publications appeared in the period from 1982 to 1986 that significantly fur-
thered the state of neural network research. Several individuals were involved, one
who published his first two landmark neural network papers by himself, and oth-
ers who, in addition to their individual efforts, published as a group. We call these
researchers the Renaissance men.

The individual who published by himself is John Hopfield of the California Insti-
tute of Technology. In the early 1980s, Hopfield published a paper that, according
to many neural network researchers, played a more important role than any other
single paper in reviving the field (Hopfield 1982). A number of factors were respon-
sible for the impact of Hopfield's 1982 paper and his follow-up paper (Hopfield
1984). In addition to what he said, how he said it and his professional background
are important. What he said is summarized later, but first let's examine his profes-
sional background and how he presented his findings.

Much of the significant work in neural networks during the Dark Age was
done by biologists, psychologists, and other researchers who could be labeled

C) Chapter Five--Neural Network Concepts and Paradigms

"carbon-based." Hopfield is a well-respected physicist. One might say that he is a
"silicon-based" researcher. In presenting his findings, he gathered a number of areas
into a coherent whole. He identified network structures and algorithms that could
be generalized and that had a high degree of robustness. Significantly, he pointed out
throughout his papers that his ideas could be implemented in integrated circuitry,
which is why we call him silicon-based. He presented his networks in a manner that
was easy for engineers and computer scientists to understand, showing the similar-
ities between his work and that of others.

Hopfield presented numerous lectures, all over the world, that convinced many
researchers and developers to begin working in neural networks. According to
Hecht-Nielsen (1990),

By the beginning of 1986, approximately one-third of the people in the field had been
brought in directly by Hopfield or by one of his earlier converts. Hopfield's work as
a recruiter was perhaps the single most important contribution to the early growth
of the revitalized field.

In summary, he got the attention of the technical world.
Hopfield didn't introduce many new ideas; he just put them together in new, cre-

ative, and brilliant ways. One new idea was his definition of the energy of a network.
For a given state of the network, the energy is proportional to the overall sum of the
products of each pair of node activation values (Vi, Vj) and the connection weight
associated with them (Wij); that is,

= - 0 . 5 w jv vj 0) (s.1)

i,j;i#j

In other words, he proved that the network has stable states.
Many of his ideas are incorporated into networks that we examine later in this

chapter, but we don't present the Hopfield network in detail. Instead, we review the
version of his network that uses binary processing elements (PEs) as presented in
(Hopfield 1982).

The network Hopfield described in 1984 (Hopfield 1984) is similar except that
it contains continuous-valued PEs with a sigmoidal nonlinearity. The same gen-
eral mathematical method is used for computing network values in each case.
Despite the continuous sigmoidal nonlinearity, inputs to the network must be
expressed in binary form. This arises from the network equations (to be shown)
and presents significant problems in using this version of the Hopfield net in many
applications.

A very simple example ofa Hopfield network (the original 1982 version) is illus-
trated in Figure 5.2. Each PE is binary; that is, it can take on only one of two values.

Neural Network History

/1 V 1

%4 w23

w24
V4 V2

Figure 5.2 A simplified four-PE Hopfield network.

Hopfield used values of 1 and 0, but subsequently showed that values of 1 and -1
result in simplified mathematics. We use 1 and-1 . The value that the PE assumes is
governed by a hard-limiting function. By this we mean that if the net input to a PE
is greater than or equal to some threshold value (usually defined to be 0), then the
activation value is 1; otherwise, it is-1.

Before we review the operation of the network, two limitations of Hopfield net-
works should be mentioned. The first is that they can reliably store and recall only
about 15 percent as many states as the network has PEs. For example, a network with
60 PEs can store about 9 states. A second limitation is that the patterns stored must
be chosen so that the Hamming distance between two patterns is about 50 percent
of the number of PEs. The Hamming distance between two binary patterns is the
number of bits in which the values are different. For example, the patterns 1 1 1 1 1
and 1 -1 1 -1 1 have a Hamming distance of two.

From the first limitation, you can see that we're stretching things to say we can
store much of anything in a four-PE network. We'll use the patterns 1 1 1 1 and
-1 -1 -1 -1 as the two we'll store. We store the patterns by initializing (training) the
interconnecting weights according to equation 5.2. The equation says that a weight
is equal to the sum over all stored patterns of the product of the activation values of
the PEs on each end of the connection:

~Vij = ~__aViVj (Wii = O) (5.2)
patterns

In our simple example, the sum over the two patterns of ViV i for each weight is
always 1 + 1 = 2, so each weight in our trained network is 2. Now let's see how the
network updates the activation values of the PEs, recovering complete patterns from
partially incorrect ones.

Chapter Five--Neural Network Concepts and Paradigms

The activation values of the PEs are updated asynchronously and, in Hopfield's
original configuration, stochastically. To be updated asynchronously means that they
are updated one at a time rather than all at once, as is the case with the back-
propagation networks that we look at later in this chapter. Updating stochastically
means that a probability is involved with a PE being updated at a given opportunity.
For example, if it's the turn of PE number three to be updated, a random number
[0, 1] is generated. Ifthe number generated is greater than, say, 0.5, the PE is updated;
otherwise, it isn't.

Keeping in mind the hard-limiting function described earlier, we find that
equation 5.3 describes the process for calculating the net input to a PE, where Ii
is the external input.

Net input to PE i = E WijVj + Ii (5.3)
i#j

The activation value of the PE will be 1 if the net input is greater than or equal to
zero, and -1 otherwise. Let's look at how this network, trained to "remember" the
two states I 1 1 1 and-1 -1 -1 -1, deals with an "imperfect" input pattern.

We input a pattern of I 1 1 -1, which has a Hamming distance of I from one
of the two remembered states, and assume the four PEs now have these values. One
way to think about this is to consider the weights Wij set to 0 during the external
input process. Then the activation state of each PE assumes whatever we input to it.

Now we asynchronously and stochastically update the activation states of all four
PEs. If one of the PEs with a value of I is selected first, we calculate its new activation
value. (External inputs are no longer being applied, so Ii is 0 for all PEs now.) Using
equation 5.3, you can see that each of the three PEs with a value of I has the same net
input whichever one is selected: 2(1) + 2(1) + 2(-1) = 2. Since 2 > 0, its activation
value doesn't change.

When the PE with the activation value of-1 is selected and updated, its activation
value is changed to I because the net input to it is 2(1) + 2(1) + 2(1) = 6. As soon as
this happens, the pattern is stable, no matter how long you continue, because the net
input of any PE selected is now greater than 0. We have thus successfully recovered
one of the remembered states.

Similarly, you can see that the other remembered state is recovered if you start
with any pattern with a Hamming distance of 1 f r o m - 1 -1 -1 -1, such as
1 -1 -1 -1. If you start with a pattern with a Hamming distance of 2 from each of
the remembered states, the state recovered depends on which PE has its activation
value updated first. That seems only fair because the test pattern is halfway between
the two remembered states.

Although this is a simple example, the same principles apply to a large Hopfield
network. You should be able to work out more useful examples for yourself with the
information given.

Neural Network History

Hopfield's work was noticed almost immediately by the semiconductor
industry. Within three years of his 1984 paper, AT & T Bell Laboratories announced
the first hardware neural networks on silicon chips, utilizing Hopfield's theories.
Caltech colleague Carver Mead continued the innovations, fabricating hardware
versions of the cochlea and retina.

Just prior to AT & T's announcement of the chips in 1986, the other Renais-
sance men, the Parallel Distributed Processing (PDP) Research Group, published
their first two volumes (Rumelhart and McClelland 1986, McClelland and Rumel-
hart 1986). The third volume followed in two years (McClelland and Rumelhart
1988). Although it is difficult to pinpoint when work on these volumes began, a
meeting organized by Hinton and Anderson in 1979 seems to have been the first
meeting that involved a significant number of the PDP group. The Renaissance in
neural networks, kindled by Hopfield, burst into flames with the release of their
books. Sixteen researchers made up the PDP Research Group, and anywhere from
one to four of them wrote each chapter in the first two PDP volumes. McClelland
and Rumelhart edited the first two volumes and contributed to the third.

It is hard to overstate the effect these books had on neural network research and
development. By late 1987, when one of the authors of this book [RE] bought his
copy of volume 1, it was in its sixth printing. The software included with volume 3
sold more copies in 1988 than all other neural network software combined. What
accounted for the unparalleled success of Parallel Distributed Processing? In one sen-
tence: The books presented everything practical there was to know about neural
networks in 1986 in an understandable, usable, and interesting way. In fact, 1986
seemed to mark the point at which a "critical mass" of neural network information
became available.

Recall that neural network paradigms have three primary attributes: the architec-
ture, the PE activation functions and attributes, and the adaptation algorithms. The
PDP books presented a variety of these three items, building several network types
as examples. The most read and quoted are probably in Chapters 1 to 4 and Chapter 8
in volume 1. Chapter 8 is entitled "Learning Internal Representations by Error
Propagation" and contains the basic derivation of the back-propagation algorithm
for multilayer perceptrons. It is one of the most quoted references in neural net-
work literature. Other chapters also represent landmarks in neural network devel-
opment, such as Chapter 7 on Boltzmann machines, written by Geoffrey Hinton of
Carnegie-Mellon and Terry Sejnowski, then of Johns Hopkins University and now at
the Salk Institute in San Diego. Hinton started out, with McClelland and Rumelhart,
to be one of the editors of the books but decided to devote more of his time to the
Boltzmann machine work.

Certainly one of the most significant contributions of the PDP volumes has been
the derivation and subsequent popularization of the back-propagation adaptation
algorithm for multilayer perceptrons, described in a landmark article in Nature at
about the same time (Rumelhart et al. 1986). Other groups developed the basic

Chapter Five--Neural Network Concepts and Paradigms

back-propagation scheme in the late 1980s, including Paul Werbos and Dave Parker
(Allman 1989).

We include in chapter 6 of this book an implementation of the back-propagation
model for personal computers. Competitive adaptation is briefly reviewed before we
present the Kohonen networks. We do not cover in any significant way a number
of other models and mechanisms described by the PDP group, including interac-
tive activation and competition, constraint satisfaction (including the Boltzmann
machine), and the pattern associator.

The Age of Neoconnectionism
In about 1987 we moved into the Age of Neoconnectionism, named by Cowan and
Sharp (1988). The field of neural networks and the development of neural network
implementations for personal computers expanded almost unbelievably in the next
decade. It was no longer feasible to assemble "all there is to know" about the current
state of neural networks in one volume, or one set of volumes, as the PDP Research
Group attempted to do in 1986-1988.

The first major conference on neural networks, the International Conference on
Neural Networks, was held in San Diego in 1987, sponsored by the IEEE. This con-
ference gave birth to both the IEEE Neural Networks Council (NNC) and the Inter-
national Neural Networks Society (INNS). Robert Marks, then of the University of
Washington, served as the first president of the IEEE NNC, and Steven Grossberg
was the first INNS president. Marks also served as the founding editor-in-chief of
IEEE Transactions on Neural Networks, arguably the most prestigious and widely read
journal in the field. One of the authors [RE] served as the second president of the
IEEE NNC. (In 2002 the IEEE Neural Networks Council became the IEEE Neural
Networks Society, and it is now the IEEE Computelligence Society.)

Dozens of neural network paradigms, with hundreds of variations, were
described in the literature. Because of the sheer volume of work being done by thou-
sands of people, it is difficult to decide which individual researchers to highlight
in the Age of Neoconnectionism. However, one new general class of networks was
increasingly utilized. These networks, sometimes called "basis function" paradigms,
include probabilistic neural networks and radial basis function networks. The per-
son generally credited with having the most to do with the early development of
probabilistic neural networks is Donald Specht, who published the first papers
about them (Specht 1988, 1990) and continues to contribute significantly to the
development of basis function paradigms.

In the decade from 1987 to 1997, the list of neural network applications
expanded from biological and psychological uses to include uses as diverse as biomedi-
cal waveform classification, music composition, and prediction of commodity prices.
Neural network development activity intensified worldwide. Another development

What Neural Networks Are and Why They Are Useful

occurred that is perhaps more important: the shift to PCs for neural network
implementations. Personal computers had changed drastically since the introduc-
tion of the first Altairs and Apples. Their increased capabilities (speed, memory, mass
storage, communications, and graphics) and reduced cost of personal computers
made the implementation of useful and cost-effective neural network systems uni-
versally attractive. As of 1994, more than 50 million PCs were being sold annually
worldwide (Gates 1995).

In 1994 the first IEEE World Congress on Computational Intelligence was held
in Florida. For the first time, major conferences on neural networks, evolutionary
computation, and fuzzy logic were held together. The boundaries between method-
ologies were beginning to erode.

The Age of Computational Intelligence
The second IEEE World Congress on Computational Intelligence was held in 1998
in Anchorage, Alaska. By this time, the boundaries between the three main areas of
computational intelligence had eroded even more, and we choose this year as the
beginning of the age of computational intelligence.

The third IEEE World Congress on Computational Intelligence in 2002 in
Honolulu, Hawaii, was a gathering of engineers and scientists whose presentations
and discussions were truly eclectic, and it was a celebration of the formation of the
new IEEE Neural Networks Society.

In 2005 the IEEE approved the society's change of the name to properly reflect its
fields of interest: The IEEE Computelligence Society. In 2006, the fourth IEEE World
Congress on Computational Intelligence was held in Vancouver, British Columbia,
Canada.

Hybrid systems are the order of the day. And if you want to keep up with the
latest developments in neural networks, you have to skim the evolutionary compu-
tation and fuzzy logic journals because many, if not most, advances in computational
intelligence cut across methodologies. There is no looking back!

What Neural Networks Are and Why They Are Useful

Neural networks are information processing systems. In general, they can be thought
of as "black box" devices that accept inputs and produce outputs. In the simplest
terms, neural networks map input vectors onto output vectors. Some of the oper-
ations that neural networks perform include the following.

Classification. An input pattern is passed to the network, and the network produces
a representative class as output.

Chapter Five--Neural Network Concepts and Paradigms

Pattern matching. An input pattern is passed to the network, and the network
produces the corresponding output pattern that best matches the input pattern.

Pattern completion. An incomplete pattern is passed to the network, and the
network produces an output pattern that has the missing pattern portions
filled in.

Noise removal. A noise-corrupted input pattern is presented to the network, and
the network removes some (or all) of the noise and produces a cleaner version
of the input pattern as output.

Optimization. An input pattern representing the initial values for a specific optimi-
zation problem is presented to the network, and the network produces a set of
variables that represent an acceptably optimized solution to the problem.

Control. An input pattern is presented that represents the current state of a con-
troller and the desired response for it, and the network output is the command
sequence that will create the desired response.

Simulation. An input pattern (or series of patterns) is presented that represents
the current state vector (and possibly previous state vectors) of a system or
time series. The trained network generates structured sequences or patterns
that simulate behavior of the system with time.

Neural networks consist of processing elements and weighted connections.
Figure 5.3 illustrates a typical neural network. Each layer in a neural network con-
sists of a collection of processing elements. Each PE collects the values from all of its
input connections, performs a predefined mathematical operation (such as a dot-
product followed by a threshold), and produces a single output value. The neural
network in Figure 5.3 has three layers: Fx, which consists of the PEs {Xl, x2, x3 }; F r,
which consists ofthe PEs {Yl,)I2 }; and Fz, which consists ofthe PEs {Zl, z2, z3 } (from
left to right, respectively).

(~
0
u
t

t
s

r

~ Fz

Figure 5.3 A typical neural network.

What Neural Networks Are and Why They Are Useful

Processing elements are connected with weighted connections. In Figure 5.3
there is a weighted connection from every Fx PE to every F r PE, and there is a
weighted connection from every F r PE to every Fz PE. Each weighted connection
(referred to as either a connection or a weight; the terms are used interchangeably in
this book) acts as both a label and a value. As an example, in Figure 5.3 the connec-
tion from the Fx PE xl to the F r PE Y2 is the connection weight w21 (the connection
from xl to y2). Connection weights store the information, or knowledge, in a net-
work. The values of the connection weights are often determined by a neural net-
work adaptation procedure (although sometimes they are predefined and hardwired
into the network). It is through the adjustment of the connection weights that the
neural network is able to adapt. By performing the update operations for each PE
when an input pattern is presented, the neural network is able to recall information.

There are several important features illustrated by the neural network shown in
Figure 5.3 that apply to all neural networks:

m Each PE acts independently of all others; each PE's output relies only on its
constantly available inputs from the abutting connections.

a Each PE relies only on local information; the information provided by the
adjoining connections is all a PE needs to process. It does not need to know
the state of any of the other PEs to which it does not have an explicit
connection.

'~ The large number of connections provides redundancy and facilitates a
distributed representation.

The first two features allow neural networks to operate efficiently in parallel. The
last feature provides properly designed neural networks with fault-tolerance and
generalization qualities that are very difficult to attain with most other computing
systems.

In addition to these features, by properly arranging the topology of the net-
works, introducing a nonlinearity in the processing elements (i.e., adding a nonlin-
ear threshold function), and using the appropriate adaptation rules, neural networks
are able to "learn" arbitrary nonlinear mappings. This is a powerful attribute. There
are three primary situations where neural networks are advantageous:

1. Situations where relatively few decisions are required from a massive
amount of data (e.g., speech and image processing)

2. Situations where nonlinear mappings must be automatically acquired
(e.g., loan evaluations and robotic control)

3. Situations where a near-optimal solution to a combinatorial optimization
problem is required very quickly (e.g., job shop scheduling and telecommu-
nication message routing)

Chapter Five--Neural Network Concepts and Paradigms

A basic knowledge of neural networks requires an understanding of the
nomenclature and a comprehension of the rudimentary mathematical concepts
used to describe and analyze neural network processing. In a broad sense, neural
networks comprise three principal elements needed to specify the network:

m T o p o l o g y ~ h o w a neural network is organized into layers and how those
layers are connected.

m A d a p t a t i o n ~ h o w a network is configured to store information.

[] R e c a l l ~ h o w the stored information is retrieved from the network.

We describe each of these elements in detail after a discussion of connection weights,
processing elements, and activation functions.

Neural Network Components and Terminology

Each neural network has at least two structural components: connection weights
and processing elements. The combination of these components creates a neural
network topology. A convenient analogy is the directed graph, where the edges are
analogous to the connection weights and the nodes are analogous to the processing
elements. In addition to connection weights and processing elements, processing
element activation functions and input/output patterns are also basic components
in the design, implementation, and use of neural networks. After a description of
the terminology of neural networks, we examine each of these elements in turn.

Terminology
Neural network terminology remains varied, with standards yet to be adopted. The
Standards Committee of the IEEE Neural Networks Council, now the IEEE Com-
putational Intelligence Society, is actively involved in standardizing terminology and
symbology (Eberhart 1990). We generally use terminology developed by the Stan-
dards Committee in this book. There are, however, exceptions. Therefore, for clarity,
we explain the terminology as appropriate. Figure 5.4 shows an illustration of some
of the terminology.

Input and output vectors (patterns) are denoted by subscripted capital letters
from the beginning of the alphabet. The input patterns are denoted Ak = akl,

ak2, • • . , akn); k = 1, 2 , . . . , m, and the output patterns as Bk = (bkl, bk2, • • . , bkp);

k = 1, 2, . . . , m. Note that the subscript k refers to a pattern and that there are m
input patterns.

The processing elements (PEs) in a layer are denoted by the same subscripted
variable. The collection of PEs in a layer form a vector, and these vectors are denoted

Neural Network Components and Terminology

(bkl, bk2, bk3 bkp) = B k

(akl, ak2 akn) = A k

, , ,

ak3,

Yl Y2 Y3 "'" YP ::~ Fy

1~ x2 w12 w22 w32

W "

Fy Xn Wln W2n W3n "'" WP n

FX w

Figure 5.4 A network used to illustrate terminology.

by capital letters from the end of the alphabet. In most cases three layers of PEs
are sufficient. The input layer of PEs is denoted Fx = (xl, x2, . . . , Xn), where each
xi receives input from the corresponding input pattern component aki. The next
layer of PEs is the Fv PEs, then the Fz PEs (if either layer is necessary). If more than
one inner (hidden) layer is required, they are designated Frl, Fv2, and so on, moving
from input to output.

The number of layers in a network is determined by its use. Using the network in
Figure 5.4 as an example, the second layer of the network is the output layer; hence,
the number of Fr PEs must match the dimensionality of the output patterns. In this
instance, the output layer is denoted Fr = (Yl, Y2, • • . , Yp), where each y) is correlated
with the jth element of Bk. Connection weights are stored in weight matrices. Weight
matrices are denoted by capital letters toward the end of the alphabet, typically U,V,
and W. Referring to the example in Figure 5.4, this two-layer neural network requires
one weight matrix to fully connect the layer of n Fx PEs to the layer ofp Fr PEs. The
matrix in Figure 5.4 describes the full set of connection weights between Fx and Fr,
where the weight wii is the connection weight from the ith Fx PE, xi, to the jth Fv
PE, Yi" For a two-layer network, the weight matrix is usually denoted by W. Addi-
tional layers and/or mean-variance weight configurations (discussed later) generally
have weight matrices denoted by U and/or V.

Input and Output Patterns
Neural networks cannot operate without data. Some neural networks use only single
patterns; others use pattern pairs. Note that the dimensionality of the input pattern
is not necessarily the same as the output pattern. When a network uses only single
patterns, it is defined as an autoassociative network. When a network uses pattern
pairs, it is heteroassociative.

One of the key issues when applying neural networks is determining what the
patterns should represent. For example, in speech recognition systems there are

Chapter FivemNeural Network Concepts and Paradigms

many types of features that can be employed, including linear predictive coding
coefficients, Fourier spectra, histograms of threshold crossings, cross-correlation
values, and others. The proper selection and representation of these features can
greatly affect the performance of the network.

In some instances, feature representation as a pattern vector is constrained by the
type of processing the neural network can perform. For example, some networks can
process only binary data, such as the binary Hopfield network (Amari 1972; Hop-
field 1982), binary adaptive resonance theory (Carpenter and Grossberg 1987a), and
the brain-state-in-a-box (Anderson et al. 1977). Others can process real-valued data,
including back-propagation (Parker 1982; Rumelhart et al. 1986; Werbos 1974) and
learning vector quantization (Kohonen 1988). Creating the best possible set of fea-
tures and properly representing those features is the crucial first step toward success
in any neural network application. This task often takes a significant portion of the
system development effort.

Network Weights
A neural network is equivalent to a directed graph (digraph). A digraph has edges
(weights, or connections) between nodes (PEs) that allow information to flow in
only one direction (the direction denoted by the arrow). Information flows through
the digraph along the edges and is collected at the nodes. Within the digraph rep-
resentation, connections serve a single purpose: They determine the direction of
information flow.

Neural networks extend the digraph representation to include a weight with each
edge (connection) that modulates the amount of signal passed from the output of
one PE along the connection to the next PE. As an example, in Figure 5.4 the infor-
mation flows from the Fx layer through the weighted connections, W, to the Fy layer.
For simplicity, a dual role for weights is used. A weight both defines the informa-
tion flow through the network and modulates the amount of information passing
between PEs.

The connection weights are adjusted during an adaptation process that captures
information. Connection weights with positive values are excitatory connections.
Those with negative values are inhibitory connections. A connection weight that
has a zero value is the same as not having a connection present. By allowing only
a subset of all the possible connections to have nonzero values, sparse connectivity
between PEs can be simulated.

For reasons that will be discussed later, it is often desirable for a PE to have an
internal bias value (threshold value). Figure 5.5(b) shows the PE yj with three weights
from FX {Wjl, wj2, wj3 } and a bias value, bj. It is convenient to consider this bias value
as an extra weight, w0, emanating from the Fx layer PE x0, with the added constraint
that xo is always equal to 1, as shown in Figure 5.5(b). This mathematically equivalent

Neural Network Components and Terminology

(a)

Z

(b)

Figure 5.5 An illustration of PEs with internal (a) and external biases (b).

Z -q

representation simplifies many discussions. We use this method of representing bias
(threshold) values throughout this book.

Processing Elements
The processing element (PE) is the component of the neural network where com-
putations are performed. Figure 5.5 illustrates the most common type of PE. A
PE can have one input connection, as is the case when the PE is an input layer
PE and it receives only one value from the corresponding component of the input
pattern, or it can have several input weights, as is the case of the Fy PEs shown
in Figure 5.4 where there is a connection from every Fx PE to each Fy PE. Each
PE collects the information that has been sent down its abutting connections and
produces a single output value. PEs possess two important qualities:

'~ PEs require only local information. M1 the information necessary for a PE to
produce an output value is present at the inputs and resides within the PE.
No other information about other values in the network is required.

[] Each PE produces only one output value. This single output value either is
propagated along the connections from the emitting PE to other receiving
PEs or serves as an output from the network.

These two qualities facilitate neural networks' parallel operation. As is done with
the weights, the value of the PE and its label are referred to synonymously. As an
example, the jth Fy PE in Figure 5.4 is yj, and the output value of that PE is also yj.

There are several mechanisms for computing the output of a processing element.
The output value of the PE shown in Figure 5.5(b), yj, is a function ofthe outputs of
the preceding layer, Fx = X - (Xl, x2 , . . . , Xn) and the weights from Fx to yj, Wj =
(Wjl, wj2,. . . , wjn). Mathematically, the output of this PE is a function of its inputs
and its weights, as shown in equation 5.4. Actually, it is usually a function of a func-
tion. First, a calculation is performed to determine how the weights and previous

Chapter Five--Neural Network Concepts and Paradigms

outputs are combined to form the input to the PE. Then an activation function is
calculated that determines the output of the PE given its input.

yj = F(X,W i) (5.4)

Two common types of input computation are linear combination and mean-
variance connections. The most common input computation performed by a PE is a
linear combination (dot product) of the input values, X, with the abutting connec-
tion weights, Wj, followed by an activation function (cfi. Hecht-Nielsen 1990; Maren
et al. 1990; Simpson 1990). Using the PE in Figure 5.5(b) as an example, the output
yj is computed using equation 5.5, where Wj = (Wjl, wj2, . . . , Win) and f(.) is one of
the activation functions described later in this chapter.

yj ~ f (~ x i w j i) -- f (X . (5.5)

The dot-product update has an appealing quality that is intrinsic to its computa-
tion. Looking at the relationship Ak. W i = cos(Ak, Wj)/[[Ak[[[[Wj[[, we can see that
the larger the dot-product (assuming fixed lengths Ak and Wj), the more similars
the two vectors are. Hence, the dot-product can be viewed as a similarity measure.
Note that if vectors X and W/are of fixed length, maximizing their dot (inner) prod-
uct is the same as minimizing their mean-square separations, since

I fx - will = Jaxll + II wj II - two times the dot (inner) product.

The second common type of input computation is mean-variance connections,
which are used in instances where there are two weights connecting PE pairs instead
of just one, as shown in Figure 5.6. One use of these dual weights is to allow one
set of the abutting weights to represent the mean of a class, and the other the class
variance (Lee and Kil 1989; Robinson et al. 1988). In this case, the output value of
the PE depends on the inputs and both sets of weights, that is, yj = F(X, Vj, Wj),
where the mean connections are represented by Wj = (Wjl, w j2 , . . . , Win) and the
variance connections Vj = (vii, vj2, . . . , Vjn) for the PE yj.

Using this scheme, the activation function ofyj calculates the difference between
the input, X, and the mean, Wj, divided by the variance, Vj, squaring the resulting
quantity and passing this value through a Gaussian nonlinear function to produce
the final output value, as shown in equation 5.6, where the Gaussian nonlinear func-
tion appears in equation 5.7.

Neural Network Components and Terminology

Figure 5.6 APE with mean-variance connections.

yj__g(~ Vii (5.6)

g(x)= e x p (- ~ -) (5.7)

Note that it is possible to remove one of the two connections in a mean-variance
network, if the variance is known and stationary, by dividing by the variance prior to
neural network processing. Gaussian nonlinear functions are described in the next
section.

Processing Element Activation Functions
Processing element activation functions, also sometimes referred to as threshold
functions or squashing functions, map a PE's (possibly) infinite domain to a pre-
specified range. Although the possible number of activation functions is infinite,
five are regularly employed by a majority of neural networks: (1) the linear func-
tion, (2) the step function, (3) the ramp function, (4) the sigmoid function, and
(5) the Gaussian function. With the exception of the linear function, all of these
functions introduce a nonlinearity into the network dynamics by bounding the out-
put values within a fixed range. Each activation function is briefly described below
and illustrated in Figure 5.7, parts (a) to (e).

The linear activation function, as in Figure 5.7(a), produces a linearly modulated
output from the input x, as described by equation 5.8, where x ranges over the real
numbers and a is a positive scalar. If a - 1, it is equivalent to removing the activation
function completely.

f (x) = a x (5.8)

The step activation function, as in Figure 5.7(b), produces only two values,
p and -6. If the input to the activation function, x, equals or exceeds the threshold

Chapter FiveuNeural Network Concepts and Paradigms

f(x) f(x)

8
(a) (b)

f(x)

'" 4_y
(c)

f ~

(d)

Variance

(e)

Figure 5.7 Five of the most common activation functions.

value 0, then the step activation function produces the value p; otherwise, it
produces the value -6, where/~ and 5 are positive scalars. This function is described
mathematically in equation 5.9.

/ /~ i f x > O
f(x) =

-5 if x < 0
(5.9)

Typically the step activation function produces a binary value in response to the
sign of the input, emitting + 1 ifx is positive and 0 if it is not. By making the assign-
ments/~ = 1,6 = 0, and 9 = 0, the step activation function becomes the binary
step function of equation 5.10, which is common to neural networks such as the
Hopfield neural network (Amari 1972; Hopfield 1982) and the bidirectional
associative memory (Kosko 1988). A small variation of equation 5.10 is the bipolar
activation function, which replaces the 0 output value with a - 1. In punish-reward
systems such as the associative reward-penalty paradigm (Barto 1985), the negative
value is used to ensure changes where a 0 will not.

f
1 if x >_ 0

f(x) [0 otherwise
(5.1o)

The ramp activation function, as in Figure 5.7(c), is a combination of the lin-
ear and step activation functions. The ramp activation function places upper and

Neural Network Components and Terminology

lower bounds on the values that the function produces and allows a linear response
between the bounds. These saturation points are symmetric around the origin
and are discontinuous at the points of saturation. The ramp activation function is
defined in equation 5.11, where r is the saturation value for the function and the
points x = r and x - - r are where the discontinuities in f(.) exist.

7

f(x) - x

- 7

i f x > _ r

if Ixl < r (5.11)

i f x _ < - r

The sigmoid activation function, as in Figure 5.7(d), is a continuous version
of the ramp activation function. The sigmoid (S-shaped) function is a bounded,
monotonic, nondecreasing function that provides a graded, nonlinear response
within a prespecified range. The most common sigmoid function is the logistic
function of equation 5.12, where a > 0 (often a = 1, which provides an output
value from 0 to 1.

1
f(x) = 1 + e -¢x (5.12)

This function is familiar to statistics (as the Gaussian distribution function),
chemistry (describing catalytic reactions), and sociology (describing human pop-
ulation growth). Note that a relationship between equations 5.12 and 5.10 exists.
When a - ~ in equation 5.12, the slope of the sigmoid function between 0 and
1 becomes infinitely steep and, in effect, becomes the step function described by
equation 5.10. Two alternatives to the logistic sigmoid function are the hyperbolic
tangent, f (x) - tanh(x), which ranges from -1 to 1, and the augmented ratio of
squares described by equation 5.13, which ranges from 0 to 1.

x
f i x) = ~ if x > 0

0 otherwise
(5.13)

The Gaussian activation function, as in Figure 5.7(e), is a radial function (sym-
metric about the origin) that requires a variance value greater than zero to shape
the Gaussian function. In some networks the Gaussian function is used in con-
junction with a dual set of connections, as described earlier by equation 5.6, and
in other instances (Specht 1990) the variance is predefined. In the latter instance,

Chapter FivemNeural Network Concepts and Paradigms

the activation function is described by equation 5.14, where x is the mean and v is
the predefined variance.

f(x) = exp() (5.14)
V

Neural Network Topologies

The building blocks for neural networks have been described. Neural network
topologies now evolve from the patterns, PEs, weights (weighted connections),
and activation functions that have been described. Neural networks consist of
one or more layers of PEs interconnected by weights. The arrangement of the
PEs, weights, and patterns into a neural network is referred to as a topology.
After we introduce some terminology, we describe two common neural network
topologies.

Terminology
Neural networks are organized into layers of PEs. PEs within a layer are similar in
two respects. First, the connections that feed the layer of PEs are from the same
source. For example, the Fx layer of PEs in Figure 5.4 all receive their inputs from
the input pattern, and the layer of Fy PEs all receive their inputs from the Fx PEs.
Second, the PEs in each layer use the same type of update dynamics. In other words,
all the PEs use the same connection source(s) and destination(s) and the same type
of activation function.

There are two types of weight that a neural network employs: intralayer weights
and interlayer weights. Intralayer weights ("intra" is Latin for "within") are weights
between PEs in the same layer. Interlayer weights ("inter" is Latin for "among") are
weights between PEs in different layers. It is possible to have neural networks that
consist of one or both types of weight.

When a neural network has connections that feed information in only one direc-
tion, from input to output without feedback pathways in the network, it is a feed-
forward neural network. If the network has any feedback paths, where feedback is
defined as any path through the network that allows the same PE to be visited twice,
then it is a feedback neural network. Thus, a network using PEs that have self-feedback
loops is a feedback network.

Two-layer Networks
Two-layer neural networks consist of a layer of n Fx PEs fully interconnected to a
layer of p Fy PEs, as shown in Figure 5.8. The connections from the Fx to Fy PEs

, ° ,

• , , J

(a)

Neural Network Topologies

: Y3

° , ,

(b)

Figure 5.8 Two-layer neural networks.

(c)

form the n-by-p weight matrix W, where the entry wji represents the weight for the
connection from the ith Fx PE, xi, to the jth Fy PE,)I/. There are three common
types of two-layer neural network: feedforward pattern matchers, feedback pattern
matchers, and feedforward pattern classifiers.

A two-layer feedforward pattern matching neural network maps the input pat-
terns, Ak, to the most closely corresponding output patterns, Bk. The network shown
in Figure 5.8(a) illustrates the topology of this feedforward network. The two-layer
feedforward neural network accepts the input pattern Ak and produces an output
pattern, Y - (yl ,)'2, • •., yp), that is the network's best estimate ofthe proper output
given Ak as the input. An optimal mapping between the inputs and the outputs is one
that always produces the correct response Bk when Ak is presented to the network,
k - 1,2, . . . , m.

Most two-layer networks are concerned with finding the optimal linear mapping
between the pattern pairs (Ak, Bk) (cf. Kohonen 1988; Widrow and Winter 1988),
but there are other two-layer feedforward networks that work with nonlinear map-
pings by extending the input patterns to include multiplicative combinations of the
original inputs (Maren et al. 1990; Pao 1989).

A two-layer feedback pattern matching neural network, shown in Figure 5.8(b),
accepts inputs from either the Fx or Fv layer, and produces the output for the other
layer (Kosko 1988; Simpson 1990). An example of this kind of network is the bidi-
rectional associative memory network (Kosko 1988).

Chapter Five--Neural Network Concepts and Paradigms

A two-layer pattern classification neural network, shown in Figure 5.8(c), maps
an input pattern, Ak, into one ofp classes. Representing each class as a separate Fy
PE, the pattern classification task reduces to selecting the Fr PE that best responds
to the input pattern. Some of the two-layer pattern classification systems use the
competitive dynamics of global on-center/off-surround connections to perform the
classification.

Multila yer Networks

A multilayer neural network has more than two layers, possibly several more. A
general description of a multilayer neural network is shown in Figure 5.9, where
there is an input layer of PEs, Fx, L hidden layers of Fy PEs (Fy1, Fy2,., FyL), and a
final output layer, Fz. The Fy layers are called hidden layers because there are no
direct weights (connections) between the input or output patterns to these PEs;
rather, they are always accessed through another set of PEs such as the input and
output PEs.

Although Figure 5.9 shows weights only from one layer to the next, it is possible
to have weights that skip over layers, that connect the input PEs to the output PEs,
or that connect PEs within the same layer. The added benefit of these weights is not
generally understood, but some implementations use them.

Multilayer neural networks are used for pattern classification, pattern match-
ing, and function approximation. By adding a continuously differentiable PE
activation function, such as a Gaussian or sigmoid function, it is possible for the
network to learn practically any nonlinear mapping to any desired degree of accuracy
(White 1989).

I Computed Outputs [

Fz

FyL

Inputs

Figure 5.9 General form of a multilayer neural network.

FY 1

Fx

Neural Network Adaptation

The mechanism that allows such complex mappings to be developed is not fully
understood for each type of multilayer neural network, but in general the network
partitions the input space into regions, and a mapping from the partitioned regions
to the next space is performed by the set ofweights to the next layer of PEs, eventually
producing an output response. This capability allows some very complex decision
regions to be formed for classification and pattern matching problems, as well as for
applications that require function approximation.

Several issues must be addressed when working with multilayer neural networks.
How many layers are sufficient for a given problem? How many PEs are needed in
each hidden layer? How much data is needed to produce a sufficient mapping from
the input layer to the output layer?

Some of these issues have been addressed successfully. For example, several
researchers have proved that three layers are sufficient to perform any nonlinear
mapping (with the exception of a few remote pathological cases) to any desired
degree of accuracy with only one layer of hidden PEs. See White (1989) for a review
of this work. Although this is a very important result, it does not indicate the proper
number of hidden layer PEs, or if the same solution can be obtained with more
layers but fewer hidden PEs and weights overall. Note that throughout this book,
the input is counted as a layer, so that a "three-layer" network has one hidden
layer.

There are several ways that multilayer neural networks can have their weights
adjusted to learn mappings. The most popular technique is the back-propagation
algorithm (Parker 1982; Rumelhart et al. 1986; Werbos 1974) and its many variants
(see Simpson 1990 for a list). Other multilayer networks include the neocognitron
(Fukushima 1980), the probabilistic neural network (Specht 1990), the Boltzmann
machine (Ackley et al. 1985), the Cauchy machine (Szu 1986), and radial basis func-
tion networks.

Neural Network Adaptation

Arguably the most appealing quality of neural networks is their ability to adapt.
Adaptation in this context is defined as changes in connection weight values that
result in the capture of information that can later be recalled. There are several
procedures for changing the values of connection weights. After an introduction
to some terminology, we describe two adaptation methods. For continuity of dis-
cussion, we describe the adaptation algorithms in pointwise notation (rather than
vector notation). In addition, we describe the algorithms using discrete-time equa-
tions (rather than continuous time). The use of discrete-time equations makes them
more accessible to computer simulations.

Chapter FivemNeural Network Concepts and Paradigms

Terminology
As discussed in Chapter 2, adaptation can be classified into three categories:
supervised, unsupervised, and reinforcement adaptation. We first focus on super-
vised and unsupervised adaptation. Supervised adaptation is a process that uses an
external teacher and/or global information. The supervised adaptation algorithms
discussed in the following sections include Hebbian, competitive, and error correc-
tion adaptation. Examples of supervised adaptation issues include deciding when
to turn off the adaptation, deciding how long and how often to present each asso-
ciation for training, and supplying performance (error) information.

Supervised adaptation is further classified into two subcategories: structural
and temporal. Structural adaptation is concerned with finding the best possible
input-output relationship for each pattern pair. Examples include pattern matching
and pattern classification. The majority of adaptation algorithms used in practi-
cal applications involve structural adaptation. Temporal adaptation is concerned
with capturing a sequence of patterns necessary to achieve some final outcome.
In temporal adaptation, the current response of the network depends on previ-
ous inputs and responses. In structural adaptation, there is no such dependence.
Examples of temporal adaptation include prediction, simulation, and control. The
primary example of supervised adaptation included in this book is the back-
propagation neural network, for which an implementation is discussed in the next
chapter.

Unsupervised adaptation, also referred to as self-organization, incorporates no
external teacher or supervisor and relies only on local information during the entire
adaptation process. Unsupervised adaptation algorithms perform clustering of the
data. They organize presented data and discover its emergent collective properties.
Examples of unsupervised adaptation that are discussed in this book include self-
organizing feature maps and competitive adaptation. Implementations of the self-
organizing feature map and learning vector quantization neural networks are
discussed in the next chapter.

We next consider off-line and on-line adaptation. Most adaptation techniques
can use off-line adaptation. When the entire pattern set is used to condition the
weights prior to the use of the network, it is called off-line adaptation. For example,
the back-propagation algorithm is used to adjust weights in multilayer neural net-
works, but it sometimes requires thousands of cycles through all the pattern pairs
until the desired performance of the network has been achieved. Once the network
is performing adequately, the weights are frozen and the resulting network is there-
after used in recall mode. Off-line adaptation systems have the intrinsic requirement
that all the patterns be resident for training. Such a requirement does not make it
possible to have new patterns automatically incorporated into the network as they
occur; rather, these new patterns must be added to the entire set of patterns and the
neural network must be retrained.

Neural Network Adaptation

Not all neural networks perform off-line adaptation. Some networks can
perform on-line adaptation, adding new information "on the fly" nondestructively.
If a new pattern needs to be incorporated into the network's connections, it can
be done immediately without loss of stored information. The advantage of off-line
adaptation networks is that they usually provide superior solutions to difficult prob-
lems such as nonlinear classification, but on-line adaptation allows the neural net-
work to adapt in situ. A challenge in the future of neural network computing is the
development of adaptation techniques that provide high-performance on-line adap-
tation without high costs.

Hebbian Adaptation
The simplest form of adjusting weight values in a neural network is based on the cor-
relation of PE activation values. The motivation for correlation-based adjustments
has been attributed to Donald O. Hebb (1949), who hypothesized that the change
in a synapse's efficacy (its ability to fire or, as we are simulating it in our neural
networks, the connection weight) is prompted by a neuron's ability to produce an
output signal. If a neuron, A, was active, and A's activity caused a connected neuron,
B, to fire, then the efficacy of the synaptic connection between A and B should be
increased. Hebb's work is discussed in the history section of this chapter.

This form of adaptation, now commonly referred to as basic Hebbian adap-
tation (or Hebbian learning), has been mathematically characterized as the correla-
tion weight adjustment described in equation 5.15, where i = 1 ,2 , . . . , n ;
j = 1, 2 , . . . , p ; ~ is a constant that represents an adaptation rate; xi is the value
of the ith PE in the Fx layer of a two-layer network; yj is the value of the jth Fy
PE; and the connection weight between the two PEs is wji.

w.n. ew = W ° ld j~ ji + rlxiYj (5.15)

In general, the values of the PEs can range over the real numbers, and the weights
are unbounded. When the PE values and weights are unbounded, these two-layer
neural networks are amenable to linear systems theory. Neural networks, such as
the linear associative memory (Anderson 1970; Kohonen 1972), employ this type of
adaptation and we can analyze the capabilities of these networks using linear systems
theory. The number of patterns that a network trained using equation 5.15 with
unbounded weights and connections can recognize is limited to the dimensionality
of the input patterns (cf. Simpson 1990).

A special case of Hebbian adaptation is the delta rule, also sometimes called
the Widrow-Hoff rule (Sutton and Barto 1981). It is called the delta rule because
the amount of weight adjustment is proportional to the delta (the difference)

Chapter Five--Neural Network Concepts and Paradigms

between the target PE activation value provided by the "teacher" (bkj) and the
actual activation value calculated by the PE (Ykj). The delta rule is described in
equation 5.16, where 6kj = bkj - Ykj, and ~ is the adaptation coefficient, which
typically takes on values between 0 and 1. Since the subscript k denotes a pattern,
and the subscript j in this case denotes an output PE, the value of delta calculated
is for one pattern presented to one PE, and aki is the ith component of the kth
input pattern. Implementation of the delta rule is discussed in the later section on
multilayer error correction adaptation.

W~.. ew = W ° ld jz j~ + rl6kjaki (5.16)

Competitive Adaptation
Competitive adaptation (competitive learning), introduced by Grossberg (1970) and
Von der Malsburg (1973), and extensively studied by Amari and Takeuchi (1978),
Amari (1983), and Grossberg (1982), is a method of automatically creating classes
for a set of input patterns. Competitive adaptation is a two-step procedure that cou-
ples the recall process with the adaptation process in a two-layer neural network.
Each Fx PE represents a component of the input pattern, and each Fy PE represents
a class.

Step 1
Determine the winning Fy PE. An input pattern, Ak, is passed through the connec-
tions from the input layer, Fx, to the output layer, Fy, in a feedforward fashion using
the dot-product update equation yj = z n i= l XiWj i' where xi is the ith PE in the input
layer Fx, i = 1, 2 , . . . , n, yj is the jth PE in the output layer Fy, j = 1, 2 , . . . , p, and wji
is the value of the connection weight between xi and yj. Each set of connections that
abuts an Fy PE, say yj, is a reference vector Wj = (Wjl, w j 2 , . . . , Win) representing the
class j. The reference vector, Wj, that is closest to the input, Ak, should provide the
highest activation value.

If the input patterns Ak, k = 1 ,2 , . . . , m and the reference vectors Wj,
j = 1, 2 , . . . , p are normalized to Euclidean unit length, then the relationship of
equation 5.17 holds, where the more similar Ak is to Wj, the closer the dot-product
is to unity. The dot-product values, yj, are used as the initial values for winner-
take-all competitive interactions. The result of these interactions is identical to
searching the Fy PEs and finding the one with the largest dot-product value.

O< y j = A k • W j = akiwji ~ 1
i = l

(5.17)

Neural Network Adaptation

Using equation 5.18, it is possible to find the Fy PE with the highest dot-product
value, called the winning PE. The reference vector associated with the winning PE is
the winning reference vector.

f
_ ~ l i f y j > y k for a l l j ¢ k

Yj

L 0 otherwise
(5.18)

Step 2
Adjust the winning Fy PE's weights. In competitive adaptation with winner-take-
all dynamics like those described earlier, there is only one set of weights adjusted:
those of the winning reference vector. The formula to adjust the winning reference
vector and no others is equation 5.19, where a(t) is a nonzero, decreasing function
of time. The result of this operation is the motion of the reference vector toward the
input vector. Over many presentations of the data vectors [on the order of O(n 3)
(Hertz et al. 1990)], the reference vectors will become the centroids of data clusters
(Kohonen 1986).

W new - - w old j, ji + a(t)yj(aki - wji) (5.19)

There have been several variations of this algorithm (cf. Simpson 1990), but one
of the most important is the "conscience" mechanism (DeSieno 1988). By adding
a conscience to each Fy PE, it is only allowed to become a winner if it has won
equiprobably. The equiprobable winning constraint improves both the quality of
solution and the training time. Neural networks that employ competitive adaptation
include learning vector quantization (Kohonen 1988), self-organizing feature maps
(Kohonen 1988), adaptive resonance theory I (Carpenter and Grossberg 1987a), and
adaptive resonance theory II (Carpenter and Grossberg 1987b). Implementations in
the next chapter are devoted to the learning vector quantization paradigm, which
includes a conscience mechanism, and to the self-organizing feature map.

Multilayer Error Correction Adaptation
Error correction adaptation (also called error correction learning) adjusts the con-
nection weights between PEs in proportion to the difference between the desired
and computed values of each output layer PE. Two-layer error correction adaptation
is limited to capturing linear mappings between input and output patterns. Multi-
layer (> 2 layers) error correction adaptation is able to capture nonlinear mappings
between the inputs and outputs.

A problem that once plagued error correction adaptation was its inability to
extend adaptation beyond a two-layer network. Because it remained a two-layer
adaptation rule, only linear mappings could be acquired. There were several attempts

Chapter Five--Neural Network Concepts and Paradigms

to extend the two-layer error correction adaptation algorithm to multiple layers, but
the same problem kept arising: For how much of an output-layer PE error is each
hidden-layer PE responsible? Using the three-layer neural network in Figure 5.10 to
illustrate, the problem of multilayer adaptation (in this case, three-layer adaptation)
is calculating the amount of error each hidden-layer PE, yj, should be assigned for
an output-layer PE's error. Note that the output layer of PEs has activation values
Zl, z 2 , . . . , zq, and that the weight matrix from the input layer to the hidden layer is
denoted V.

This problem, called the credit assignment problem (Barto 1984; Minsky 1961),
was solved through the realization that a continuously differentiable activation func-
tion for the hidden-layer PEs would allow the chain rule of partial differentiation to
be used to calculate weight changes for any weight in the network. Using the three-
layer network in Figure 5.10 to illustrate the multilayer error correction adaptation
algorithm, the output error across all the Fz PEs and for all m input patterns is found
using the cost (error) function of equation 5.20.

m q

o.5 T_., ,T_., (b,J- ",J)
k = l j = l

(5.20)

(bkl, bk2, bk3 bkn) = Bk

o o o

. . . 7.q Fz

W

Fy

ft

V

fr

Fx

(ak l , ak2, ak3 akn) -- A k

Figure 5.10 A network illustrating multilayer error correction adaptation.

Neural Network Adaptation

The output of an Fz PE for one pattern k, Zkj, is computed using equation 5.21,
and the output of each Fy (hidden-layer) PE for one pattern, Yki, is computed using
equation 5.22. The output layer thus comprises linear PEs, andft(rkj) is a linear func-
tion. Since the hidden PE functions are nonlinear, f~(rki) is a nonlinear function.
Note that the subscript h is used for the input PE layer x. Since the input layer serves
as just a pass-through layer, aki = Xkh. Also note from Figure 5.10 that there are p
hidden PEs and q output PEs.

P P

Zkj -- ~ YkiWji -- f l (rkj) , where rkj = ~ YkiWji

i=1 i=1

(5.21)

h-1

where rki "- ~ akhVih (5.22)
h=l

The hidden-layer PE activation function is defined in equation 5.23. The hidden PE
activation function is thus the sigmoid function, which is nonlinear, and f,,(rki) is a
nonlinear function.

1
fn(rki) = 1 + e -rki (5.23)

The weight adjustments are performed by moving along the cost function in the
opposite direction of the gradient to a minimum (where the minimum is considered
to be the input-output mapping producing the smallest amount of total error). The
connection weights between the Fy and Fz PEs are adjusted using the chain rule of
partial differentiation, yielding equations 5.24(a) and (b).

OEkj OEkj OZkj
= (5 . 2 4 a)

Owj~ OZkj Owj~

OEkj

c)wji]
~ i=1

= -(bkj - Z k j) Y k i (5.24b)

= --6kjYki

Next, the adjustments to the connection weights v between the input Fx and
hidden Fy PEs are calculated using the chain rule of partial differentiation. We define

Chapter Five--Neural Network Concepts and Paradigms

the error assigned to a hidden PE as t~ki ~ --aEk / t'ki, where t'ki is the net input to the
hidden PE, thus yielding equation 5.25.

f)Ek c)Ek c)rki
"- = --6kiakh (5.25)

OVih Orki OVih

The key is how to compute the C)ki 'S for the hidden PEs. From equation 5.22, we see
that C)Yki / c)rki -- fn'(rki), or the derivative of the sigmoid activation function of the
hidden PE. We now apply the chain rule again, as shown in equations 5.26(a) and
(b), to arrive at a value for 6ki in equation 5.26(c).

aEk OEk C)Yki c)Ek fn '(rki) (5.26a) 8ki = = = - - ~
c)t'ki C)Yki Ot'ki C)Yki"

but) Oyki = ~-~ ~rkj ~ = ~rkj O;ki YkiWji "- -- ~ 6kjWji (5.26b)
j . . j

therefore Ski = fi'(rki) ~_j 8kjWji (5.26C)
J

But it is straightforward to show that fn'(rki) = OYki/Orki = Yk i (1 --Yki) , so the
error assigned to a hidden PE is given in equation 5.27. The calculation of the error
assigned to an output PE with a sigmoid activation function is described in the later
section on back-propagation.

Ski = Yki (1 -- Yki) ~_~ ~kjWji (5.27)
J

The multilayer version of this algorithm is commonly referred to as the
back-propagation of errors adaptation rule, or simply back-propagation. Using the
chain rule, it is possible to calculate weight changes for an arbitrary number of lay-
ers. The number of iterations that must be performed for each pattern in the dataset
is generally large, making this off-line adaptation algorithm relatively slow to train.

Although the cost function is computed with respect to only a single pattern for
the single weight, it has been shown (Widrow and Hoff 1960) that the motion in the
opposite direction of the error gradient for each pattern, when taken in aggregate,
acts as a noisy gradient motion that still achieves the proper end result. Therefore,
OEj / OWji = ~_~k(OEkj / OWji), which applies to one weight attached to one output PE,
and the total error for an output PE is Ej = ~ k Ekj. Analogous equations apply to
hidden PEs.

Using equations 5.24(b) and 5.25, with the preceding relationships, the weight
adjustment equations are given by equations 5.28 and 5.29, where a and p are

Neural Network Adaptation

positive, constant-valued adaptation rates that regulate the amount of adjustments
made with each gradient move. In practice, a and p are usually identical and are set
equal to an adaptation rate r/that is uniform for all weight layers.

OE ld E ~..ew ._ wold _ a = Wj ° -[- tt tSkjYki (5.28)
P] l t)Wji

k

vl~"ewih = v°ldih OVihOE = v°ldih E -- fl + fl tSkiakh (5.29)
k

The back-propagation algorithm was introduced by Werbos (1974) and later
independently rediscovered by Parker (1982) and Rumelhart, Hinton, and Williams
(1986). The algorithm explanation presented here has been brief. There are several
variations on the algorithm (cfl Simpson 1990), including alternative multilayer
topologies, methods of improving the training time, methods for optimizing the
number ofhidden layers and the number ofhidden-layer PEs in each hidden layer, and
many more. Although many issues remain unresolved with the back-propagation of
errors adaptation procedure, such as the proper number of training parameters, the
existence of local minima during training, the relatively long training time, and the
optimal number and configuration ofhidden-layer PEs, the ability of this adaptation
method to automatically capture nonlinear mappings remains a significant strength.

Summary of Adaptation Procedures
We have described two main classes of neural network adaptation algorithms: com-
petitive adaptation and multilayer error correction adaptation (back-propagation).
Nowwe briefly examine five attributes of these algorithms. This information is meant
as a guide and is not intended to be a precise description of the qualities of each
neural network.

Training time. How long does it take the adaptation algorithm to adequately
capture information? Neither of the algorithms is fast. Competitive adaptation
is usually described as slow and back-propagation as very slow.

Off-line~on-line. Competitive adaptation can be used either off-line or on-line;
back-propagation is strictly an off-line algorithm.

Supervised~unsupervised. Back-propagation is a supervised adaptation procedure;
competitive adaptation is unsupervised.

Linear~nonlinear. Back-propagation is capable of capturing nonlinear mappings;
competitive adaptation is limited to linear mappings.

Chapter FivemNeural Network Concepts and Paradigms

Storage capacity. Competitive adaptation is capable of fairly high information
storage capacity relative to the number of weights in the network; back-
propagation has a very high capacity.

Comparing Neural Networks and Other Information
Processing Methods

Several information processing techniques have capabilities similar to the neural net-
work adaptation algorithms described earlier. Despite the possibility of comparable
solutions to a given problem, several additional aspects of a neural network solution
are appealing, including fault tolerance through the large number of connections,
parallel implementations that allow fast processing, and on-line adaptation that
allows the networks to constantly change according to the needs of the environ-
ment. The following sections briefly describe some alternative methods of pattern
recognition, clustering, control, and statistical analysis.

Stochastic Approximation
The method of stochastic approximation was first introduced by Robbins and Monro
(1951) as a method for finding a mapping between inputs and outputs when the
inputs and outputs are extremely noisy (i.e., they are stochastic variables). The
stochastic approximation technique has been shown to be identical to the two-layer
error correction algorithm (Kohonen 1988) and the multilayer error correction
algorithm (White 1989) presented in previous sections.

Kalman Filters
A Kalman filter is a technique for estimating, or predicting, the next state of a
system based on a moving average of measurements driven by additive white noise.
The Kalman filter requires a model of the relationship between the inputs and the
outputs to provide feedback that allows the system to continuously perform its
estimation. Kalman filters are used primarily for control systems. Singhal and Wu
(1989) have developed a method using a Kalman filter to train the weights of a
multilayer neural network. Ruck and colleagues (1992) have shown that the back-
propagation algorithm is a special case of the extended Kalman filter algorithm and
have provided several comparative examples of the two training algorithms on a
variety of datasets.

Linear and Nonlinear Regression
Linear regression is a technique for fitting a line to a set of data points such that the
total distance between the line and the data points is minimized. This technique,

Comparing Neural Networks and Other Information Processing Methods

used widely in statistics (Spiegel 1975), is similar to the two-layer error correction
adaptation algorithm described previously.

Nonlinear regression is a technique for fitting curves (nonlinear surfaces) to
data points. White (1990) points out that the activation function used in many
error correction adaptation algorithms is a family of curves, and the adjustment of
weights that minimizes the overall mean-squared error is equivalent to curve fitting.
In this sense, the back-propagation algorithm described earlier is an example of an
automatic nonlinear regression technique.

Correlation
Correlation is a method of comparing two patterns. One pattern is the template and
the other is the input. The correlation between the two patterns is the dot-product.
Correlation is used extensively in pattern recognition (Young and Fu 1986) and
signal processing (Elliot 1987). In pattern recognition the templates and inputs are
normalized, allowing the dot-product operation to provide similarities based on the
angles between vectors. In signal processing, the correlation procedure is often used
for comparing templates with a time series to determine when a specific sequence
occurs (this technique is co mmo nly referred to as cross-co rrelatio n o r matched filters).
The Hebbian adaptation techniques described earlier are correlation routines that
store correlations in a matrix and compare the stored correlations with the input
pattern using inner products.

Bayes Classification
The purpose of pattern classification is to determine to which class a given pattern
belongs. If the class boundaries are not cleanly separated and tend to overlap, the
classification system must find the boundary between the classes that minimizes
the average misclassification (error). The smallest possible error (theoretically) is
referred to as the Bayes error, and a classifier that provides the Bayes error is called a
Bayes classifier (Fukunuga 1986). Two methods are often used for designing Bayes
classifiers: the Parzen approach and k-nearest-neighbors. The Parzen approach uses
a uniform kernel (typically the Gaussian function) to approximate the probability
density function of the data. A neural network implementation of this approach is the
probabilistic neural network mentioned previously (Specht 1990). The k-nearest-
neighbors approach uses k vectors to approximate the underlying distribution of
the data. The learning vector quantization network (Kohonen 1988) is similar to the
k-nearest-neighbor approach.

Vector Quantization
The purpose ofvector quantization is to produce a code from an n-dimensional input
pattern. The code is passed across a channel and then used to reconstruct the original

Chapter FivemNeural Network Concepts and Paradigms

input with a minimum amount of distortion. Several techniques have been proposed
to perform vector quantization (Gray 1984), with one of the most successful being
the LBG algorithm (Linde et al. 1980). The learning vector quantization algorithm
described earlier in this chapter is a method of developing a set of reference vectors
from a dataset and is quite similar to the LBG algorithm. A comparison of these
two techniques can be found in Ahalt et al. (1990).

Radial Basis Functions
A radial basis function is a function that is symmetric about a given mean (e.g.,
a Gaussian function). In pattern classification, a radial basis function is used in
conjunction with a set of n-dimensional reference vectors, where each reference
vector has a radial basis function that constrains its response. An input pattern is
processed through the basis functions to produce an output response. The mean-
variance connection topologies that employ the back-propagation algorithm (Lee
and Kil 1989; Robinson et al. 1988) are methods of automatically producing the
proper sets of basis functions (by adjustment of the variances) and their placement
(by adjustment of their means).

Computational Intelligence
Neural networks are not the only method of adaptation that has been proposed for
machines (although they are probably the most biologically related). Examples of
other methods are evolutionary algorithms and fuzzy systems. Increasingly, engineers
and computer scientists implementing applications are finding it useful to combine
two or more of these machine adaptation techniques into an effective solution. This
hybrid approach, which usually includes knowledge elements, has evolved into the
field of computational intelligence, which is the focus of this book.

Preprocessing
In this section we describe the most important considerations in selecting and
preparing data for training neural networks. Many of these considerations are also
valid for other computational approaches.

Before data can be processed in a neural network, it must be prepared, using
data editing tools and methods of data transfer, to get the data into the network.
Generally, training sets, test sets, and validation sets must be selected from the
available application data or obtained during a data gathering phase. Once a neural
network has been trained, tested, and validated, it is put into production to process
live data or to recall data directly from the application. Throughout the lifetime of

Preprocessing (~ : ~

the project, it is normally necessary to revisit the training and validation phases to
ensure continued correct performance of the neural network. Proper selection and
maintenance of the training and test sets are therefore an ongoing concern.

The training set data is almost never in a form that can be accepted directly by
the neural network, and some form of normalization, scaling, or transformation
must be done first.

Selecting Training, Test, and Validation Datasets
Selection and preparation of the training datasets, as well as the test and validation
datasets, are crucial steps in successfully completing and deploying a project. If the
datasets are selected or prepared improperly, the network will usually fail to train
correctly or it might yield disappointing results during testing and production.

We first consider training datasets. All neural networks must be trained, tested,
and validated before they can be reliably used to recall information. Neural networks
that require off-line adaptation absolutely must be trained before they can be used;
otherwise, they will be incapable of producing any results at all. At least a minimum
level of training has to be completed first. Even neural networks employing on-line
adaptation require preliminary training and test phases to validate their performance.

A neural net is trained with a training dataset, consisting of typical samples
and patterns from the application data. The training set should be sufficiently
representative of the patterns that the network is expected to encounter, once deployed
in the application environment. The objective is to present sufficient examples of the
application data so that the net adapts to recognize important features and also to
generalize. Training patterns should cover the intended application data hyperspace
reasonably well and especially should include patterns close to decision boundaries
of the hyperspace. This will allow the net to be able to distinguish different pattern
classes, even in cases where some samples fall close to the decision boundaries. If
gross areas of the total data hyperspace are left out of the training set, the net is
unlikely to recognize patterns that fall into those areas when put into production.

We now look at test datasets. The performance of a neural network is measured
and evaluated using a test dataset, consisting of samples or patterns obtained using
the procedures outlined for constructing the training set. The test set should be
distinct from the training set; otherwise, testing will not reveal the true nature of
the net's adaptation and generalization ability.

The normal procedure is to assemble and prepare a large dataset and then split
it into training, test, and validation sets. Patterns can be selected randomly for each
set; however, it is important that the training set be composed of samples that cover
the range of expected patterns, as outlined earlier.

Once the training set has been composed, remaining patterns can be selected
and placed in the test set and the validation set. The purpose of the test set is to
evaluate net performance and determine how well the trained net is expected to

Chapter FivemNeural Network Concepts and Paradigms

perform in the production environment. Sometimes, when more training variety is
sought, the training and test sets can be exchanged. That is, the original training set
takes on the role of test set, while the original test set takes on the role of training
set. For the training and test sets to be exchangeable in this way, it is necessary that
both meet the criteria for selection of samples, described earlier. Each set should
be similarly composed of representative samples from each class of data. Test sets
generally should reflect the probability distribution of patterns expected in the
running environment if it is known.

Once a neural network has been trained and tested, the performance is validated
against an independent validat ion dataset, consisting of unused samples or patterns
from the application data. The validation set should be distinct from, and independent
of, both the training and test sets. It is important not to influence the method of
training and testing through the use of the validation set (Masters 1993). Validation
can also be used to determine when to stop training (when the error for the validation
data hits a minimum) and/or to prune PEs from a network (Reed 1993).

The neural network, once trained and validated, can be used on-line to process
real-time (live) patterns (real-time datasets) directly from the application environ-
ment. This processing primarily involves the multiplication of the input vectors by
network weight vectors, which can often (usually) be done in real time, given the
speed of today's microprocessors.

Preparing Data
The characteristics of the data determine how the neural net is structured and how
data is presented to it. The data also needs to be compatible with the neural net, in
terms of number of parameters (elements) and dynamic range.

Many neural nets and other computational intelligence tools require data to be
scaled before it is presented. The raw data values are scaled so that they fall into
a defined range acceptable to the neural network. Often, this will be the range
0 to 1 or, alternatively, -1 to + 1. Scaling consists of applying a scale factor and
an offset to each raw value. The scale factor and offset should be chosen such that
they are applicable to training, test and validation sets, and live datasets. The factors
should be the same in all cases so that data elements are not clipped and do not
lose significant digits. This can occur if, for example, some large samples occur in
one of the datasets and nowhere else. Equation 5.30 suggests a method for scaling
a dataset.

(Aki - Akmin)(Hi- Lo)
A' - + Lo (5.30)

ki (Akmax - Akmin)

Here, A' is the ith element of the scaled input data vector; Aki is the ith element of ki
the raw data vector; Akmin is the minimum raw data value; Akmax is the maximum

Preprocessing Q ~ : @

raw data value; (Akmax - - A k m i n) is the divisor, normalizing the raw input vector to
the range 0-1; Hi is the highest desired input value; Lo is the lowest desired input
value, defining the minimum value to be presented to the neural net; and (Hi - Lo)
is the scale factor, mapping the raw data into the desired input range. For example,
to scale raw data patterns in the range 0 to 1, set Hi = 1, and Lo = 0. To scale raw
data patterns in the range -1 to + 1, set Hi = 1, and Lo = -1 .

Other neural networks, such as the LVQ-I network presented in the next chapter,
require n-dimensional vector representations of the data rather than groups of inde-
pendent values. The networks view the data as vectors in n-dimensional hyperspace.
The data is normalized to unit length vectors, using equation 5.31.

Aki (5.31) A t -

ki - V/~ (Aki)2

Here, A' is the ith element of the normalized input vector, Aki is the ith element ki
of the raw data vector, and (~ A 2 1/2 ki) is the length of the raw data vector. Dividing
each element by the length of the original raw input vector gives a normalized
vector of unit length, which is input to the network. A similar normalization step
is often employed for weight vectors during training to ensure that they are also
normalized. This is necessary for the Euclidean distance measure, which is used to
determine the winner, to be valid. See Chapter 6 for more details on this aspect of
normalization.

Normalization as described above, which is used to prepare data for presentation
to the LVQ-I network, has its drawbacks. It requires that the length of input vectors be
the same for all training and testing patterns, and therefore it loses information about
the absolute magnitude of the parameters. Only relative magnitudes are retained.
For example, the four-dimensional input vectors -1 , 1, 2, 3 and -5 , 5, 10, 15 will
each be normalized to identical input vectors.

Z-axis normalization is an approach to solve this problem. Prior to carrying out
z-axis normalization, each parameter must be scaled. For purposes of this discussion,
assume each is individually scaled to the range [-1, 1]. This means, of course, that
the minimum value for each parameter in the dataset is -1 and the maximum
value for each parameter is 1. The Euclidean length L of the scaled input vector is

L - (zin__l A 2 1/2 ki) , where Aki is the scaled input vector. Since each component is
limited to a maximum absolute value of 1, the maximum Euclidean length for an
n-dimensional vector is v/-n.

Z-axis normalization is similar to creating another dimension in the input data
(Masters 1993). In the process, an additional input parameter, called a synthetic
parameter, is created. The value of the synthetic parameter for each pattern is a
function of the input parameters for that pattern.

Chapter FivemNeural Network Concepts and Paradigms

The total length of the input vector with the synthetic parameter must, of course,
still be 1. The z-axis normalization process is described by equations 5.32(a) and
(b), where s is the synthetic variable.

, Aki
Aki = x/n (5.32a)

~/ L2
s = 1 (5 . 3 2 b)

/1

Note that the absolute magnitude information regarding each parameter is
preserved. Also note that the synthetic parameter becomes an additional input
to the network, so that there are now n + 1 inputs instead of n.

To see how z-axis normalization works, consider a simple case where there are two
(already scaled) four-dimensional input patterns: -1, 1, -1, 1 and -0.6, 0.6, -0.6,
0.6. They would, of course, normalize to identical input vectors using the method
outlined in the previous section. Using z-axis normalization, the first pattern trans-
forms into the input vector -0.5, 0.5, -0.5, 0.5, 0, where 0 is the value ofthe synthetic
parameter. The second pattern (L - 1.2) transforms into -0.3, 0.3, -0.3, 0.3, 0.8,
where s = 0.8.

The only cases where z-axis normalization is counterproductive are those in which
a vast majority of individual parameter values stay at or near 0 for most patterns.
In these cases, the synthetic parameter will consistently be the most significant
component of the input vector. For many applications, however, including the
preparation of inputs for the LVQ network, z-axis normalization can be beneficial.

The presentation of patterns is an important issue. The order in which patterns
are presented to the network should be considered during the design and training
phase of implementation. Patterns are presented to the network during training
from the training sets constructed by the researcher or directly from the application
environment, for recall. In the case of training, it is usually possible for the developer
or researcher to control the order of presentation to optimize adaptation. However,
in the case of recall, the order of presentation is usually controlled outside the neural
network implementation and determined by the application environment.

During training, presentation order can dramatically affect the way adaptation
is accomplished. If patterns are presented sequentially in the order they happen to
occur in the training set, the network may be biased by the occurrence of samples
early in the training set. This may prevent the net from being able to recognize subtle
differences in later samples. Therefore, it is necessary to select patterns randomly
from the training set, especially for networks employing on-line adaptation (that is,
weight adaptation after every pattern presentation). For batch (off-line) adaptation,
in which weights are adapted only at the end of each epoch, presentation order is not

Postprocessing (~ , : : ~

likely to have an effect. Another approach sometimes used is the shuffling of the data
after each epoch (as opposed to random selection). The results of different training
runs, each with randomly or sequentially selected patterns, should be compared for
the effect of presentation order on the outcome of training.

Another important consideration in preparing data for training a neural network
is the addition of noise to perturb the data. By adding noise (jitter) to the data, the
result is a convolutional smoothing ofthe target (Reed, Marks, and Oh 1995). This is
a technique that may be helpful when only a relatively small number of patterns are
available for training the network; additional patterns may be generated by adding
noise to existing patterns.

Postprocessing

This section describes the most common technique encountered in postprocessing the
outputs of neural networks and other computational approaches: denormalization.
Much ofpostprocessing is covered bythe topics discussed in Chapter 10, Performance
Metrics. This section concentrates on some of the basic concerns for obtaining the
outputs in a usable form.

Denormalization of Output Data
Denormalization produces real-world output data from the internal form of the
network or other computational tool. Denormalization is the reverse of the nor-
malization procedure described earlier. The network typically produces output
values in a limited range defined by the logistic or other activation function. These
values bear little resemblance to the real-world values of the application environ-
ment, and steps should be taken to denormalize the data back to the original data
domain. This procedure, suggested by equation 5.33, is analogous to that given in
equation 5.30.

C' (Cki - Lo) (Ckmax - - Ckmin)
ki - - (H i - Lo) + Ckmin (5.33)

Here, C' is the ith element of the real output vector; Cki is the ith element of the raw ki
net output vector; Lo is the minimum network activation value; Hi is the maximum
network activation value; (Hi - Lo) is the divisor, normalizing the raw net output
vector to the range 0-1; Ckmax is the upper limit of the output domain; Ckmin is the
lower limit of the output domain; and (Ckmax - C k m i n) is the scale factor, mapping
the net output into the desired output domain.

Chapter FivenNeural Network Concepts and Paradigms

Summary

In this chapter we review the history ofneural networks, discuss fundamental network
elements and topology, and describe some of the main adaptation methodologies.
We also describe data preprocessing and postprocessing approaches that should
help you present input data to neural networks and obtain required results. And we
compare neural network approaches and other information processing approaches.

The next chapter presents detailed implementation information for three neural
network paradigms: learning vector quantization, self-organizing feature maps, and
back-propagation. You will be able to apply the concepts discussed in this chapter.

Exercises .

1. In a single-layer neural network with n processing elements (PEs), how many
unique weights are possible if the only restriction is that no self-feedback
connections are allowed? How many are possible if it is also specified that
weights are symmetric, that is, wji = wij?

2. Show that a hidden layer doesn't change (improve) network performance if all
PEs (hidden and output) have linear activation functions.

3. The sigmoid activation function is 1/(1 + e-input). Derive the first derivative of
this function.

4. If one hidden layer of sigmoidal PEs can approximate any nonlinear function,
why might we decide to use more than one?

5. What are the differences among supervised adaptation, unsupervised adaptation,
and reinforcement adaptation?

6. Review White (1989). Summarize the reasoning behind the proof that one
hidden layer is sufficient to approximate virtually any nonlinear function.

7. Prove the convergence of the binary Hopfield network.

8. Derive a back-propagation (BP) adaptation algorithm for a four-layer BP neural
network. Assume the activation function of the hidden PEs is a sigmoid
function as expressed by equation 5.23. The activation function of the output
PEs is a linear function as expressed by equation 5.8 with a = 1.

9. Assume we want to scale inputs to [-1, 1] for z-axis normalization. One of the
input parameters varies over all the patterns from -4.2 to + 10.0. How would
you scale this input? Why?

chapter
SIx

Neural Netwo rk Imple mentations

This chapter presents four neural network
implementations: back-propagation neu-
ral networks, the learning vector quan-
tizer, Kohonen's self-organizing feature
map networks, and evolutionary multilayer
perceptron neural networks. Executable
code and source code for each implemen-
tation, together with other useful utilities,
are available on the book's web site.

The source code is particularly useful for
studying the implementation details of the
neural network paradigms and if you wish
to make changes to the code for your appli-
cations.

The source code is written in C and
is being distributed as shareware. You are
welcome to use it for classroom or per-
sonal learning in conjunction with the text-
book at no cost. If you use it, either as
is or with modification, for a project out-
side of your classroom (or learning on
your own), please submit a payment in
accordance with the shareware payment

instructions on the Internet site for the
book.

The backpropagation source code for
the neural network implementation is writ-
ten to support the implementation of
one or more hidden layers. The num-
ber of hidden layers and the number of
PEs in each layer can be specified in the
run file. The classification of Iris data is
included as a benchmark problem to be
solved.

The Iris dataset is a set of feature mea-
surements for iris flowers popularized by
Anderson (1935). It consists of 150 four-
dimensional vectors representing 50 plants
of each of three species: Iris sectosa, Iris
versicolor, and Iris virginica:

x i = 0(i.1, xi2, xi3,)(i.4), i = 1 ,150
where x;1 is the sepal length, x;2 is the sepal
width, xi3 is the petal length, and)(,.4 is
the petal width (Anderson 1935). All the
attribute values have been scaled into real
numbers in the range [0,1]. The problem

197

Chapter Six--Neural Network Implementations

here is to discriminate the species according to the feature vectors. This is a
well-known three-class classification problem. Three of the 150 four-dimensional
vectors are listed here as examples:

0.637500 0.437500 0.175000 0.025000 1 0 0

0.875000 0.400000 0.587500 0.175000 0 1 0

0.787500 0.412500 0.750000 0.312500 0 0 1

In each row, the first four elements correspond to the sepal length, sepal width,
petal length, and petal width; the last three columns correspond to the three
species, Iris sectosa, Iris versicolor, and Iris virginica, respectively. Value 0 means
the feature vector doesn't belong to this class and value 1 means it does.

The back-propagation neural network is an example of supervised neural net-
works; the learning vector quantizer is implemented as an example of unsuper-
vised neural networks.

The learning vector quantizer (LVQ), sometimes referred to as a Kohonen net-
work, is probably second only to back-propagation in the number of applications
for which it is being used. Kohonen networks (of which LVQ and self-organizing
feature maps are examples) were originally described by Teuvo Kohonen of the
Helsinki University of Technology in Finland.

Several versions of LVQ exist. The LVQ implementation included with this book
and described in this chapter is discussed in the 1988 edition of Kohonen's book
on self-organization and associative memory (Kohonen 1988). A good additional
source is the tutorial given at the 1989 International Joint Conference on Neural
Networks (Kohonen 1989). The book and tutorial also describe other versions
of LVQ, as well as Kohonen's self-organizing feature map. Henceforth, the LVQ
implementation presented in this book is referred to as LVQ-I. Another algorithm,
LVQ-II, is briefly discussed later. The Roman numerals I and II are not synonymous
with Kohonen's designations LVQ1 and LVQ2.

The LVQ-I and self-organizing feature map paradigms are more biologically ori-
ented than the back-propagation model. One indication of this is that both net-
works learn without supervision. This roughly resembles learning in the neural cells
of the brain in that nobody applies electronic stimuli to brain neurons to train them
to, say, learn to walk or to speak. The self-organizing feature map--an extension
of LVQ-I, described by Kohonen~bears some rough resemblance to the way areas
of the brain are organized. []

Implementation Issues

This section discusses issues related to implementing neural networks on personal
computers. The implementation issues are explained step by step, with detailed
equations and explanations along the way. Some implementation issues, such as
topology, are relevant to a variety of networks. Others are specific to a network type.

Implementation Issues

We describe the topologies of the neural network paradigms first. Then we
described the ways input is presented to a neural network implementation. We
also introduce normalization techniques and options.

We present equations describing the network training and operation. These
equations are divided into two main categories: feedforward calculations and adap-
tation calculations.

Finally, we describe issues related to evolutionary neural networks.

Topology
All four of the neural networks implemented are layered networks. The back-
propagation neural networks have more than two layers (at least one hidden layer),
and the Kohonen networks have only two layers (no hidden layers).

The back-propagation network is described in terms of the architecture of the
implementation. The term architecture, as applied to neural networks, has been used
in different ways by various authors. Often its meaning has been taken to be basically
equivalent to topology, that is, the pattern of PEs and interconnections, together with
other attributes such as direction of data flow and PE activation functions.

We use the term architecture in this volume to mean the specifications sufficient
for a neural network developer to build, train, test, and operate the network. The
architecture is therefore not related to the details of the implementation but rather
provides the complete specifications needed by someone for implementation.

A simple, three-layer back-propagation network is illustrated in Figure 6.1. This
represents the network in detail, with each PE represented by a circle and each inter-
connection, with its associated weight, by an arrow. The PEs with the letter "b" inside
are bias PEs.

We describe each network element a bit later. We also discuss the operation and
training of the back-propagation network of Figure 6.1, with a description of what
happens at each step. But first, we turn to presenting input to the network.

The LVQ-I and self-organizing feature map networks consist of a two-layer feed-
forward topology, where the input layer is fully connected to the output layer, as
shown in Figure 6.2. The input PEs simply distribute the inputs to the output layer;
the output PEs have linear activation functions.

Back-propagation Network Initialization and Normalization
Each neural network must be initialized first and the input data needs to be pre-
processed. Different networks have different requirements for network initialization
and input data preprocessing.

We first consider the back-propagation neural network. The left side of Figure 6.1
shows inputs to the input layer of the network, to a layer of PEs. The set of n inputs
is presented to the network simultaneously. (However, when implemented on a Von
Neumann computer, the network must process the data serially.)

Chapter Six--Neural Network Implementations

C o n nection C on nectio n
Weights Weights

Input1 Output1

Input2 Output 2

Inputn Outputq

Input Hidden Output
Layer Layer Layer

Figure 6.1 The back-propagation network structure.

(ak~,
T

ak2,

A

° ° .

~ /3 "'" Fy

> w

Fx

ak3 akn) = A k

Figure 6.2 An LVQ-I Kohonen network topology.

These inputs may be a set of raw data, or a set of parameters, or whatever has
been chosen to represent one single pattern of some kind. The way n, the number of
inputs, is chosen depends on the kind of problem being solved and the way the data
are represented.

To deal with a relatively small segment of a sampled raw voltage waveform, for
example, one input PE may be assigned to each sampled value. On the other hand,

Implementation Issues

to deal with a relatively large video image, a value averaged over several pixels may
be presented to each PE. Another approach is to present calculated parameters to
the input PE field.

Beware of the urge to "mix and match" input data in an attempt to reduce the
number of input PEs. For example, generally resist the urge to combine parameters
somehow before presentation to a PE. It will be a more efficient use of your and your
computer's time if the network takes a little longer to train successfully than if it fails
to train at all.

For the back-propagation implementation, each input can take on any real value
between 0 and 1. That is, the input values are continuous and scaled between the
values of 0 and 1. The fact that continuous-valued inputs can be used adds significant
flexibility to the implementation.

Does the scaling between 0 and 1 constrain us in a significant way? Usually not.
Whenever we deal with a computer system that is receiving input, we are limited by
the size of numbers that can be processed.

As long as the resolution of the input data is not lost in the scaling process, the
system will be able to get reasonable results. In the standard implementation ofback-
propagation, floating-point variables are used, called float in C. This type of variable
is 32 bits long, using 24 bits for the value and 8 bits for the exponent. There is there-
fore a resolution of about one part in 16 million, or seven decimal places. So, if your
data has seven or fewer significant digits, you'll be okay. Input data from a 16-bit
analog-to-digital (A/D) converter requires a little less than five digits of resolution.
Many applications seem to require only three to five digits of resolution.

Another approach is to use double-precision variables, which extend the reso-
lution of computations considerably. This approach exacts a cost in performance
as well as memory space. It is feasible to adopt this approach, however, given the
gigahertz speed of personal computers and the gigabyte-sized RAMs available.

Scaling input patterns can actually provide a tool for preprocessing data in dif-
ferent way. The data can be scaled by considering all of the n inputs together, scaling
each input channel separately, or scaling groups of channels in some way that makes
sense. (Input channel means the stream of inputs to one input PE.) In some cases,
the way chosen to scale inputs can affect the performance of the implementation, so
this is one place to try different approaches.

If the input consists of raw data points, all channels are typically scaled together.
If the input consists of calculated parameters, each channel may be scaled separately,
or groups of channels representing similar parameters may be scaled together. For
example, if input patterns consist of parameters that represent amplitudes and time
intervals, then the amplitude channels might be scaled as a group and the time chan-
nels as a group.

Please note that so far we have talked only about scaling between values of 0
and 1. This is the most common type of scaling. However, for supervised adaptation,
the scaling as well as the target values for network outputs are tied to the activation

Chapter Six--Neural Network Implementations

functions used in the network. Values of 0 and 1 are commonly used with a linear
activation function. We often will scale from 0 to 1, and have output target values of
0 and 1, when the sigmoid function is used, but sometimes we will use values of 0.1
and 0.9 with this activation function. Often, we scale from -1 to 1, and use these as
target values, when our network PEs have hyperbolic tangent activation functions.

This concludes our look at initialization and normalization for the back-
propagation neural network.

Learning Vector Quantizer Network Initialization
and Normalization
We now examine initialization and normalization for the learning vector quantizer
neural network. At the bottom of Figure 6.2, a set of n inputs comes into the input
layer of the network. The inputs are presented simultaneously, but bear in mind
that most personal computer implementations simulate this network algorithm by
processing the inputs serially.

The number of input processing elements selected depends, as in the case of the
back-propagation network, on the problem to be solved. There is, however, a differ-
ent emphasis than in back-propagation on how to think about the input and choose
the number of input processing elements. It is more common to use "raw" data than
precalculated parameters as inputs to the LVQ-I model. This is because one of the
main accomplishments of LVQ-I is to cluster input data patterns into quasi-classes,
thus reducing the dimensionality of the data. In other words, the LVQ-I model auto-
matically parameterizes the data.

Another reason it is less common to use precalculated parameters is that most
researchers working with LVQ-I normalize each input vector. With back-
propagation, each individual input vector component is constrained to the range 0
to 1, without limiting the magnitude of the input vector, the square root of the sum
of the squares of each input component.

For input to the LVQ-I network, parameterized inputs can be distorted by
normalization in unpredictable ways. Carefully calculated parameters, perhaps
"normalized" by constraining their values to lie between 0 and 1, can have their
values changed in unforeseen ways during an input vector normalization process.

Several neural network researchers suggest that in some applications, input
vectors do not necessarily have to be normalized. It is sometimes a good idea
to try training with and without normalization and select the better method.
Others argue that if input vectors are not normalized, then the Euclidean distance
calculation cannot be used to select the "winning" processing element (Caudill
1989a).

There is general agreement on the need to initialize weight vectors by normaliza-
tion. What isn't necessarily clear is the best way to do it. Typically, random values are
first assigned to each weight. We might start with random values in the range 4-0.3.

Implementation Issues

Some implementations choose values in the range 0 to 1. Other implementations
generate initial weight vectors lying at random locations on the unit hypersphere.

The weight vector normalization procedure is done for all weights connected to a
given output processing element, from all input processing elements. The most logi-
cal way to do this would seem to be to set the square root of the sum of the squares of
the weights from all ofthe inputs to each output to the same value, presumably 1. The
reason we say "would seem" and "presumably" is that various examples of Kohonen
implementations have normalized weights in different ways.

Kohonen's ToPreM2 program uses a value of one-half times the sum of the
squares of the weights, called the "squared norm" of the weights. Caudill, on the
other hand, normalizes weight vectors in what appears to be a more logical way:
dividing each weight vector component by the square root of the sum of the squares
of all weight vector components (Caudill 1988). In this way, the total length of
each weight vector from all inputs to a given output is 1. If w'.. is the initial random

J*
weight generated in the interval from 0 to 1, then the normalized weight, wji, is
given by equation 6.1.

!
W . . jz

wji = (6.1)

~i=~lW'J i2
Perhaps a two-dimensional geometric example of the process of initial normali-

zation might make things clearer. In Figure 6.3(a), the circle has a radius of 1; it is
what we call a unit circle. We show four unit-length two-dimensional weight vectors,
W1 through w4, that have already been initialized randomly and normalized, perhaps
using Caudill's method. They all terminate on the unit circle.

Now consider two inputs, il and i2 that have the values (2.0, 1.0) and (-0.5, -0.5),
respectively. There are probably many more inputs, but we will consider just these
two so that the explanation is clearer. Now, when these two inputs are normalized,
they are modified so that they terminate on the unit circle, as shown in Figure 6.3(b).
Note that the angles made with the axes stay the same; all we do is adjust their length
to unit length.

Now we can see what we mean by "close to" in the sense of where the vectors
terminate on the unit circle. The tip of w 1 is the closest weight vector tip to the tip
of the normalized input il *, and the tip of w3 is closest to the tip of the normalized
input i2".

Feedforward Calculations for the Back-propagation Network
The feedforward calculations are used both in training (adaptation) operation mode
and in testing or recall operation mode of the trained network. The feedforward

Chapter SixmNeural Network Implementations

(a)

11

(b)

Figure 6.3 Weight vector and input vector initialization before (a) and after (b) input
vector normalization.

calculation of one neural network generally is different from that of another
network. We first consider the back-propagation network.

After the set of input patterns is scaled, what happens at the input layer? The
input PEs simply distribute the signal along multiple paths to the hidden-layer PEs.
The output of each input-layer PE is exactly equal to the input and is in the range
of 0 to 1. (Another way of looking at the input layer is that it performs scaling, even
though in most implementations this is done prior to presentation of the pattern to
the network.)

Note that a fully connected feedforward topology is used. That is, each PE of the
input layer is connected to every PE of the hidden layer. Likewise, each PE of the
hidden layer is connected to every PE of the output layer.

Also note that each connection weight, and all data flow, goes from left to right
in Figure 6.1. This is called a feedforward network. There are no feedback loops,
even from a PE to itself, in a feedforward network. Almost all back-propagation
implementations are feedforward.

For the remaining discussion on back-propagation networks in this chapter,
unless otherwise stated, we assume that a sigmoid activation function is being used.
Most back-propagation implementations today use the sigmoid function.

We present equations here that describe both the training (adaptation) and
testing or recall modes of a back-propagation implementation. They are presented
without derivations or proofs. This information can be found in Chapter 5, as well
as in Rumelhart and McClelland (1986), where much of it is in Chapter 8, which
focuses on internal representations.

Implementation Issues

The signal presented to a hidden layer PE in the network of Figure 6.1 due to one
single connection is just the output value of the input PE (the same as the input of
the input PE) times the value of the connection weight.

The activation of the ith Fy (hidden) PE for a given input pattern k as a function
of its input connections, is described in equation 6.2, where Xkh is the output of the
Fx layer, Vih the Fx to Fy connection, and fsig(') the sigmoid function, described in
Chapter 5. Note that h starts from 0, the bias PE.

h=0

(6.2)

The nonlinear nature of the sigmoid transfer function plays an important role
in the neural network's performance. Other functions can be used, as long as they
are continuous and possess a derivative at all points. Functions such as the trigono-
metric sine and the hyperbolic tangent have been used, but the exploration of other
transfer functions is beyond the scope of this book. For more information, refer to
Rumelhart and McClelland (1986) and McClelland and Rumelhart (1988). (Note
that the requirement that the function be continuously differentiable holds for the
back-propagation learning algorithm, but that PE activations with hard [step] non-
linearities can be trained using random search techniques, simulated annealing, or
evolutionary algorithms.)

The sigmoid (squashing) function can be viewed as performing a function simi-
lar to that of an analog electronic amplifier. The gain, or amplification, of the ampli-
fier is analogous to the slope of the line, or the ratio of the change in output for a
given change in input. The slope of the function (gain of the amplifier) is greatest
for total (net) inputs near 0. This serves to mitigate problems caused by noise and
by the possible dominating effects of large input signals.

Once the activations of all hidden-layer PEs have been calculated, the outputs
of the Fz layer are calculated in an analogous manner. The activation of the jth Fz
(output) PE as a function of its input connections is described in equation 6.3, where
Yki is the output of the Fy (hidden) layer, and wji the Fy to Fz connection weight.

0

(6.3)

This set of feedforward calculations, resulting in the output state of the network
(the set of activations of all output PEs), is carried out in exactly the same way
during the training phase as during the testing phase. The test operational mode
just involves presenting an input set to the input PEs and calculating the resulting
output state in one forward pass.

Chapter Six--Neural Network Implementations

Feedforward Calculations for the LVQ-I Net
As in the back-propagation neural network, the input PEs simply distribute the
signal along multiple paths to the output layer PEs. The Euclidean distance between
the input vector and the weight vectors associated with each output PE is first cal-
culated according to equation 6.4. The Euclidean distance is the square root of the
sum of the squares of the differences between each input vector component and its
associated weight vector component. Since relative magnitudes are what is impor-
tant, as is conserving computing time, square root calculations often are not done
in software implementations. The output PE with the minimum Euclidean distance
between the input vector and the weight vector associated with the output PE is the
winner and represents the cluster or class to which the input vector belongs.

dj= (aki wji
i=1

(6.4)

Back-propagation Supervised Adaptation
by Error Back-propagation
Adaptation calculations are applied only during training. Back-propagation is an
example of a supervised adaptation model, while LVQ-I is a prime example of unsu-
pervised adaptation. (LVQ-II is a supervised version of a Kohonen network.)

With supervised adaptation models, input patterns are presented with targets to
the network, the targets being the desired output values for each input pattern. With
unsupervised adaptation models, on the other hand, input patterns are presented
without targets. The network adapts from the input patterns alone. In this section,
we look at back-propagation supervised adaptation.

During the training phase, the feedforward output state calculation is combined
with backward error propagation and weight adjustment calculations that represent
the network's adaptation, or training. It is this adaptation process resulting from
the back-propagation of errors, and how it is implemented, that is the "secret to the
success" of the back-propagation implementation. Central to the concept of training
a network is the definition of network error. A measure of how well a network is
performing on the training set must be identified.

Rumelhart and McClelland (1986) define an error term that depends on the dif-
ference between the desired, or target, output value of an output PE, bkj, and its
actual value, Zkj. The error term is defined for a given pattern and summed over all
output PEs for that pattern.

Equation 6.5 presents the definition of the error. The subscript k denotes that the
value is for a given pattern. Note that the error calculation in the back-propagation
training algorithm generally is implemented PE by PE over the entire set (epoch) of

Implementation Issues

patterns, rather than on a pattern-by-pattern basis. The error is then summed over
all PEs, giving a grand total for all PEs and all patterns.

Then the grand total is divided by the number of patterns, to give an "average
sum-squared error" value. This makes sense because the number of patterns in our
training set can vary, and we want some sort of standardized value that allows us to
compare apples with apples, so to speak. And since the factor 0.5 is a constant, it is
often deleted from the calculations. (The 0.5 does, however, allow "neat" differentia-
tion that makes the math elsewhere easier. If not used, factors of two appear in other
terms.)

q
_)2

Ek = 0.5 (bkj Zkj
j = l

(6.5)

The goal of the adaptation process is to minimize this average sum-squared error
over all training patterns. Figuring out how to minimize the error with respect to
the hidden PEs was the key that opened up back-propagation models for widespread
applications.

The derivation is not presented here. It can be found in a nonrigorous format in
Chapter 5, or in Chapter 8 of Rumelhart and McClelland (1986). Even their deriva-
tion lacks absolute rigor, but reviewing it should provide an understanding of where
the equations come from and help make you more comfortable with using them.

A quantity called the error signal ~Sj, for sigmoid nonlinear output layer PEs, is
defined in equation 6.6, where the term Zkj(1 - Zkj) represents the first derivative of
the sigmoid function.

r)kj -- Zkj (1 - Zkj) (bk j -- Zkj) (6.6)

It is necessary to propagate this error value back and perform appropriate weight
adjustments. There are two ways to do this:

On-line, or single-pattern, learning. Propagate the error back and adjust weights
after each training pattern is presented to the network.

Off-line, or epoch, learning. Accumulate the ~'s for each PE for the entire training
set, add them together, and propagate the error back, based on the grand total 6.

The back-propagation algorithms in the implementation with this book are
implemented using both off-line and on-line learning, with emphasis on off-line
learning. In fact, Rumelhart and McClelland (1986) assumed that weight changes
occur only after a complete cycle of pattern presentations. As they point out, it's all
right to calculate weight changes after each pattern as long as the learning rate ~/is
sufficiently small. It does, however, add significant computational overhead to do
that, and it is desirable to speed up training whenever possible.

Chapter Six--Neural Network Implementations

Before the weights can be updated, however, there must be something to update.
That is, each weight must be initialized to some value. You can't just start out with all
weights equal to 0 (or all equal to any single number, for that matter), or the network
won't be trainable. The reason can be seen by studying the weight update equations
presented next.

It is typical to initialize the weights in a back-propagation network to random
values between 0.3 and -0.3. Picking random numbers over some range makes
intuitive sense, and you can see how different weights go in different directions by
doing this. But why pick -0.3 and 0.3 as the bounds? To be honest, there is no better
reason than "it works." Most back-propagation implementations seem to train faster
with these bounds than, say, 1 and -1. It may have something to do with the fact
that the bounds of the PE activation values are 1 and -1. This makes the products of
weights and activation values relatively small numbers. Therefore, if they start out
"wrong," they can be adjusted quickly.

Neural network researchers have recommended a number of variations on the
initial weight range. For example, Lee (1989) has shown that in some instances ini-
tializing the weights feeding the output layer to random values between 0.3 and -0.3,
while initializing weights feeding the hidden layer to 0, speeds training. (Initializing
all weights feeding the hidden layer to 0 is permissible, as long as the next layer up is
initialized to random, nonzero values. This can be verified by working through the
weight updating equations that follow.) In most cases, however, the random num-
ber initialization to values from -0.3 to 0.3 works well and is almost always a good
place to start.

We now describe how to use 6kj to update weights that feed the output layer, wji.
To a first approximation, the updating of these weights is described by equation 6.7.
Here, t/(the lowercase Greek letter eta) is defined as the learning coefficient, with a
value between 0 and 1.

wj new : wj °ld + r /E ~kj Yki (6.7)

k

This kind of weight updating sometimes has a problem in that it gets caught in what
are called "local energy minima." If you can visualize a bowl-shaped surface with a
lot of little bumps and ridges in it, you can get an idea of the problem, at least in
three dimensions.

The error minimization process is analogous to minimizing the energy of the
position in the bumpy, ridge-lined bowl. Ideally, we'd like to move the position (per-
haps marked by a very small ball bearing) to the bottom of the bowl, where the
energy is minimum; this position is the globally optimal solution.

Depending on how much or how little the ball bearing can be moved at one time,
however, it might get caught in some little depression or ridge that it can't get out of.
This situation is most likely with small limits on each movement, which correspond
to small values of r/.

Implementation Issues

The situation can be helped by using the "momentum" of the ball bearing. Its
momentum (previous movement) is taken into account by multiplying the previous
weight change by a "momentum factor" that is labeled a, the lowercase Greek letter
alpha. The momentum factor a can take on values between 0 and 1. Equation 6.8,
which is just equation 6.7 with the momentum term added, becomes the equation
actually used in the back-propagation implementation to update the weights feeding
the output layer.

wneW -- w°ld E °tAw°ld ji jz -b r l ~ tSkj Yki q- jz (6.8)
k

Watch out! We've just thrown another delta at you. This one, Aw °ld, stands for
the previous weight change. Stated in words, the new weight is equal to the old weight
plus the weight change. The weight change consists of the 6 error signal term and the

momentum factor term. The momentum term is the product of the momentum
factor a and the previous weight change. The previous "movement" of the weight
thus imparts "momentum" to the ball bearing (the weight), and it is much more
likely to reach the globally optimum solution.

Keep in mind that there are "bias PEs," indicated by the letter "b" in Figure 6.1,
which always have an output of 1. They serve as threshold units for the layers to
which they are connected, and the weights from the bias PEs to each PE in the follo-
wing layer are adjusted exactly like the other weights. In equation 6.8, then, for each
of the output PEs, the subscript i takes on values from 0 to p, which is the number
of hidden PEs. The 0th value is associated with the bias PE.

Now that we have the new values for the weights feeding the output PEs, we
turn our attention to the hidden PEs. What is the error term for these units? It isn't
as simple to figure this out as it was for the output PEs, where it could intuitively
be reasoned that the error should be some function of the difference between the
desired and the actual output.

We really have no idea what the value for a hidden PE "should" be. Again, refer
to the derivation in Chapter 5, as well as to the one by Rumelhart and McClelland
(1986). Both show that the error term for a hidden PE is given by equation 6.9, where
the term Yki(1 - Y k i) represents the first derivative of the sigmoid function.

q

tSki ---- Yki(1 -- Yki) E Wji 6kj
j=l

(6.9)

The weight changes for the connections feeding the hidden layer from the input
layer are now calculated in a manner analogous to those feeding the output layer, as
shown in equation 6.10.

1/new -" v°ld E °tAv°ld ih ih d- rl tSki Xkh q- ih (6.10)
k

Chapter SixnNeural Network Implementations

For each hidden PE, the subscript h takes on values of 0 to n, the number of input
PEs. As before, the bias PEs are represented in the calculations by the 0th value.

We now have all of the equations (6.6, 6.8, 6.9, and 6.10) to implement back-
propagation of errors and adjustment of weights for both groups of weights. First,
the error terms are calculated for each output PE using equation 6.6, then for each
hidden PE using equation 6.9 for each pattern in the training set. Then the error
terms are summed after all patterns have been presented once, and the weight adjust-
ments are calculated as in equations 6.8 and 6.10.

There are a few things to keep in mind.

[] For updating using the off-line (epoch) mode, it is necessary, in equations
6.8 and 6.10, to sum over all patterns in the training set, whereas the 6's in
equations 6.6 and 6.9 are calculated pattern by pattern.

m Although values for rt and a can be assigned layer by layer, or even PE by PE,
there is typically only one value selected for each in a given implementation.
These values are often adjusted in the process of getting a network to
successfully train, but once chosen are usually left alone.

[] When 6's are calculated for the hidden layer in equation 6.9, the old
(existing) weights (rather than new ones that might have been calculated
from equation 6.8) from the hidden to the output layer are used in the
equation. This is really only a potential problem if the weights are updated
after each training pattern is presented. If epoch training is performed,
weights aren't updated until all patterns have been presented, so there is no
cause for worry.

LVQ Unsupervised Adaptation Calculations
The unsupervised adaptation process consists of presenting pattern vectors from the
training set to the network one at a time. For each pattern presentation, select the
winning processing element and adjust the weights of the winner.

The result of unsupervised adaptation is that the outputs of the network fall into
class clusters reflecting the probability density of the input vectors. When the net-
work has adapted, the output-layer processing elements represent pattern class clus-
ters of the input pattern vectors. Note that the network isn't adapted in a supervised
way by telling it what the "correct" answers are. The patterns are simply presented
to the network repeatedly, and the network adapts by adjusting its weights so as to
form pattern classes.

The winner is chosen by finding the PE with the minimum Euclidean distance
between the input vector and the weight vectors associated with each output PE.
The Euclidean distance is the square root of the sum of the squares of the differences
between each input vector component and its associated weight vector component,

Implementation Issues

as illustrated in equation 6.4. (See Chapter 10 for a discussion of other distance
metrics.)

The winner for the particular iteration of an input pattern is the processing ele-
ment with the smallest Euclidean distance. The calculation of this dimensionless
Euclidean distance has meaning because the input and weight vectors are normalized
before performing the calculations. The weights connected to the winner are then
adjusted according to equation 6.11, where the learning coefficient ~ is a decreasing
function of time. Note that equation 6.11 calculates the weight change that must be
added to the weight.

Awji = rl(t) (aki -- wji) (6.11)

Equations 6.4 and 6.11 are calculated for each pattern presented to the network
during adaptation. Presentations continue until the weight adjustments become
acceptably small or a criterion for the maximum number of iterations is met.

Is it necessary to renormalize the weight vectors during or after training, given
what was said about the validity of the dot product? No, not as long as the changes
to the weight vector components carried out according to equation 6.11 are small
enough. Keeping them small keeps the length of the weight vectors near 1 (near the
surface of a unit hypersphere), and the dot product process remains valid.

Selection of training patterns for the LVQ-I network is the subject of much discu-
ssion in the literature (Kohonen 1988, 1989; Caudill 1989a). It is generally agreed
that each category, or classification, to which the network is trained should be rep-
resented by "gold standard" examples (i.e., right down the center of the category
space), as well as by examples near the decision surfaces with other categories. Exper-
imentation is needed to determine the training vector requirements for a particular
application.

The LVQ Supervised Adaptation Algorithm
The LVQ-II algorithm is a supervised adaptation extension of LVQ-I. The classifi-
cations of all patterns used for training must therefore be known. In implementing
LVQ-II, assuming that the output PE layer has p PEs, the weights to these PEs should
initially be set equal to p input patterns, such that the number of weights from each
pattern class reflects the probability distribution of the classes. If there are c classes,
and the distribution is unknown, then instantiate p/c weight vectors of each class.

The updating ofweights is done with a reward-punish scheme: The weight of the
winning PE is moved toward the pattern weight if the classification. Is correct and
moved away if it is incorrect. Assume that the winning class is Cwin. Then the winning
PE's weight vector is adjusted according to equation 6.12. (Only the winning PE's
weight vector is modified.)

Chapter SixmNeural Network Implementations

W new = W °ld
jz j i + r l (t) (a k j - - Wji) for Cin = Cwin

w new = w °ld - r / (t) (akj - Wji) for Gin ~ Cwin jl jz

(6.12)

This is a useful scheme when the classifications of the training patterns are known
and it is desirable to reduce misclassifications. However, if classifications are known,
a back-propagation network is generally a better pattern classifier, so an LVQ-II
implementation is not included in this book. We include it here more for purposes
of completeness.

Issues in Evolving Neural Networks
The neural network adaptation presented in the previous section is based on con-
nection weight adaptation with fixed network architecture. Much of the time, it's
hard to select the right network architecture for the application at hand. Both the
network architecture and the connection weights need to be adapted simultaneously
or sequentially.

Two of the general (nonevolutionary) approaches used to evolve network topo-
logy are constructive and destructive algorithms. A constructive algorithm starts with
a minimal topology and evolves the appropriate topology by adding weights, PEs,
and layers, as needed. The destructive approach starts with a large network and
evolves the appropriate topology by removing weights, PEs, and/or layers.

In this chapter, we provide an implementation of a back-propagation neural
network with an evolutionary algorithm (EA) using particle swarm optimization
(PSO). EAs have been shown to be superior to these constructive and destructive
approaches because of the large (often infinite) size, nondifferentiability, complex-
ity, and multimodality of the search space (Yao 1995).

Evolutionary computation methodologies have generally been applied to three
main attributes of neural networks: network connection weights, network architec-
ture, and network learning algorithms. A fourth area, the evolution of inputs (find-
ing the optimal set of inputs), has received a relatively minor amount of attention.

With respect to the architecture of a neural network, evolutionary algorithms
have been applied to evolve the network weights, the network topology (structure),
and the PE transfer function. Occasionally, they have been used for more than one
purpose~for example, evolving the network weights and the structure simultane-
ously. Furthermore, evolutionary computing methodologies are sometimes used
in combinations and sometimes with other methodologies. For example, it is pos-
sible for an EA such as a GA to find a set of weights in the global minimum's
basin of attraction. A greedy local search algorithm can then be used to find the
globally optimal neural network weight matrix (Yao 1995). A number of approaches
have been used to encode the weights into the chromosome of a GA. Included
are direct encoding schemes, in which each weight is explicitly represented in the

Implementation Issues

chromosome, and indirect schemes, in which a compression scheme is used that
requires an expansion of the chromosome to derive the individual weights. We
cite a few specific examples of these approaches next. We chose them to be repre-
sentative only; an exhaustive survey is beyond the scope of this book.

As early as 1968, Bremmermann, a pioneer in the evolutionary computation
field, suggested in (Bremmermann 1968) that "we should be encouraged to try
[evolutionary search] procedures on more complex problems, where no efficient
algorithms are known (e.g., searching for strategies, optimizing 'weights' in a mul-
tilayer neural net, etc.)." Widespread efforts to evolve neural network parameters,
however, did not occur until the popularization of the back-propagation algorithm.

One of the first published works that described use of a GA and included exam-
ple applications was by Whitley (1989), in which a GA was used to learn the weights
in a feedforward neural network. He applied the technique to relatively small prob-
lems, such as the exclusivemor (XOR). Also in 1989, Montana and Davis (1989)
described the use of a GA to train a neural network of approximately 500 weights.
It wasn't a "traditional" GA in that, instead of replacing the entire population each
generation, only one or two individuals were produced, which then had to com-
pete to be included in the new population. Also, network weights were represented
by real, rather than binary, numbers. This type of implementation is known as a
"steady-state" GA. Furthermore, Montana and Davis's paradigm included an option
for improving population members using back-propagation. This was thus a truly
hybrid approach. (This hill-climbing capability, however, did not result in better
results than when using the GA alone.)

Another promising early result was that of Schaffer, Caruana, and Eshelman
(1990), which demonstrated that an evolved neural network had better generaliza-
tion performance than one designed by a human and trained with back-
propagation. A number of similar papers were also published. The reported network
training times were sometimes faster and sometimes slower than back-propagation
but were generally not as fast as network training algorithms noted for their speed,
such as quickprop.

Most of the work involving the evolution of network architecture has focused on
the network topological structure. Relatively little has been done on the evolution
of PE activation functions and even less on evolving topological structure and PE
activation functions simultaneously.

Reduced (indirect) coding schemes have been developed in which parameters
that specify the network topology are evolved. This approach often involves a dis-
crete number (limited set) of architectures. Other times, the number of PEs and/or
the number of hidden layers is encoded (Caudell 1990). These approaches result in
chromosome discontinuities between any two network configurations.

Another approach is to evolve developmental rules used to construct the net-
work topology. Kitano (1990) evolved a graph generation grammar, or rules for
generating weight connection matrices. His grammar included rules for obtaining

Chapter Six--Neural Network Implementations

2 x 2 matrices from 1 x 1 matrices, 4 x 4 matrices from 2 x 2 matrices, and so
on, until a matrix of the size necessary to specify the weight connectivity for the
network was obtained. Although Kitano reported better results than some direct
encoding methods, his method is not very good at fine-tuning connections among
single nodes.

Perhaps the first publication reporting the evolution of both network topology
and PE activation functions using a GA was that of Stork and colleagues (1990). They
were modeling a biological neuron in the tail-flip circuitry of a crayfish. Although
the network had only seven PEs, the activation function evolved was the very com-
plex Hodgkin-Huxley equation for neuronal activity. Chromosomes included coded
specifications for neuron type, cell surface molecules, neurotransmitter type,
synapse receptor types, cell channel densities, and other functional properties of the
network.

Koza and Rice (1991) used the genetic programming paradigm to find both the
weights and topology (number of layers, number of PEs per layer, and weight con-
nectivity pattern) of a neural network. They encoded a tree structure of Lisp
S-expressions in the chromosome. Special crossover and mutation operators were
used that preserved the syntax. This may be the first published report of using genetic
programming to evolve neural networks.

Some investigators have investigated the optimization of the EA operators used
to evolve neural networks. Research work reported by Whitley, Dominic, and Das
(1991) indicated that hill-climbing capabilities of GAs using real-valued encoding
for the network weights were increased significantly by a combination of increas-
ing the mutation rate, decreasing the crossover rate, and decreasing the population
size. Convergence was faster, too, but the probability of obtaining a usable solution
decreased by about 10 percent. It should be noted that "steady-state" GAs similar
to those of Montana and Davis (1989) were used, resulting in relatively monotonic
searches. This type of GA is referred to as a "genetic hill-climber" (Schaffer, Whitley,
and Eshelman 1992). GAs have thus been designed that emphasize either global or
local search. The trick, of course, is knowing which to use for a particular problem,
or, perhaps more important, how and when to switch from one to the other when
solving a problem.

Advantages and Disadvantages of Previous
Evolutionary Approaches
In this section, we briefly summarize some of the advantages and disadvantages
that have been discussed in the literature and that researchers have experienced
with respect to using evolutionary computation techniques with artificial neural
networks. The discussion is not meant to be thorough. Rather, we are highlighting
the successes and examining issues that should be addressed in order to make
progress. We do not review the advantages and disadvantages of neural networks

Implementation Issues

and evolutionary algorithms individually. Such reviews appear in a number of
places (Schaffer, Whitley, and Eshelman 1992; Yao 1995).

Let's first look at the advantages. Evolutionary algorithms can be used to adapt
neural networks with nondifferentiable (even discontinuous) PE transfer functions.
Step functions are an example. Additionally, not all of the transfer functions have to
be identical in a network trained by an EA.

Evolutionary algorithms can also be used in cases where gradient or error infor-
mation is not available (Schaffer, Whitley, and Eshelman 1992). (See, however, a
statement from the same reference in the section below on disadvantages.) EAs can
thus be applied to neural networks using many architectures and topologies. In
addition to back-propagation, EAs have been applied to networks using a variety
of learning algorithms, including reinforcement learning, recurrent learning, and
higher order learning.

Evolutionary algorithms have the capability to perform a global search in the
problem space.

The fitness of an architecture evolved by an EA can be defined in a way appro-
priate for the problem. For example, speed of learning, topological complexity, and
performance on the test set can all be incorporated into the fitness function.
Furthermore, the fitness function does not have to be continuous or differentiable.

Now, let's look at the disadvantages. Schaffer, Whitley, and Eshelman (1992) state
that "Using a genetic algorithm as a replacement for back-propagation does not seem
to be competitive with the best gradient methods (e.g., quickprop)." GAs are known
to perform global search quite well but to be relatively inefficient in fine-tuned local
search (Yao 1995).

Evolution of network topology is generally done in ways that result in disconti-
nuities in the search space. Examples include removing and inserting connections
(weights), discrete changes in connections (weights), from 1 to-1 for example, and
removing and inserting PEs. These discontinuities usually require readaptation of
the network. Since the adaptation of a back-propagation network is sensitive to the
randomized initial weights, the fitness value used to measure the network's per-
formance reflects noise as well as the network architecture. It is therefore usually
necessary to adapt the network several times and compute an average fitness value,
or partially adapt the network a number of times to get an indication of convergence
rates. Either approach is computationally intensive.

Selection of a representation for the weights in a chromosome is often difficult.
In addition to the basic decision whether to use binary or real representations, the
ordering of the weights must be considered, especially if an EA that uses crossover
or recombination is being used. For instance, should the heuristic (Yao 1995) that
weights connecting into the same hidden PE be adjacent in the chromosome be
implemented? If binary encoding is selected, which encoding method should be
selected (uniform, Gray, exponential, etc.)? Once the representation is selected,
the genetic operators (crossover, mutation, etc.) and their parameter values must

Chapter Six--Neural Network Implementations

be selected or, in many cases, developed. Often, operators are designed specifically
for a problem.

If a real number representation for weights is used, a set of operators must be
selected or developed. These must generally be tailored to the application. In addi-
tion, the criterion for selection must be specified.

Finally, a problem that has consistently been reported in the literature is the
permutation problem (Yao 1995; Hancock 1992), also referred to as the competing
conventions problem (Schaffer, Whitley, and Eshelman 1992) and the isomorphism
problem (Hancock 1992). This situation arises whenever there exist multiple chro-
mosome configurations that represent equivalent optimum solutions. These con-
figurations are called permutations or competing conventions, and the error surfaces
are multimodal. For example, two neural networks that have a different order to
their hidden PEs (and thus have a different representation on the chromosome)
but are otherwise identical are equivalent. In fact, any permutation of the hidden
PEs produces an equivalent network in this case.

Hancock's work was limited to the specification of the network connectivity,
not the weights associated with the connections. Nonetheless, he reported that
"The most unexpected result here was that permutations are apparently more of a
help than a hindrance" and that "It appears that, in practice, the permutation or
competing conventions problem is not as severe as had been supposed" (Hancock
1992). We agree.

Evolving Neural Networks with Particle Swarm Optimization
The benefits of evolving attributes of neural networks are clear. Multilayer percep-
trons (feedforward networks using the back-propagation algorithm as the learn-
ing algorithm) have been shown to be capable of being universal approximators
(Hornick et al. 1989). The most common transfer function used is the sigmoidal
function: output = 1/(1 + e-input). The idea of being able to automatically evolve a
universal approximator is quite attractive, especially if it can be done as (or more)
quickly than training the network with back-propagation.

One of the first uses of particle swarm optimization (PSO) was for evolving
neural network weights. Eberhart, Simpson, and Dobbins (1996) reported using
particle swarm optimization to replace the back-propagation learning algorithm
in a multilayer perceptron.

The implementation reported in (Eberhart and Shi 1998) is the use of PSO to
evolve the network weights and, indirectly, to evolve the structure. The methodology
has the additional benefit of making the preprocessing (such as normalization or
scaling) of input data unnecessary.

This is accomplished by evolving, in addition to the network weights, the slopes
of the sigmoidal transfer functions of the hidden and output PEs of a feedfor-
ward network. In other words, if we now consider the transfer function to be

Implementationlssues (~ ~~17~

output = 1/(1 + e-k'input), then we are evolving k in addition to evolving the
weights. (The method is quite general and can be applied to other network topolo-
gies, such as recurrent networks, and to other transfer functions, such as radial
basis functions.)

Slopes are allowed to be either positive or negative. The output of a transfer func-
tion with a negative slope is just one minus the output with a positive slope of the
same absolute value. The effect of a transfer function with a negative slope is identi-
cal to that of a transfer function with a positive slope (with the same absolute value)
if the signs of the input weights are reversed. There is thus no reason to constrain
slopes to be positive, and by allowing them to take on negative values, the flexibility
of the network evolution process is increased, resulting in faster convergence.

This method can be used to evolve the network structure indirectly. If the evolved
slope is sufficiently small (the exact amount depends on the application), then the
output is essentially constant regardless of the input. (In the case of the sigmoidal
transfer function, the output would be 0.5, or very nearly so.) If the PE is in a hid-
den layer, it can therefore be removed. Its effect can be replicated by increasing the
weights from the bias PE in that hidden layer to each of the PEs in the next layer
by one-half the value of each weight from the PE being removed to the next-layer
PEs. The method therefore can be used to prune PEs from the network, reducing
network complexity.

Additionally, if the slope is sufficiently large (the exact amount depends on the
application), then the sigmoid transfer function can be replaced by a step transfer
function. A sigmoid with a large positive slope is thus replaced by a step transfer
function that has an output of 0 for inputs less than or equal to 0, and 1 for positive
inputs. A sigmoid with a large negative slope is replaced by a step function with an
output of 1 for inputs less than or equal to 0, and 0 for positive inputs. Sigmoidal
function PEs can thus evolve to be step function PEs, reducing the computational
complexity of the network significantly.

Since the slopes can evolve to large values (relative to 1, which is the slope used
in traditional back-propagation network transfer functions), input normalization
or scaling is generally not needed. Since data preprocessing requires a significant
amount of effort in most applications, this methodology can simplify the applica-
tions process and shorten development time.

Another feature of this methodology is the continuous nature of the PSO algo-
rithm. Transfer function slopes are evolved in a continuous way; that is, slopes
can vary continuously from large negative to large positive values. This results
in an evolution of network structures that is also continuous. For example, as a
hidden PE's transfer function slope approaches 0, it is replaced with revised con-
nection weights from the bias PE; as the slope becomes very large, the sigmoidal
PE is replaced by a threshold PE. No significant discontinuities exist in the evo-
lutionary process such as those that plague other approaches to evolving network
structures.

Chapter Six--Neural Network Implementations

Back-propagation Implementation

This section discusses the back-propagation implementation. This is an implemen-
tation of a fully connected feedforward layered network. Connections exist only
from the PEs in one layer to the PEs in the next layer. There are no feedback connec-
tions, even among PEs in the same layer. The number of hidden layers and number
of PEs in each layer can be specified in a run file. For the basics of back-propagation
neural networks, please refer to Chapter 5.

Programming a Back-propagation Neural Network
Figure 6.4 shows the state transition diagram used in the implementation of the
back-propagation neural network discussed in this section. First we define some new
data types in the next subsections.

We first look at general definitions for neural networks. In this section, some
data types applicable to several neural network implementations in this book are
defined as shown in Listing 6.1. In Listing 6.1 are the new enumeration data types.
These definitions are also used in the implementations of other neural networks, in
addition to the back-propagation neural network discussed in this section.

Listing 6.1 Enumeration data type definitions for neural networks.

/* Enumerations */

typedef enum NN_Operation_Mode_Type_Tag
{

NN_TRAINING,
NN_RECALL,
NUM_BP_OPERATION_MODES

} NN_Operation_Mode_Type;

typedef enum NN_Function_Type_Tag
{

NN_LINEAR_FUNCTION,
NN_GAUSIAN_FUNCTION,
NN_SIGMOID_FUNCTION,
NUM_NN_FUNCTION_TYPES

} NN_Function_Type;

typedef enum NN_Layer_Type_Tag
{

NN_INPUT_LAYER,
NN_HIDDEN_LAYER,
NN_OUTPUT_LAYER,
NUM_NN_LAYERS

} NN_Layer_Type;

Back-propagation Implementation o.

don

BP _

¢~ o

o
"o

=~ w ~ , ~ ._~ I _ - / ~ f / = ~ = o , ~ o = .
~ - ~ , ~ . o ~

<~ " '~/~'--~~x.Sequential Training
~ Y ~N ~ Mode

B P_N EXT_ 3ACKPROPAGATION.
PATTERN BP_BATCH_TEMP_ HIDDENS
v ~ WEIGHT_STEP j

mode \ CHANGE - /

Figure 6.4 A back-propagation neural network state transition diagram in training mode.

The enumeration data type NN_Operation_Mode_Type defines the opera-
tion mode of the neural network. The neural network can be in training
mode or in testing or recall mode. The data type NN_Funct i on_Type defines the
function types of the PE activation functions. Three kinds of activation functions
are included. More can be included later if necessary. These three activation

Chapter SixnNeural Network Implementations

functions are the linear function, Gaussian function, and sigmoid function. The
NN_Layer_Type data type defines the nature of the neural network layer. Three
kinds of layers are included here. They are the input layer, hidden layer, and output
layer. This data type is more for layered networks than for other types of networks.

Now, let's consider some definitions for the back-propagation neural network.
This section defines some date types applicable only to the implementation of the
back-propagation neural network (BP net). They are defined in Listings 6.2 and 6.3.
The new enumeration data types are in Listing 6.2. The new structure data types are
in Listing 6.3.

Listing 6.2 Enumeration data type for BP net.

/* Enumerations */
**

typedef enum BP_Training_Mode_Tag
{

NN_BATCH_MODE,
NN_SEQUENTIAL_MODE,
NUM_NN_TRAINING_MODES

} BP_Training_Mode_Type;

typedef enum BP_State_Tag
{

BP_GET_PATTERN,
BP_FEEDFORWARD_INPUT,
BP_FEEDFORWARD_HIDDEN,
BP_FEEDFORWARD_OUTPUT,
BP_BACK_PROPAGATION_OUTPUT,
BP_BACK_PROPAGATION_HIDDENS,
BP_BATCH_TEMP_WEIGHT_STEP_CHANGE,
BP_NEXT_PATTERN,
BP_WEIGHT_STEP_CHANGE,
BP_WEIGHT_CHANGE,
BP_NEXT_GENERATION,
BP_UPDATE_LEARNING_RATE,
BP_UPDATE_MOMENTUM_RATE,
BP_TRAINING_DONE,
BP_RECALL_DONE,
NUM_BP_STATES

} BP_State_Type;

The enumeration data type BP_Training_Mode_Type specifies the training
mode for the back-propagation implementation. It can be either in batch training
mode (off-line adaptation) or in sequential training mode (on-line adaptation). The
data type B P _ S t a t e _ T y p e defines all the states in the back-propagation
state machine. There are fifteen states, each with a corresponding state handling
routine.

Back-propagation Implementation ~ :. ~

Listing 6.3 Structure data type definitions for BP net.

/* Structures */
**

typedef struct Neuron_Type_Tag
{

NN_Function_Type
float
float
FVECTOR

double
FVECTOR
FVECTOR

neuron_function; // neuron function
in; // neuron input
out; // neuron output
w;

// connection weights from the previous layers
error; // error of neuron's output
delta_w; // step change of weights
temp_delta_w; // temp. step change of weights

} Neuron_Type;

typedef struct NN_Layer_Arch_Type_Tag
{

int size;
Neu r on_Type * neu r on s;
NN_Laye r_Type i aye r_t ype;

// number of neurons in the layer
// pointer to the array of neurons

} NN_Layer_Arch_Type;

typedef struct BP_Arch_Type_Tag
{

int size;
NN_Layer_Arch_Type *layers;
int *hidden_number;

// number of layers
// pointer to the layers

} BP_Arch_Type;

typedef struct BP_Env_Type_Tag
{

NN_Operation_Mode_Type operation_mode; // training or recall
BP_Training_Mode_Type train_mode; // training mode if in training
float

float
float
int
int
int
int

} BP_Env_Type;

alpha; // learning rate 0.075

gama; // momentum rate 0.15
criterion; // error criterion for termination
max_gen; // maximum number of generations
cur_gen; // current generation index

max_tra_pat; // total number of training patterns
cur_pat; // current training pattern index

typedef struct BP_Type_Tag
{

BP_Arch_Type
BP_Env_Type

arch;
env;

Chapter Six--Neural Network Implementations

double
} BP_Type;

mse; // mean squared error

typedef struct BP_Pattern_Set_Type_Tag
{

int size; // number of patterns
int dim_in; // input dimension
int dim_out; // output dimension
FMATRIX patterns; // pointer to the array of in/outpatterns

} BP_Pattern_Set_Type;

The structure data type Neuron_Type defines the parameters of the network's
PEs (neurons)--the basic building components of the neural network. It consists of
an activation function (NN_Funct i on_Type), input (f 1 oa t), output (f 1 oa t),
connection weights to a PE (FVECTOR), error (double) , step change of weights
(FVEETOR), and temporary step change of weights (FVECTOR). The last three are
included for the purpose of training, especially when used in a back-propagation
neural network. The NN_Laye r_Ar ch_Type defines the architecture of the neural
network layer. It consists of a layer type (NN_Layer_Type), a pointer to the PEs
(Neuron_Type) in the layer, and the number of PEs in the layer (in t) . (Note that
in the code PEs are referred to as neurons.)

The structure data type BP_Arch_Type defines the architecture of the back-
propagation neural network. The component s i z e (i n t) specifies the number of
layers in the network; the component l a y e r s (NN_Layer_Arch_Type *) is a
pointer to the layers; and the component h idden_number (i n t *) is a pointer
to the number of PEs in hidden layers.

The BP_Env_Type defines all of the environment parameters for running the
back-propagation implementation. They are operation mode (ope r a t i on_mode),
training mode (t ra in_mode) , learning rate (a lpha) , momentum (gama), train-
ing error criterion for termination (c r i t e r i o n) , maximum number of genera-
tions (max_gen), current generation index (cur_gen) , total number of training
patterns (max_t r a _ p a t) , and current training pattern index (cu r_pa t) .

The BP_Type defines a struct data type, which specifies the back-
propagation neural network. It includes BP architecture data (arch), BP environ-
ment data (env), and mean squared error (mse).

The B P _ P a t t e r n _ S e t _ T y p e defines the set of patterns that are fed to the BP
net. It consists of number of patterns (s i ze), input dimension (dim_in), output
dimension (dim_out), and a pointer to the array of input/output pairs of patterns
(patterns).

The m a i n () routine is shown in Listing 6.4. It is kept as simple as pos-
sible to make the back-propagation module as independent as possible. In the
BP_Sta r t_Up () routine, all the necessary parameters for running the back-
propagation implementation are read from the input (run) file; the dynamic

Back-propagation Implementation

data storage variables are allocated memory space and initialized. In the
BP_C 1 ean_Up () routine, the results are stored in an output file and the memory
space previously allocated is de-allocated. The BP__Main_Loop () routine is the
core of the back-propagation implementation, where the state machine is run.

Listing 6.4 Back-propagation main () routine.

void main (int argc, char *argv[])
{

int idx_i ;

// check command line
if (argc != 2)
{

printf("Usage: exe_file run_file");
exit (1) ;

}

main_start_up(argv[l]);
BP_Main_Loop();
main_clean_up();

static void main_start_up (char *dataFile)
{

BP_Start_Up (dataFile) ;
}

static void main_clean_up (void)
{

BP_Clean_Up () ;
}

We now consider the BP_Main_Loop() routine. Before running the
BP__Main_Loop () routine, several BP module scope variables are defined as
follows:

static BP_Type
static BP_Pattern_Set_Type
static BP_State_Type

bp;
pat set ;

bp_cur_state;

These three variables are defined as s t a t i c to prevent them from being accidentally
changed by outside modules. The variable bp has information related to the back-
propagation net during the run.

The variable p a t s e t stores all the input/output pairs of patterns. The variable
b p _ c u r _ s t a t e records the current state of the back-propagation state machine.
When the BP_Main_Loop () routine is running, it keeps calling the current
state's handling routine through b p _ s t a t e _ h a n d l e r (b p _ c u r _ s t a t e) ,
where the current state performs its action until it is transitioned to another state.
The BV_Main_Loop () keeps running until its current state is transitioned to either

Chapter Six---Neural Network Implementations

the state BP_TRAINING_DONE when BP is in the training operation mode or to the
state BP_RECALL_DONE when BP is in the recall/test operation mode.

void BP_Main_Loop (void)
{

BOOLEAN running;

running = TRUE;

while (running)
{

if ((bp_cur_state == BP_TRAINING_DONE)

{

running = FALSE;
}

bp_state_handler (bp_cur_state) ;

I I (bp_cur_state ==
BP_RECALL_DONE))

The Back-propagation State Handling Routines
We now examine the BP state handling routines. The most important part of the
BP state machine is its state handler, which is shown in Listing 6.5. As shown in the
listing, which state handler routine is called is based on the current BP state.

Listing 6.5 Main part of the BP state machine.

static void bp_state_handler (int state_index)
{

switch (state_index)
{

case BP_GET_PATTERN :

bp_get_pattern () ;
break;

case BP_FEEDFORWARD_INPUT :

bp_feedforward_input () ;

break;

case BP_FEEDFORWARD_HIDDEN :

bp_feedforward_hidden () ;

break;

case BP_FEEDFORWARD_OUTPUT :

bp_feedforward_output () ;

break;
case BP_BACK_PROPAGATION_OUTPUT :

bp_back_propagat ion_output () ;

break;
case BP_BACK_PROPAGATION_HIDDENS :

bp_back_propagat ion_hiddens () ;

break;
case BP_BATCH_TEMP_WEIGHT_STEP_CHANGE :

bp_batch_temp_weight_step_change () ;

break;
case BP_NEXT_PATTERN :

Back -propagation Implementation

bp_next_pattern () ;

break;

case BP_WEIGHT_STEP_CHANGE :

bp_weight_step_change () ;

break;

case BP_WEIGHT_CHANGE :

bp_weight_change () ;

break;

case BP_NEXT_GENERATION :

bp_next_generation () ;

break;

case BP_UPDATE_LEARNING_RATE :

bp_update_learning_rate () ;

break;

case BP_UPDATE_MOMENTUM_RATE :

bp_update_momentum_rate () ;

break;

case BP_TRAINING_DONE :

bp_training_done () ;

break;

case BP_RECALL_DONE :

bp_recall_done () ;

break;

default :

break;

In the BP_GET_PATTERN state, the portion of the current pattern specified by
bp. env . c u r _ p a t is copied to the input PEs in the input layer and to the target out-
put; then the current state is transitioned to the state BP FEEDFORWARD_INPUT.
The state handler routine is shown here.

static void bp_get_pattern (void)
{

int idx;

for (idx = 0; idx < (bp.arch.layers[0].size); idx++)
{

bp. arch. layers [0] .neurons [idx] . in =

patset.patterns [bp. env. cur_pat] [idx] ;
}

for (idx = 0; idx < patset.dim_out; idx++)
{

target_out[idx] = patset.patterns[bp.env.cur_pat]

[patset.dim_in + idx];
}

bp_cur_state = BP_FEEDFORWARD_INPUT;

In the BP_FEEDFORWARD_INPUT state, the output of the input layer is calcu-
lated. Normally, the input layer is treated only as a path to the hidden layer. The
output of each PE in the input layer is equal to the input of the same PE. Certainly,

Chapter SixmNeural Network Implementations

a different type of activation function can be used for the PEs in the input layer, and
some data preprocessing can be encoded into the activation function of the PEs in
the input layer. Here, in our implementation, the data preprocessing is done out-
side of the neural network implementation and the input layer is a linear layer fea-
tured as an input path to the hidden layer. The current state transitions to the state
BP_FEEDFORWARD_HIDDEN. The state handler routine is shown here.

static void bp_feedforward_input (void)
{

int idx;

for (idx - 0; idx < (bp.arch.layers[0].size); idx++)
{

bp.arch, layers [0] .neurons [idx] .out =

bp. arch. layers [0] .neurons [idx] . in;
)
bp_cur_state = BP_FEEDFORWARD_HIDDEN;

In the BP_FEEDFORWARD_HIDDEN state, the outputs of PEs in the hidden
layer(s) are calculated. If there is more than one hidden layer, the outputs of the
PEs in the first hidden layer are first calculated, then the second hidden layer, until
all the hidden layer outputs have been calculated. In the calculation of the output
of a PE, first the net input to the PE is calculated; then the output is calculated by
calling the function activate_function (net_input, function_type).
Normally, in a back-propagation network, the activation function for PEs in the
hidden layer is the sigmoid function. The current state transitions to the state
BP FEEDFORWARD OUTPUT. The state handler routine is shown here.

static void bp_feedforward_hidden (void)
{

int idx, idx_prev, idx_cur;

float sum;

for (idx = i; idx < (bp. arch. size - i); idx++)

{ // loop through the hidden layers

for (idx_cur = 0; idx_cur < (bp.arch.layers[idx].size); idx_cur++)

{ // loop through the neurons of the current hidden layer

sum - 0.0;

for (idx_prev- 0; idx_prev < (bp. arch. layers

[idx - l].size);idx_prev++)

{ // loop through the outputs of the previous layer

sum += (bp.arch.layers[idx - l].neurons[idx_prev].out) *

(bp. arch. layers [idx] .neurons [idx_cur] .w[idx_prev]) ;
)
sum += (bp.arch. layers [idx] .neurons [idx_cur] .

w[bp.arch.layers[idx - l].size]);

bp.arch.layers[idx].neurons[idx_cur] .in = sum;

bp.arch, layers [idx] .neurons [idx_cur] . out =

activate_function (sum, bp. arch. layers [idx] .

neurons [idx_cur] .neuron_function) ;

Back -propagation Implementation

}
}
bp_cur_state = BP_FEEDFORWARD_OUTPUT;

In the BP_FEEDFORWARD_OUTPUT state, the outputs of PEs in the output
layer are calculated. The calculation procedure is the same as that in hidden lay-
ers. The current state transitions to the state BP_BACK_PROPAGATION_OUTPUT
if the operation mode is NN_TRAINING; otherwise, it transitions to the state
BP_NEXT_PATTERN to test the next pattern. The state handler routine is shown
here.

static void bp_feedforward_output (void)

{
int idx_out, idx__prev;

float sum;

for (idx_out = 0; idx_out < (bp. arch. layers [bp . arch. size - l].size);

idx_out++)

// loop through the neurons of the output layer

sum = 0.0;

for (idx_prev = 0; idx_prev < (bp. arch. layers

[bp.arch.size - 2] .size);idx_prev++)

{ // loop through the outputs of the previous layer

sum += (bp.arch.layers[bp.arch.size - 2] .neurons

[idx_prev].out) * (bp.arch.layers[bp.arch.size- I].

neurons [idx_out] .w[idx_prev]) ;
}
sum +=(bp.arch.layers[bp.arch.size - i] .neurons[idx_out] .

w [bp. arch. layers [bp. arch. size - 2] .size]) ;

bp.arch.layers[bp.arch.size - I] .neurons[idx_out] .in=sum;

bp.arch.layers[bp.arch.size - I] .neurons[idx_out] .out =

activate_function (sum, bp.arch.layers[bp.arch.size - i] .

neurons [idx_out] . neuron_function) ;

}

if (bp.env.operation_mode == NN_RECALL)
{

print_recall_result () ;
}
if (bp.env.operation_mode == NN_TRAINING)
{

bp_cur_state = BP_BACK_PROPAGATION_OUTPUT;
}
else

{ / / recall

bp_cur_state = BP_NEXT_PATTERN;
}

In the BP_BACK_PROPAGATION_OUTPUT state, the errors of the PEs in the

output layer are calculated for the current training pattern. The calculation depends

Chapter SixmNeural Network Implementations

on the type of activation function of the output PEs. For a back-propagation
network, the activation function is usually a linear function or one of several
S-shaped functions. The mean-square error is also accumulated for this training
pattern.

The current state transitions to the state BP_BACK_P ROPAGAT I ON_H IDDENS.
Following is the state handler routine.

static void bp_back_propagation_output (void)
{

lint idx;

double tempA, tempB;

for (idx = 0; idx < (bp. arch. layers [bp. arch. size - l].size); idx++)
{

tempA = (target_out[idx] - bp.arch.layers[bp.arch.size - I] .

neurons [idx] .out) ;

switch (bp.arch.layers[bp.arch.size - i] •neurons[idx]

• neuron_function)
{

case NN_LINEAR_FUNCTION:

bp.arch.layers[bp.arch.size - i] .neurons[idx] .error =

t empA;

break;

case NN_GAUSIAN_FUNCTION:

printf("BP net can't have Gaussian Neurons, exit\n");

exit (I) ;

break;

default : // NN_SIGMOID_FUNCTION

tempB = (bp. arch. layers [bp. arch. size - i] .neurons[idx] .out) *

(I.0 - (bp. arch. layers [bp. arch. size - I]

• neurons [idx] . out)) ;

bp. arch. layers [bp. arch. size - i] .neurons[idx] .error =

tempA * tempB;

break;
}
bp.mse += (tempA * tempA);

}
bp_cur_state = BP_BACK_PROPAGATION_HIDDENS;

In the BP_BACK_PROPAGATION_HIDDENS state, the errors of the PEs in all

hidden layers are calculated. The errors are calculated backward, from the last hid-
den layer to the first hidden layer. Since only one kind of S-shaped function, the
sigmoid function, is included in the enumeration data type NN_Funct ion_Type ,
the calculation is hard-coded into the function that is below. If more S-shaped
functions are included later, then either an if-else statement or a switch
statement should be used. The current state transitions to the state BP_BATCH_
TEMP_WEIGHT_STEP_CHANGE. The state handler routine is shown here.

static void bp_back_propagation_hiddens (void)
{

int idx_l, idx_cn, idx_nn;

Back -propagation Implementation

double tempA, sum;

for (idx_l = bp.arch.size- 2; idx_l > 0; idx_l--)

{ // loop through all the hidden layers

for (idx_cn = 0; idx_cn < (bp.arch.layers[idx_l].size);idx_cn++)

{ // loop through all the neurons in the current hidden layer

sum = 0.0;

for (idx_nn = 0; idx_nn < (bp.arch.layers[idx_l + l].size);

i dx_nn + +)

{ // loop through the next layer's neurons

sum += (bp.arch.layers[idx_l + l] .neurons [idx_nn] .error) *

(bp.arch.layers[idx_l + l].neurons[idx_nn]

.w [idx_cn]) ;
}

tempA = bp.arch.layers[idx_l] .neurons[idx_cn] .out *

(i.0 - (bp.arch.layers[idx_l] .neurons[idx_cn] .out));

bp.arch.layers[idx_l] .neurons[idx_cn] .error = sum * tempA;
}

)

bp_cur_st ate = BP_BATCH_TEMP_WE I GHT_STEP_CHANGE;

In the BP_BATCH_TEMP_WEIGHT_STEP_CHANGE state, the temporary con-
nection weight incremental changes are calculated. This state is added for the pur-
pose of batch mode training. If only the sequential training mode is used, this state is
unnecessary. The calculation is based on equation 6.8. The current state transitions
either to the state BP_NEXT_PATTERN if batch mode training is being used or to
the state BP_WEIGHT_STEP_CHANGE if sequential mode training is being used.
The state handler routine is listed here.

static void bp_batch_temp_weight_step_change (void)
{

int idx_layer, idx_cn, idx_pn;

double tempA;

for (idx_layer = bp.arch.size- I; idx_layer > 0; idx_layer--)

{ // loop through layers

for (idx_cn = 0; idx_cn < (bp.arch.layers[idx_layer] .size);

idx_cn++)

{ // loop through neurons in the current layer

for (idx_pn = 0; idx_pn < (bp.arch.layers[idx_layer - I] .size);

i dx_pn + +)

{ // loop through neurons in the previous layer

tempA = bp.arch.layers[idx_layer] .neurons[idx_cn] .error *

bp.arch.layers[idx_layer - i] .neurons[idx_pn] .out;

tempA *= bp.env.eta;

bp. arch. layers [idx_layer] . neurons [idx_cn]

.temp_delta_w[idx_pn] += tempA;
}

bp. arch. layers [idx_layer] . neurons [idx_cn] . temp_delta_w [bp. arch

.layers[idx_layer- l].size] += bp.env.eta *

bp. arch. layers [idx_layer] .neurons [idx_cn] .error;

Chapter SixmNeural Network Implementations

if (bp.env.train_mode == NN_BATCH_MODE)
{

bp_cur_state = BP_NEXT_PATTERN;
}
else
{

bp_cur_state = BP_WEIGHT_STEP_CHANGE;
)

The BP_NEXT_PATTERN state is used to determine which state to transition to
according to back-propagation network environment information. First, the current
training pattern index is increased by one.

If the back-propagation net is in training operation mode and the training
mode is batch mode training, then the current training pattern index is compared
with the maximum number of training patterns. If the current training pattern
index is less than the maximum number of training patterns, the current state
transitions to the state BP_GET_PATTERN; otherwise, it transitions to the state
BP_WE I GHT_S TEP_CHANGE.

If the back-propagation net is in the training operation mode and the training
mode is sequential training, then if the current training pattern index is less than
the maximum number of training patterns, the current state transitions to the state
BP_GET_PATTERN. Otherwise, it transitions to the state BP_.NEXT_GENERAT I ON.
• If the back-propagation net is in recall/testing operation mode, then the cur-

rent training pattern index is compared with the maximum number of pat-
terns. If the current training pattern index is less than the maximum number
of patterns, the current state transitions to the state BP_GET_PATTERN; other-
wise, it transitions to the state BP_RECALL_DONE. The state handler routine is
listed here.

static void bp_next_pattern (void)
{

bp. env. cur_pat++;

if (bp.env. operation_mode == NN_TRAINING)
{

if (bp. env.train_mode == NN_BATCH_MODE)
{

if (bp.env.cur_pat < bp.env.max_tra_pat)
{

bp_cur_state = BP_GET_PATTERN;
}
else
{

bp_cur_state = BP_WEIGHT_STEP_CHANGE;
}

}
else
{

// sequential learning

if (bp.env.cur_pat < bp.env.max_tra_pat)

Back -propagation Implementation

}
else
{

{
bp_cur_state = BP_GET_PATTERN;

}
else
{

bp_cur_state = BP_NEXT_GENERATION;
}

// recall

if (bp.env.cur_pat < patset.size)
{

bp_cur_state = BP_GET_PATTERN;
}
else
{

bp_cur_state = BP_RECALL_DONE;
}

In the BP_WEIGHT_STEP_CHANGE state, the connection weight step changes
are calculated according to equation 6.8, and the temporary connection weight step
changes are cleared. The current state transitions to the state BP._WE I GHT CHANGE.
The state handler routine is listed next.

static void bp_weight_step_change (void)
{

int idx_layer, idx_cn, idx_pn;

for (idx_layer = i; idx_layer < (bp.arch.size); idx_layer++)

{ // loop through the layers

for (idx_cn = 0; idx_cn < (bp.arch.layers[idx_layer].size);

idx_cn++)

{ // loop through the neurons in the current layer

for (idx_pn = 0; idx_pn <= (bp.arch.layers[idx_layer-l].size);
i dx_p n + +)

{// loop through the connection weights of the current neurons

bp. arch. layers [idx_layer] . neurons [idx_cn] . delta_w [idx_pn] *=

bp. env. alpha;

bp. arch. layers [idx_layer] . neurons [idx_cn] .delta_w [idx pn]

+= (bp. arch. layers [idx_layer] .neurons [idx_cn]

• temp_delta_w [idx_pn]) ;

bp. arch. layers [idx_layer] . neurons [idx_cn]

.temp_delta_w[idx_pn] = 0.0;
}

}
}
bp_cur_state = BP_WEIGHT_CHANGE;

In the BP_WEIGHT_CHANGE state, the connection weight changes are
calculated according to equation 6.8. The current state transitions to the state

Chapter Six---Neural Network Implementations

BP_NEXT_GENERATION if in batch mode training; otherwise, to the state
BP_NEXT PATTERN. The state handler routine is shown next.

static void bp_weight_change (void)
{

int idx_layer, idx_cn, idx_pn;

for (idx_layer = i; idx_layer < (bp.arch.size); idx_layer++)
{ // loop through the layers

for (idx_cn = 0; idx_cn < (bp.arch.layers[idx_layer].size);
idx_cn++)

{ // loop through the neurons in the current layer

for (idx_pn = 0;idx_pn <= (bp.arch.layers[idx_layer - l].size);
idx_pn++)

{ // loop through the connection weights of the current neurons
bp. arch. layers [idx_layer] . neurons [idx_cn]

.w[idx_pn] += bp.arch.layers[idx_layer] .neurons[idx_cn]
• delta_w [idx_pn] ;

}

if (bp.env.train_mode == NN_BATCH_MODE)
{

bp_cur_state = BP_NEXT_GENERATION;
}
else
{

bp_cur_state = BP_NEXT_PATTERN;
)

In the BP_NEXT_GENERATION state, the errors of all PEs in the network are
first cleared for the next generation; then the mean-squared error is calculated
by dividing the accumulated mean-squared error by the total number of training
patterns. The current generation index is increased by 1 and compared with the
maximum number of generations. If the current generation number is less than the
maximum number of generations, the mean-squared error is cleared and the state
transitions to the state BP_UPDATE_LEARNING_RATE; otherwise, the current
state transitions to the state BP TRAINING_DONE.

static void bp_next_generation (void)
{

int idx_layer, idx_cn;

for (idx_layer = 0; idx_layer < (bp.arch.size); idx_layer++)

{ // loop through the layers

for (idx_cn = 0; idx_cn < (bp.arch.layers[idx_layer].size);

idx_cn++)
{ // loop through the neurons in the current layer

// clear the error

bp.arch.layers[idx_layer].neurons[idx_cn].error = 0.0;
)

Back -propagation Implementation

bp.mse /= bp.env.max_tra_pat;

if ((++bp.env.cur_gen) < bp.env.max_gen) // add error criterion later

{
bp.mse = 0.0; //clear mean squared error

bp_cur_state = BP_UPDATE_LEARNING_RATE;
}

else
{

bp_cur_state = BP_TRAINING_DONE;
}

In the two states, BP_UPDATE_LEARNING_RATE and BP_UPDATE_

MOMENTUM_RATE, if a dynamic learning rate and/or momentum rate are
used, then the new learning rate and momentum rate are updated. In our implemen-
tation, rates are fixed. Therefore, these two state handler routines do nothing except
transition the current state to state BP_UPDATE_MOMENTUM_RATE and state
B P_G E T_P AT T E RN, respectively.

In the two states BP_TRAINING_DONE and BP_RECALL_DONE, the post-
processing of data or results is performed. In the current implementation, nothing
is performed in either state.

Running the Back-propagation Implementation
To run the back-propagation neural network implementation requires the execu-
table file bp. e x e and an associated run file, for example, i r i s _ b p , run. To
run the implementation from within the directory containing b p . e x e and
i r i s _ b p . run, at the DOS system prompt type bp i r i s.__bp, run.

The contents of the i r i s _ b p , run file, an example of a run file for a back-
propagation network with one hidden layer, are listed here:

0

0

0.075

0.15

0.01

I0000

99

3

4
150

4
3

iris.dat

The first entry (0) is for specifying the network operation mode, 0 for train-
ing and 1 for recall or testing. The second entry (0) tells which training mode is
going to be used if the operation mode is the training mode (0); otherwise, the

Chapter Six--Neural Network Implementations

value is ignored. 0 specifies batch mode training and 1 specifies sequential mode
training. The third value (0 .0 7 5) and the fourth value (0 .15) are the learning rate
and momentum rate, respectively.

The next value, 0 .01 , is the error termination criterion. In the current imple-
mentation, the only termination criterion is the maximum number of generations.
Implementing the error termination criterion is left as an exercise at the end of this
chapter.

The next value (10 0 0 0) is the maximum number of generations followed by the
total number of training patterns (9 9). Note that the Iris dataset has 15 0 patterns;
here we are using 9 9 of them for training.

Following the total number of training patterns are the number of layers (3),
the number of PEs in the hidden layer (4), the total number of patterns (15 0), the
dimension of the input (4), the dimension of the output (3), and the filename of
the data file (i r i s . da t) where the patterns are stored. Note that this run file (with
three layers) is valid for a network with one hidden layer.

For a network with two hidden layers, see the contents of the
i r i s_..bp2, run file, listed next.

0

0

0.075

0.15

0.01

i0000

99

4

4

3

150

4

3

iris.dat

In this example, following the total number of training patterns are the number of
layers (4), the number of PEs in the first hidden layer (4), the number of PEs in
the second hidden layer (3), the total number of patterns (15 0), the dimension of
the input (4), the dimension of the output (3), and the filename of the data file
(i r i s . d a t) where the patterns are stored.

Following the training of the network, the results, which include the weights
of the trained network and the final mean-squared error for the training
pattern set, are in file BP_RES. TXT. After you run the test patterns, a summary of
the test results appears in BY_TEST. TXT, and a pattern-by-pattern listing of the
target values versus output values for the Iris dataset appears in i r i s r e s . t x t .
Note that the weights of the trained network are the essential output of this
training step.

The Kohonen Network Implementations

The Kohonen Network Implementations

In this section, we first present an implementation of another common neural
network paradigm, the learning vector quantizer (LVQ), sometimes referred to
as a Kohonen network. We then discuss the implementation of Kohonen's self-
organizing feature map network, which is an extension of LVQ.

Programming the Learning Vector Quantizer
Figure 6.5 shows the state transition diagram for the implementation of the lear-
ning vector quantizer discussed in this section. First we define some new data
types.

We now present LVQ network definitions. This section defines some data types
applicable only to the implementation of the LVQ network. The general definitions
previously discussed in the General Definitions for Neural Networks subsection of
the Back-propagation Implementation section are still valid here. The new data
types are shown in Listings 6.6 and 6.7. The new enumeration data types are in
Listing 6.6, and the new structure data types appear in Listing 6.7.

Listing 6.6 Enumeration data types for the LVQ network.

W******WWW**W*W**WWW*WW*WWWWW*W*W*WWWWW*WWW*WW*WWW*WWWW*WW*WW*/

/* Enumerations */
**

typedef enum LVQ_Training_Mode_Tag
{

LVQ_RANDOM_MODE,
LVQ_SEQUENTIAL_MODE,
NUM_LVQ_TRAINING_MODES

} LVQ_Training_Mode_Type;

typedef enum LVQ_State_Tag
{

LVQ_GET_PATTERN,
LVQ_WEIGHT_NORMALIZATION,
LVQ_FEEDFORWARD_INPUT,
LVQ_FEEDFORWARD_OUTPUT,
LVQ_WINNING_NEURON,
LVQ_WEIGHT_STEP_CHANGE,
LVQ_WEIGHT_CHANGE,
LVQ_NEXT_PATTERN,
LVQ_NEXT_ITERATION,
LVQ_UPDATE_LEARNING_RATE,
LVQ_UPDATE_CONSCIENCE_FACTOR,
LVQ_TRAINING_DONE,
LVQ_RECALL_DONE,
NUM_LVQ_STATES

} LVQ_State_Type;

Chapter Six--Neural Network Implementations

typedef enum LVQ_Conscience_Type_Tag
{

LVQ_NO_CONSCIENCE,
LVQ_CONSCIENCE,
NUM_LVQ_CONSCIENCE

} LVQ_Conscience_Type;

LVQ_
FEEDFORWARD_

INPUT

LVQ_UPDATE_ ~ LVQ_NEXT_ >=max ite -) ~ ~ L V Q _ T R A I N I N G
LEARNING ITERATION DONE

, RATE - / \ / , - ,

' LVQ_ '
FEEDFORWARD_

, OUTPUT ,

//

g~

Q.
0

NEURON

LVQ NEXT LVQ WEIGHT

LVQ_WEIGHT_
CHANGE

Figure 6.5 A state diagram of the LVQ network in training operation mode.

The Kohonen Network Implementations

The enumeration data type LVQ_Training_Mode_Type defines two
training modes: LVQ_RANDOM_MODE and LVQ_SEQUENTIAL_MODE. In
LVQ_RANDOM_MODE training mode, the training pattern is randomly selected
from the training pattern set and presented to the LVQ network; in
LVQ_SEQUENTIAL MODE training mode, the training pattern is selected in the
order of the patterns in the training pattern set and presented to the
network.

The data type LVQ_St at e_Type defines all the states in the LVQ state machine.
There are a total of 13 states, each of which has a corresponding state handling
routine. The states transition to each other according to the state transition diagram,
as shown in Figure 6.5.

The data type LVQ_Conscience_Type defines two conditions: LVQ_NO_
CONSCIENCE and LVQ_CONSCIENCE. These two conditions, as explained in the
subsection describing the LVQ_UPDATE_CONSCIENCE_FACTOR state, specify
how the LVQ adapts with or without a conscience.

Listing 6.7 Structure data types for the LVQ network.

/* Structures */
**

typedef struct Neuron_Type_Tag
{

NN_Function_Type neuron_function;
float in;
float out;
FVECTOR w;
FVECTOR delta_w;
float c_f;
float b_v;
int w_s;

// neuron function
// neuron input
// neuron output

// weights from the previous layers
// step change of weights
// conscience factor
// bias value

// winner status, y in equation

} Neuron_Type;

typedef struct NN_Layer_Arch_Type_Tag
{

int size;
Neuron_Type *neurons;
NN_Layer_Type layer_type;

} NN_Layer_Arch_Type;

// number of neurons in the layer

// pointer to the neurons

typedef struct LVQ_Arch_Type_Tag
{

int size;
NN_Layer_Arch_Type *layers;

} LVQ_Arch_Type;

// number of layers
// pointer to the layers

Chapter Six--Neural Network Implementations

typedef struct LVQ_Env_Type_Tag

NN_Operation_Mode_Type operation_mode;
LVQ_Training_Mode_Type train_mode;
float eta;
float
float
float
float
int
int
int
int
int
LVQ_Conscience_Type
int
int

} LVQ_Env_Type;

// training or recall
// training mode
// learning rate

gama; // bias factor
beta; //
shrink; // (eta) shrinking coefficient
criterion; // criterion for termination
max_ite; // maximum number of iterations
cur_ite; // current iteration index
max_tra_pat; // total number of training patterns
cur_pat; // current training pattern index
pat_counter;
conscience; // 0: no conscience, i: conscience
winner; // index of winning neuron
no_clusters; // number of clusters

typedef struct LVQ_Type_Tag
{

LVQ_Arch_Type arch;
LVQ_Env_Type env;

} LVQ_Type;

typedef struct LVQ_Pattern_Set_Type_Tag
{

int size; // number of patterns
int dim_in; // input dimension
int dim_out; // output dimension
FMATRIX patterns; // pointer to the array of patterns

} LVQ_Pattern_Set_Type;

The structure data types for the LVQ network are shown in Listing 6.7. The
structure data type Neuron_Type defines PEs (neurons)--the basic building
components for the LVQ implementation. It is similar to the definition of PEs
in the back-propagation implementation. They share several identical elements
and have their own unique elements, which are put there for the purpose of
the corresponding learning algorithms' implementation. In a more organized
way (left as a exercise), the common elements can be put together alone and
defined as a data type Neuron_Type, and the unique elements in each network
can be defined as data types BP_Neuron_Type and LVQ_Neuron_Type, as
shown in Listing 6.8. Other data types will then use BP...Neuron_Yype and
LVQ._Neuron_Type instead of Neuron_Type.

The structure date type LVQ_Env_Yype defines the environment parameters
for running the LVQ network in a manner similar to the BP implementation. It
includes operation mode (o p e r a t i o n _ m o d e) , training mode (t ra in_mode) ,

The Kohonen Network Implementations

Listing 6.8 Alternative way to define the neuron (PE) data type.

typedef struct Neuron_Type_Tag
{

NN_Function_Type

float

float
FVECTOR
FVECTOR

} Neuron_Type;

neuron_function; // neuron function
in; // neuron input

out; // neuron output
w; // weights from the previous layers
delta_w; // step change of weights

typedef struct BP_Neuron_Type_Tag
{

Neuron_Type neuron; // basic neuron data type
FVECTOR temp_delta_w; // temp. step change of weights

} Neuron_Type;

typedef struct LVQ_Neuron_Type_Tag
{

Neuron_Type neuron;
float c_f;
float b_v;
int w_s;

} LVQ_Neuron_Type;

// basic neuron data type
// conscience factor
// bias value

// winner status, y in equation

learning rate (eta), bias factor (gama), constant value beta (beta), learning rate
shrinking rate (s h r i n k) , training criterion for termination (c r i t e r i o n) , maxi-
mum number of iterations (max_i t e), current iteration index (c u r _ i t e), total
number of training patterns (m a x _ t r a _ p a t) , current pattern index (c u r _ p a t) ,
pattern learned counter within the current iteration (p a t _ c o u n t e r) , flag for
whether conscience is used (c o n s c i e n c e) , index of current winning neuron
(winner) , and number ofclusters (n o _ c l u s t e r s) . Note that the number of clus-
ters is the number of output PEs.

The definition of structure date types NN_Layer_Arch_Type,
LVQ_Arch_Type, LVQ_Type, and LVQ_Pattern_Set_Type are the same as

defined in the BP implementation except that the mean-squared error (mse)

and hidden layers are not included in the data type definitions since LVQ is a
two-layered network and no error back-propagation-like learning algorithm is used.

The ma in () routine is shown in Listing 6.9. As in the back-propagation
implementation, it is kept as simple as possible to make the LVQ module as indepen-
dent as possible. In the LVQ_Star t_Up () routine, all the necessary parameters for
running the LVQ implementation are read from the input file, and the dynamic
data storage variables are allocated memory space and initialized. In the
LVQ_C 1 e an_Up () routine, the results are stored in a output file and the memory
space previously allocated is de-allocated. The LVQ Main_Loop () routine is the
primary part of the LVQ implementation.

Chapter Six--Neural Network Implementations

Listing 6.9 LVQ m a i n () routine.

void main (int argc, char *argv[])
{

// check command line
if (argc != 2)
{

printf("Usage: exe_file run_file");
exit (i) ;

}

main_start_up (argv [1]) ;
LVQ_Main_Loop () ;
main_clean_up () ;

static void main_start_up (char *dataFile)
{

LVQ_Start_Up (dataFile) ;
}

static void main_clean_up (void)
{

LVQ_Clean_Up () ;
}

We now consider the L V Q _ M a i n _ L o o p () routine. Before running this routine,
we define several LVQ file scope variables.

static LVQ_Type
static LVQ_Pattern_Set_Type
static LVQ_State_Type

ivq;
pat set;
ivq_cur_state;

As in the back-propagation implementation, these three variables are defined as
s t a t i c to prevent them from accidentally being changed by outside modules. The
variable l v q stores information related to the LVQ net during the run. The variable
pa t s e t stores all the input/output pairs ofpatterns. The variable 1 v q _ c u r _ s t a t e
records the current state of the LVQ state machine. When the LVQ_Main_Loop ()
routine is running, it calls the current state's handling routine through
ivq_state_handler (ivq_cur_state), where the current state performs its
action until it is transitioned to another state. The Ivq_Main_Loop () keeps run-
ning until its current state is transitioned to the state LVQ_TRAINING_DONE when
the LVQ net is in training operation mode or the state LVQ_RECALL_DONE when
the LVQ net is in recall/test operation mode. The LVQ__Main_Loop () routine is
listed here.

void LVQ_Main_Loop (void)
{

BOOLEAN running;

running = TRUE;

The Kohonen Network Implementations

while (running)
{

if ((ivq_cur_state == LVQ_TRAINING_DONE)

(ivq_cur_state == LVQ_RECALL_DONE))
{

running = FALSE;
}

Ivq_state_handler (ivq_cur_state) ;

LVQ State Handling Routines
We now examine the LVQ state handling routines. As in the BP implementation, the
most important part of the LVQ state machine is its state handler, which is shown
in Listing 6.10. The state handler calls its current state's handling routine until the
current state is transitioned to a new state, where the new state's handling routine is
called by the state machine.

Listing 6.10 Main part of the LVQ state machine.

static void ivq_state_handler (int state_index)
{

switch (state_index)
{

case LVQ_GET_PATTERN :

ivq_get_pattern () ;

break;

case LVQ_WE I GHT_NORMAL I ZAT I ON •

ivq_weight_normalization () ;

break;

case LVQ_FEEDFORWARD_INPUT :

ivq_feedforward_input () ;

break;

case LVQ_FEEDFORWARD_OUTPUT :

Ivq_feedforward_output () ;

break;

case LVQ_WINNING_NEURON :

ivq_winning_neuron () ;

break;

case LVQ_WEIGHT_STEP_CHANGE :

ivq_weight step change() ;

break;

case LVQ_WE I GHT_CHANGE •

ivq_weight change() ;

break;

case LVQ_NEXT_PATTERN :

ivq_next_pattern () ;

break;

case LVQ_NEXT_ITERATION :

ivq_next_iterat ion () ;

break;

case LVQ_UPDATE_LEARNING_RATE :

ivq_update_learning_rate () ;

break;

2~ 2 ~ : ~ Chapter Six--Neural Network Implementations

case LVQ_UPDATE_CONSCIENCE_FACTOR:

ivq_update_conscience_factor () ;

break;

case LVQ_TRAINING_DONE :

ivq_training_done () ;

break;

case LVQ_RECALL_DONE :

ivq_recall_done () ;

break;

default :

break;

In the LVQ_GET_PATTERN state, the current pattern portion specified by
l vq . e n v . c u r _ p a t is copied to the input PEs in the input layer and to the
target output; then the current state transitions to the state LVQ_WEIGHT_
NORMALIZATION if the operation mode is NN_TRAINING mode; otherwise, it
transitions to the state LVQ_FEEDFORWARD_INPUT. The state handling routine
is shown here.

static void ivq_get_pattern (void)
{

int idx;

for (idx = 0; idx < (ivq.arch.layers[0].size); idx++)
{

ivq.arch.layers[0] .neurons[idx] .in = patset.patterns

[ivq.env. cur_pat] [idx] ;
}

for (idx = 0; idx < pat set. dim_out; idx++)
{

target_out[idx] = patset.patterns[ivq.env.cur_pat]

[patset.dim_in + idx];
}

if (Ivq. env. operation_mode == NN_TRAINING)
{

ivq_cur_state = LVQ_WEIGHT_NORMALIZATION;
}

else
{

ivq_cur_state = LVQ_FEEDFORWARD_INPUT;
}

In the LVQ_WEIGHT_NORMALI ZATION state, the weight vector is normalized
according to equation 6.1. The i f statement i f (sum > 0 . 0) is added to avoid
the rare situation where all the weights connected to output neurons are 0s. The
current state transitions to the state LVQ_FEEDFORWARD_INPUT. The state han-
dling routine is shown here.

The Kohonen Network Implementations

static void ivq_weight_normalization (void)
{

int idx_cn, idx_pn;

double sum;

float temp_f;

for (idx_cn = 0; idx_cn < (ivq.arch.layers [l] .size) ; idx_cn++)

{ // loop through neurons in the output layer

sum = 0.0;

for (idx_pn = 0; idx_pn < (ivq.arch.layers[0].size) ; idx_pn++)

{ // loop through all the weights connected to this neuron

sum += ivq.arch.layers[l].neurons[idx_cn].w[idx_pn] *

ivq. arch. layers [1] .neurons [idx_cn] .w [idx_,pn] ;
}
sum = sqrt(sum);

if (sum > 0.0)
{

for (idx_pn = 0; idx_pn < (ivq.arch.layers [0] .size) ; idx_pn++)

{ // loop through all the weights connected to this neuron

temp_f = ivq. arch. layers [l] .neurons[idx_cn] .w[idx_pn]/sum;

ivq.arch.layers[l] .neurons[idx_cn] .w[idx_pn] = temp_f;
}

}
}
ivq_cur_state = LVQ_FEEDFORWARD_INPUT;

In the LVQ_FEEDFORWARD_INPUT state, the output of the input layer is calcu-
lated. As in the back-propagation implementation, the input layer is treated as only
a path to the next layer (the output layer). The output of each input PE equals its
input. The current state transitions to the state LVQ_FEEDFORWARD_OUTPUT. The
state handling routine is shown here.

static void ivq_feedforward_input (void)
{

int idx;

for (idx = 0; idx < (ivq.arch.layers[0].size); idx++)
{

ivq.arch.layers[0].neurons[idx].out = ivq.arch.layers[0]

• neurons [idx] . in;
}
ivq_cu r_s t at e = LVQ_FEEDFORWARD_OUTPUT;

In the LVQ_FEEDFORWARD_OUTPUT state, the Euclidean distance between the
input vector and the weight vector for each output PE (neuron) is first calculated
according to equation 6.4. Then the output of each output PE is calculated, which
is equal to the its Euclidean distance since the output PEs have a linear activation
function. The current state transitions to the state LVQ_WINNING_NEURON. The
state handling routine is shown here.

Chapter Six--Neural Network Implementations

static void ivq_feedforward_output (void)
{

int idx_out, idx_prev;

double sum, temp_f;

for (idx_out = 0; idx_out < (ivq.arch.layers[l].size); idx_out++)

{ // loop through the neurons of the output layer

sum = 0.0;

for (idx_prev = 0; idx_prev < (ivq.arch.layers[0].size);

idx_prev++)

{ // loop through the neurons of the input layer

temp_f = (ivq.arch.layers[0] .neurons[idx_prev] .out -

ivq. arch. layers [I] .neurons [idx_out] .w[idx_prev]) ;

sum += (temp_f * temp_f) ;
}

temp_f = sqrt (sum) ;

ivq.arch, layers [i] .neurons [idx_out] . in = temp_f;

ivq.arch.layers[l] .neurons[idx_out].out = activate_function(

temp_f, Ivq. arch. layers [I] .neurons [idx_out] .neuron_function) ;
)

ivq_cur_state = LVQ_WINNING_NEURON;

In the LVQ_WINNING_NEURON state, the new winning PE for the current input
pattern is determined. The last and new winning neurons' winning statuses are
updated. The current state transitions to the state LVQ_WEIGHT_STEP_CHANGE
if it is in training operation mode; otherwise, it transitions to the state
LVQ_NEXT_PATTERN and the recall/test result is recorded. The state handling
routine is shown here.

static void ivq_winning_neuron (void)
{

int idx, temp_w;

float min_v = i000.0;

for (idx = 0; idx < (ivq.arch.layers[l].size); idx++)

{ // loop through the neurons in output layer

if ((ivq.arch.layers[l] .neurons [idx] .out -

ivq.arch.layers[l] .neurons[idx].b_v) < min_v)
{

min_v = ivq.arch.layers[l] .neurons[idx] .out -

ivq. arch. layers [i] .neurons [idx] .b_v;

temp_w = idx;
}

ivq.arch.layers [I] .neurons [ivq.env.winner] .w_s = 0;

ivq.env.winner = temp_w;

ivq. arch. layers [I] .neurons [ivq.env.winner] .w_s = I;

if (ivq.env.operation_mode == NN_TRAINING)
{

ivq_cur_state = LVQ_WEIGHT_STEP_CHANGE;
}

else

{ // recall

The Kohonen Network Implementations

update_recall_result();

ivq_cur_state = LVQ_NEXT_PATTERN;

In the LVQ_WE I GHT_S TEP_CHANGE state, the winning neuron's weight change
increments are calculated according to equation 6.11. The state transitions to the
state LVQ__WE I GHT_CHANGE. The state handling routine is shown here.

static void ivq_weight_step_change (void)
{

int idx_pn;

for (idx_pn = 0; idx_pn < (ivq.arch.layers[0].size) ; idx_pn++)

{ // loop through the connect weights of the current neurons

Ivq. arch. layers [I] . neurons [ivq.env.winner] .delta_w [idx_pn] =

ivq. arch. layers [0] .neurons [idx_pn] . out -

ivq. arch. layers [1] . neurons [ivq.env.winner] .w [idx_pn] ;

ivq. arch. layers [I] .neurons [ivq.env.winner] .delta_w[idx_pn] *=

Ivq. env. eta;
}
ivq_cur_state = LVQ_WEIGHT_CHANGE;

In the LVQ_WE I GHT_CHANGE state, the winning neuron's weights are updated
by adding its newly calculated weight change increments. The state transitions to the
state LVQ_NEXT_PATTERN. The state handling routine is shown here.

static void lvq_weight_change (void)
{

int idx_pn;

for (idx_pn = 0; idx_pn < (ivq.arch.layers[0].size) ; idx_pn++)

{ // loop through the connect weights of the current neurons

Ivq.arch.layers [i] .neurons [ivq.env.winner] .w[idx_pn] +=

ivq. arch. layers [1] . neurons [Ivq. env.winner] . delta_w [idx_pn] ;
}
ivq_cur_state = LVQ_NEXT_PATTERN;

The LVQ_NEXT_PATTERN state is used to determine which state is the next state
according to the LVQ network environment information.

If the LVQ is in training operation mode, first the next input pattern is selected. If
it is in random training mode, an input pattern is randomly selected from the train-
ing pattern set. Otherwise, the next pattern in the training pattern set is selected,
or the first pattern is selected if it is at the end of the training pattern set. The pat-
tern counter is then increased by one. If it is less than the total number of train-
ing patterns, the current state transitions to the LVQ_UPDATE_LEARNING_RATE.
Otherwise, it transitions to the state LVQ_NEXT_I TERAT I ON.

If the LVQ is in recall operation mode, the current pattern index is increased
by one. If the current pattern index is less than the total number of training

(~ ~) Chapter Six---Neural Network Implementations

patterns, the current state transitions to the state LVQ_GET_PATTERN; otherwise,
it transitions to the state LVQ_RECALL_DONE. The state handling routine is
shown here.

static void ivq_next_pattern (void)
{

if (ivq.env.operation_mode == NN_TRAINING)
{

if (ivq.env.train_mode == LVQ_RANDOM_MODE)

{ // random training

ivq.env.cur_pat = rand()%(Ivq.env.max_tra_pat);
}

else
{ // sequential training

if (++ivq.env.cur_pat >= Ivq.env.max_tra_pat)
{

ivq.env.cur_pat = 0;
}

}

if ((++ivq.env.pat_counter) <ivq.env.max_tra_pat)

{ // add other termination criterion here

ivq_cur_state =LVQ_UPDATE_LEARNING_RATE;
}

else
{

Ivq_cur_state = LVQ_NEXT_ITERATION;
) •

}

else // recall
{

if ((++ivq.env.cur_pat) < patset.size)
{

ivq_cur_state = LVQ_GET_PATTERN;
}

else
{

ivq_cur_state = LVQ_RECALL_DONE;
}

In the LVQ_NEXT_ITERATION state, the current iteration index is increased
by one. If the index is less than the maximum number of iterations, the current
state transitions to the state LVQ_UPDATE LEARNING RATE; otherwise, it
transitions to the state LVQ_TRAINING_DONE. The state handling routine is

shown here.

static void ivq_next_iteration (void)
{

ivq.env.pat_counter = 0;
if ((++ivq.env.cur_ite) < ivq.env.max_ite)
{ // add other termination criterion here

ivq_cur_state = LVQ_UPDATE_LEARNING_RATE;
)

The Kohonen Network Implementations

else
{

ivq.env.pat_counter = 0;

lvq_cur_state = LVQ_TRAINING_DONE;

In the LVQ_UPDATE_LEARNING_RATE state, the new learning rate ~(t) dec-
reases over time. In this implementation, r/(t) is shrinking over time (number of
patterns presented to the LVQ network) and is calculated according to equation 6.13.

,/(t + 1)= ,7(t) x ~ (6.13)

~(0) = ~o

where both r/0 and fl are positive constants. Other decreasing functions of time can
also be used as functions to update learning rate r/(t), which is left as a exercise for
the student.

The current state transitions to the state LVQ_UP DATECON SC I ENCE_FACTOR.
The state handling routine is shown here.

static void lvq_update_learning_rate (void)
{

ivq.env.eta *= ivq.env.shrink;

ivq_cur_state = LVQ_UPDATE_CONSCIENCE_FACTOR;
}

In the LVQ_UP DATE_CON SC I ENCE_FACTOR state, a "conscience" is added into
the network if a network conscience is specified in the input file. We now explain
what a conscience is and why it is often necessary for an LVQ network to incorporate
a conscience.

Optimally, in an LVQ network with n output PEs, each PE should represent
(should have been the winner for) exactly 1/n of the training patterns. Given a net-
work free to train constrained only by equation 6.11, however, it is not likely that
this evenly distributed representation will occur. It is especially unlikely to occur if
the distribution of the (randomized) initial weights does not match the probability
distribution of the pattern set used for training very well. The following example
should help you visualize this situation.

Consider a case of three-dimensional pattern vectors that all terminate on the
surface of a sphere. Assume that the pattern vectors are fairly evenly distributed over
the sphere's surface. Further assume that the weight vectors are initialized so that
all but one terminate in, and are fairly evenly distributed over, one hemisphere; the
last weight vector is alone near the center of the other hemisphere. The lone weight
vector will thus be the "winner" for far more of the patterns than any other weight
vector; it will "dance" around its hemisphere trying to represent far more than its
share of patterns, and it will end up not representing them well at all. What is needed

Chapter Six--Neural Network Implementations

is some mechanism that "punishes" the lone weight for winning too often and moves
other weight vectors into the lone weight's hemisphere.

A method to accomplish this was developed by DeSieno (1988). He des-
cribes the method as adding a conscience to the network. First, for a given input pat-
tern, the Euclidean distance as described in equation 6.4 is calculated for each output
PE. Normally, the PE with the minimum distance would be declared the winner, and
the weights abutting it would be updated according to equation 6.11. Before a win-
ner is declared, however, the following calculations are made.

Before starting the training, a conscience factor)j is defined for each output
PE, and each is initialized to the value 1/n, where n is the number of output PEs.
Each time a pattern is presented to the network, the winning PE is selected
according to equation 6.14(a), where bj is a bias value calculated for each output
PE according to equation 6.14(b). (When training starts, each bias value is 0.) The
"bias factor" r in equation 6.14(b) is usually set to a value of approximately 10.

Only the single winning PE selected in equation 6.14(a) has its weights updated
according to equation 6.11. Following the winning PE's weight updates, all PEs have
their conscience factors updated according to equation 6.14(c), where # is a constant
typically valued at about 0.0001.

y~inner = 1 for min(dj- bj),

bj - - ~ ' _ _
n

~new ._ fjold + ,(yj _ fffld)

yj=0 for all other PEs (a)

(b) (6.14)

(c)

A brief example may clarify how the conscience works. Consider a network with
10 output PEs. The initial values of all])'s are thus 0.1. When the very first training
pattern is presented to the network, the PE with the weight vector closest to the
pattern (minimum Euclidean distance) is the winner and has its weights updated (all
bi's are 0 at this point). All output PEs then have their conscience factors updated.
For the winning PE, the new value of]~ is [0.1 + 0.0001(1.0 - 0.1)] - 0.10009; for
all other PEs, the new conscience factor is 0.1 - 0.00001 = 0.09999. The value of bj
for the winner is now -0.0009; its value is 0.0001 for all other PEs. When the second
pattern is presented, the previous winner's Euclidean distance is thus penalized by
having 0.0009 added to it; all others are enhanced by having 0.0001 subtracted from
them. Frequent winners will have negative bj's, infrequent winners will have positive
b i's, and the result will be a good model of the probability density function of the
input patterns.

The constant # should be picked so that the conscience factors)j do not reflect
random fluctuations in the data. The bias factor r determines the distance a losing

The Kohonen Network Implementations

PE can move in order to enter the solution. A bias factor of O corresponds to a "plain
vanilla" Kohonen LVQ.

The LVQ_UPDATE_CONSCIENCE_FACTOR state transitions to the state
LVQ_GET_PATTERN. The state handling routine is shown here.

static void lvq_update_conscience_factor (void)
{

int idx;

float temp_f;

if (ivq.env.conscience == LVQ_CONSCIENCE)
{

for (idx = 0; idx < (ivq. arch. layers [l] . size) ; idx++)

{ // loop through the neurons in output layer

temp_f = ivq. arch. layers [l] .neurons[idx] .c_f;

Ivq. arch. layers [l] .neurons[idx] .c_f = temp_f + ivq.env.beta *

(ivq.arch.layers[l] .neurons[idx] .w_s - temp_f) ;

ivq. arch. layers [l] .neurons[idx] .b_v = ivq.env.gama *

(l.0/ivq.env.no_clusters - ivq. arch. layers [l]

.neurons [idx] .c_f) ;
}

}

Ivq_cur_state = LVQ_GET_PATTERN;

We now examine the states LVQ_TRAINING_DONE and LVQ_RECALL_DONE.
As in the back-propagation implementation, in these two states the post-
processing of the data or results can be performed. In our current implement-
ation, the l v q _ w e i g h t _ n o r m a l i z a t i o n () routine is called in the state
LVQ_TRAINING_DONE's handling routine.

Running the LVQ Implementation
To run the learning vector quantizer implementation requires the executable
file l v q . e x e and an associated run file, for example, i r i s _ l v q , run. To run
the implementation from within the directory containing l v q . e x e and
i r i s _ l v q , run, at the DOS system prompt type: l v q i r i s _ l v q , run.

The contents of the i r i s _ l v q , run run file are shown in Listing 6.11.

Listing6.11 Run file iris_ivq, run.

0

0

0.3

0.999

i0

0.0001

0.001

500

Chapter Six--Neural Network Implementations

99

1

6

150

4

3

iris .dat

The file contains specifications for a run. The file specifies operation mode (0) (0 is
training, I is testing), training mode (0) (0 is random pattern selection, 1 is sequen-
tial), learning rate (0.3) , learning rate shrinking coefficient (0 .9 9 9), bias factor
(10), beta (0 .0 0 01), training termination criterion (0 .0 01), maximum number
of iterations (5 0 0), total number of training patterns (9 9), network conscience sta-
tus (1), maximum number of clusters (6), total number of patterns in the training
file (150), dimension of pattern input (4), dimension of pattern output (3), and
pattern data filename (i r i s . da t) from which the patterns are read.

At the end of the run, two output files are obtained. The file r.VQ_RES, t x t
contains the weights for the LVQ network. The file LVQ_TV. S T. TXT contains a sum-
mary of the results. The summary table lists how many patterns from each class were
put into each cluster.

Programming the Self-organizing Feature Map
The self-organizing feature map neural network is an extension of the learning vec-
tor quantizer. In this section, we discuss the implementation of the self-organizing
feature map (SOFM), starting with an introduction to SOFM concepts.

The self-organizing feature map neural network, like LVQ networks, was devel-
oped by Teuvo Kohonen (1982a, 1982b) of the Helsinki University of Technology.
Self-organizing feature maps pick up where LVQ-I, as described earlier in this chap-
ter, leaves off. All of the features of LVQ-I, including the conscience, are incorpo-
rated into self-organizing feature maps. In addition, the adaptation procedure used
by SOFMs incorporates what is called a neighborhood. In order to discuss neighbor-
hoods and how they are used, we introduce the notion of a PE slab, which examines
topology and notation for the network.

To facilitate understanding the adaptation process of a self-organizing feature
map network, we implement the concept of a slab in the context of neural networks.
Slabs can simplify network diagrams because groups of PEs can be represented by
one symbol.

Functionally, a slab of PEs is a collection of PEs with similar attributes and a
defined (and fixed) topology. These attributes include such things as activation func-
tion, learning coefficient, and, if applicable, momentum factor. (Some attributes
have meaning only for certain types of network.) In addition, all PEs in a given slab

The Kohonen Network Implementations

0 ~ Single PE
0 0 0

0 0 o o o 0
0 0 0
0 0 0
0 0 0

0 0 o o o 0
Slab of PEs

Figure 6.6 A rectangular slab of PEs.

receive their inputs from the same source(s) (slab(s) and/or input pattern) and send
their outputs to the same destination(s) (slab(s) and/or output pattern).

The main difference between a layer of PEs and a slab of PEs is that topology
plays an important role in a slab. In PE layers, PEs can be moved around if their
weights (and inputs or outputs, if applicable) are moved with them. This is not the
case with slabs. While there usually are no connections among PEs in a slab, their
topological relationships are important, and operations are carried out that depend
on that topology. We suggest that the term slab be used only when these topologically
dependent operations are present.

Figure 6.6 illustrates the concept of a slab. In the figure, the PEs are arranged in
a rectangular pattern. The geometrical arrangement of PEs in a slab can vary and
depends on the application. (Most implementations of slabs are two-dimensional;
the word slab implies a flat structure, such as a thick plate or slice.) In the self-
organizing feature map, a rectangular array is usually used to depict the PEs in the
input slab and is often used for the output slab as well. Another arrangement, the
hexagonal array (Figure 6.7), is also sometimes used to represent the output slab
in the self-organization model. The geometry chosen to represent the output slab
determines the configuration of the neighborhood of each PE, a subject we address
later.

A simple illustration of a self-organizing feature map appears in Figure 6.8. We
use essentially the same notation as we used for the LVQ-I network, except for the
input and output slabs.

The two-dimensional slab configuration makes it desirable, in some cases, to use
double subscripts for PEs and for the input and output vectors. We use the single
subscript version in this section, primarily for simplicity.

A learning coefficient that is defined later is represented by the lowercase Greek
letter rl (eta). A few words of caution are appropriate here. This learning coeffi-
cient isn't exactly the same as the one for the back-propagation implementation.

Chapter SixmNeural Network Implementations

• •
Single PE

0 0 c
0 0

0 0 0
0 0

Slab of PEs

Figure 6.7 A slab of PEs in a hexagonal array.

I I Input Vector .~ ,, Matrix W .~ ._ Output Vector

Ak "~["-I,, "~ Bk

Input Output
Slab Slab

Figure 6.8 Self-organizing feature map network model.

(We discuss that later.) Also, Kohonen used the lowercase Greek letter a (alpha) for
his learning coefficient. We chose ,7 for consistency with the back-propagation imple-
mentation. When you see 17 in this book in connection with neural networks, you
know that it's a learning coefficient, and when you see a, you know it's a momen-
tum term.

Let's look at network initialization and input. On the left of Figure 6.8 a set
of inputs comes into the input slab of the network. As is the case with the LVQ-I
paradigm, you are more likely to use raw data and less likely to use precalculated
parameters as inputs to a self-organizing feature map. As with LVQ-I, most people
working with SOFM usually normalize each entire input vector (see equation 6.1).
Be careful of destroying useful information in the normalization process; you may
want to consider using the z-axis normalization process described in Chapter 5.

There is general agreement about the need to initialize the SOFM weight vec-
tors by normalization. What isn't necessarily clear is the best way to do it. First,
random values are assigned to each weight. One common approach is to initially
assign random weight values between 0.4 and 0.6. However, if you refer to the initial

The Kohonen Network Implementations

illustration of Figure 5.16 in Kohonen (1988), you see that he initialized his network
weights to values between 0.45 and 0.55. Ifyou look at the Pascal code for a program
called ToPreM2, which he published with his 1989 tutorial notes (Kohonen 1989),
you find each weight initialized to a random value between 0.4 and 0.6. Meanwhile,
in Caudill (1989a) initial weight vectors are generated that lie at random locations
on the unit circle, in accordance with equation 6.1.

The adaptation process for SOFM is quite similar to that for LVQ-I. The winning
PE is selected based on the minimum Euclidean distance between the input and
weight vectors using equation 6.4. The update of the weight vectors, however, is dif-
ferent from the update in LVQ-I and involves a concept known as a neighborhood.
Weight adjustments are made using a PE neighborhood that shrinks over time and a
learning coefficient that also decreases with time. The result is that the values of the
weights form clusters that reflect the probability density of the input vectors. When
the network has self-organized and training is complete, PEs that are topologically
near each other react similarly to similar input patterns.

The neighborhood is the portion of the output slab (the PEs) within a specified
topological radius of a given winning PE. We must first define the initial size of the
neighborhood. All PEs in the neighborhood of the winning PE have their weights
adjusted. Each iteration of a complete training pattern dataset is a discrete step in
time, or epoch. Thus, the first epoch is at to, the next at tl, and so on. In a rectangular
output slab, the topology of the PEs may (or may not, depending on the user) wrap
around left to right and top to bottom.

For the moment let us suppose that the PE in the center of the slab illustrated in
Figure 6.6 is the winner. For the first group of iterations (epochs), the neighborhood
of the winning PE is relatively large, perhaps large enough to cover most or all of the
output slab. For example, in Figure 6.7 the initial neighborhood may consist of the
winning PE and the 18 PEs surrounding it. After further iterations, the neighbor-
hood is decreased in size. This smaller neighborhood could consist, in our example,
of the winning PE plus the six PEs immediately surrounding it. Finally, after another
set of iterations, the neighborhood could shrink to include only the winning PE. The
number of iterations between changes in neighborhood size varies appreciably with
the application but is often in the range of a few hundred to a few thousand.

Now that you know how to decrease the size ofthe neighborhood with time, what
do you do with the weights ofthe PEs inside the neighborhood? (Remember that the
weights of the PEs outside the neighborhood are not changed.) Figure 6.9 illustrates
three approaches to weight adjustment. To implement these functions, imagine that
the PE slab is significantly larger than those of Figures 6.6 and 6.7, so that the initial
neighborhoods can be eight to ten PEs in diameter.

Figure 6.9(a) illustrates the "Mexican hat" function described by Kohonen (1988).
The largest weight adjustment, which is positive, occurs for the winning PE. Some-
what smaller positive changes are made to adjacent PEs, and still smaller changes to
PE weights adjacent and just outside of these, and so on, until at some distance r0

Chapter Six--Neural Network Implementations

(a) Mexican hat function

I :::3---
(b) Stovepipe hat function

r° (c) Chef hat function

Distance from Winning PE

Figure 6.9 Magnitude of weight correction versus distance from winning PE in a self-
organizing feature map.

the weight adjustments go to 0. The weight changes then become slightly negative
for a while, finally becoming 0.

The shape of the Mexican hat function is reminiscent of the on-center off-
surround excitation pattern observed in some biological systems and implemented
by Grossberg (1973) in his gain control system for a PE group (see the section in the
history of neural networks of Chapter 5). Although the Mexican hat function may
exhibit biological plausibility, it adds computational complexity to a set of calcula-
tions that is usually performed thousands of times while training a SOFM. There-
fore, most applications of SOFMs have used simplified functions.

In the "stovepipe hat" function of Figure 6.9(b), identical positive weight changes
are made to all PEs within a radius of ro of the winning PE, and identical negative
weight changes are made to PEs at a Slightly larger radius. Taking the simplifica-

The Kohonen Network Implementations

tion even further, we arrive at the "chef hat" function, shown in Figure 6.9(c), in
which only identical positive weight changes are made to those PEs within the r0
radius. This simple method is often used in implementations of the SOFM network
(Kohonen 1988).

In addition to reducing computational complexity, the chef hat function is used
for a practical reason. If we assume r0 is about three times as large as the region of
negative reinforcement beyond it, as in Figure 6.9(a and b), then there Won't be any
negative reinforcement for neighborhoods less than nine PEs across. For a neigh-
borhood nine PEs across, the winning PE and three PEs on each side will receive
positive weight reinforcement, while one PE on each side (and four PEs away)
will receive negative reinforcement. As soon as the neighborhood shrinks to five
across, all in the neighborhood will receive positive reinforcement. In the authors'
experience, we have seldom worked with output slabs larger than five across, and
never larger than eight across, so it is rare that we start with neighborhood larger
than five across.

In summary, training consists of finding the winning PE according to the mini-
mum Euclidean distance method (perhaps including the effects of a conscience), as
in LVQ-I, and then updating the PE weights in the neighborhood according to equa-
tion 6.15. Note that this equation is identical to that for weight updating for LVQ-I
with the addition of the neighborhood function n(t). In the simplest version (most
often implemented) n(t) is 1.0 within the chef hat neighborhood and 0.0 outside the
neighborhood, and the neighborhood size shrinks over time.

wji(t + 1) = wji(t) + n(t)rl(t)(aki- wji) (6.15)

Iterations continue until the corrections in equation 6.15 become acceptably
small or the specified maximum number of iterations is reached. As with LVQ-I,
it is not necessary to renormalize the weight vectors during or after training as long
as the changes to the weight vector components carried out according to equation
6.15 are small enough. Keeping them small keeps the weight vector near the surface
of the unit hypersphere and the dot-product remains valid. See the discussion of
the selection of training patterns for the LVQ-I paradigm; similar guidance should
be followed for SOFM. Also remember that the same conscience mechanism as that
for LVQ-I should be implemented for SOFM.

Let's now examine SOFM data type definitions. SOFM is an extension of LVQ.
Thus the data types defined for the LVQ implementation are utilized here with minor
changes and different names--for example, LVQ_Type is renamed SOFM_Type.
Since in the SOFM a neighborhood concept is incorporated and is the main dif-
ference between LVQ and SOFM, the neighborhood concept is programmed into
the SOFM implementation. For SOFM, for visualization, the output slab is most
often two-dimensional; the neighborhood is therefore two-dimensional. The PEs

Chapter Six--Neural Network Implementations

(neurons), at least in the output slab, use double subscripts. Certainly, one- or
three-dimensional output slabs can also be used. Ifthe output slab is one-dimensional,
the source code for LVQ implementation, except the routines for updating weights,
can be used here, where now all the PEs within the neighborhood of the winning
PE, instead of only the winning PE as in LVQ, have their weights updated. Actually,
this can also be true even for a two- or three-dimensional output slab, but it involves
some conversion routines from one-dimensional subscript expression to double or
triple subscripts and from double or triple subscripts to one-dimensional subscripts.
In our implementation, the common two-dimensional slab and double subscripts
are used. Therefore, minor changes to the LVQ implementation are required for
the SOFM implementation. The new data types are listed in Listing 6.12 for
convenience.

Listing 6.12 Data type definitions for SOFM.

/* Enumerations */
**

typedef enum SOFM_Training_Mode_Tag
{

SOFM_RANDOM_MODE,
SOFM_SEQUENTIAL_MODE,
NUM_SOFM_TRAINING_MODES

} SOFM_Training_Mode_Type;

typedef enum SOFM_State_Tag
{

SOFM_GET_PATTERN,
SOFM_WEIGHT_NORMALIZATION,
SOFM_FEEDFORWARD_INPUT,
SOFM_FEEDFORWARD_OUTPUT,
SOFM_WINNING_NEURON,
SOFM_UPDATE_NEIGHBORHOOD,
SOFM_WEIGHT_CHANGE,
SOFM_NEXT_PATTERN,
SOFM_NEXT_ITERATION,
SOFM_UPDATE_LEARNING_RATE,
SOFM_UPDATE_CONSCIENCE_FACTOR,
SOFM_TRAINING_DONE,
SOFM_RECALL_DONE,
NUM_SOFM_STATES

} SOFM_State_Type;

typedef enum SOFM_Conscience_Type_Tag
{

SOFM_NO_CONSCIENCE,
SOFM_CONSCIENCE,
NUM_SOFM_CONSCIENCE

} SOFM_Conscience_Type;

typedef enum Neighbor_Function_Type_Tag

The Kohonen Network Implementations

CHEF_HAT,
MEXICAN_HAT,
STOVEPIPE_HAT,
NUM_NEIGHBOR_FUNC
Neighbor_Function_Type;

**/

/* Structures */
**

typedef struct SOFM_2D_Size_Type_Tag
{ // rectangular

int width;
int height;

} SOFM_2D_Size_Type;

typedef struct Neuron_Type_Tag

NN_Function_Type neuron_function;
float in;
float out;
FVECTOR w;
FVECTOR delta_w;
float c_f;
float b_v;
int w_s;
Neuron_Type;

typedef struct NN_Layer_Arch_Type_Tag
{

SOFM_2D_Size_Type size;
Neuron_Type **neurons;
NN_Layer_Type slab_type;

} NN_Slab_Arch_Type;

typedef struct SOFM_Arch_Type_Tag
{

int size;
NN_S i ab_Ar ch_Type * s i ab s ;

} SOFM_Arch_Type;

typedef struct SOFM_Env_Type_Tag
{

NN_Ope rat ion_Mode_Type operat ion_mode;
SOFM_Training_Mode_Type train_mode;

float eta;
float gama;

float beta;

float shrink;

float criterion;
int max_ite;
int cur_ite;
int max_t ra_pat ;
int cur__pat ;
int pat_counter;

Chapter SixmNeural Network Implementations

SOFM_Conscience_Type
SOFM_2D_Size_Type
SOFM_2D_Size_Type
SOFM_2D_Size_Type
Neighbor_Function_Type

} SOFM_Env_Type;

conscience;
winner;
neighbor;
cur_neighbor;
neighbor_function;

typedef struct SOFM_Type_Tag
{

SOFM_Arch_Type arch;
SOFM_Env_Type env;

} SOFM_Type;

typedef struct SOFM_Pattern_Set_Type_Tag
{

int size;
int dim_in;
int dim_out;
FMATRIX patterns;

} SOFM_Pattern_Set_Type;

As shown in Listing 6.12, most data types are the same as those in the
LVQ implementation except for having different names, but there are some
differences. A new state SOFM_UPDATE_NETGHBORHOOD is added into 5OFM__
S t a t e _ T y p e , and two states for weight changes are merged into one state
S OFM_WE I GHT_CHANGE.

A new struct data type SOFM_2D_Size_Type is defined to record the two-
dimensional object. Another new data type Ne i ghbo r_Fun ct i on_Type is defi-
ned to enumerate the neighborhood function types. The name of the element
n e u r o n s in NN_Slab_Arch_Type is a double pointer, instead of a pointer, to
Neuron_ type . The name of the element l a y e r _ t y p e has been changed to
s l a b _ t y p e to reflect the slab concept. The same is true for element slabs in
SOFM_Arch_Type.

In the data type SOFM_Env_Type, the element no_clusters is removed, the
element winner's data type int is replaced with data type SOFM_2 D_S i z e_Type,
and the new elements neighbor, cur_neighbor, and neighbor_function
are added. The SOFM_2D_Size_Type neighbor records the initial neighbor-
hood size, the cur_neighbor records the current neighborhood size, and the
N e i g h b o r _ F u n c t i o n _ T y p e n e i g h b o r _ f u n c t i o n stores which neighbor-
hood function is being used.

There are a few programming differences between SOFM and LVQ. Most of the
SOFM implementation is similar to the LVQ implementation except that double
subscripts represent the PEs where LVQ uses single subscripts. The main difference
is that a new state SOFM._.UPDATE_NE I GHBORHOOD is added to update the neigh-
borhood size, and the state handling routine for state SOFM_WE I GHT_CHANGE has
to be significantly modified to reflect that all the PEs within the neighborhood of the

The Kohonen Network Implementations

winning PE are required to update their weights; in LVQ only the winning PE must
update its weight.

In the SOFM__UP DATE_NE I GHBORHOOD state, the neighborhood size is updated.
The variable i t e _ p e r _ u p d a t e _ n e i g h b o r , h e i g h t records the rate at which
neighborhood size is decreased. Both dimensions of the neighborhood size are
updated. The current state transitions to the state SOFM_WEIGHT_CHANGE. The
state handling routine is shown here.

static void sofm_update_neighborhood (void)
{

static int temp_c;

temp_c = sofm.env.cur_ite/ite_per_update_neighbor.height;

sofm.env.cur_neighbor.height = sofm.env.neighbor.height - temp_c;

temp_c = sofm.env.cur_ite/ite_per_update_neighbor.width;

sofm.env.cur_neighbor.width = sofm.env.neighbor.width - temp_c;

if (sofm.env.cur neighbor.height < 0)
{

sofm.env.cur_neighbor.height = 0;
}

if (sofm.env.cur_neighbor.width < 0)
{

sofm.env.cur_neighbor.width = 0;
}

sofm_cur_state = SOFM_WEIGHT_CHANGE;
}

In the SOFM_WEI GHT_CHANGE state, all the PEs within the neighborhood of the
wining PE have their weights updated. When considering the neighborhood, the
PEs' subscripts are wrapped around; the PEs on one side of a boundary are topologi-
cal neighbors to the PEs on the other side ofthe boundary. The n e i g h b o r func ()
routine is called to get the neighborhood weight value. The current state transitions
to the state SOFM_NEXT_PATTERN. The state handling routine is shown here.

static void sofm_weight_change (void)
{

int idx_pn, idx_h, idx_w;

int n_h, n_w;

for (idx_pn = 0; idx_pn < (sofm.arch.slabs[0].size.width) ; idx_pn++)

{ // loop through the connect weights of the current neurons

for (idx_h = -(sofm.env.cur_neighbor.height); idx_h <=

(sofm.env.cur_neighbor.height) ; idx_h++)
{

n_h = sofm.env.winner.height + idx_h;

if (n_h < 0)
{

n_h += sofm. arch. slabs [l] .size.height;

Chapter SixmNeural Network Implementations

}

else if (n_h >= sofm. arch. slabs [l] .size.height)
{

n_h -= sofm.arch.slabs[l] .size.height;
}

for (idx_w = -(sofm.env.cur_neighbor.width); idx_w <=

(sofm.env.cur_neighbor.width) ; idx_w++)
{

n_w = sofm.env.winner.width + idx_w;

if (n_w < 0)
{

n_w += sofm. arch. slabs [l] .size.width;
}

else if (n_w >= sofm.arch.slabs[l].size.width)
{

n_w -= sofm. arch. slabs [l] .size.width;
}

sofm. arch. slabs [i] .neurons [n_h] [n_w] .delta_w[idx_pn] =

sofm. arch. slabs [0] .neurons [0] [idx_pn] . out -

sofm. arch. slabs [I] .neurons [n_h] [n_w] .w[idx_pn] ;

sofm.arch.slabs [I] .neurons [n_h] [n_w] .delta_w[idx_pn] *=

(sofm.env.eta * neighbor_func(idx_h, idx_w)) ;;

sofm. arch. slabs [i] .neurons [n_h] [n_w] .w[idx_pn] +=

sofm. arch. slabs [i] .neurons [n_h] [n_w] .delta_w[idx_pn] ;
}

}
}

sofm_cur_state = SOFM_NEXT_PATTERN;

static float neighbor_func (int height, int width)
{

int temp_i;

float result;

temp_i = (height > width) ?height :width;

switch (sofm.env.neighbor_function)
{

case CHEF_HAT :

result = chef_hat (temp_i) ;

break;

case MEXICAN_HAT :

result = mexican_hat (temp_i) ;

break;

case STOVEPIPE_HAT :

result = stovepipe_hat (temp_i) ;

break;

default :

printf("need to specify neighborhood function\n");

exit (1) ;

break;
}

return (result) ;

The Kohonen Network Implementations

Running the SOFM Implementation
To run the self-organizing feature map implementation requires the executable
file sofm. exe and an associated run file, for example, i r i s _ s o f , run. To run
the implementation from within the directory containing s o f m . e x e and
i r i s _ s o f , run, at the DOS system prompt type sofm i r i s _ s o f , run.

The content of an i r i s _ s o f , run run file is shown in Listing 6.13.

Listing 6.13 The run file i r i s _ s o f , r u n .

0

0

0.3

0.999

I0

0.0001

0.001

500

99

1

1

1

4

4

0

150

4

3

iris.dat

The file contains specifications for a run. It specifies operation mode (0), train-
ing mode (0), learning rate (0.3) , learning rate shrinking coefficient (0 .999) ,
bias factor (10), beta (0 .0001) , training termination criterion (0 .001) , max-
imum number of iterations (500), number of patterns used for training (99),
network conscience status (1), initial width of neighborhood size (1), initial
height of neighborhood size (1), width of output slab (4), height of output slab
(4), neighborhood function type (0), total number of patterns in pattern file
(150), dimension of pattern input (4), dimension of pattern output (3), and
pattern data filename of (i r i s . d a t) from which the patterns are read. In our
implementation, the only neighborhood function type available is 0, a chef hat
function. Implementation of other neighborhood types is left as an exercise for the
reader.

Two output files are generated for each run. One is SOFM_RES. TXT, which
contains the weights for the SOFM network. The other is SOFM_TES. TXT, which is
a summary table listing the number of patterns of each input class assigned to each
output PE in the output slab.

Chapter SixmNeural Network Implementations

Evolutionary Back-propagation Network Implementation

The implementation of the evolutionary back-propagation network discussed in this
section applies particle swarm optimization to evolve network weights. The slope
of sigmoid function of each neuron can easily be added to go through evolution,
as discussed previously, which is left as an exercise. A review of techniques used to
evolve neural networks can be found in Eberhart and Shi (1998).

Programming the Evolutionary Back-propagation Network
To implement the evolutionary back-propagation network, we simply merge the
particle swarm optimization implementation and the back-propagation implemen-
tations with some minor changes. The BP network gets its connecting weights from
a PSO individual and runs under recall operation mode, which, in turn, feeds its
performance back to PSO as the fitness of that PSO individual. To the data type
E v a l u a t e _ F u n c t i o n _ T y p e on the PSO side, a new element BP is added to
reflect that a BP net is being evolved. In addition, some new functions have to be
added to act as interfaces between the PSO implementation and the BP implemen-
tation, and the main () function must be modified accordingly.

The main () routine is shown in Listing 6.14. It differs from both the PSO and
BP implementations in that now both the PSO and BP startup routines and cleanup
routines are included instead of only one, as in either implementation alone, but only
the PSO_Hain_Loop () is included since the BP network is treated as an applica-
tion problem for PSO to solve. The BP_Main_Loop () routine is called only when
an individual of the PSO needs to be evaluated.

Listing 6.14 The main () routine of evolutionary BP net.

void main (int argc, char *argv[])
{

// check command line
if (argc != 3)
{

printf("Usage: exe_file pso_run_file bp_run_file\n");
exit (i) ;

}

// initialize
main_start_up (argv [1], argv [2]) ;
PSO_Main_Loop () ;
main_clean_up () ;

}
static void main_start_up (char *psoDataFile, char *bpDataFile)
{

BP_Start_Up (bpDataFile) ;
PSO_Start_Up (psoDataFile) ;

}

static void main_clean_up (void)

Evolutionary Back-propagation Network Implementation

PSO_Clean_Up () ;

BP_Clean_Up () ;

Now we discuss interface routines. To initialize the PSO, the length of an
individual particle is calculated by calling the BP Get PSO D i m e n s i o n ()
routine, which returns the number of connection weights (including the biases) in
the BP net to be evolved. The BP Get_mso D i m e n s i o n () routine is shown in
Listing 6.15.

Listing 6.15 The BP_Get_PSO_Dimension () routine.

int BP_Get_PSO_Dimension (void)
{

int idx_l;

pso_dimension = 0;

for (idx_l = 0; idx_l < (bp.arch.size- i); idx_l++)
{

pso_dimension +=
((bp.arch.layers[idx_l] .size + I) * bp.arch.layers

[idx_l + I] •size);
}
return (pso_dimension) ;

Since the BP element is added into data type Evaluate_Function_Type's
definition, the eval uat e_funct i on () routine should add a corresponding case

to handle the evaluation ofthe BP net. In the modified evaluate_functions ()

routine shown in Listing 6.16, only the new case is shown. To evaluate the
current individual, which is a representation of the weights of a BP network,
the individual is first transformed to the connection weights of a BP net by
calling BP_Weights_From_PSO (current_individual); then the routine
BP__Main_Loop () is called to evaluate the BP net. The routine is the same as that
in the BP implementation except that here it returns a float value, which records the
number of patterns the BP net being evaluated recognizes correctly.

Listing 6.16 The evaluate_Functions () routine.

static void evaluate_functions (int fun_type)
{

switch (fun_type)
{

case BP_MIN :

Chapter Six---Neural Network Implementations

BP_Weights_From_PSO (psos [cur_pso] .

position_values [psos [cur_pso] . popu_index]);

psos [cur_pso] . eva_fun_value = BP_Main_Loop () ;

break;

default :

break;

void BP_Weights_From_PSO (float *vec)

{ int idx_layer, idx_cn, idx_pn;

int counter = 0;

for (idx_layer = i; idx_layer < (bp. arch. size) ; idx_layer++)

{ // loop through the layers

for (idx_cn = 0; idx_cn < (bp.arch.layers[idx_layer] •size) ;

idx_cn++)

{ // loop through the neurons in the current layer

for (idx_pn = 0; idx_pn <= (bp.arch.layers [idx_layer - I]

• size) ; idx_pn++)
{ // loop through the connect weights of the current neurons

bp. arch. layers [idx_layer] .neurons [idx_cn] .w [idx_pn] =
vec [counter++] ;

}
)

}

if (counter != pso_dimension)
{

printf("not match in BP Weights_From_PSO routine 1 \n");

exit (1) ;
}

Running the Evolutionary Back-propagation Network
To run the evolutionary BP network implementation requires the executable file
p s o _ n n , exe and two associated run files, for example, p s o . run and bp. run.
The two run files specify the information required for running the PSO part and
the BP part of the evolutionary BP network, respectively. To run the implementa-
tion from within the directory containing p s o _ n n , exe, p s o . run, and bp. run,
at the DOS system prompt type pso_nn p s o . run bp. run.

The p s o . run file is the same format as the run file for running a single PSO in
the PSO implementation except that the length of the PSO individual is not specified
in the run file, but rather is obtained from the BP module by calling
BP_Get_PSO_Dimension () as discussed in the preceding section on interface
routines. Note that the optimization type should be set to "maximize," since we are
trying to maximize the number of correct classifications. Also note that the eval-
uation function will be a unique code for calling BP weights from within the PSO
application. The bp. run file is shorter than the run file for running the entire BP

Exercises

implementation since the BP is run in the recall operation mode only. Therefore,
the parameters related to the network training don't need to be specified in the
run file. The content of a bp. run file for the Iris dataset is shown in Listing 6.17.

Listing 6.17 The b p . r u n file.

3

4

150

4

3

iris.dat

The first entry (3) specifies the number of layers in the BP net to be evolved,
followed by the number of PEs (neurons) in each hidden layer (4). The third entry
(15 0) specifies the number of patterns involved in the evaluation of the BP net. The
next two values (4 and 3) specify the input and output dimensions of each pattern,
respectively. The last entry (i r i s . da t) provides the name of the pattern data file
where the patterns are obtained.

S u m m a r y

In this chapter, we look at implementation issues for several types of neural network.
We then discuss four network implementations: back-propagation, learning vector
quantization, self-organizing feature maps, and evolutionary back-propagation. The
code for all of these implementations is on the web site for the book. The source code
is distributed as shareware.

In the next chapter, we continue our journey through the primary concepts
of computational intelligence by looking at fuzzy logic history, concepts, and
paradigms.

Exercises ..

1. In back-propagation networks, why should we use PEs with biases in the hidden
and output layers? Why choose nonlinear functions as activation functions?

2. During back-propagation network training, is it generally desirable to train the
network to have as small a sum-squared error as possible on the training patterns?
Why?

Chapter Six--Neural Network Implementations

0

10.

11.

It is usually recommended to scale or preprocess the input values prior to
presentation to a neural network. List some reasons for doing this. List some ways
to do this.

4. Compare the LVQ-I, LVQ-II, and SOFM network paradigms. What are the
similarities? What are the differences? Why might you choose to use SOFM rather
than LVQ-I?

5. List the attributes necessary to specify a back-propagation neural network
implementation. Repeat for an evolutionary back-propagation implementation.

6. List the attributes necessary to specify a learning vector quantizer neural network
implementation. Repeat for a self-organizing feature map implementation.

7. Add an error termination criterion into the back-propagation implementation so
that the BP training can be terminated based on either maximum number of
generations or the error termination criterion.

8. Using BP_Neuron_Type as the definition for the PE (neuron) in the
back-propagation network, make necessary changes to other data types, and
specify the corresponding changes that should be made in the source code.

9. Assume that the activation function for PEs in the hidden and output layers of the
back-propagation implementation is the hyperbolic tangent function. Specify
the changes that should be made in the source code.

In the state BP_FEEDFORWARD_HIDDEN, all hidden layers are calculated in
one cycle of the state machine. Modify the code so that only one hidden layer is
calculated in one cycle.

In the state BP_FEEDFORWARD_OUTPUT, modify the state handling routine
so that calculations for only one output PE are done for each cycle of the state
machine.

12.

13.

14.

15.

16.

Define one or two decreasing functions of time for updating the learning rate r/(t)
and make corresponding changes in the l v q u p d a t e _ l e a r n i n g _ r a t e ()
routine. Compile and run the LVQ and compare the performance with the
original version.

Modify the LVQ source code for the implementation of a SOFM with a one-
dimensional output slab.

Based on the implementation from exercise 8, implement the SOFM with a
two-dimensional output slab.

Modify the evolutionary back-propagation implementation so that it also evolves
the slope of the sigmoid function.

Run the back-propagation implementation on the web site using the run files
provided for training and testing on the Iris dataset. Keeping everything else

Exercises

constant in the run files, try training for 10,000, 1,000, and 100 iterations. Discuss
your results with respect to both training and testing.

17. Run the learning vector quantization implementation on the web site using the
run files provided. Vary the number of clusters specified. Try 6 clusters as specified
in the run file on the Web; then try 3 clusters, then try 9 clusters. Discuss your
results. Which number of clusters would you select for this problem? Why?

chapter
s e v e n

Fuzzy Systems Concepts
and Paradigms

This chapter presents the computational
intelligence component methodology that
is known as fuzzy logic. Fuzzy logic pro-
vides a general concept for description and
measurement. Most fuzzy logic systems
encode human reasoning into a program
to make decisions or control machinery.
Fuzzy logic is most widely used to con-
trol dynamical systems, such as equipment
that must adjust to constantly changing

conditions. The concept, or perhaps we
could say the philosophy, of fuzzy logic can
be as abstract as any body of thought or it
can be as down to earth as common sense.
The present chapter discusses fuzzy sets
and approximate reasoning, and the next
presents an implementation of a fuzzy-logic
system. We begin with a brief history of the
field that focuses on some of the people
who made significant contributions, m

269

Chapter Seven--Fuzzy Systems Concepts and Paradigms

History

There are those who would argue that a discussion of the history of fuzzy logic
should start with an examination of the life of Gautama Buddha, born about 563 BC.
Indeed, Buddhism often describes things in shades of gray and embraces what West-
erners would consider contradictions, or paradoxes. Everything exists and interacts
in a continuum (Goddard 1970). The statement "X is not-X" is accepted by most
Buddhists and rejected by almost all Westerners.

By contrast, Western scientific and mathematical thought has been shaped by the
logic of Aristotle, born approximately 200 years after Gautama Buddha. Aristotle's
logic is the "crisp logic" of either-or, true or false, 1 or 0. Truth is all or nothing,
absolutely true or absolutely false, with no middle ground possible. Aristotle's logic
has ruled Western thought for more than two millennia.

Probability is then overlaid on Aristotle's logic, supporting it and making it
more reasonable and workable. Although the axioms of probability spring, as
do all axioms, from assumptions rather than being derived from general theory,
Westerners have built mathematics and science around it.

Aristotelian logic and probability have ingrained Westerners with much resis-
tance to the concepts surrounding fuzzy logic and approximate reasoning, while
the same concepts have been embraced by scientists, engineers, and mathematicians
in the East. For a more detailed discussion of the differences between Eastern and
Western approaches, see Kosko (1993).

With Western cultural resistance to the idea of fuzziness or approximate
reasoning established, we begin our history of the development of fuzzy logic
with a Polish mathematician. Jan Lukasiewicz was born in 1878 and taught at
the University of Warsaw before fleeing to Germany and Ireland as a result of
World War II. He first published a short paper on three-valued logic in 1920. He
expanded his foundation to include logic with an arbitrary number of values in
a book originally published in Poland in 1923 (Lukasiewicz 1963). In discussing
the values of truth assigned to statements, he said:

In this way we should obtain a bundle of many-valued logics: a three-valued logic,
a four-valued logic, etc., and finally a logic of infinitely many values. Symbols other
than "0" and "1" used in the proofs of independence would thus correspond to the
various degrees of truth of sentences in logics with the corresponding numbers of
values.

In the same book, he also established that every theorem of three-valued logic is
also a theorem of two-valued logic (but not vice versa), and therefore that "three-
valued logic is a proper part of two-valued logic." Jan Lukasiewicz thus developed
the structure of fuzzy sets and established their relationship to traditional logic.

Following Lukasiewicz's pioneering work, such luminaries as Kurt G6del and
John Von Neumann developed multivalued logics of their own. There can, in fact,
be many multivalued logic schemes.

The next stop along the fuzzy logic history track is with quantum philosopher
Max Black, who taught at Cornell for his entire career. He recognized that a conti-
nuum implies vagueness and that vagueness has degrees. In a now famous paper, he
described quasi-fuzzy sets (Black 1937). He used as an example objects that more or
less resembled chairs. He recognized that a number could be assigned to each object
based on the degree to which it was perceived to be a chair. At this point, however, he
took a different tack than would be taken by today's fuzzy logicians: Black assigned to
"degree" the percentage of people (as would be obtained in a poll) who would label
the object a chair. Thus, his work, if it had been widely recognized and accepted,
might have altered the development of fuzzy logic as we know it.

When electronic computers came into existence in the mid-twentieth century,
it was immediately apparent that, besides doing numerical calculations, these
machines could be used to manipulate symbols: They should be able to perform
logical reasoning.

It almost immediately turned out, however, that computers did not live up to
expectations. They could fairly easily accomplish the logical operations of compli-
cated deductive arguments, and they could even find solutions to difficult logical
puzzles. Although computers only became widely available in the 1950s, by the
mid-1950s Newell and Simon (1956) had already written a program that could
prove mathematical theorems~even discovering proofs that had eluded human
thinkers.

But these "brilliant" machines weren't very good at solving real problems, prob-
lems having to do with real people and real business, and things with moving parts.
It seemed that no matter how many variables were added to the decision process,
there was always something else. Systems didn't work the same when they were
hot, or cold, or stressed, or dirty, or cranky, or in the light or in the dark, or
when two things went wrong at the same time. There was always something else.
The problem was that the computer was unable to make accurate inferences. It
couldn't very well tell what would happen given some preconditions, no matter
how precisely specified they were. It remained for the man we discuss next to set it
straight.

Lotfi A. Zadeh is certainly the single most significant developer and champion
of fuzzy logic theory and applications. Born in 1921 in Baku in Soviet Azerbaijan,
he came to the United States as a graduate student at the Massachusetts Institute of
Technology in 1944, where he received a master's degree in electrical engineering
in 1946. He then went to Columbia University, where he earned his Ph.D. in
1949. A year later, he co-published with his thesis advisor, John Ragazzini, a paper
entitled, "An Extension of Wiener's Theory of Prediction," an analysis of time
series prediction that Zadeh cites as his first significant technical contribution
(Perry 1995).

In 1954 Zadeh published a paper entitled "System Theory," which was the foun-
dation for a new field of the same name that is still active. Fuzzy logic theory, in fact,
seems to have evolved out of his work in the area of complex systems. He moved to

Chapter Seven--Fuzzy Systems Concepts and Paradigms

the University of California at Berkeley in 1959 and has been there ever since, except
for a short time at IBM. He apparently first conceived of some of the basic ideas of
fuzzy quantities in about 1961, when he suggested in a paper that a new approach
was needed that involved "fuzzy" mathematics.

His landmark paper that launched the field, entitled "Fuzzy Sets," was written
in late 1964 and published the next year (Zadeh 1965). By the time the paper was
published, Zadeh was well known for his text on linear systems theory, published in
1963, which was used as a textbook in many universities. One of the amazing things
about the paper is its comprehensiveness. In effect, Zadeh's paper gave birth to a
relatively mature paradigm. Everything that is needed to apply fuzzy logic is in the
original paper (although the paper doesn't contain the term "fuzzy logic").

Zadeh's key concept is that of membership values. A membership value measures
the degree or extent to which an object meets vague and/or imprecise properties.
These membership values are defined over the universe of discourse by a membership
function, which is the fuzzy set. Zadeh also defined what have become known as
the "classical" operations for fuzzy sets, which comprise all the mathematical tools
necessary to apply them.

Zadeh immediately became a tireless spokesperson for the nascent field. In the
beginning, his job was difficult. He was often harshly criticized, both verbally and
in writing. For example, in 1972 R. E. Kalman said (Perry 1995): "Fuzzification is
a kind of scientific permissiveness; it tends to result in socially appealing slogans
unaccompanied by the discipline of hard scientific work."

But Zadeh always stands up for what he believes and endures criticism with
patience and grace. He has, of course, prevailed. Among his numerous awards, he
was the recipient in 1995 of the IEEE Medal of Honor, the highest award the Insti-
tute of Electrical and Electronics Engineers can bestow. He thereby joins the ranks
of such Medal of Honor awardees as Alexander Graham Bell and Thomas A. Edison.

It was the early 1970s before someone articulated the first fuzzy control strategy
implementing Zadeh's concepts. Working at London University in 1973, Ebrahim
Mamdani and one of his graduate students, Sedrak Assilian, designed and built a
fuzzy controller for a small steam plant consisting of a boiler and an engine. They
implemented a 24-rule fuzzy control system that used fuzzy membership functions
for pressure error and the change in pressure error to control the change in the heat.
The entire control system was designed over one weekend (McNeill and Freiberger
1993) and the results published two years later (Mamdani and Assilian 1975). This
work, while only a laboratory-based development, was an important milestone in
that it demonstrated that Zadeh's ideas could be reduced to practice.

Also in the early 1970s, Hans Zimmerman became active in fuzzy logic at the
University of Aachen in Germany. He founded the first European working group on
fuzzy logic in 1975. He also co-founded and became the first editor of Fuzzy Sets and
Systems, the first important journal in the field, in 1978. In June 1984, as a result of

History ~ . , ~

a conference in Hawaii, Zimmerman helped create the International Fuzzy Systems
Association (IFSA) and became its first president.

In France, Didier Dubois and Henri Prade became charter members of the Euro-
pean working group. With computer science and mathematical backgrounds, they
went back to first principles to develop the mathematical foundations of fuzzy opera-
tors. They also developed families of operators and co-authored a textbook on fuzzy
logic (Dubois and Prade 1980). Prade was instrumental in founding a fuzzy logic
institute in France.

Meanwhile, in the United States two important contributors in the early years
(1965-1975) were King Sun Fu at Purdue University and Azriel Rosenfeld at the Uni-
versity of Maryland. Their impact was significant partly because both were already
well known professionally, and both encouraged students to do fuzzy sets work. Fu,
who was the founding president of the North American Fuzzy Information Process-
ing Society (Bezdek and Pal 1992), published one of the earliest papers on fuzzy
pattern recognition with his student Bill Wee (Wee and Fu 1969). Wee is believed to
have written the first Ph.D. dissertation on fuzzy pattern recognition (Wee 1967). It
is hard to judge the importance of Fu and Rosenfeld because at the time Zadeh was
enduring considerable ridicule, and these two individuals were insightful enough to
understand fuzzy logic's potential.

Two other important early contributors in the United States were Enrique
Ruspini of the Artificial Intelligence Center at SRI International and James Bezdek
of the University of West Florida.

Ruspini was born in Buenos Aires, Argentina, and received his Ph.D. from the
University of California at Los Angeles in 1977. He derived significant theoretical
underpinnings of fuzzy logic and wrote the first paper on fuzzy clustering (Ruspini
1969). His clustering methodology used fuzzy partitions, and similarity was mea-
sured using membership values (Ruspini 1970).

Bezdek received his Ph.D. in applied mathematics from Cornell University
in 1973 and later served as director of the Information Processing Laboratory
at the Boeing Electronics High Technology Center. He developed fuzzy pattern
recognition algorithms, introduced the fuzzy c-means clustering algorithms, and
was one of the first to recognize the importance of, and develop applications
of, combinations of fuzzy logic and neural networks (Bezdek and Harris 1978;
Bezdek 1981).

Bezdek and Ruspini have been active in fuzzy logic professional society activities.
Among other activities, Bezdek chaired the IFSA meeting in Hawaii out of which the
society was born, served as the second president of both IFSA and the North Amer-
ican Fuzzy Information Processing Society (NAFIPS), and was the founding editor-
in-chief of the IEEE Transactions on Fuzzy Systems. Bezdek and Ruspini served as
chairs of the first and second FUZZ/IEEE international conferences (IEEE interna-
tional conferences on fuzzy systems), respectively.

Chapter SevenmFuzzy Systems Concepts and Paradigms

The first industrial application of fuzzy control was developed in the late 1970s by
L. P. Holmblad and J,-J. Ostergaard, two engineers living in Denmark (Sugeno 1985).
Their first control system was for a cement kiln, and it was followed by additional
similar systems in Sweden and other countries (McNeill and Thro 1994).

After a few successful applications in the 1970s, fuzzy logic entered what is
considered its dark age in the 1980s, especially in the United States. Funding in
the United States was largely allocated to development of expert systems and other
traditional artificial intelligence (AI) projects. That distinctively irreverent word,
"fuzzy," seemed to make engineers, computer scientists, and, more significantly,
funding agency program managers think that the method was somehow inadequate
for "serious" projects; it became the kiss of death for research proposals.

Then, as has happened with a number of other American innovations, fuzzy
logic really caught on in Japan; the Japanese, calling it faaji, began using fuzzy logic
for everything from vacuum cleaners, cameras, and elevators to robots. The activity
in Japan, however, had begun in the early 1970s; practical applications proliferated
there earlier because of the continuity of activity (funding support) compared with
the United States and Europe. We begin our look at Japan with an early Japanese
researcher, Michio Sugeno.

Sugeno received his undergraduate degree in 1962 from the University of Tokyo.
He joined the Tokyo Institute of Technology in 1965, where he began working with
Toshiro Terano in the control engineering department. In 1972 Terano formed a
fuzzy systems working group, with Sugeno as secretary. In 1974 Sugeno developed
a fuzzy measure theory for his Ph.D. dissertation. He then spent eight months in
England with Mamdani and eight months in France before going back to Japan in
1977. He was convinced that the way to stimulate interest and activity in fuzzy logic
was to develop a successful application. In 1978, therefore, he began working on
fuzzy control systems and in 1983 implemented one for a water purification plant
owned by Fuji Electric Company. It was the first commercial application of fuzzy
logic in Japan.

The first consumer product to utilize fuzzy technology was a shower head that
used fuzzy circuitry to control the water temperature, produced in Japan in 1987 by
Matsushita Electric. Perhaps the most visible early fuzzy application also occurred
in Japan in 1987. Engineers at the Hitachi Systems Development Laboratory, Shoji
Miyamoto and Seiji Yasunobu, developed a fuzzy control system for the subway
system in Sendai. Later in 1987 a landmark conference was held in Tokyo. At this
meeting, T. Yamakawa demonstrated an application of fuzzy control to the "inverted
pendulum" system using a set of fuzzy logic chips (Kecman 2001). It is believed
by many that the second annual International Fuzzy Systems Association (IFSA)
conference was a turning point for the technology.

In 1989 Terano was named director of the Laboratory for International Fuzzy
Engineering Research (LIFE) in Yokohama, and Sugeno was named its "leading advi-
sor." LIFE quickly became a center for leading-edge fuzzy technology development.

Fuzzy Sets and Fuzzy Logic

As we enter the new millennium, a growing number of concepts, paradigms, and
implementations are being fuzzified. In the words of Klir and Yuan (1995), perhaps
the most important thing being gained through this fuzzification is "a methodology
for exploiting the tolerance for imprecision."

Fuzzy Sets and Fuzzy Logic

It is hardly an exaggeration to say that Lotfi Zadeh single-handedly conceptualized
many of the important developments in the field. Though fuzzy logic was first
greeted with skepticism, it has since become widely accepted by engineers and
computer scientists and is becoming common in applications in many diverse
fields.

Previous theories of logic had assumed that the rules of reasoning were clear and
that they could be expressed in words or mathematical symbols. Then one only had
to introduce some premises, follow the rules, and the conclusions would be pro-
duced automatically. But Zadeh noted that this "first-order logic" was insufficient
for solving real problems. Almost all of human reasoning, he argued, is imprecise.
The amazing process called "common sense," which humans are very good at, was
too hard for computers because it is fundamentally imprecise.

In the remainder of this chapter, we introduce some of the basic concepts of fuzzy
logic knowledge engineering. We begin with a brief discussion of Zadeh's theory of
fuzzy sets, especially comparing the theory to previously existing theories of binary
logic. Next we discuss "approximate reasoning," that is, how inferences are made
from fuzzy sets. In the final sections we review some of the issues and applications
of fuzzy logic. In the next chapter, implementations of fuzzy logic demonstrate how
fuzzy systems are created.

Logic, Fuzzy and Otherwise
Fuzzy logic comprises fuzzy sets, which are a way of representing nonstatistical uncer-
tainty, and approximate reasoning, which includes the operations used to make infer-
ences in fuzzy logic. Traditional Aristotelian logic is two-valued in both facts and
operations. Thus, in two-valued logic a statement is either true or false; it implies
another statement or it doesn't. A traditional logic program does one thing if state-
ment X is true and another thing if it's false. These kinds of rules, technically called
production rules, are often referred to as "if-then" rules because they're expressed
in the form "if A, then B." Of course, they can be more complicated than that, for
instance:

[] IfA and B, then C.

m IfA and not-B, then C.

Chapter Seven--Fuzzy Systems Concepts and Paradigms

a IfA or B, then not-C.

n If (((not-A) or B) and not-C) or D, then E.

For more on traditional binary logic processing, a good reference is Patrick Henry
Winston's (1984) Artificial Intelligence, especially Chapter 7, "Logic and Theorem
Proving," which clearly lays out the principles of inference in traditional artificial
intelligence.

One of Zadeh's insights was that in the real world we often encounter degrees of
truth, phenomena that are "sort of A" or "mostly B" or "very C." A, B, and C are
not entirely true or false, or perfect members of a set or category. Consequently, a
rule such as "If it's cloudy, then it will rain" simply doesn't work in the real world.
Sometimes~most of the time--it 's partly cloudy, or kind of cloudy, or maybe it's
entirely cloudy, but the clouds are wisps of puff that couldn't produce rain no matter
what. Real things occur by degree. Cloudiness can range from "not cloudy at all"
to "completely cloudy." In fuzzy set theory, the sky is a member of the set "cloudy
skies" by degree; the statement "The sky is cloudy" can vary in its degree of truth
on a scale from 0 to 1. This introduces the concept of fuzziness, which Bellman and
Zadeh (1970) defined as "a type of imprecision which is associated w i t h . . , classes
in which there is no sharp transition from membership to non-membership."

Not only are there degrees of cloudiness, but rain also occurs by degree. It might
rain just a little bit, or it might rain a lot. So in the real-world application, it would
not make much sense~that is, common sense~to assign a value of 0 or I to cloudi-
ness and then try to estimate the 1/0, yes/no, true/false answer to whether rain will
fall. But that is how traditional logic would attempt to answer the question. Fuzzy
logic goes about it in a different way.

Fuzziness Is Not Probability
Criticisms of fuzzy logic are often based on confusion between the concepts of fuzzi-
ness and probability. Each morning the weather forecaster tells us the probability of
rain for that day, based on a kind of if-then reasoning like that given earlier but, of
course, taking into account a number of variables. Probability is a number from 0 to
I that expresses the certainty that an event will occur. If probability - 0.0, then we
are certain that the event will not occur. If it is 1.0, we are certain that it will occur
(or that it has already occurred). Returning to the weather example, note that fore-
casters usually don't say how much rain will fall: Occurrence itself is either 0 or 1, a
binary variable, at least when the meteorologist says it.

One important difference is that probability is meaningful only for things that
haven't happened yet. Once the event occurs, probability evaporates (it becomes 1
or 0). The credibility of weather forecasters would decrease if they announced the
probability of it raining yesterday! Yet it is meaningful, and in fact it does happen,
for the announcer to talk about the severity of yesterday's weather. With pictures of

The Theory of Fuzzy Sets

torn-off roofs and downed power lines, they inform the audience that the storm was
a "real bad one," or "yesterday was a beautiful day, if you're a duck." These are ways
of saying that, as storms go, this was a real storm: Its membership in the set "storms"
was very high. Probability is meaningless, but fuzzy set membership continues after
the event.

Other important differences exist between fuzzy logic and probability. Prob-
ability is based on a closed world model in which it is assumed that everything is
known: Fuzzy logic is not based on that model and makes no such assumption. Prob-
ability is based on frequency (Bayesian on subjectivity); fuzzy logic and crisp logic
state objective descriptions/measures. Probability requires independence of vari-
ables; fuzzy logic has no such requirement. In probability, absence of a fact implies
knowledge; in fuzzy logic, it does not.

This discussion isn't meant to imply that probability is useless. Probability is
appropriate for randomly governed occurrences. If, when solving a problem, every-
thing needed to calculate probabilities is available and valid, design of a probabilistic
system may be a good idea. On the other hand, the more complex a system is, and
the more it involves intelligent behavior (defined in Chapter 2), the more likely it
is that fuzzy logic will be a good approach. We continue our examination of this
approach with a discussion of the theory of fuzzy sets.

The Theory of Fuzzy Sets

Zadeh's fuzzy logic can be seen as an extension of set theory. In classical set theory,
an element is either a member of a set or it is not. In a Venn diagram (Figure 7.1),
we can see that part of the universe exists inside the circle that represents a set and
some of it exists outside that circle. We have never seen a Venn diagram where, if a
set was represented by a red circle, some parts of it were pink and some parts were
dark scarlet. In two-valued logic, it's either red or it's not.

(
Figure 7.1 The shaded area represents the intersection of sets A and B in traditional binary

set theory. Fuzzy set theory would allow areas of the Venn diagram to be darker
or lighter shades of gray.

Chapter SevenmFuzzy Systems Concepts and Paradigms

In fuzzy logic, set membership occurs by degree. Suppose we want to talk about
the set "tall men." Professional basketball player Shaquille O'Neal is 2.16 meters
(7 feet 1 inch) tall. By any standard, in any country in the world, "Shaq" is a mem-
ber of the set "tall men." On the other hand, another basketball player, Travis Best
is "only" 1.80 meters (5 feet 11 inches) tall. This is about the average height for an
American male (1.78 meters, or 5 feet 10 inches), but it is definitely not tall for an
American male professional basketball player. In our unscientific survey of six U.S.
National Basketball Association teams (Indiana Pacers, Los Angeles Lakers, Atlanta
Hawks, Boston Celtics, Detroit Pistons, and Utah Jazz), we didn't find anyone play-
ing at the time this chapter was written shorter than 1.80 meters. (There were alto-
gether three players on the six teams 1.80 meters tall.)

This exercise points out something to which you must pay attention when dis-
cussing fuzzy sets: It is important to define the set carefully, including specifying over
which domain a set is defined. So let's recast our set as "tall American male profes-
sional basketball players," or TAMPBP, over the domain "American male profes-
sional basketball players." Thus, using traditional, two-valued logic, with a universe
consisting of these two individuals, we would assert:

TAMPBP- {Shaquille O'Neal} and Not-TAMPBP- {Travis Best}

Given the extremes of these two players, this set assignment would be fine for some
things. But that's a mighty small universe, two guys. What if we encounter someone
like Reggie Miller of the Pacers, who is 2.01 meters (6 feet 7 inches)? That's pretty
tall, but not extraordinary for a pro basketball player, especially next to someone like
O'Neal. At first glance, we might be inclined to put Miller into the TAMPBP set, but
closer inspection of the height distribution of his Pacer teammates reveals that nine
of them are taller than he is and only four are shorter. So which set does he go into?

The fuzzy solution is to assign degrees of set membership to everyone. We might
say that Shaquille O'Neal's set membership is 1.0; that is, he is entirely a member of
the set TAMPBP. Travis Best gives us a little trouble: He isn't tall for a professional
basketball player, but in certain company he might stand head and shoulders above
the others. He's not a 0, so we might say he is a member of the set TAMPBP to degree
0.1. (All set membership values stay between 0 and 1.) Suddenly it is not too hard to
see how we can assign membership to Reggie Miller. He is "pretty" tall; perhaps we
will say he is a member of the set TAMPBP to the degree 0.6. (And notice how we
were able to translate the term "pretty tall" into a set membership value.) The fuzzy
set can be written in this form:

TAMPBP - 1.0/Shaquille, 0.1/Travis,0.6 / Reggie

where the first term is the name of the set, and the terms on the right side of the
equals sign name elements of the set with their set membership value, separated by
a slash.

The Theory of Fuzzy Sets

In the developing field of fuzzy logic, however, notation is still not completely
standardized; there are other ways to represent degrees of membership in fuzzy sets.
Perhaps the most common, and the one we will use throughout the remainder of the
book, is a representation of the form UA (x) = m, which states that the membership
value of x in the fuzzy set A is m, where 0 _< m _ 1. The example of TAMPBP can
therefore be written in the form PTAMPBP (Shaquille) - 1.0, PTAMPBP (Travis) - O. 1,
and so forth.

Now any statements about "tall American male professional basketball players"
can be applied to anyone. Suppose someone proposed the statement "Only tall Amer-
ican male professional basketball players are outstanding at making basketball slam
dunks." (For those readers unfamiliar with basketball, a slam dunk is a basketball
goal worth two points that is made by a player who jumps high enough to carry
the basketball sufficiently above the rim of the goal so that the ball is physically and
forcefully pushed downward through the goal.) With two-valued logic, we would
have inferred that Shaquille O'Neal was outstanding at slam dunks in basketball
and that Travis Best was not, since he's not a member of the set TAMPBP. What
would we do, though, with Reggie Miller? We wouldn't know if we could infer any-
thing about his ability to make basketball shots since we don't even know if he
belongs to the set, and we are only allowed those two choices.

With fuzzy logic, though, we are able to make an inference. We infer that to the
degree that the statement is true, Shaquille is outstanding at slam dunks, Travis is not
outstanding at slam dunks, and Reggie is fairly (about halfway) outstanding at slam
dunks. Thus we are able to reason by degree, applying logical operations to fuzzy sets.
The operations are discussed later, in the section titled "Approximate Reasoning."

Fuzzy Set Membership Functions
One thing that is immediately obvious is that there is a kind of "shape" to the set
TAMPBP if we graph it over the variable American male professional basketball
players' height. Men whose height is under 1.75 meters have zero membership; then
the degree of membership increases with their height, as shown in Figure 7.2(a),
until we reach a height, about 2.15 meters, above which everybody has membership
= 1.0. Thus, set membership rises with height from 0 until it reaches the maximum.

A fuzzy set on a numeric variable such as height or temperature is represented by
a fuzzy membership function. Figure 7.2(b) illustrates one way to draw a fuzzy mem-
bership function for the linguistic variable warm. It is this function that is the fuzzy
set. The function can be linear, either descending or ascending; it can be normal,
bell-shaped, or triangular; it can be an S-shaped (sigmoid or logistic) function; it
can be arbitrary or irregular; it can have plateaus or "shoulders," as in the preced-
ing example of TAMPBP. It is customary for the highest part (maximum value) of
the function to be set to 1.0: This is called normalization of the function. Without
normalization, the effect of a fuzzy set tends to be watered down and weak.

Chapter Seven--Fuzzy Systems Concepts and Paradigms

1.75 2.15
Height (meters)

(a) TAMPBP

50 70 90
Temperature (degrees F)

(b) Warm

1.0

0.0

Set
Membership

Figure 7.2 Two kinds of fuzzy membership function.

Graphs, as in Figure 7.2, are one way to specify membership functions. Another
way is to specify enough of the membership function points to allow someone to
graph them. A common way to do this is illustrated for the fuzzy sets TAMPBP and
Warm of Figure 7.2 as follows:

0 0.50 1)
TAMPBP = 1.75 + 1 - ~ +

{ 0 0.50 1 0.50 O }
W a r m = 5-6+--ff6--+7"-6 + 80 +9"-0

Note that in this type of specification the plus signs do not represent addition but
rather the aggregation or collection of representative domain points. Also note that
the horizontal lines do not represent division but are delimiters, with the member-
ship value above the line associated with the domain point below the line. This kind
of fuzzy set representation is most often used for triangular fuzzy sets (consisting of
only straight lines).

Now let's consider another fuzzy set. We want to buy a high-speed cable modem
for our computer at a fair price. Below "fair price," we expect that the quality of the
product will decline, and above "fair price," we feel we are spending money need-
lessly. The fuzzy set "fair price," then, must be defined for cost in such a way that it
drops offbelow (as TAMPBP did), and also drops off above, some point, which for
this particular product is around $80.00 (membership = 1.0). If the cable modem
were being sold for less than $60.00, we would suspect it to be inferior ("fair price"
membership ~- 0.0), and ifthe price were above $100.00 we would feel we were being
cheated (also "fair price" membership ~ 0.0). Thus, the set membership function

can be represented as 12FAIR_.PRIC E (p) = e -(p-8°)2/5°, where p is the price in dollars,
which resembles the normal distribution seen in probability theory. Because of the
computational costs of this curvilinear function, many fuzzy logic applications use
a triangular approximation for functions of this type, as shown in Figure 7.2(b) for
the fuzzy set "warm." It turns out that the trade-off in terms of performance usually
is small compared to the savings in computation.

There are, of course, infinitely many shapes of set membership functions. A mem-
bership function for "short American male pro basketball players (SAMPBP)," for

The Theory of Fuzzy Sets +@
instance, might have the same shape as one for TAMPBP, but reach a plateau
on the left. Medium-height players, MAMPBP, might drop off on both sides, but
with a plateau in the middle for some small range of heights. Further, as we will
see, fuzzy sets can be combined to form sets like "medium or tall," "short or tall
and not medium," and so on. These new sets can have complex set membership
functions.

As we will see when we work with complete fuzzy systems, the dynamic range of a
variable such as height or temperature is usually covered by several fuzzy sets. Cold,
warm, and hot comprise one choice for three fuzzy sets to cover the temperature
domain, for example. The number of fuzzy sets chosen is problem dependent, but
often the number is three or five, and almost always it is an odd number (perhaps
so that the exact middle of the dynamic range has a membership value of 1.0 in one
of the membership functions).

Linguistic Variables
One of the most exciting things about fuzzy logic is its ability to translate ordinary
language into logical or numerical statements. It accomplishes this by use of the
concept of the linguistic variable. Zadeh has devoted much of his writing to this con-
cept. He defines a linguistic variable as "a variable whose values are words or sen-
tences in a natural or artificial language" (Zadeh 1975). These are contrasted with
numeric variables. For instance, instead of talking about "tall American male profes-
sional basketball players" in the previous example, we could have stated the rule in
an equation relating the independent variable height to the dependent variable abil-
ity to make basketball slam dunks. (We would probably have had to use a nonlinear
function, such as logistic "squashing," to keep the result in the [0,1] range.)

This kind of formula might work, and it would take into account the differ-
ences in height and their effect on some consequent variable. There are advantages,
though, to encoding the statements using linguistic variables, especially when effects
are not linearly related to causes, as in a curvilinear membership function such as
that for "fair price." Many engineering control applications that were previously
implemented using precise and complex equations been improved significantly by
using the simpler, flexible rules of fuzzy logic.

According to Zadeh, a label such as "tall" is really a linguistic value for the numeric
variable height. We could have said that Shaquille O'Neal was 2.16 meters tall, and by
that we would have gained precision, but we would have eroded our ability to reason
about other tall basketball players. The very imprecision of linguistic variables makes
them useful for reasoning.

There are three main categories of linguistic variable: quantification terms, usual-
it), terms, and likelihood terms. Examples of quantification terms are all, most, many,
about half, few, and no. Examples of usuality terms are always, frequently, often,

Chapter SevenmFuzzy Systems Concepts and Paradigms

occasionally, seldom, and never. Likelihood terms include certain, likely, possible,
uncertain, unlikely, and certainly not.

Linguistic Hedges
An important aspect of linguistic variables is that they can modify or qualify one
another. Consider, for instance, the word "very." A "very tall" man is taller, in gen-
eral, than a "tall" one. In other words, "very" modifies tall by shifting it up on the
scale of height. But look what it does to "short": A very short man is shorter than a
short man, so "very" shifts short down on the scale of height. Linguistic variables that
change the shape or position of a membership function are called linguistic hedges
(Zadeh 1972).

There are many linguistic hedges, some more clearly understood than others. For
instance, "sort of" is perceived by some to shift values in the other direction from
"very": a man who is "sort of short" is likely to be taller than a man who is "short,"
and a man who is "sort of tall" could be perceived shorter than a "tall" man. Others
think of "sort of" as a synonym for words that are centered on the concept. It is
therefore important to be careful in the use of linguistic hedges and to define them
clearly.

Besides moving the center of a linguistic variable up and down on the underlying
numeric variable, linguistic hedges can affect the width of the graph of the linguistic
variable's membership function. An easy example is that of "medium-height" men.
"Sort of medium," assumes a function similar to that of medium, but it's wider at
the peak. "Sort of medium" includes both shorter and taller men than "medium"
by itself. On the other hand, "very medium" is narrower than "medium." We expect
someone who is very, very medium in height to be exactly the average.

Some common kinds of linguistic hedges are ones that

[] intensify a fuzzy set (very, extremely).

[] dilute a fuzzy set (about, somewhat, sort of, generally).

[] express probabilities (probably, not very likely).

[] approximate a scalar or single number (exactly).

m express vague quantities (many, most, seldom).

The richness of human language suggests that there can be very many kinds of lin-
guistic hedges, lust as we are able to insinuate unstated facts in subtle ways through
skillful use of language, fuzzy set memberships can be rather tricky to implement.
On the other hand, the richness of language, operated upon with a tool as versatile
as the concept of the linguistic variable, results in a very powerful instrument for
modeling complex systems.

Some conventions have arisen for the programming of linguistic hedges in fuzzy
systems. For example, Zadeh (1975) has suggested that the linguistic hedge "very"

Approximate Reasoning

is a mathematical square, If a room has, for instance, 0.50 membership in the set
"warm," it would have 0.25 membership in the set "very warm." It is not until mem-
bership in warm = 1.0 that the element is equivalently a member of very warm. On
the other hand, the linguistic hedge "somewhat" can be implemented by taking the
square root of a membership function; thus, a room that is 0.81 "warm" (to make
an easy example) would be 0.9 "somewhat warm." This operation generally causes a
variable's membership in the "somewhat" set to be slightly higher than in the fuzzy
set without "somewhat." Thus, if we ordinarily say a room is "warm," we would
likely say that calling it "somewhat warm" is an understatement.

Linguistic hedges such as "very" that reduce the membership values for
values other than 1.0 are called concentrations, and those such as "somewhat"
that increase the membership values for values other than 1.0 are called dilations
(Zadeh 1972).

Another linguistic hedge concept is called intensification, which is a kind of com-
bination of concentration and dilation. For original membership values between 0.5
and 1.0, membership values are increased, and original membership values between
0.0 and 0.5 are decreased. The original version of intensification proposed by Zadeh
(1972) appears in equation 7.1. Other versions are, of course, possible.

aintensified = 2/~a2(X)

1 - 2 [1 - #a(X)] 2

for 0 < ~a(X) < 0.5

for 0.5 < ~a (x) < 1.0
(7.1)

Intensification increases the differentiation between set elements with membership
greater than 0.5 and those with less than 0.5 membership. We invoke this concept
by saying that something is intensely a.

Approximate Reasoning.
Reasoning in fuzzy systems involves logic. Many relations and operations used in
fuzzy reasoning have evolved from familiar Boolean algebra (cf. Kennedy 1973) and
have familiar names, such as AND, OR, and NOT. However, if something's mem-
bership in fuzzy set A = 0.8 and in fuzzy set B = 0.2, how much is it a member of
the union, the set made up of A OR B? Fuzzy logic requires new definitions for these
concepts.

Paradoxes in Fuzzy Logic
Fuzzy logic solves paradoxes that are irresolvable in traditional binary logic. Pop-
ular writers are in the habit of expressing the difference between fuzzy logic and
binary logic as if it were the same as the difference between Eastern and Western

Chapter Seven--Fuzzy Systems Concepts and Paradigms

philosophy. Perhaps they' re essentially correct, but it seems fair to point out that
Western thinkers have always been fascinated with paradoxes.

Consider the oR-quoted "Cretan paradox," in which a person from Crete says,
"All Cretans are liars." The paradox is that if the statement is true, then the speaker
himself is lying and so the statement must be false. Ironically, many examples cited
by writers to demonstrate that "Western thought" is uncomfortable with paradoxes
have actually been created by mainstream Western thinkers! The Cretan paradox is
not known as the Tokyo, Bombay, or Beijing paradox. In fact, "Western thought"
at least since the time of the Greeks has been fascinated by paradoxes even if they
have been excluded from the branch of philosophy known as logic.

Aristotelian logic includes rules that forbid a statement's being true and not-true
at the same time (though Aristotle himself acknowledged that one statement could
be "truer" than another). The two relevant axioms are the Law of Noncontradiction
and the Law of the Excluded Middle. These "laws" are not relevant to the operations
of fuzzy logic, and it is worthwhile here to consider the reasons for this.

The Law of Noncontradiction states that the intersection of a set with its com-
plement results in an empty or null set. Intersection in binary logic means that the
AND operator, that is, the intersection of A and B, contains all the elements that
are members of set A AND members of set B. In a Venn diagram, this is where two
circles overlap. The intersection of a set with its complement, then, is the set that
contains all members of A AND all members of not-A. Impossible, you say? In tra-
ditional logic, yes, it's impossible; but in fuzzy logic, it's not a problem. We look out
our window and see several clouds in a blue sky. Is today a member of the set "cloudy
days" ? Technically, yes, it is. It does have clouds. Is it a member of the set "not cloudy
days?" Well, yes, it really isn't that cloudy; it's mostly sunny. So ifA = "cloudy days,"
today is a member of A and not-A. In real life, the Law of Noncontradiction is broken
constantly.

The Law of the Excluded Middle states that the union of a set with its com-
plement results in a universal set of the underlying domain. A set made up of all
elements that are either members of A or are members of not-A, in binary logic,
should include the universe. Everything either is A or is not A, either a statement
is true or it's not true. Where the Law of Noncontradiction asserts that a statement
can't be true and false at the same time, the Law of the Excluded Middle asserts,
beyond that, that a statement must be either true or false. In a Venn diagram, a
point is either inside or outside a circle. This law fades away to insignificance in
fuzzy logic.

Equafity of Fuzzy Sets
In traditional binary logic, two sets containing the same elements are equal: {a, d, g}
equals {a, d, g}. That is really a pretty easy concept to grasp, but what does it mean
for two fuzzy sets to be equal? Let us say there are two fuzzy sets, X and Y, and each

Approximate Reasoning

is defined on a universe of three discrete values: a, d, and g. For fuzzy set X, a has a
0.1 membership, d has a 0.6 membership, and g has a 0.8 membership. For fuzzy set
Y, on the other hand, a's membership is 0.9, d's is 0.7, and g's is 0.8.

Stated in a notation we introduced earlier:

0.1 O.6 0 . 8)
X = + + = -5- -?-

{0 .9 0.7 0 . 8 }
Y= + +

7 T

Are these fuzzy sets equal? No.
By equality, we are saying that two sets are the same. While it may be that sets X

and Y are rather similar to one another, they are not the same. In fuzzy logic, two
sets are considered equal if and only if they have identical set membership values on
identical domains. For continuous domains, the graphs of the fuzzy sets lie on top
of one another.

Containment
In crisp logic, a set A is considered a subset of another set B if and only if all elements
in A are also in B. Thus, no apples are included in the set "oranges," but the sets
"apples" and "oranges" are subsets of the set "fruit." These sets are clear.

Now consider the fuzzy sets X and Y defined above. Our goal is to determine
whether X is a subset of (is contained in) Y. This is a way of asking whether each ele-
ment's membership in Yis greater than or equal to its membership in X. Comparing
the individuals' memberships in the two sets, we see that all membership values in
Y are greater than or equal to corresponding membership values in X, and therefore
X is contained in Y. If we were to, say, change d's membership in Y to 0.4, then X
would no longer be contained in Y.

Thus, containment in fuzzy logic means that membership values for all elements
in a subset are less than or equal to the membership values of those same elements in
the superset. In many cases containment is seen when a linguistic variable is added
to modify an existing set: Very tall men is contained in tall men, hot engines is con-
tained in somewhat hot engines, and so on.

NOT." The Complement of a Fuzzy Set

In binary logic, the complement of a set is simply the set of all the elements that are
not in that set. The complement of A is not-A. This is obviously not so easy when
sets are fuzzy. If everyone has some degree of membership in the set of middle-aged
people, how would we define the set of not-middle-aged people?

Chapter SevenmFuzzy Systems Concepts and Paradigms

The answer is that everyone also has some degree of membership in the set of
not-middle-aged people. Suppose we say that "middle-aged" (M) has a triangular
membership function:

{0 1 0}
M = ~-~ + ~-~ + ff-~

Randy is 50 years old, and we have assigned him degree of membership 0.8 in
the set of middle-aged people. The solution is to say that Randy's membership in
the set "not-middle-aged" (M) is 1 minus 0.8 = 0.2. He is 80 percent a member, so
he is 20 percent not a member. In general, then, the value of the complement of a
membership value is (1 - the membership value):

_ {1 0 1}
M =

Using our earlier examples of fuzzy sets X and Y:

= (0 " 9 0.4 0 . 2 } a + - - d + - - g

= (0.1a + "~0"3 0.2 } + --g

Now we can see why the Law of the Excluded Middle is not appropriate in fuzzy
logic. That law states that something must be either A or not-A. The violation of this
Aristotelian law of logic is the lifeblood of fuzzy logic. Of course, says Lotfi Zadeh,
every statement is both true and not-true--reality flourishes on ambiguity.

AND: The Intersection of Fuzzy Sets

Fuzzy logic's ability to remain unflustered by paradoxes results from the flexibility of
fuzzy sets. Something can be true and not-true because it's not entirely true or false.
In binary logic, as mentioned earlier, the intersection of two sets contains elements
that are contained in both sets: The intersection of A and B contains those elements
that are in A AND in B. If things can be members of sets by degree, however, it is
not immediately intuitively obvious how to define the intersection of sets. A couple
of guidelines exist, however.

First, we need to be able to apply the intersection operator (also the union opera-
tor, discussed later) in a pairwise fashion irrespective of the order. Second, for a par-
ticular element, a decrease in the membership value of that element in either fuzzy
set can't lead to an increase in the intersection of the two sets. These properties are
known as associativity and monotonicity, respectively.

In usual practice, the weakest membership determines the degree of membership
in the intersection of two or more fuzzy sets. Zadeh's intersection operation in fuzzy

Approximate Reasoning

logic is simply to take the minimum set membership. For instance, if an item has 0.5
membership in set A, 0.9 membership in set B, and 0.2 membership in set C, then its
membership in A AND B AND C is defined as 0.2, the minimum membership value.

Referring back to fuzzy sets X and Y, their intersection is

XO Y= { 0.1a 0.6 0.8 }
+ - 7 - + g .

Note that since X is contained in Y (X c Y), the intersection is just the original fuzzy
set X.

To provide other examples, let's define fuzzy set Z on the same universe of three
discrete values (a, d, and g) as fuzzy sets X and Y, as follows:

Z = { 0"3a + --d0"4 + gO'9}

Now,
X n Z = { 0"la + -~0"4 + -~0"8}

Y A Z = { 0"3a + '~0"4 + ~0"8}

We can see that the Law of Noncontradiction has become moot. Something can
be A and not-A at the same time; the fuzzy intersection of A and not-A is not empty
or null. Using the previously defined fuzzy set X as an example,

Xn~" {0.1 0.4 0 .2}
= + + ,

-7- g

OR: The Union of Fuzzy Sets
The union of two sets in crisp set theory is made up of all the elements that are either
in one set or in the other, or both. The union of A and B includes everything that
is a member of A OR a member of B. In a Venn diagram with two circles drawn in
it, the union of the two sets is everything contained in both circles. (Note that the
Exclusive-OR, or XOR, set contains elements that are in one set, or circle, or the
other, but not in both. The overlap of two circles is excluded.)

The union operator is just the opposite of the intersection operator. In usual
practice, the strongest membership determines the degree of membership in the
union of two or more fuzzy sets. Zadeh's union operation in fuzzy logic is to take
the maximum set membership. For instance, if an item has 0.5 membership in set
A, 0.9 membership in set B, and 0.2 membership in set C, then its membership in A
OR B OR C is defined as 0.9, the maximum membership value.

Chapter Seven--Fuzzy Systems Concepts and Paradigms

Using fuzzy sets X and Z, X OR Z is

X u Z = { 0.3a 0.9 }

+ + T "

Summary of Fuzzy Relations and Operators
If l,t A (X) a n d la B (X) represent the degrees to which x is a member of fuzzy sets A
and B, respectively, and the sets have common domains, then the following are the
basic relations of fuzzy sets:

Equality A = B iff all/~A [X] --- I, tB[X]

Containment A c B iff all ~A[X] _ ~B[x]

The following are the basic operations on fuzzy sets:

Intersection ~AnB (x) = min(~A[X], ~B[x])

Union ~Aun (x) = max(~A [x], ~n[X])

Complement ~ (x) = 1 - ~A[Xl

Compensatory Operators
Note that there are alternative fuzzy operators to those we have defined; the choice
needs to be made carefully, depending on the particular situation. Compensatory
operators are alternatives to the set operations such as intersection and union
defined by Zadeh. Experience with numerous fuzzy system applications has demon-
strated the need for these operators, particularly for the fuzzy intersection operator
most commonly used in the antecedent (if) portion of fuzzy rules. The operators
are called compensatory because they provide less strict (softer) relationships than
Zadeh's original operators. Note, however, that they still must comply with the prop-
erties of associativity and monotonicity described earlier.

With Zadeh's intersection operator, the truth level for the entire antecedent is
controlled by the minimum membership value. For example, for the rule "If A and
B and C and D, then Q," if the membership values for A through D are 0.9, 0.7,
0.8, and 0.2, respectively, then the truth level of the expression is 0.2. In practical
applications, the effect of this is often too extreme in terms of its effect on the fuzzy
system.

A number of compensatory operators have been defined. Some of them involve
only relatively simple arithmetic transformations, and others require more compli-
cated functional transformations. A complete review of compensatory operators is
beyond the scope of this book; we refer you to sources such as (Cox 1994) and (Von
Altrock 1997).

Approximate Reasoning

These operators attempt to answer the question "How much of an increase in one
parameter can compensate for a lower value in another?" There is no pat answer to
this question, and sometimes it doesn't have an answer. A sailboat needs at least one
sail and one rudder. Two sails do not compensate for no rudder; and two rudders
can't compensate for no sails. But in many cases, a compensatory operator makes
sense.

We limit our discussion to two compensatory operators: the mean operator and
the gamma operator. The former is a simple arithmetic operator; the latter is more
complex. We suggest that you use these operators with caution. It is a good idea in
most cases to start out with Zadeh's original operators, incorporating compensatory
operators only if needed; and, if needed, start with a relatively simple one, such as
the mean operator.

The intersection of two fuzzy sets is usually defined as the minimum set member-
ship value, but with the mean operator it is defined as the average (mean) ofthe various
set membership values. Thus, for our previous example for which the antecedent
terms have truth values of 0.9, 0.7, 0.8, and 0.2, the truth level of the expression
using the mean operator is 0.65 (rather than 0.20). Referring to the previously
defined fuzzy sets X, Y, and Z, we can see that

xnrOZmean-- (0 . 4 3 0.57 0 . 8 3 } a + d + g

In our fuzzy rule system implementation, which we discuss in the next chapter and
is provided on the book's web site, we implement the mean operator as well as the
traditional Zadeh intersection (min) operator.

The more complex gamma operator was developed by Zimmerman and Zysno
(1980, 1983). They report that it represents, or mimics, the human decision process
more faithfully than Zadeh's min/max operators used for intersection and union.
The gamma operator is defined as follows:

" amma : [i0"i] • 1 - (1 - ~ i)

i=1

where 0 < r < 1 and rn is the number of fuzzy membership values.
The determination of the best value for gamma in a particular situation can

be complicated and is beyond the scope of this book (see Von Altrock 1997 for
a step-by-step process). In practice, most folks end up with a value between 0.2
and 0.4 for gamma. We suggest that you try an initial value of 0.25 or 0.30 and
adjust up or down by 0.05 until you get the best system performance you can. As an
example of a result obtained with the gamma operator, consider the case for which
r = 0.3,/,t 1 (X) - - 0.3, and P 2 (X) - - 0.8. Then ~'(kt 1 , P 2) - - 0.35. You may want to work
out other examples for yourself.

Chapter SevenmFuzzy Systems Concepts and Paradigms

Fuzzy Rules
Fuzzy rules, like the if-then rules in a traditional rule (or expert) system, have an
antecedent part and a consequent part. There are several forms of fuzzy rules used
in the literature. Usually, they share the same form for the antecedent part but have
different expressions for the consequent part. Two of the most common fuzzy rules
are the Mamdani-type fuzzy rule (Mamdani and Assilian 1975) and the TSK model
(Takagi and Sugeno 1985; Sugeno and Kang 1986). Mamdami and Assilian employed
rules in which the consequent is another fuzzy variable, while Takagi and colleagues
used rules whose consequent is a polynomial function of the inputs (TSK model).
The following two rules represent the generic expressions of the two forms of rules,
respectively.

IfXl is A1 a n d . . , and Xn is An then Y is Bj

IfXl is A1 a n d . . , and Xn is An then Y = Po + Pl Xl + " " + Pn Xn

where Xl, . • . , Xn are fuzzy input variables. Ai represents one ofthe fuzzy sets defined
over the domain of the fuzzy variables Xi. Y is a fuzzy output variable, Bj is one of
the fuzzy sets defined over the domain of variable Y, and Po,. • .,Pn are parameters.

In addition to these two forms of rules, there is a rule form especially designed
for classification (Ishibuchi et al. 1995):

If X1 is A1 a n d . . , and Xn is An, then Y is class i with confidence degree = CDi.

By default, the fuzzy rules discussed in this chapter are of the Mamdani-type. The
TSK model is described in the later section of this chapter entitled The Takagi-
Sugeno-Kang Method. For details on the third form of fuzzy rules, please refer to
Ishibuchi et al. (1995) or other references.

Fuzzification
Given the fuzzy operators we have described, we can make significant progress
toward constructing a workable fuzzy system. The first step is to learn how to com-
bine antecedent sets, that is, the sets on the "if" side of a rule, using the operators just
given; this step is calledfuzzification. Next we will discuss how fuzzy rules fire in par-
allel. Then we'll figure out how to get the combined sets to produce an output that
can be used to make an inference or control a system; this step is called defuzzifica-
tion. Throughout this process we'll use a simplified example of a gas flow regulator
for a furnace. The furnace may be used to heat air (more common in the United
States) or to heat water that passes through radiators (more common in Europe).

Suppose that a set of fuzzy if-then rules has been written to control the gas flow
for the furnace. (Increasing the gas flow, of course, increases the energy available to

Approximate Reasoning

heat the building, and vice versa.) These rules could include such input parameters
as indoor temperature, outdoor temperature, and change in indoor temperature
over the past five minutes. Each input parameter would, of course, have fuzzy
membership functions defined over its domain. (We recognize that a real controller
of this type would almost certainly have more than three input parameters.) Our
output parameter is the change in gas flow to the furnace.

For purposes of our furnace example, we define the following parameters and
fuzzy sets:

For input parameters, we use those listed above, abbreviated to InTemp, OutTemp,
and DeltalnTemp. Our output parameter is called FlowChange. The fuzzy sets
are all triangular membership functions.

For the InTemp parameter, we define three fuzzy sets: cool, comfortable, and
too_warm.

For OutTemp, we define five fuzzy sets: very_cold, chilly, warm, very_warm, and hot.

For DeltaInTemp, we define five fuzzy sets: large_negative, smaltnegative,
near_zero, small_positive, and large_positive.

For FlowChange, we define five fuzzy sets: decrease_greatly, decrease_small,
no_change, increase_small, and increase_greatly.

Note that you don't have to use the same number of membership functions for each
parameter; the number selected depends on a variety of things such as the resolution
needed for that parameter.

We don't concern ourselves with the details of all of the membership functions
for all of the parameters here; we consider just enough of them to build a few rules.
Following are a few possible rules:

Rule 1" If InTemp is comfortable and DeltalnTemp is near_zero, then FlowChange is
no_change.

Rule 2: If OutTemp is chilly and DeltalnTemp is small_negative, then FlowChange is
increase_small.

Rule 3: If InTemp is too_warm and DeltalnTemp is large_positive, then FlowChange
is decrease_greatly.

Rule 4: If InTemp is cool and DeltalnTemp is near_zero, then FlowChange is
increase_small.

There may be a dozen or more rules in an actual system, but we'll consider only
these four. Now, we have to know what the membership functions used in these
four rules are before we can put them into action. Again, we look only at those we

Chapter SevennFuzzy Systems Concepts and Paradigms

need for the four rules. (Temperatures and changes in temperatures are in degrees
Fahrenheit.)

For In Temp, comfortable = { o + 1 + o }. Just as a review, this is a triangular
membership function with a membership value of 0.0 at 60 degrees, 1.0 at 70 degrees,
and 0.0 at 80 degrees. So the membership values at both 65 and 75 degrees are 0.5.

For In Temp, too_warm = { o + 8_!0 + 9_!0 }. This is called a "right-triangular"
membership function with a membership value of 0.0 at 70 degrees and 1.0 at
80 degrees and above.

In an analogous manner, for In Temp, cool = {3!60 + 1 + o }. This is a "left-
triangular" membership function with a membership value of 0.0 at 70 degrees, and
1.0 at 60 degrees and below.

For Deltaln Temp:

(o o)
small_negative = --~ + --2 + -0

(OlO)
near_zero = --~ + -0 + - ~

l large_positive = -~ + ~ + -~

For OutTemp: (0 1 o 1 chilly= -~-d + -~-d + -~--d

Note that we've defined only those fuzzy sets we need to implement our four rules.
We'll look at the details ofthe output parameter fuzzy sets later. For now, let's pick

a set of input parameters and fuzzify them. Let's assume that the indoor temperature
is 67.5 degrees, the change in indoor temperature over the past five minutes is -1.6
degrees, and the outdoor temperature is 52 degrees. We now determine the resulting
membership values for the fuzzy sets in our four rules.

For InTemp, klcool (67.5) = 0.25, klcomfortabl e (67.5)
= 0.75, and atoo_warm (67.5) = 0.0.

For DeltalnTemp, l.tsmall_negativ e (- -1 .6) = 0.8, ktnear...zer o (- -1 .6)

= 0.2, and l.tlarge__positiv e (-- 1.6) = 0.0.

For OutTemp, ktchilly (52) = 0.9.

Remember that Zadeh's method for the AND process, which we use here, is to take
the minimum of the values in the antecedent.

For Rule 1, we obtain 0.75 n 0.20 = 0.20 = I~no_chang e for our output FlowChange.

For Rule 2, we have 0.9 n 0.8 = 0.8 = I~increase_small for FlowChange.

Approximate Reasoning

For Rule 3 we get 0.0 fl 0.0 = 0.0 = l, taecrease...greatly for FlowChange, which means
that rule 3 does not produce any output. Rule 3 is said to have fired but not to
have been activated.

For Rule 4 we get 0.25 n 0.2 = 0.2 = l.tincreasesmall for FtowChange.

Note that rules 2 and 4 result in the activation of the increase_small fuzzy set.

Fuzzy Rules Fire in Parallel
So far, it has not been very hard to determine the set membership of various aspects
of the furnace parameters and the consequences implied by the fuzzy sets. In this
simple example, it is important to notice that all the rules were fired but only three
out of four rules were activated, whether they were relevant (produced output) or
not: Fuzzy rules fire in parallel. Of course, on a sequential "Von Neumann".com-
puter, the parallelism is simulated by evaluating the rules in series and then executing
an action based on the result.

This parallelism entails quite a different approach from that of other control
methods. For instance, in traditional AI systems, decisions are made sequentially,
one after the other, and if the process runs into a dead end it backs out again or
starts over, depending on what kind of algorithm (i.e., "depth first," "breadth first")
is being used.

When equations are used to make decisions, numeric variables must be defined
precisely, and the decision is a function of those precise numbers. Forming rules
using vague linguistic variables is often much more efficient for the task. Fuzzy logic
evaluates an entire group of expressions and then makes a decision based on the set
of evaluations.

For our furnace gas flow controller with the input parameters given in the previ-
ous section, assume that only rules 1, 2, and 4 among all the fuzzy rules are activated*,
then only two out of five fuzzy sets defined over the output variable domain are acti-
vated. The fuzzy set no_change is activated by rule 1, and the fuzzy set increase_small
is activated by rules 2 and 4 with two different activation levels (membership values).
Usually, especially when the number of fuzzy rules in the rule set is large, several
fuzzy sets will be activated by several fuzzy rules with different activation levels. The
activation levels for all activated fuzzy sets are combined to obtain the membership
value for this fuzzy set.

Remember that Zadeh's method for the OR process, which we use here, is to
take the maximum of the membership values produced for each fuzzy set of the
output variable in the consequent part by all the rules. So for the output fuzzy set
no_change, we obtain membership value 0.2. For fuzzy set increase_small, we get
0 . 2 O 0 . 8 = 0 . 8 = Uincrease_small. For the other three fuzzy sets, we get membership
values of 0.

Chapter SevenwFuzzy Systems Concepts and Paradigms

Defuzzification

Note that the rules for our furnace gas flow controller relate to the change in the
gas flow, not to its absolute quantity. The output (control) parameter is accordingly
defined as flow change in cubic meters per minute, as illustrated in Figure 7.3. Note
that five fuzzy membership functions are defined over the flow change domain.

We have created a set of triangular membership functions that are positioned
over different portions of the output variable domain (the change of gas flow rate).
Specific values must be assigned to the domain range because defuzzification must
yield one precise value for the output variable (or, in the case of more than one
output variable, a precise value for each).

As can be seen, the no_change (NC) membership function is centered at 0
change and has left and right boundaries at -1 cubic meter per minute (CMM)
change in gas flow and I CMM, respectively. The increase_slightly (IS) membership
function is centered at 1 CMM change and has boundaries at 0 and 2 CMM. The
increase_greatly (IG) membership function is centered at 2 CMM change with a left
boundary at 1 CMM. It then has a constant membership value of 1 from 2 CMM to
the upper limit of the dynamic range of the change_in_flow, specified as 3 CMM
flow change. The left side of the graph of membership functions is symmetric,
specifying values for decreasing flow: decrease_slightly (DS) and decrease_greatly
(DG). For this example, a minimum flow increment (or decrement) of 0.1 CMM is
specified. A discrete domain for flow change is thus defined with 61 possible values
(including 0).

Now suppose that the input parameters are as given in the previous section
on fuzzification. We have shown that the if parts of the if-then rules produce the

. l

-3 -2 -1 3

DG DS NC IS IG
. "~\ i1\\ i ~ I \1' I r'"

\ / \ i I ~\ I \ I
\ \ I ~ I \ I
\ I ~ I \ I \ I
\ I \ I \ l \ I

~ v

I \ I \
I \ I

I \ I \
I \ I \

, ,, , / ",, / \
! \

0 ~1 2

-0.76

Figure 7.3 Defuzzification of the furnace gas flow example. DG, decrease greatly; DS,
decrease slightly; NC, no change; IS, increase slightly; IG, increase greatly.

Approximate Reasoning

following FlowChange fuzzy set membership values: ~Is = 0.8, ~NC = 0.2, and the
three other memberships = 0.0. (One ofthe rules fired but didn't produce an output.)

Clearly the membership values suggest increasing the gas flow somewhat, but
how much? The final step is to get a nonfuzzy number or scalar out of our fuzzy
logic system in order to precisely control the gas flow by increasing or decreasing it.
The process of translating the output of the fuzzy rules into a scalar (a precise change
in gas flow, in this case) is called defuzzification.

There are a number of methods for defuzzification. Here we illustrate one
called the clipped center of gravity approach. Numerical values associated with the
antecedent linguistic variables (the if parts of the if-then rules) can be thought of as
chopping off the set membership functions of the consequent (output) linguistic
variables in Figure 7.3. In accordance with the FlowChange membership values
listed above, then, we "chop off" increase_small (IS) at its 0.8 level and no_change
(NC) at its 0.2 level. Chopping off the tops results in trapezoidal shapes. The other
three fuzzy memberships are chopped off at 0, so they have no effect (in many
fuzzy systems, most output fuzzy memberships produce zero effect).

The most common way to derive a scalar from these functions is called the clipped
center of gravity, or centroid, method: The idea is to find the "center of gravity" of
the composite output membership function (the overlapping trapezoids), draw a
vertical line from that point to the numeric variable, and use the numeric value
found there to control the system or define a conclusion.

If we represent the membership of element xi in fuzzy set A as kl A [Xi] and the ith
value of the underlying numeric variable as xi, then equation 7.2 describes centroid
defuzzification. Note that the output variable FlowChange in our example is defined
over a discrete domain with 61 possible values. In the cases where the output variable
is defined over a continuous domain, the summations in equation 7.2 are replaced
with integrals.

]~ xi~ (xi)
i (7.2)

Output= E la (Xi)
i

There are several ways to perform centroid defuzzification. One method allows
the membership functions to overlap (cover one another), as seen in Figure 7.3. Each
area of overlap is used only once. The center of gravity then defines a point on the
numeric variable. This method, which is frequently used in fuzzy applications, yields
a value of about 0.76 CMM increase in flow that should occur in the case illustrated
in Figure 7.3.

Another method adds the set membership functions where they overlap. An area
is counted (weighted) twice if it is part of that triangular area common to two mem-
bership functions that will be defuzzified. In Figure 7.3 the triangular area common
to the IS and NC membership functions below the membership value of 0.2 would
be counted (weighted) twice. It has been argued that this guarantees that each if

Chapter Seven--Fuzzy Systems Concepts and Paradigms

variable has an effect on the then variable, as set memberships are not covered by
one another.

In this simple example, the only output variable is the change in gas flow. In the
later section on fuzzy control, we discuss the implementation of fuzzy logic in more
realistic systems with multiple inputs and outputs.

Other Defuzzification Methods
There are other methods of defuzzification besides the centroid method, to be
adapted to the particular situation in which they are being used. Defuzzification
takes the outputs of all the fuzzy rules, maps them onto a numeric variable, and
produces a scalar, or real nonfuzzy number, which can be used to define the conclu-
sion of an argument, suggest changes in a dynamic system, or run a control device.

A detailed discussion of these methods is beyond the scope of this book. We
examine only three: the max-membership method, the mean-max membership
method, and the center-of-maximum method. For more information about options
for defuzzification, see a fuzzy logic textbook such as Ross (1995). The names of the
methods may seem confusing to you; they are to us, too. In fact, it seems that many
of the names are interchangeable. So it may be helpful to remember what they do
and how they do it, rather than what they're called.

Each method we discuss in this section is very simple. Each also uses a simplified
representation of the output similar to Figure 7.4.

The max-membership method is very simple and somewhat inexact. In this
method, the centroid of the fuzzy membership function with the highest value is
used for the defuzzified output scalar. In our furnace example, the centroid of the
highest membership value (0.8) is at 1.0, so the output is set to 1.0 CMM flow
change. This is significantly different from the value of 0.76 CMM obtained by the
centroid method.

Each of the remaining two methods projects the output for each membership
function that is not 0 onto one point on the output domain. In the case of member-
ship functions with a peak, the point coincides with the location of the peak. For a
membership function with a flat top (the maximum membership is a plateau), the
location coincides with the median value of the plateau projected down onto the
domain axis.

0.8
0.2

-1 0 1 2
Change in Gas Flow in CMM

Figure 7.4 Simplified representation of output for gas furnace example.

Approximate Reasoning

In our example, the two values on the domain axis, X1 and X2, are 0 and 1, and the
corresponding membership values, u(xl) and u(x2), are 0.2 and 0.8, corresponding
to the clipped values of the fuzzy sets NC and IS.

The mean-max membership method (also called the middle-of-maximum
method) simply averages the values on the domain axis (Ross 1995). So the output
for our furnace gas example is (xl + x2)/2 = 0.5 CMM. Like the max-membership
method, this value is significantly different from the value of 0.76 obtained by the
center of gravity method, and it may not be sufficiently representative for many
applications. On the other hand, it is extremely simple and fast to calculate.

The center-of-maximum method (Von Altrock 1997) seems to us to be more
representative of the clipped output membership functions. The activated mem-
bership functions are represented by arrows, the length of which correspond to the
(clipped) membership values, as in Figure 7.4. These are treated as weights pushing
down on the dynamic range axis, and the "best compromise" position that balances
the weights is chosen as the output. In our case, that occurs at point 0.8. Since in
our example the interval between Xl and x2 is 1.0, the calculation is 0.2 * Xout = 0.8 *
(1.0 - Xout), and Xout = 0.8. This method produces an output value close to that pro-
duced bythe centroid method (0.76) and is fast to calculate. It seems like a reasonable
choice for many practical applications.

In the fuzzy rule system implementation described in the next chapter, we have
included three types of defuzzification: the center of gravity without overlap, center of
gravity with overlap, and max-membership methods. You might want to implement
the center-of-maximum (or some other) method on your own.

Measures of Fuzziness

Now that we've discussed the process of running a fuzzy system, let's consider fuzzi-
ness metrics that help us answer the question "How fuzzy is it?" In this section, we
discuss quantitative measures of fuzziness for discrete fuzzy sets. Measures of fuzzi-
ness are metrics of fuzzy uncertainty, which is that type of uncertainty that arises
from linguistic imprecision or vagueness. Stated another way, measures of fuzziness
estimate the average ambiguity in fuzzy sets in some well-defined sense (Pal and
Bezdek 1994). Ambiguity is the degree or extent to which an element belongs to a
fuzzy set. One measure of ambiguity is entropy.

Set membership functions describe the degree to which an element is a mem-
ber of a set. Thus, a fuzzy membership value near 0 or near 1 represents an item
that would be considered not-in or in the corresponding crisp set. For example, in
the set "fish,"

lafish(bass) = 1.0, ,fish(goldfish) = 1.0, lafish(Seahorse) = 0.8, lafish(whale) = 0.0

we can say with some certainty that a crisp set, "fish," would contain {bass, goldfish},
and that "not-fish" would contain {whale}. We may need to consult a zoology text

Chapter Seven--Fuzzy Systems Concepts and Paradigms

before deciding that seahorses are indeed a kind of fish, thus pushing its "fish" set
membership toward 1.0.

On the other hand, a set such as "flowers,"

I~flowers(rose) = 1.0, l~flowers(dogwood) = 0.5, ~flowers(bread) = 0.0

presents the problematic case of the dogwood, whose "flower" is actually an ornate
ring of white or pink leaves.

It is meaningful, then, to state that classification of roses and bread as flowers is
more certain than classification of dogwoods. The set of fuzzy membership values
"flowers" is fuzzier than the set "fish." Fuzzy logic needs a measure of the fuzziness
of sets, or the uncertainty of set membership values, in order to completely describe
the relationships of elements to sets and sets to one another.

Entropy is a measure of the disorganization of a physical or informational system,
which is presumed to be constantly increasing as systems wear down, run down, and
deteriorate. Even though the universe appears to be an orderly arrangement of plan-
ets circling stars and stars clustering in galaxies, according to commonly accepted
theories of the universe, we may be sure that eventually all the planets will fall from
their orbits and all the stars will burn up and collapse into a dark heap: This is a
great source of pleasure for cynics and misanthropes. Everyone's desk, on its own,
tends to get messy. Entropy always tends to increase. Entropy is also used in informa-
tion theory as a measure of information in a message or bit string. High uncertainty
corresponds to high entropy.

Because entropy is a measure of ambiguity, the concept of entropy is relevant to
a discussion of fuzziness. A set with membership values near 0 and 1 can be used
with a degree of certainty that correlates with the extremity of memberships. On the
other hand, operations involving sets whose elements are not clearly "in" or "out" of
the set present problems: The uncertainty, or entropy, of those sets seems to escalate
as the sets are combined, until the outcome is entirely unpredictable and mean-
ingless. From a strictly geometrical perspective (Kosko 1994), fuzzy entropy is thus
maximum at the center of the hypercube defined by the fuzzy membership values
defined in the fuzzy set.

Numerous measures of fuzziness have been proposed. Many of them are dis-
cussed in Pal and Bezdek (1994). These measures are based on things such as the
distance from a set of fuzzy membership values to the nearest crisp set and the dis-
tance between a set of fuzzy membership values and its complement.

A number of attributes exist that seem to make sense for any definition of
fuzziness. For example, since the ambiguity of any crisp set is 0, its fuzziness should
also be 0. And since maximum ambiguity occurs for a 0.5 membership value, the
set S with maximum fuzziness is one for which ~s(X) = 0.5 V x. As membership
values move away from 0.5 toward 0 or 1, ambiguity (and therefore fuzziness)
decreases.

Approximate Reasoning

One way of describing decreasing ambiguity is to define a sharpened set. A set S* is
said to be a sharpened version of S when Us* (x) <_ Us(X) if Us(X) <_ 0.5, and Us* (x) >_
Us(X) if Us(X) >_ 0.5. Since a sharpened set is less ambiguous, it also has a lower
fuzziness.

Another attribute is that the fuzziness of a set and its complement should be the
same. There is equal ambiguity in "tall" and "not-tall," for example.

Partially based on these attributes, a number of requirements, or conditions, have
been developed that measures of fuzziness should satisfy. We use the word "should"
because various authors do not agree on the minimum requirements. Five require-
ments proposed by Ebanks (1983) are listed below. The first three were originally
suggested by DeLuca and Termini (1972). A sixth was also proposed by Ebanks, but it
is generally not considered because of its difficulty of interpretation (Pal and Bezdek
1994). In the following requirements P1 to P5, A and B are fuzzy sets over a domain
X, and H(A) and H(B) are fuzziness measures for the sets.

P 1, sharpness: H(A) = 0 if A is a crisp set; that is, UA (x) -- 0 or 1 V x ~ X.

P2, maximality: H(A) is maximum for UA (x) = 0.5 V x ~ X.

P3, resolution: H(A) >_ H(A*), where A* is a sharpened version of A.

P4, symmetry: H(A) = H(1-A) , where Ul-A (x) = 1 -- UA (X) X~ X ~ X.

V5, valuation: H(AUB) + H(AnB) = H(A) + H(B).

As stated earlier, authors disagree about which of the conditions are sufficient for
a fuzziness measure. For example, Yager and Filev (1994) believe that the first three
(P1-P3) are sufficient, while Pal and Bezdek (1994) assert that all five (P1-P5) are
required.

The first four seem intuitive relative to the fifth. P5 derives from crisp sets, where
the number of elements in the union oftwo sets plus the number in their intersection
equals the sum of the number of elements in each set. It is not clear that this condi-
tion is necessary for all fuzzy applications. The three measures of fuzziness discussed
next adhere at least to P 1 to P4, and two of them adhere to all five requirements.

The first fuzziness measure presented is that developed by DeLuca and Termini
(1972). Their entropy measure, linT, is of the same form as Shannon's entropy mea-
sure. Equation 7.3 presents the measure, where Kis a constant of normalization. This
fuzziness measure adheres to all five conditions (P1-P5).

n

HDT(A) = - K Z (Pi log~i + (1 - ~i) log(1 - I~i))
i=1

(7.3)

Remember that we are working with discrete fuzzy sets, so each n value of the sub-
script i corresponds to one of the n discrete values of x over the domain X.

Chapter Seven--Fuzzy Systems Concepts and Paradigms

The second fuzziness measure was developed by Pal and Pal (1989). It is based on
a measure they developed for probabilistic entropy that incorporates an exponential
gain function. Equation 7.4 presents the Pal and Pal entropy measure Hpp, where
e = 2.718.. . , and K is again a normalization constant, which, when set properly,
allows Hpp to satisfy all five conditions P 1 to P5.

n

Hpp(A) = K Z gie(1-]/i) .+. (1 - gi) e#~
i=1

(7.4)

The third fuzziness measure was developed by Kosko (1986). This measure
requires the definition of the distance dq(A, Anear) between a fuzzy set A and the
crisp set Anear nearest to A, and the distance dq (A, Afar) between A and the crisp set
Afar farthest from A.

Membership values for Anear and Afar are

(.

(x)= ~ 1 if #A (X) > 0. 5
gAnear [0 otherwise

= f 1 if PA (X) ~ 0.5 (x) I.tAfar [0 otherwise

Now,

n] 1/q
dq(A, Anear) = E I gA,i- gAnear, i [q

i=1

in dq(A, Afar) = E l #A,i -- gAfar, i l q
i=1

and

The distances are called the linear (Hamming) or quadratic (Euclidean) distances for
q = 1 or 2, respectively.

The entropy measure defined by Kosko, HK, is the ratio of the distance between a
fuzzy set A and Anear t o the distance between A and Afar, as illustrated in equation 7.5.
Either the Hamming or the Euclidean distances may be used (the same value of q
must be used in the numerator and denominator). Hr satisfies conditions P 1 to P4,
but doesn't always satisfy P5.

HK(q,A) = dq(A, Anear)
a (A,A ar) (7.5)

Developing a Fuzzy Controller

Note that for practical systems, HDT and Hpp a r e often normalized so that they
produce values between 0 and 1, HK is inherently normalized. Also note that higher
values of fuzziness are not necessarily "better" in an application. Remember that
maximum fuzziness is represented by a membership function with a membership
value of 0.5 over its entire domain (which is almost certainly useless).

Fuzziness measures are often used to measure the relative fuzziness of various
models, selecting the model to "harden" that is least fuzzy. For example, in the case
of cluster validity functions, the partition of the data that has the minimum fuzziness
is chosen as "best."

If one of the three measures of fuzziness described here doesn't meet your needs
in an application, refer to Pal and Bezdek (1994) for others you can evaluate. Or you
can create your own.

Now that we've completed our initial look at approximate reasoning, including
an example of the process of fuzzification, fuzzy rule firing, and defuzzification, and
our look at measures of fuzziness, let's review an example a common application of
fuzzy logic: fuzzy control.

Developing a Fuzzy Controller

Fuzzy logic is studied by researchers in many fields, including not only engineering
and computer science but also psychology, business and management, linguistics,
philosophy, and mathematics. Not surprisingly, developments in the field have been
diverse in their interpretation and applications, ranging from the ethereally philo-
sophical to nuts-and-bolts arguments about the best way to defuzzify a particular
system. The topics introduced in this section have implications for a wide range of
fuzzy implementations.

One of the largest applications of fuzzy logic is in the area of control engineering.
The use of fuzzy logic for control was first presented by Mamdani and his colleagues
in the early 1970s (Mamdani and Assilian 1975) and grew to the point that there were
thousands of industrial applications of this technology by the mid-1990s (Hirota
1995).

Why Fuzzy Control
There are several reasons why fuzzy control has gained such popularity. From an
operational perspective, fuzzy controllers provide a systematic and efficient frame-
work for incorporating linguistic information from human experts. Fuzzy control is
a nonparametric approach that does not require a mathematical model of the sys-
tem under control. Fuzzy control also produces nonlinear controllers, which extend
their utility to a wide range of applications.

....© Chapter Seven--Fuzzy Systems Concepts and Paradigms

From a practical perspective, assuming you have sufficient knowledge about
system behavior, fuzzy controllers are relatively easy to design, making them less
expensive than alternative approaches. In addition, fuzzy controller concepts are rel-
atively easy to understand because they are based on rules and their interactions.

A Fuzzy Controller
One general approach to fuzzy control is shown in Figure 7.5. The system being
controlled, the plant, has its state changed by inputs. The change in the plant's state
produces a different plant response (output). The fuzzy controller's job is to pro-
vide a set of inputs that produce the desirable output from the system. The fuzzy
controller interacts with the plant through an action interface (defuzzifier) for plant
inputs and a condition interface (fuzzifier) that accepts plant outputs.

A rule base defines the actions of the fuzzy controller. There are five steps in
constructing this fuzzy rule base:

1. Identify and name the input variables and their ranges.

2. Identify and name the output variables and their ranges.

3. Define a set of fuzzy membership functions for each input and each output
variable.

4. Construct the rule base that will govern the controller's operation.

5. Determine how the control actions will be combined to form the executed
action.

This rule base construction process is illustrated in the next section with an ideal-
ized problem. In this example we use an approach that was pioneered by Mamdani

Inputs

T
Action

Interface

T
Figure 7.5 Fuzzy controller overview.

Plant

Fuzzy
Rule Base

Outputs

l
Condition
Interface

Fuzzy I
Controller

Developing a Fuzzy Controller

(Mamdani and Assiliani 1975). We use an approach developed by Takagi and Sugeno
(1985) later.

Building a Mamdani-type Fuzzy Controller
To illustrate the construction of a rule base, we use the problem of controlling the
speed of a train. The objective of the controller is to smoothly slow and stop a train
that is traveling at any speed and is any distance from the station.

Step 1: Identify and name the input linguistic variables
and their numerical ranges
Two input variables have been identified: train speed and distance to the station.
There are five ranges of speed:

Table 7.1 Speed (km/hr)

Fast 26.5 70

Medium fast 6.5 46.5

Slow 2.5 10.5

Very slow 1 4

Stopped 0 2

There are also five ranges of distance:

Table 7.2 Distance (meters)

Far 1,500 oo

Medium far 100 3,000

Near 3 200

Very near 1 5

At 0 2

Chapter Seven~Fuzzy Systems Concepts and Paradigms

Step 2: Identify and name the linguistic output variables
and their numerical ranges
There are two output variables that have been identified: train throttle and train
brake. There are five ranges of throttle (%):

Table 7.3 Throttle

Full 60 100

Medium 20 80

Slight 3 30

Very slight 1 5

No 0 2

There are also five ranges of brake (%):

Table 7.4 Brake

Full 98 100

Medium 95 99

Slight 70 97

Very slight 20 80

No 0 40

Step 3: Define a set of fuzzy membership functions
for each input variable
In this example, we use triangular (including left- and right-triangular) member-
ship functions. Each range of input and output variables is defined to associate
with a fuzzy set that has the same name as the range. Therefore, there are five
fuzzy sets defined for each input and output variable. The low and high values
of each range are used to define its associated fuzzy set's triangular membership

Developing a Fuzzy Controller

functions. The membership functions for speed and distance are shown in
Figures 7.6 and 7.7, respectively. The membership functions for throttle and brake
are shown in Figures 7.8 and 7.9, respectively. Note that the height of each function
is 1.0 and the function bounds do not exceed the high and low ranges listed above
for each range. Note also that the horizontal scales are not linear. They are drawn
so that they fit on the page, but emphasize those portions with which we are most
concerned in our example.

Stopped

1.0 ' i

0.8-

0.6-

0.4-

0.2-

0

Very Medium
Slow Slow Fast Fast

I v

2 4 6 8 10 12 26 36 46 56 66 76

Figure 7.6 Fuzzy membership functions for speed.

1.0-

0 . 8 -

0 . 6 -

0 . 4 -

0 . 2 -

At
/ Very Medium

, / Near Near Far Far
V,

2 4 6 8 10 50 100 200 400 800 16003200

Figure 7.7 Fuzzy membership functions for distance.

Chapter SevenmFuzzy Systems Concepts and Paradigms

J
1.0-

0 . 8 --

0 . 6 --

0 . 4 -

0 . 2 --

I v

100

N o

Very
Slight Slight Medium Full

2 4 6 20 30 40 50 60 70 80 90

Figure 7.8 Fuzzy membership functions for throttle.

Full
Very . \

, No Slight Slight Medium \
1.0

0.8

0 .6-

0.4

0.2

0 10 20 30 40 50 60 70 80 94 96 98 100

Figure 7.9 Fuzzy membership functions for brake.

Step 4: Construct the rule base that will govern
the controller's operation
A rule base is represented as a matrix of combinations of a fuzzy set of each input
variable. At each matrix position is one fuzzy set of each output variable related to
the input variables. (Note that for each set of inputs, two fuzzy sets are specified for
the two output variables, respectively.) The rule base matrix in Figure 7.10 for our
idealized problem has only 12 rules that describe the interaction between inputs and
outputs. In this example, the columns are distance fuzzy sets and the rows are speed
fuzzy sets. Note that if there is a fuzzy set specified for one output variable, all output
variables must have fuzzy sets specified.

Developing a Fuzzy Controller

Stopped

Very Slow

Slow

Medium Fast

Fast

At Very Near
" ~U]i..~.~a~ " Full Brake
, VS Throttle

Full Brake Medium Brake
No Throttle VS Throttle

Full Brake Medium Brake
No Throttle VS Throttle

Near

Slow Brake
VS Throttle

VS Brake
Slow Throttle

Medium Far

VS Brake
Medium Throttle

VS Brake
Medium Throttle

Far

No Brake
Full Throttle

No Brake
Full Throttle

Figure 7.10 Fuzzy rule base matrix.

Each entry in the rule base is defined by ANDing the inputs to produce individual
output responses. As an example, the shaded matrix entry in Figure 7.10 means

IF (speed) IS (stopped) AND IF (distance) IS (at)

THEN (full brake) AND (no throttle)

Each of the matrix entries uses the same rule combination process.

Step 5: Determine how the control actions will be combined
to form the executed action at the action interface
To illustrate how the control actions are combined to produce the executed action
at the action interface, consider the inputs

speed = 3km/hr

distance = 1.8 m

The first step is to determine which membership functions are activated and to
what degree. Four fuzzy sets are activated: the distance fuzzy sets At and Very Near
and the speed fuzzy sets Very Slow and Slow. The membership ofthe speed of 3 km/hr
for the fuzzy set Very Slow is 0.667 and the membership of 3 km/hr for the fuzzy set
Slow is 0.125. Mathematically these are denoted as

g Very Slow (3) = 0.667

#Slow(3) = 0.125

These membership function values are graphically illustrated in Figure 7.11.

Chapter Seven--Fuzzy Systems Concepts and Paradigms

Stopped

1.° l
0.8

0 .6-

0 .4-

0 .2-

0

Very
Slow

I

Medium
Slow Fast Fast

I

4 6 8 10 12 26 36 46 56 66 76

Figure 7.11 A speed of 3 km/hr activates two fuzzy membership functions, Very Slow and
Slow.

Similarly, the membership values for the distance of 1.8 m in the fuzzy sets for At
and Very Near are

l~Very Near(1.8) - 0.4

~At(1.8) -- 0.1

These fuzzy membership values are shown in Figure 7.12. This results in four rules
firing in the rule base matrix, as shown in Figure 7.13 (rule numbers, arbitrarily
assigned, are shown in the lower right corner of the matrix entry).

Next, we combine the membership values using the AND (min) operator for
each rule combination:

Rule 1: UVery Slow AND l lA t ---- l.lVery S l o w N A t - - min(0.667,0.1) = 0.1

Rule 2: USlow AND UAt = I I S l o w A A t " - - min(0.125,0.1) = 0.1

Rule 3: UVery Slow AND UVery Near = UVery Slown Very Near = min(0.667,0.4) - 0.4

Rule 4: USlow AND UVery Near --- l ' tSlowA Very Near = min(0.125,0.4) = 0.125

The values 0.1, 0.1, 0.4, and 0.125 are the firing strengths of rules I through 4, respec-
tively, for the input (3, 1.8).

Let's compute the output value for Brake first. We determine the membership
value for each fuzzy set ofthe output variable Brake. Rules I and 2 are associated with
the fuzzy set Full Brake. Rules 3 and 4 are associated with the fuzzy set Medium Brake.
The fuzzy set Full Brake is activated with membership values 0.1 and 0.1. The fuzzy
set Medium Brake is activated with membership values 0.4 and 0.125. Therefore, the
fuzzy set Full Brake has membership value 0.1 and the fuzzy set Medium Brake has

Developing a Fuzzy Controller

At

1.0-

0 . 8 -

0 . 6 -

0 . 4 -

0 . 2 -

~/ Very Medium
Near Near Far Far

12 4 6 8 10 50 100 200 400 800 16003200

Figure 7.12 A distance of 1.8 m activates two fuzzy sets, At and Very Near, wi th membership
values of 0.1 and 0.4, respectively.

Stopped

Very Slow (MS)

Slow

Medium Fast

Fast

At Very Near Near
|

_~'.F~ilI, B~ak~ :. :~ _ Full Brake
i N~ T ~ I ~ : VS Throttle
l . i : : ..

Slow Brake
VS Th rottle

[~ii B~a~ i)i[~ i ~ ~ [VS Brake
I N~ ~ 6 ~ j ~ ! ~ ~ ~ j ~ I Slow Throttle

Medium Far

VS Brake
Medium Throttle

VS Brake
Medium Throttle

Far

No Brake
Full Throttle

No Brake
Full Throttle

, , ,

Figure 7.13 Four rules are activated w i th the inputs speed = 3 and distance = 1.5.

membership value 0.4 by taking the maximum of the two activated membership
values for each fuzzy set, respectively.

The centroid defuzzification with overlap, described earlier, is used here to obtain
the output value. The resulting centroid is shown in Figure 7.14. The horizontal
coordinate of the centroid along the x-axis yields an output value of 97.01 percent
application of the brake.

The same methodology is used to determine the output value for the percentage
of throttle, which is left as an exercise (Exercise 5) for the student. The construction
of the fuzzy controller is now complete.

Chapter Seven--Fuzzy Systems Concepts and Paradigms

1.0

0 . 8 "

0 . 6 -

0 . 4 -

0.2-

Full
Very \

No Slight Slight Medium \

1

• i i ~
10 20 30 40 50 60 70 80 94 96 ~ 98 100

97.01%
Brake

Figure 7.14 Extrapolation of the centroid to the percentage of brake.

Fuzzy Controller Operation
During operation, input values are continually sampled and presented to the fuzzy
controller. The fuzzy controller then repeats the process described earlier in step 5:

= Determine the fuzzy membership values activated by the inputs (illustrated
by Figures 7.11 and 7.12).

m Determine which rules are activated in the rule base matrix (illustrated by
Figure 7.13).

m Combine the membership values for the activated rules using the AND
operator (illustrated by computing rules I through 4).

[] Combine the activated membership values for each fuzzy set of an output
variable.

Use centroid defuzzification to determine the value for each output variable
(illustrated by Figure 7.14).

Takagi-Sugeno-Kang Method
Another methodology for modeling and control is the Takagi-Sugeno-Kang (TSK)
fuzzy reasoning method (Sugeno and Kang 1986; Takagi and Sugeno 1985), which
yields Quasilinear Fuzzy Models (Yager and Filer 1994). The main difference
between the TSK method and that of Mamdani is that rather than having a fuzzy
consequent, each rule's consequent is a mathematical function. This function cal-
culates an output value as a function of one or more of the set of input variables;

Developing a Fuzzy Controller

some or all of these same input variables are used in the fuzzy antecedents of the
rules. As developed by Takagi, Sugeno, and Kang, the function is affine (the output
is a linear plus a constant function of the inputs), but the method has been extended
to nonlinear functions.

The general form of a fuzzy rule in a TSK model, then, is

IfXl is S1 a n d , . . . , and Xk is Sk then y = U (X l , . . . , Xk) -- ao + a l X l

+ a2x2 + " " + akXk
(7.6)

where y is the consequent (output) variable whose value is inferred, each xi is an
input variable (an antecedent) that may also appear in the consequent part of the
rule, each Si is a fuzzy set represented by a membership function, and U (X l , . . . , Xk)

is a specified function, u • ~R k -~ ~R. L inear membersh ip f unc t ions over each input
variable are linear functions that monotonically increase (or decrease) over their
domain. Linear membership functions were used by Takagi and Sugeno, but their
method is routinely used with other kinds of membership functions, including sig-
moidal and Gaussian.

Variables that are not input variables (Xk+ 1, etc.) that are important for obtaining
the output estimation can also be included in the consequent (conclusion) func-
tion on the right of equation 7.6. For example, in our furnace gas flow example
discussed earlier, we might add the current (total) gas flow (CurFlow) as a variable
to be included in the consequent function.

A complete model, or system, then, is defined by n fuzzy rules Ri for i = 1 , . . . ,n,
as follows:

IfXli is Sl i a n d , . . . , and Xki is Ski, then yi = u i (x l i , . • • ,Xki)

Calculating the output of the system involves finding the intersection, usually the
minimum or product, of the fuzzy membership values of the antecedents. That is,

a(y i) = min {laSli(Xli) , . . . , laSki(Xki)} o r

a(yi) = rI {laSli(Xli) , . . . , laSki(Xki)}

where a(yi) is the firing strength, or truth (membership) value, of rule i.
Then the system output y resulting from all n rules is calculated as shown in

equation 7.7

a(yi) Yi ~ t l(yi)
n n

i=1 2 ,=l 2
j - 1 j - 1

ui(x l i , . . . , Xki) (7.7)

Chapter SevenmFuzzy Systems Concepts and Paradigms

I

Membership
Value

0

0 5 10

$I

igh

0 2 8

52

Figure 7.15 Fuzzy membership functions for the Takagi-Sugeno-Kang example.

The system output y is thus a weighted average of the individual subsystem
outputs Yi.

The following simple example illustrates implementation of the Takagi-Sugeno-
Kang method. Assume that we have a system with fuzzy membership functions over
the input domains, as shown in Figure 7.15. Also assume that there are two rules, as
follows:

Rule 1" If Ul is Sl_low and u2 is S2_low, then)'1 = 0.5Ul -b 0.2u2

Rule 2: If Ul is Sl_high and u2 is S2_high, then y2 = Ul + u2

Now suppose that Ul "- 8 and u2 = 4. Then PSl_low(Ul) = 0.2 and ltS2_low(U2) ----
0.5, so the first rule results in a(Yl) = 0.2. Likewise, s i n c e i.lSl_high(Ul) - - 0 . 8 , and
blS2_high(U2) = 0.33, the second rule results in a(y2) = 0.33.

Since yl = 4.8 and y2 = 12, the crisp output value inferred by the two rules is

y __ 0.2(4.8) + 0.33(12) _~ 9.36
0.2 + 0.33

The determination of system structure and parameters is discussed in detail in
Takagi and Sugeno (1985). Methods for determination of the parameters a0, a l , . . . ,
for the consequent function (see equation 7.6), for example, include the least mean
squares technique. Data taken during successful operation by a skilled operator can
be used to develop the "learning model" for the parameters. With respect to this
learning model, Terano, Asai, and Sugeno (1989) say, "It is not too much to say that
it is indispensable." System structure design and parameter identification can also
be accomplished using evolutionary computing methods similar to those described
in Chapter 8 for the evolutionary fuzzy rule system.

The TSK method is particularly useful for modeling very complex systems. The
method's fuzzy techniques facilitate the decomposition of the state spaces of these
systems into relatively simple subsystems. The TSK methodology is used to smoothly
interpolate system dynamics among the multiple regions to which an operating
point may belong.

The TSK method allows objective system performance data, in the form of
either system equations or actual operating data, to be explicitly incorporated into

S mmary

the system model. This can be done while incorporating expert knowledge in the
formulation of the fuzzy rules.

Summary

Evolutionary computation and neural networks are attempts to mimic or
simulate emergent natural processes that have proved effective information-
processing methods "in the wild." Logic, on the other hand, is an artificial method
devised by humans. Although one could argue that the capacity for reasoning
evolved through natural adaptation, it is clear that the calculus of symbolic logic
has only been invented through millennia of investigation, and only in certain
societies on earth. More likely one would say that what has evolved is actually the
ability to use language, which is primarily communicative but can be exploited to
encode inferential relations among symbols.

Western society has always trusted that Aristotelian logic would eventually be
used to explain all kinds of causal and implicative relations. But with the inven-
tion of fast electronic computers, it became apparent very quickly that binary logic
was adequate for explaining very few real-world logical relations. It was too precise,
especially in assuming that objects in the world really do belong to crisp taxonomic
classes.

Zadeh's revolution, however, has opened the possibility that reasoning can
explain a great amount about the world, with some fundamental adjustments.
First, the distinction between A and not-A has been weakened, so that an element
can belong to a set (class or category) and also not belong to that set. The element
can even belong to a set and to its opposite.

Second, in fuzzy expert systems all rules fire at once, at least theoretically. Prac-
tically, this means that the system always produces an answer. Traditional expert
systems can get "stuck," a situation that arises from the rules firing sequentially,
when the answer to a question leads to a condition from which it is not possible to
proceed. The importance of this aspect of the fuzzy revolution can hardly be over-
stated. Fuzzy logic asks all the questions simultaneously and blends the answers
in parallel to form an answer from the whole.

This parallelism constitutes a step back from the artificiality of binary logic,
toward the more natural implementation of massive neural parallelism. If the com-
putational intelligence perspective is seen as a tendency to focus on the emergence
of solutions within a computer program, as opposed to the imposition of solu-
tions through rules and constraints, then fuzzy logic belongs here. A strength of
the fuzzy method is that the rules encoded in a fuzzy system allow unanticipated
solutions; solutions can emerge that were not imposed by a knowledge engineer
or programmer. This is computational intelligence.

Chapter Seven--Fuzzy Systems Concepts and Paradigms

E x e r c i s e s ..

1. Given that we are working with the domain of "age" of a population of people,
define a set of fuzzy membership functions over the domain that might be
appropriate for use by an insurance company determining risk of Alzheimer's
disease, which affects mainly older people. Repeat the exercise for use by a
medical organization for diagnosing appendicitis, which is assumed for this
exercise to affect people regardless of age. Justify the number and distribution
of fuzzy sets.

2. Fuzzy sets V and W are defined on the same universe of five individuals as follows:

V {1.0 0.8 0.6 0.20 O}
= ----+ + + + -

q r s t u

{1.0 0.6 0.45 0.15 O}
W= + - - - + + + -

q r s t u

For Vand W, find: (a) VA W, (b)Vu W, (c)V, (d)W, (e)Vn W, (f)Vu W.

3. For each of the three measures of fuzziness defined in the chapter (equations
7.2, 7.3, and 7.4), calculate the fuzzy entropy of one of the fuzzy membership
functions you defined in exercise 1. (Remember that the membership function
is defined over the entire age domain.)

4. Using the fuzzy membership functions defined in the chapter for the slowing of
a train near a station, determine the percent of braking applied when the train
is moving 3 km/hr and is 8 m from the station.

5. Determine the percent of throttle applied for the conditions described in
exercise 4.

6. Use the centroid with overlap defuzzification method to calculate the output value
of the output variable FlowChange as shown in Figure 7.3.

7. Implement the center of maximum method of defuzzification in the fuzzy
source code.

8. What are the advantages of using fuzzy controllers?

9. Following the five steps discussed in this chapter, design a fuzzy room
temperature controller.

chapter
e l {2

Fuzzy Systems Implementations

In the last chapter, we discussed the basic
concepts of fuzzy logic and fuzzy sys-
tems. Now we are ready to apply what we
learned. This chapter presents two imple-
mentations of fuzzy systems: fuzzy rule sys-
tems and evolutionary fuzzy rule systems.
First, we discuss common issues, such as
how to represent fuzzy rules, related to
fuzzy rule system and evolutionary fuzzy
rule system implementations. Then we pro-
vide the detailed descriptions of the sys-
tem implementations. The executable code
and source code are available at the book's
web site.

Similarly to previous chapters on imple-
mentation (Chapters 4 and 6), we have

included code listings such as class defini-
tions and operator definitions. If you are
not interested in the details of program-
ming, you may want to skim these listings,
noting what is included and what is accom-
plished by the code in each listing.

The source code is being distributed as
shareware. You are welcome to download
it and use it for classroom or personal learn-
ing experiences in conjunction with the
textbook at no cost. If you use it, either as
is or with modification, for a project out-
side of your classroom (or learning on your
own), please submit a payment in accor-
dance with the shareware payment instruc-
tions on the Internet site for the book. m

315

Chapter EightmFuzzy Systems Implementations

Implementation Issues

Before we get to the specific implementations, it is a good idea to address the main
issues common to the implementations of fuzzy rule systems and evolutionary fuzzy
rule systems. We do that in this section. These issues include the representation of
fuzzy rules, evolutionary design of fuzzy rule systems, and the programming lang-
uage to be used for implementations of fuzzy systems.

Fuzzy Rule Representation
In this chapter, a fuzzy rule system with Mamdani-type fuzzy rules is implemented.
(Mamdani fuzzy systems are described in Chapter 7.) Theoretically, each fuzzy vari-
able can have any number of fuzzy sets, but 3, 5, 7, or 9 fuzzy sets are common
for each fuzzy variable. (An odd number of fuzzy sets is almost always used. There
seems to be no particular reason for this other than the resulting symmetry about the
center of the variable range.) Each fuzzy rule can be easily described in linguistic
terms. For example, a one-input-one-output fuzzy rule can be described as

if input is Low, then output is Medium

This linguistic representation is favored by human beings but not by digital
computers, which use numbers as the medium for computation. To represent the
language of a computer better, in the following implementation numbers represent
the fuzzy rules. For example, for a fuzzy variable with 3 fuzzy sets (Low, Medium,
High), four integer numbers (0,1,2,3) can be used to represent these fuzzy sets:
0 represents don ' t c a r e , and 1, 2, and 3 represent Low, Medium, and High,
respectively. For a fuzzy variable with 5 fuzzy sets (Very Low, Low, Medium, Hi gh,
Very High), six numbers (0,1,2,3,4,5) can be used to represent these fuzzy sets:
0 again represents don ' t c a r e and 1, 2, 3, 4, and 5 represent Very Low, Low,
Medium, High, Very High, respectively. With this in mind, the above one-input-
one-output rule can be represented as 1 2, assuming that three fuzzy sets exist for
each variable.

For a fuzzy rule with the modifier no t before its fuzzy set, the rule can be
numerically represented by adding a minus sign (-) before the corresponding
number. For example, if the above rule is changed to

if input is not Low, then output is Medium

its numerical representation is accordingly changed to -1 2.
To illustrate further, here are two fuzzy rules for a two-input-one-output fuzzy

rule system, with each fuzzy variable having three fuzzy sets:

if input_l is not Low, and input_2 is High, then output is Medium
if input_2 is Low, then output is High

Implementation Issues

These two rules can be represented numerically as -1 3 2 and 0 1 3 (remem-
ber that 0 means "don't care").

Evolutionary Design of a Fuzzy Rule System
One common approach to designing fuzzy rule systems uses human experts' expe-
rience and a trial-and-error approach. This may work well for some simple appli-
cations, especially with only a few variables. When human expertise is not available
and/or the system is complicated, however, automated approaches are preferable for
developing fuzzy rule systems.

A straightforward approach is to use clustering algorithms to divide the problem
space into many subspaces with or without overlaps. Each subspace is transformed
into a rule by mapping its center according to the definitions of fuzzy variables. The
obtained rules are generally adjusted by, for example, tuning the membership func-
tions or selecting fuzzification and defuzzification methods.

In this chapter, we describe an implementation of an evolutionary fuzzy sys-
tem using a genetic algorithm (GA). The design of a fuzzy rule system can be
looked at as a search problem in a multidimensional space that is infinitely large,
nondifferentiable, complex, noisy, multimodal, and deceptive (Shi, Eberhart, and
Chen 1999). Evolutionary algorithms have been shown to be superior to traditional
design approaches in finding optimal and near-optimal solutions in this complex
high-dimensional search space.

To design fuzzy rule systems using GAs, several issues need to be addressed, as
follows:

m What parts of the system are being evolved?

m How are system elements best represented?

[] How should the population be initialized?

m How are individual fitnesses evaluated?

m What genetic operators should be used?

We now look at each of these issues in turn.
The first issue is to decide what parts of the system are being evolved. The

performance of a fuzzy rule system is completely determined by its fuzzy rules
and membership functions, and its fuzzification and defuzzification approaches.
Which of these parts are to be evolved depends on the problem to be solved. Each
part can be evolved with other parts fixed, or a combination of several parts, or
even the whole system, can be evolved simultaneously. In our implementation,
we focus on the evolution of the fuzzy rule set (including the number of rules
in the fuzzy rule set) and the membership functions (including the membership

Chapter Eight--Fuzzy Systems Implementations

function location and the membership function type~for example, triangle,
sigmoid, etc.).

The next issue to consider is how to represent the system elements. Similar to
evolutionary neural networks, the fuzzy rule system to be evolved needs to be
represented as individuals for an evolutionary algorithm to work on. Various rep-
resentations can be used. Binary representations were originally used in genetic
algorithms. It is natural to represent fuzzy rules using binary strings. For a fuzzy
variable with three fuzzy sets (Low, Medium, and High), a string of three bits can
be used to represent which fuzzy set(s) is (are) included in the rule. For example,
101 means that the Low and High fuzzy sets for this fuzzy variable are included but
the Medium fuzzy set is not. For a fuzzy system with two input fuzzy variables and
one output fuzzy variable, if each variable has three fuzzy sets, then a binary string
ofthe nine bits 101 001 100 represents the fuzzy rule: i f i n p u t one i s Low or
High and input two is High, then the output is Low.

A feature of this representation is that it can represent rules with the OR opera-
tion. Another way to represent the fuzzy rules is through using 1 and 0 to represent
whether a fuzzy rule exists or not. This approach can only represent AND operations
among the variables in the antecedent part. For example, for the above fuzzy system,
the total number of possible fuzzy rules is 3 × 3 × 3 = 2 7, so a binary string
of 2 7 bits can completely represent the fuzzy rule set with the position index of the
bit representing the content of the rule and the position value 0 or 1 representing
whether this rule exists or not.

Fuzzy membership functions can also be represented by binary bits. For example,
each parameter of a membership function can be represented by a string of binary
bits, say 7 bits (Karr and Gentry 1993). The disadvantage of this kind of representa-
tion is that the length of the chromosome will be extremely long when the number
of variables and the number of fuzzy sets for each variable are large. Also, inaccu-
racy is brought in when binary strings represent the real-valued parameters of the
membership functions. The advantage of the binary representation is its simplicity
and generality.

For the representation of fuzzy rules, perhaps a more natural way is to use
integer representation. For the above fuzzy rule system, the number of possible
combinations of the antecedent part is 3 x 3 - 9, then, provided that integers
{0,1,2,3} are used to represent symbols { d o n ' t c a r e , Low, Medium, High},
a string of 9 integers can be used to completely represent the fuzzy rule set with
the position index representing the antecedent part and the position integer value
representing the consequent part (Hwang and Thompson 1994). The real-valued
parameters of fuzzy membership functions can also be represented by integers
but, as with binary representations, inaccuracies are introduced (Shi, Eberhart,
and Chen 1999). The advantage of this kind of representation is that the length
of the chromosome is reduced compared with that of the binary representation.

Implementation Issues

To overcome the inaccuracy introduced by binary and integer representations
for encoding the real-valued parameters of the membership functions, a real-valued
representation can be used (Herrera, Lozano, and Verdegay 1995). The use of a
real-valued representation makes it possible to use large domains (even unknown
domains) for the variables, which is difficult to achieve with binary and integer rep-
resentations. The disadvantage of this representation is that the fuzzy rules can't be
represented easily. So it is better to use real-valued representations when only fuzzy
membership functions are to be evolved.

Another issue is how to initialize the population. Generally, the population
is randomly initialized. Each possible individual is given the same priority. But
for some applications, existing experience and knowledge may be helpful in the
automatic design of the fuzzy rule system. This kind of experience and knowledge
can be incorporated into the initialization of the population. The drawback is that
this experience and knowledge may quickly become dominant in the population
and therefore trap the system in a local optimum. If sufficient computation time
is allowed, the authors always try to run evolutionary fuzzy rule systems with
completely random initializations.

The next issue to consider is how to evaluate the fitness of an individual. The
method used to evaluate the fitness of an individual depends on the problem to be
solved and your objective. Having a good evaluation function for the fuzzy rule sys-
tem can make it easier for the GA to evolve a good fuzzy rule system more efficiently
and effectively.

For classification problems, it is natural to choose the number of correctly
and/or wrongly classified training patterns as fitness. Other common fitness func-
tions are the mean-square error (or absolute difference error) function if you prefer
your system to have a bigger tolerance, and the relative difference error function if
you prefer your system to have similar accuracy for any target output value. Other
requirements for the system can also be encoded into the fitness function. For
example, if a simple system is preferred, then a measure of the complexity of the
fuzzy system (such as the number of rules evolved) should be included in the fitness
function. Performance metrics for computational intelligence systems are discussed
in Chapter 10.

The final issue we consider is the selection of the genetic operators to be used.
What kind of genetic operators to adopt depends on the representation approach.
For a binary representation, the genetic operators have been studied extensively and
applied. Some widely used operators can be adopted without modification. For inte-
ger and real-valued representations, some new operators or modifications of existing
operators generally are recommended. For example, for an integer representation
of a fuzzy rule system (Shi, Eberhart, and Chen 1999), a position-based mutation
operator is used because each element in an individual represents a different integer
range.

Chapter Eight--Fuzzy Systems Implementations

An Object-oriented Language: C++
In the previous implementations, we used s truct in C to group related data
variables and t y p e d e f to define new data types. A new data type can be looked
at as an object, which is accessible in its own module. All the modules are designed
to be as independent as possible. Therefore, each module can be as reusable as
possible. Programming is focused on the newly defined objects. The program-
ming can be considered object-based programming but not strictly object-oriented
programming.

To make the source code more reuseable, C++ is used in the implementa-
tions discussed in this chapter and the next. C++ is a language designed to be
object oriented like lava and Smalltalk. It can be considered as an extension of the
C language. Almost all the features in C can be used in C++, and C++ has its own
features--for example, data abstraction, inheritance, and dynamic binding. (Please
refer to a C++ programming book for details.) Certainly, to some extent, C can
also be programmed to have these features, but it is not designed to have them.
C++ is not perfect, but it is a useful and practical language for real-world problem
solving. Please note: we are not here to argue which language is better.

Fuzzy Rule System Implementation

Now that we've looked at some of the issues related to implementation, this sec-
tion discusses the implementation of a fuzzy rule system. We focus on the use of
the implementation for classification. The implementation is a flexible tool that is
capable of solving a wide variety of classification and diagnostic problems.

Programming Fuzzy Rule Systems
In contrast to the previous implementations in this book, the implementation of
fuzzy rule systems and all other implementations to be discussed are written in C++.
In C, a s t r u c t data structure is defined to include all the related data and even some
methods (functions); in C++, a new class is defined that binds the data and meth-
ods together. The new classes to be defined in this section for the implementation of
fuzzy rule systems are shown in Figure 8.1. The class Fuz zyMember is the funda-
mental class, which defines an object class of membership function associated with a
fuzzy set. The class Fu z z yVar i ab 1 e defines an object class of fuzzy variable, which
consists of several fuzzy sets (Fu z z yMembe r s). The class Fu z z yRu 1 e defines an
object class of fuzzy rule, which is composed of F u z z y V a r i a b l e classes and an
integer vector class, which is a template class o f v e c t o r. The class Fuz zyRul e S e t
defines an object class of fuzzy rule set, which is composed of Fuz zyRu le classes.

Fuzzy Rule System Implementation

FuzzyRuleSet

Fuzz~rRule

I
FuzzyVariable Vector<int> MyString

FuzzyMember Template <class T ~

Figure 8.1 Class tree in the implementation of the fuzzy rule system.

lpe> class vector

First, let us start with a discussion of the classes. The class v e c t or is defined
as a template class (t e m p l a t e < c l a s s Type>) so that one class definition can
be used for the declaration of different kinds of vector. For example, integer vector
v e c t _ i and float vector v e c t _ f can be declared as

vector<int> vect_i;
vector<float> vect_f;

The class v e c t o r is shown in Listing 8.1. The v e c t o r class has two private
data members. The row (i n t) defines the length ofthe vector, and the a r r (Type)
defines a pointer to the vector of data with type Type. The descriptor "private" pro-
tects these two data members from being accessed by other classes directly. Private

Listing 8.1 Definition of template class v e c t o r.

template <class Type>
class vector
{

private:
int row;
Type *arr;

public:
//constructors
vector():row(O),arr(O) {}

};

Chapter Eight~Fuzzy Systems Implementations

vector(int a);
vector(const vector<Type>& a);
vector(int a, Type* b);
~vector(){delete []arr;}
//operators
vector<Type>& operator =(const vector<Type>& a);
vector<Type>& operator +=(const vector<Type>& a);
int operator !=(const vector<Type>& a) const;
int operator <(const vector<Type>& a) const {return (row<a.row);}
Type& operator [] (int i) const {assert(i>=0&&i<row); return arr[i];}

//member functions
int len() const {return row;}
Type sum() const;
int maximum_index() const;
vector<Type>& changeSize(const int& a);
Type minimum() const;

friend vector<Type> operator I (const vector<Type>& a, const
vector<Type>& b);

friend istream& operator >> (istream& is,vector<Type>& a);
friend ostream& operator << (ostream& os, const vector<Type>& a);

data members can be accessed from outside of the class only through the class's
public methods (functions).

The public constructors provide ways to declare vectors. For example,
vector<int> vect_i declares an integer vector with zero elements;
v e c t o r < f l o a t > v e c t _ f (2) declares a f l o a t type vector of length 2;
v e c t o r < f l o a t > v e c t f 2 (v e c t _ f) declares a new f l o a t type vector that
is a copy of float type vector v e c t _ f .

The public operators define overloaded operators for the operation of vectors.
For example, assume that v l , v2 are two f l o a t type vectors with the same length.
Then v 1 = v2 copies v2 to v 1; v2 += v 1 means that v 1 and v2 are first added
and then the summation is assigned to v2; and v2 l= v l returns 0 if v2 equals
v l ; otherwise, it returns 1.

The public member methods provide ways to operate on the data members of
the class. The l e n () method returns the length of the vector; the sum () method
returns the summation of all the vector elements; the maximum_index () method
returns the index of the vector element that has the maximum value; and the
minimum () method returns the minimum value of vector elements.

The f r i e n d o p e r a t o r s << and >> provide methods for vector input and
output. For example, assume that i n D a t a F i l e is an opened object with data
type ifstream and vect_f is of vector<float> data type; then
inDataFile >> vect_f win input data ~om inDataFile to vect_f.

The class My string is shown in Listing 8.2. It has three private data mem-
bers. Data member s t r i n g s i z e defines the length of the string, s t r i n g P t r is a

Fuzzy Rule System Implementation

Listing 8.2 Definition of class My s t r i ng.

class MyString
{

private:
int stringSize;
char *stringPtr;
int currentPosition;

public:
//constructors
MyString () : stringSize (0), stringPtr (0), currentPosition (0)
MyString (int a) ;
MyString(char * str);
MyString(const MyString& a);

//destructor
~MyString() {delete []stringPtr; }

//member functions
int get_stringSize() const {return stringSize; }
int get_currentPosition() const {return currentPosition; }
char* get_stringPtr() const {return stringPtr; }
MyString& change_stringSize(const int& a);
MyString& change_currentPosition(const int& a);
MyString& change_stringContent(char *str);
int findNextF(char ch) const;
int findNextB(char ch) const;
int totalNumberF(char ch) const;
int totalNumberB(char ch) const;
MyString get_subString(const int& a); //a: size of subString

//from current position

// operators
char& operator [] (int i) const;
MyString& operator =(const MyString& a);
int operator ==(const MyString& a) const;

//friend I/O operators
friend ostream& operator <<(ostream& os, const MyString& a);
friend istream& operator >>(istream& is, MyString& a);

pointer to the string, and cu r r e n t P o s i t i on is the index of the character within
the string being manipulated.

The public constructors provide ways to declare a M y s t r i n g type variable. For
example, M y s t r i n g s l declares an empty M y s t r i n g variable s l ;
M y s t r i n g s 2 (3) declares a M y s t r i n g variable s2 with length 3;
M y s t r i n g s3 (" T r i a n g l e ") declares a M y s t r i n g variable s3 that has
length 8 and s t r i n g V t r pointing to a memory space (8 bytes total) with the values
" T r i a n g l e " stored in them; M y s t r i n g s4 (s3) declares a M y s t r i n g variable
s 4 that is a copy of s 3.

Chapter Eight--Fuzzy Systems Implementations

The public get_stringSize (), get_currentPosition (), and
ge t _ s t r i n gP t r () member methods provide interfaces to obtain the private data
members from the outside the My s t r i n g class.

The public c h a n g e _ s t r i n g S i z e (), c h a n g e _ c u r r e n t P o s i t i o n (), and
c h a n g e _ s t r i n g C o n t e n t () member methods provide interfaces to modify the
M y s t r i n g class private data members from outside M y s t r i n g class.

The public method f i n d N e x t F (c h a r ch) provides a way to find the next
character ch in the M y s t r i n g variable starting from the c u r r e n t P o s i t i o n to
the end; the method f i n d N e x t B (c h a r ch) provides a way to find the next
character ch going backward from the c u r r e n t P o s i t i o n to the beginning of
the string; the method t o t a l N u m b e r F (c h a r ch) obtains the total number of
c h a r ch in the string from the c u r r e n t P o s i t i o n to the end; the method
t o t a l N u m b e r B (c h a r ch) obtains the total number of c h a r ch in the string
from the c u r r e n t P o s i t i o n backward to the beginning; the method g e t _
sub S t r i ng (n) returns a new My s t r i n g data structure with length n and its
s t r i n g P t r pointing to a string that has n characters copied from the original
string starting from the c u r r e n t P o s i t i o n .

The public operator [] provides a way to obtain a character from a My s t r i ng
variable. For example, assume s l is a M y s t r i n g variable with l e n g t h 10;
then s 1 [2] returns the third character in the string pointed to by s t r i n g P t r.
The public operator = assigns one M y s t r i n g variable to another one. For exam-
ple, s2 = s l means that the M y s t r i n g variable s l is assigned (copied) to the
M y s t r i n g variable s2. The operator == compares two M y s t r i n g

variables. It returns 1 (true) if the two are equal; otherwise, it returns 0
(false).

The friend operators < < and > > provide ways for getting input and output for
the My s t r i n g variable, respectively.

The class FuzzyMember is shown in Listing 8.3. FuzzyMember provides
a way to declare and manipulate a data type variable for a membership function.

Listing 8.3 Definition of class Fu z z yMembe r.

Class FuzzyMember
{

private:
float startPoint;
float endpoint;
char *functionType;

public :
//constructor
FuzzyMember () : startPoint (0), endpoint (0), functionType (0) { }
FuzzyMember(float a, float b, char *str);
FuzzyMember(const FuzzyMember& a);

Fuzzy Rule System Implementation

//destructor
~FuzzyMember() {delete []functionType; }

//member function
float memberFunction(const float& a) const;
float not(const float& a) const;
vector<float> membership2input(const float& a) const;
float get_startPoint() const {return startPoint;}
float get_endpoint() const {return endpoint;}
char* get_functionType() const {return functionType;}
int member_flag(const float& a) const;
int setTypeFlag() const;

FuzzyMember& change_member(const float& a, const float& b, char *str);

vector<float> centroid(const float& a, const float& b) const;

//operators
FuzzyMember& operator =(const FuzzyMember& a);
int operator ==(const FuzzyMember& a) const;
int operator < (const FuzzyMember& a) const;

//the FuzzyMember is left of a);
int operator > (const FuzzyMember& a) const;

//the FuzzyMember is right of a);

//friend operator I/O
friend istream& operator >> (istream& is,FuzzyMember& a);
friend ostream& operator << (ostream& os,const FuzzyMember& a);

Since a membership function is tightly associated with a fuzzy set, we use a member-
ship function and a fuzzy set interchangeably. In the implementation, six
functions are adopted as candidate choices for membership functions. These six func-
tions are left_triangle, right_triangle, triangle, Gaussian,
sigmoid, and reverse_sigmoid. Other definitions are possible, of course, but
the authors have found these to be sufficient for a variety of problems. The definitions
of these functions are shown in Figure 8.2. From the definitions, it can be seen that
each membership function is determined by three values: the s t a r t _ p o i n t xl ,
the e n d _ p o i n t x2, and the function type (one of the six defined functions shown
in Figure 8.2).

The class FuzzyMember has three private data members. They are the f l o a t
type variables s t a r t p o i n t and e n d P o i n t , which correspond to the s t a r t _
p o i n t Xl and the e n d _ p o i n t x2, respectively, and a char pointer f u n c t i o n
Type, which points to a string of characters to specify which of the six possible func-
tions it is. The f u n c t i onType variable records the exact name ofthe membership
function. For example, if the membership function is a triangle function, then the
f u n c t i o n T y p e points to the string of characters " T r i a n g l e " . An alternative
way is to define an enumeration data type, say Member_Funct ion_Type ,

Chapter Eight--Fuzzy Systems Implementations

Left tr iangle membership function:

1

xz - x . ¢

'left_triangle = X2 - - Xl

0

if x < x 1

i f x 1 < x < x 2

i f x > x z

Right triangle membership function:

0

fright_triangle =

1

X -- X 1

2(2 - x 1

i f x < x 1

i f x 1 <_X <_X 2

i f x > x 2

Triangle membership function:

0

ftriangle(X) =

2

0

i f x < x l

x - x 1 x 2 + x 1
2 i f x l < x < ,

x2 - xl 2

x 2 - x if x2 + x l
, ,, < x < x 2

x;_ xl 2

i f x > x 2

Gaussian membership function:

fGaussian(X) = e - ° ' s y 2 w h e r e y = ~
8 (x - x l)

x 2 - x i
- 4

Sigmoid membership function:

1 12(X -- X 1)
fsigm°id(X)= 1 + e (-y+6) w h e r e y = xz_x-------- ~

Reverse sigmoid membership function:

freverse_sigmoid(X) = 1 -- fsigmoid (X)

Figure 8.2 Definitions of the six membership functions.

Fuzzy Rule System Implementation

which includes all six functions, and replace the char *functionType with
Member_Func t ion_Type f u n c t i o n _ t y p e . This could be a better way from
the perspective of good programming practice, but it makes the rule file less read-
able. The rule file specifies the fuzzy rule system and is read in to define it. The details
of the rule file will be explained later.

The public constructors provide ways for declaring Fuz z yMember variables.
For example, F u z z y M e m b e r f 1 declares an empty variable; F u z z y M e m b e r

f2 (1 .0 , 2 . 5 , " T r i a n g l e ") declares a FuzzyMember variable f2 that has
s t a r t P o i n t equal to 1 .0, e n d P o i n t equal to 2 .5 , and the f u n c t i o n T y p e is
" T r i a n g l e " function; FuzzyMember f3 (f2) declares a FuzzyMember vari-
able f 3 that is a copy of f 2.

The public member methods g e t _ s t a r t P o i n t (), g e t _ e n d P o i n t (),
and g e t _ f u n c t i o n T y p e () are methods to obtain private data member values
from outside the class. The method membe r _ f 1 ag (f_v) determines whether
f l o a t value f_v is within the dynamic range of the membership function. It
returns 1 if it is; otherwise, it returns 0. The s e t T y p e F l a g () method returns
which of the six defined functions is the membership function. Magic numbers 1
through 6 have been used to encode the six functions. As mentioned, an enumera-
tion data type Membe r _ F u n c t i on_Type should be defined to eliminate the magic
numbers in the source code as much as possible. This is left as an exercise for readers.

The change_member (const float& a, const float& b, char *str)

public method provides a way to modify the membership function in which the
s t a r t p o i n t is changed to be f l o a t value a, the e n d P o i n t is changed to be b,
and the new f u n c t i o n T y p e is changed to be s i r .

The public method memberFunct ion (c o n s : f l o a t & f_v) calculates the
membership value with which the input value f v belongs to the fuzzy set. The
method is shown in Listing 8.4 for clarification. Please note that the magic

Listing 8.4 Implementation of method memberFunct ion ().

float FuzzyMember::memberFunction(const float& a) const
{

float tmp;

switch (this->setTypeFlag ())
{

case 1 :
tmp=LeftTriangle (a, startPoint, endPoint) ;
break;

case 2 :

tmp=RightTriangle (a, startPoint, endPoint) ;
break;

case 3 :
tmp=Triangle (a, startPoint, endPoint) ;
break;

case 4 :

Chapter Eight--Fuzzy Systems Implementations

tmp=Sigmoid (a, startPoint, endPoint) ;
break;

case 5 :
tmp=reverseSigmoid (a, startPoint, endPoint) ;
break;

case 6 :
tmp=Gaussian (a, startPoint, endPoint) ;
break;
default :
cout<<"unknown fuzzySet type"<<endl;
exit (i) ;

}
return tmp;

numbers should be replaced by the corresponding elements included in the data
type Member_Function_Type if it is defined.

The public method m e m b e r s h i p 2 i n p u t (c o n s t f l o a t & re_v) returns two
values that, when applied to the membership function as input, have their member-
ship values set to be m_v. The method n o t (c o n s t f 1 o a t & f_v) returns the mem-
bership value with which input f _v does not belong to this fuzzy set. The method
centroid (const float&m_v, const float& s_s) calculates the c e n t r o i d
of the membership function by giving the membership value m_v and step size
value s_s . The smaller the step size value is, the more accurate the c e n t r o i d
calculation is.

The public overloaded operators - , -=, <, and > provide ways to operate on
FuzzyMember variables intuitively. For example, f_ml = f_m2 assigns
FuzzyMember variable f_m2 to FuzzyMember variable f_ml; f__ml == f_m2

compares f_ml with f_m2; it returns 1 if f_ml equals f_m2; otherwise, it returns
O; f_ml < f_m2 checks whether f_ml is on the left side of g_m2. If it is, it returns
1; otherwise, it returns O; accordingly, f_ml > f_m2 checks whether f._ml is
on the right side of g_m2. For illustration, the definition of one of the public
o p e r a t o r s -= is shown in Listing 8.5.

Listing 8.5 Definition of public operator == in class Fuz zyMember.

int FuzzyMember::operator ==(const FuzzyMember& a) const
{

int tmp=l;
if ((&a)==this) return I;

MyString strl(functionType);
MyString str2(a.functionType);

if (strl==str2)
{

if (startPoint !=a.startPoint)
tmp=0;

Fuzzy Rule System Implementation

if (endPoint !=a.endPoint)
tmp=0 ;

}

else
return 0 ;

return tmp;

The friend operators << and >> provide ways for input and output of
Fu z z yMembe r variables, respectively.

The class F u z z y V a r i a b l e defines a new data type for fuzzy variables, as
shown in Listing 8.6. The Fu z z yVa r i ab i e data type has five private data members.
The data member s e t s i z e (i n t) records the number of fuzzy sets defined/included

Listing 8.6 Definition of class FuzzyVariable.

class FuzzyVariable
{

private:
int setSize;
float startPoint;

float endpoint;
char *variableName;
FuzzyMember *fuzzySet;

public :

//constructors
FuzzyVariable () : setSize (0) , startPoint (0) , endpoint (0),

variableName (0) , fuzzySet (0) { }
FuzzyVariable (int a, float b, float c) ;
FuzzyVariable(int a, float b, float c, char *str) ;
FuzzyVariable (const FuzzyVariable& a) ;

//destructor

~FuzzyVariable() {delete []fuzzySet;delete []variableName; }

//member functions

FuzzyVariable& standardVariable() ;

char* get_variableName() const {return variableName; }

int get_setSize() const {return setSize; }

float get_startPoint() const {return startPoint; }

float get_endPoint() const {return endPoint; }
FuzzyVariable& change_setSize (const int& a);

FuzzyVariable& change_startPoint(const float& a);
FuzzyVariable& change_endPoint(const float& a);
FuzzyVariable& change_variableName (char *str);

char* setMeaning(const int& a, const int& b) const;
vector<int> setFireFlag(const float& a) const ;

float output(const float& a, const int& b) const;
float defuzzifyMax(const int& a, const vector<float>& b) const;

int defuzzyMax_index(const int& a, const vector<float>& b) const;

Chapter Eight~Fuzzy Systems Implementations

float defuzzyCentroid_add(const int& a, const vector<float>& b) const;
float defuzzyCentroid(const int& a, const vector<float>& b) const;

//operators

FuzzyMember& operator [] (int i) const;
FuzzyVariable& operator = (const FuzzyVariable& a);

//friend operator I/O

friend istream& operator >> (istream& is,FuzzyVariable& a);

friend ostream& operator << (ostream& os,const FuzzyVariable& a);

in this fuzzy variable; data member fuz zySet (Fuz zyMember*) is a pointer to the
s e t S i z e number of fuzzy membership functions; data members s t a r t P o i n t
(f l o a t) and e n d P o i n t (f l o a t) define the dynamic range of this fuzzy variable;
the v a r i a b l e N a m e (cha r *) stores the name ofthe fuzzy variable. It makes much
more sense to use the c h a r * data type than that in the Fuz zyMember class for data
member f u n c t ionType since the number ofpossible variable names is unlimited,
and actually they can be anything. The purpose of data member v a r i a b l e N a m e
is to provide the user with the capability to get a verbal description of the fuzzy
rules.

The public constructors provide ways to declare the F u z z y V a r i a b l e vari-
ables. For example, F u z z y V a r i a b l e f _ v l declares an empty F u z z y V a r i a b l e
type variable f_v l ; F u z z y V a r i a b l e f_v2 (3, - 1 . 0 , 2 .3) declares a
F u z z yVa r i a b 1 e variable f_v 2 that has 3 (s e t s i z e) fuzzy sets and its start point
and end point values are - 1 . 0 (s t a r t P o i n t) and 2 .3 (endPo in t) , respec-

- " t e m p e r a t u r e ") declares a tively; F u z z y V a r i a b l e f_v3 (3, 1 .0 , 2 . 3 ,
Fuz z y V a r i a b l e variable f_v3 almost the same as f_v2 except that it has a vari-
able name t e m p e r a t u r e (va r i ab leName) ; F u z z y V a r i a b l e f_v4 (f_v3)
declares a F u z z y V a r i a b l e variable f_v4 that is a copy of f_v3.

The get_variableName (), get_setSize (), get_startPoint (), and
get_endPoint () public methods return the variableName, setSize,
s t a r t P o i n t , and e n d P o i n t , respectively. The public methods c h a n g e _
setSize(const int& a), change_startPoint (const float& a),
change_endPoint (const float& a), and change_variableName
(char * str) set the sets i ze, startPoint, endPoint, and variableName,

to new values, respectively.
The public method s t a n d a r d V a r i a b l e ()provides a way to define the

s e t S i z e number of fuzzy sets over the variable's dynamic range (from
s t a r t P o i n t to e n d P o i n t) uniformly.

The public method s e t M e a n i n g () provides a way to get the verbal mean-
ing for a fuzzy set. For example, for a variable with 3 fuzzy sets, the fuzzy sets
have verbal descriptions Low, Medium, and High. The purpose of this method is

Fuzzy Rule System Implementation

to convert fuzzy rules represented by numbers to fuzzy rules described by verbal
descriptions for users. This is explained later. It is not involved in the mathematical
operations of the fuzzy rule system.

The public method s e t F i r e F l a g (c o n s t f l o a t & f_v)checks which
fuzzy sets are activated by the input value f_v. Since the fuzzy sets are overlapped,
more than one fuzzy set for a given input value will generally be activated. That is
what makes the fuzzy rule system powerful.

The public method output(const float& f_i, const int& s_i)
returns the membership value for fuzzy set s_i with input value f i.

The defuzzifyMax (), defuzzyCentroid (), and defuzzy
Centroid_add() public methods provide three ways to defuzzify. The
c i e f u z z i f y M a x () returns the median value of the range of the fuzzy set, the
index of which is the largest fuzzy set activated (having membership value > 0). The
d e f u z z y C e n t r o i d () returns the centroid value of all the fuzzy sets activated.
The defuzzyCentroid_add () is the same as the defuzzyCentroid()
except that the overlapped areas are involved in the calculation as many times as
the number of activated fuzzy sets overlapped in this area. For details of these three
methods, please refer to Chapter 7.

The o p e r a t o r [] provides a way to get an indexed FuzzyMember member
from the F u z z y V a r i a b l e variable. For example, if f v is a F u z z y V a r i a b l e
type variable with three fuzzy sets, f _ v [1] returns the second FuzzyMember
type data fuz z y S e t [1]. The o p e r a t o r = assigns one Fuz z y V a r i a b l e variable
to another F u z z y V a r i a b l e variable.

The friend operators < < and > > provide ways for getting input and output for
Fu z z yVa r i ab 1 e variables, respectively.

The class FuzzyRu le is shown in Listing 8.7. F u z z y R u l e has seven private
data members. The v a r i a b l e S i z e (i n t) records the number of input

Listing 8.7 Definition of class FuzzyRule.

class FuzzyRule
{
private:

int

int

vector<int>

vector<int>

variableSize; //number of variables in a rule

outputSize; //number of outputs in a rule

inputSetFlag; //which set is activated for each variable

outputSetFlag; //which set is activated for each variable;

FuzzyVariable *inputVariable; //pointers to the input variables

FuzzyVariable *outputVariable; //pointers to the output variables
char *ruleContent;

public:

FuzzyRule () :variableSize (0) , outputSize (0) , ruleContent (0) ,

inputVariable (0) , outputVariable (0)

};

Chapter Eight--Fuzzy Systems Implementations

{
vector<int> vec;
input SetFlag=ve c;
output Set F lag=vec;

}
FuzzyRule (int a, int b, vector<int> c,vector<int> d);
FuzzyRule (int a, int b, vector<int> c,vector<int> d, char* str) ;

FuzzyRule(const FuzzyRule& a);

~FuzzyRule(){delete []ruleContent;
delete []inputVariable;delete []outputVariable;}

//member functions

int get_variableSize() const {return variableSize;}
int get_outputSize() const {return outputSize;}
vector<int> get_inputSetFlag()const {return inputSetFlag;}
vector<int> get_outputSetFlag() const {return outputSetFlag;}
char* get_ruleContent() const {return ruleContent;}

FuzzyRule& change_inputSetFlag(const vector<int>& a);
FuzzyRule& change_outputSetFlag(const vector<int>& a);
FuzzyRule& change_variableSize(const int& a);
FuzzyRule& change_outputSize(const int& a);
FuzzyRule& change_ruleContent(char* str);
FuzzyRule& form_ruleContent();

FuzzyRule& change_outputVariable(const FuzzyVariable& a, const int& b);
//both outputVariable change to a

int checkRuleActive(const vector<float>& a) const;
//check whether this rule is activated via input a or not

vector<float> FuzzyOutput(const vector<float>& a) const;
//calculate the fuzzy output vector

vector<float> FuzzyOutput_average(const vector<float>& a) const;
FuzzyVariable& get_outputVariable(const int& a) const;
vector<int> formRange(const int& a) const;

//a: maximum rules; get possible maximum fuzzy set no. for each
variable

//operator
FuzzyVariable& operator [] (int I) const;
FuzzyRule& operator =(const FuzzyRule& a);

//I/O operators

friend istream& operator >>(istream& is, FuzzyRule& a);
friend ostream& operator <<(ostream& os,const FuzzyRule& a);

variables in the antecedent (if) part of a fuzzy rule; the outputSize (int)
records the number of output variables in the consequent (then) part of a fuzzy
rule; the i n p u t V a r i a b l e (FuzzyVariable*) is a pointer pointing to the
v a r i a b l e S i z e number of input fuzzy variables; the o u t p u t V a r i a b l e

Fuzzy Rule System Implementation

(Fuz zyVariable*) is a pointer pointing to the outputSize number of output
fuzzy variables; the i n p u t S e t F l a g (v e c t o r < i n t >) records which fuzzy set for
each input fuzzy variable is involved in the fuzzy rule.

For example, i n p u t S e t F l a g [0] : 1 means that the first fuzzy set of the
first input variable is involved in this rule. Assume that the first variable tem-
perature has three fuzzy sets (Low, Medium, and High); then the fuzzy rule
involved could be i f t e m p e r a t u r e i s L o w , . . . , . . . , t h e n The
o u t p u t S e t F l a g records which fuzzy set for each output fuzzy variable has been
activated if the fuzzy rule is fired by the current input; the r u l eCont e n t (cha r *),
like v a r i a b l e N a m e in F u z z y V a r i a b l e , is used to record the fuzzy rule in
words instead of numbers to enhance the readability of fuzzy rules.

The public constructors provide ways to declare the FuzzyRu le variables.
For example, assume that the fuzzy rule has two inputs and one output and each
variable has three fuzzy sets (Low, Medium, and High). Further assume that
v e c _ l is a v e c t o r < i n t > type vector with length 2 and the two elements are
1 (Low) and 2 (Medium); v e c t _ 2 is also a v e c t o r < i n t > type vector with
length 1 and the one element is 3 (High). Then FuzzyRu le f _ r l declares an
empty FuzzyRule variable f_rl; FuzzyRule f_r2 (2, i, vec_l, vec_2)
declares a Fuzzymule variable f_r2 and this rule, in verbal description, is if
input_l is Low, input_2 is Medium, then output_l is High. The
FuzzyRule f_r3 (f_r2) declares a FuzzyRule variable f_r3 that is a copy
of variable f r2.

The get_variableSize (), get_outputSize (), get_input
SetFlag (), get_outputSetFlag (), and get_ruleContent () public
methods provide ways to obtain variableSize, outputSize,
inputSetFlag, outputSetFlag, and ruleContent, respectively, from out-
side the FuzzyRule class. The public methods change_variableSize (),
change_ outputSize(), change_inputSetFlag(), change_output
SetFlag (), and change_ruleContent () provide ways to change
variableSize, outputSize, inputSetFlag, outputSetFlag, and
ruleContent, respectively, from outside the FuzzyRule class. The public
method f o r m _ r u l e C o n t e n t () is used to form the verbal description
(r u l e C o n t e n t) of the fuzzy rule from its v e c t o r < i n t > i n p u t S e t F l a g ,
outputSetFlag. The public method get_ outputVariable (const int&
idx) returns the o u t p u t V a r i a b l e [idx] to provide a wayto obtain the output
variable from outside the class.

The c h e c k R u l e A c t i v e (c o n s t v e c t o r < f l o a t > & v e t _ i n) public
method checks whether the fuzzy rule is fired by the input v e t _ i n . For the
fuzzy set of each variable involved in this rule, it checks to see whether this fuzzy
set is activated by the corresponding input. More than one fuzzy set can be acti-
vated, but we only need to check whether the fuzzy set involved in the rule is

Chapter EightmFuzzy Systems Implementations

activated. If the variable i is not involved in the rule (inputSetFlag [i] ==0),
then no check is required for this variable. The rule is fired if all the variables
involved in the rule are activated by the input. The method returns 1 if the
rule is fired; otherwise, it returns 0. For clarification, this method is shown in
Listing 8.8.

Listing 8.8 Implementation of method c h e c k R u l e A c t i v e () in class FuzzyRule .

int FuzzyRule: :checkRuleActive(const vector<float>& a) const
{//check whether this has been activated

assert (a. fen () ==variableSize) ;

vector<int>* vec;

vec= new vector<int>[variableSize];

int sum=0;
for (int i=0; i<variableSize; i++)
{

if (inputSetFlag [i] ==0)
sum++;

else
{

vec [i] =inputVariable [i] . setFireFlag (a [i]) ;
int ind=abs (inputSetFlag [i]) -I;
if (vec[i] [ind]==l)

sum++;
}

delete []vec;

if (sum==variableSize)
return 1;

else
return 0 ;

The public methods FuzzyOutput (const vector<float>& a) and
Fuz zyOutput_average (const vector<float>& a) provide ways to obtain
the membership values for the output variables when input a is presented to the
rule. The Fuz zyOutput () method takes the minimum values of the membership
values of all activated fuzzy variables as the activation strength of its i f part, and
the FuzzyOutput a v e r a g e () method takes the average of the membership
values of all activated fuzzy variables as the activation strength of its i f part. If an
output variable has a modifier not before it, its membership value is calculated by
subtracting the activation strength from 1.0; otherwise, its membership value is
equal to the activation strength. For clarification, the method FuzzyOutput ()
is shown in Listing 8.9.

Fuzzy Rule System Implementation

Listing 8.9 Implementation of method F u z z y O u t p u t () in class F u z z y R u l e .

vector<float> FuzzyRule: :FuzzyOutput (const vector<float>& a) const
{

//check the input dimension
assert (a. fen () ==variableSize) ;
//check whether the rule is activated
if (checkRuleActive(a) !=I)
{

fprintf (stderr, "try to use unactivated rule\n");

exit (i) ;
}

float min=l. 0, tmp;
for (int i=0; i<variableSize; i++)
{

if (inputSetFlag[i] !=0)
{

tmp=inputVariable [i] .output (a [i], inputSetFlag [i]) ;

if (min>tmp)
min=tmp; //get the minimum value

}
}

vector<float> tmpout (outputSize) ;
for (i=0; i<outputSize; i++)
{

if (outputSetFlag[i] ==0)
tmpout [i] =0.0;

else
{

if (outputSetFlag [i] >0)
tmpout [i] =min;

else
{

if (min>=0.9999)
tmpout [i] =0. 0001;

else
tmpout [i] =l-min;

}
}

}

return tmpout;

The public operator [] provides a way to return an indexed input fuzzy variable.
For example, g_r3 [1] returns the second input V u z z y V a r i a b l e ,
i n p u t V a r i a b l e [1] of the VuzzyRule variable f_r3 . The public operator =
provides a way to copy one VuzzyRule variable to another r u z z y R u l e variable.
The friend operators << and >> provide ways to input and output r u z z y R u l e
variables, respectively.

The class FuzzyRuleSet is shown in Listing 8.10. It has two private data
members. The member r u l e S e t S i z e (i n t) stores the number of fuzzy rules in

Chapter Eight--Fuzzy Systems Implementations

the fuzzy rule set of the fuzzy rule system. The member r u l e s (FuzzyRule*) is
a pointer pointing to the set of fuzzy rules.

Listing 8.10 Definition of class FuzzyRuleSet.

class FuzzyRuleSet
{

private :
int ruleSetSize;
FuzzyRule *rules;

//how many rules in the set
//pointers to the fuzzy rule set

public:
FuzzyRuleSet():ruleSetSize(0),rules(0) {}
FuzzyRuleSet(int a);
FuzzyRuleSet(int a, FuzzyRule *b);
FuzzyRuleSet(const FuzzyRuleSet& a);

~FuzzyRuleSet() {delete []rules;}

//member functions
int get_ruleSetSize() const {return ruleSetSize;}
FuzzyRuleSet& addRuleB(const FuzzyRule& a, const int& b);

//add rule a at position b
FuzzyRuleSet& addRule(const FuzzyRule& a);

//add rule a at the end of set
FuzzyRuleSet& deleteRule(const int& a);

//delete the 'a'th rule
vector< vector<float> > fuzzyOutputValue_max(const vector<float>& a,

const int& b) const;
vector< vector<float> > fuzzyOutputValue_add(const vector<float>& a,

const int& b) const;
//a:input vector,
//b: mode for antecedent-0:min l:aver,

vector<float> defuzzify(const vector< vector<float> >& a,
const int& b) const;

//b: mode for defuzzyfy-0:max l:centroid without overlap
//2: with overlap;
//a: fuzzy output values

vector<float> output(const vector<float>& a, const int& b,
const int& c, const int& d) const;

//a: input b:add/max c:min/aver d:max/without/with overlap

//return the value after defuzzify

vector<float> output_new(const vector<float>& a, const int& b,
const int& c, const int& d) const;

FuzzyVariable& get_outputVariable(const int& a) const;

int checkRuleSetFired(const vector<float>& a) const;
//check this rule set is fired or not due to 'a'

//operators
FuzzyRule& operator [] (int I) const;
FuzzyRuleSet& operator = (const FuzzyRuleSet& a);

//I/O operators

Fuzzy Rule System Implementation

friend istream& operator>>(istream& is, FuzzyRuleSet& a);
friend ostream& operator<<(ostream& os, const FuzzyRuleSet& a);

The public constructors provide ways to declare Fuz zyRuleSet variables. For
example, F u z z y R u l e S e t f r s l declares an empty fuzzy rule set;
F u z z y R u l e S e t f r s2 (3, f r) declares a fuzzy rule set with three fuzzy rules,
and the three fuzzy rules are obtained from the FuzzyRu le pointer f_ r , which
points to a memory space where it has more than three FuzzyRu le data stored.
F u z z y R u l e S e t f r s 3 (f r s2) declares a F u z z y R u l e S e t variable
f r s 3 that is a copy of variable f r s2.

The public method g e t _ r u l e S e t _ S i z e () provides an interface to obtain
the number of rules in the rule set from outside the class.

The public method a d d R u l e (c o n s t FuzzyRule& f_ r) adds a new
FuzzyRule f _ r at the end of the fuzzy rule set. The public method addRuleB
(const FuzzyRule& f_r, const int& idx) i n se r t s a n e w FuzzyRule f_r

at position idx, which must be within the range [0, ruleSetSize]. The public
method deleteRule (const int& idx) deletes the fuzzy rule idx from the

fuzzy rule set.
The public method checkRuleSetFired (const vector<float>& a)

returns the number of rules fired in the fuzzy rule set when presented with input a.
The operator [] provides a way to obtain an indexed fuzzy rule from the

fuzzy rule set. For example, r u l e s [2] returns the third rule in the rule set.
The operator = assigns one F u z z y R u l e S e t variable to another F u z z y R u l e S e t
variable.

The public methods v e c t o r < v e c t o r < f l o a t > > f u z z y O u t p u t V a l u e
max (const vector<float>& in, const int& a_s) and vector

< vector<float> > fuzzyOutputValue_add (const vector<float>&

in, const int& a_s) return the output membership values of
all output variables. The float vector i n is the input to the fuzzy rule system,
and the integer a_s indicates which method is used to calculate the activation
strength value of the antecedent part. If a_s is 0, F u z z y O u t p u t ()
defined in the FuzzyRu le class (minimum approach) is called; if a_s is 1
F u z z y O u t p u t _ a v e r a g e defined in the FuzzyRu le class (average approach) is
called.

An enumeration data type can be defined to avoid magic numbers with respect
to a s . This is left as an exercise for the reader. The fuz zyOutputValue__max ()
calculates the output values by taking maximum activation strength out of all fired
fuzzy rules for each fuzz), variable. The method f u z z y O u t p u t V a l u e _ a d d ()
calculates the output values by adding together the activation strength values of all
fired rules for each variable. If the summation is greater than 1, then it is assigned to

Chapter Eight---Fuzzy Systems Implementations

be 1 since membership values are limited to [O, 1]. For clarification, the method
f u z z y o u t p u t V a l u e _ m a x () is shown in Listing 8.11.

Listing 8.11 Implementation of method fuzzyOutputValue_max () in class
FuzzyRuleSet.

Vector< vector<float> >
FuzzyRuleSet : : fuzzyOutputValue_max (const vector<float>& a,

const int& b) const
{

if (a.len() !=rules[0].get_variableSize())
{

fprintf (stderr, "input dim doesn't match
the inputVariable no. of the rule");

exit (i) ;
}
int outVarDim=rules [0] . get_outputSize () ;

vector< vector<float> > result (outVarDim) ;
vector<int> varDim (outVarDim) ;
for (int i=0;i<outVarDim; i++)
{

varDim [i] =rules [0] . get_outputVariable (i) . get_setSize () ;

result [i] . changeSize (varDim[i]) ;
}

//initialization of result
for (i=0; i<outVarDim; i++)

for (int j=0;j<varDim[i];j++)
result[i] [j]=0;

vector<float> tmpres (outVarDim) ;
for (i=0;i<ruleSetSize; i++)
{

int ter=rules [i] . checkRuleActive (a) ;

if (ter==l)
{

vector<int> tmpvec=rules [i] . get_outputSetFlag () ;

if (b==l)
tmpres=rules [i] . FuzzyOutput_average (a) ;

else
tmpres=rules [i] .FuzzyOutput (a) ;

for (int j=0;j<outVarDim;j++)
{

if (tmpvec[j] !=0)
result[j] [abs(tmpvec[j])-l] =

max(result[j] [abs(tmpvec[j])-l],tmpres[j]);

return result;

Fuzzy Rule System Implementation

The vector<float> defuzzify (const vector< vector<float> >

& m_o, c o n s t i n t & d_a) public method provides a way to defuzzify output vari-
ables. The variable m_o is the returned variable from fuz zyOutpu tVa lue_max ()
or f u z z y O u t p u t V a l u e _ a d d (). The integer d__a indicates which defuzzifica-
tion approach described in the F u z z y V a r i a b l e class is called. For clarification,
the d e f u z z i f y () method is shown in Listing 8.12.

Listing 8.12 Implementation of method d e f u z z i f y () in class FuzzyRuleSet .

vector<float>

FuzzyRuleSet : :defuzzify (const vector< vector<float> >& a,

const int& b) const
{

//get output variables in a rule

int outVarDim=rules [0] .get_outputSize () ;
vector<float> tmp (outVarDim) ;
vector<int> varDim (outVarDim) ;

for (int i=0;i<outVarDim;i++)
{

//fuzzy set no. in output variable i

varDim [i] =this->get_outputVariable (i) . get_set Size () ;
//defuzzify for output variable i

if (b==0)

tmp [i] =this->get_outputVariable (i) . defuzzifyMax
(varDim[i],a[i]);

else if (b==l)

tmp [i] =this->get_outputVariable (i) . defuzzyCentroid
(varDim[i],a[i]) ;

else

trap [i] =this->get_outputVariable (i) .

defuzzyCentroid_add (varDim[i], a [i]) ;
)

return tmp;

The method vector<float> output(const vector<float>& a,

const int & b, const int & c, const int & d) provides a one-step approach to

calculate the output from the input. This method combines the methods discussed
earlier to obtain the output from the input within one method, where vector a
is the input, integer b is the selection of the approaches for calculating activation
strength, integer c is the selection of the way to calculate the membership values
for the output variables, and integer d is the choice for defuzzifying the output
variables to obtain the output values for each output variable. As mentioned, it
would be better if integers b, c, and d had enumeration data types defined for them
to avoid using the magic numbers in the source code. For clarification, Listing 8.13
shows the o u t p u t () method in the F u z z y R u l e S e t class.

Chapter Eight--Fuzzy Systems Implementations

Listing 8.13 Implementation of method o u t p u t () in class FuzzyRu leSe t .

vector<float> FuzzyRuleSet::output(const vector<float>& a, const int& b,
const int& c, const int& d) const

{ //a: input b:add/max c:min/aver d:max/without/with overlap
// return the value after defuzzify

if (a.len() !=rules[0] .get_variableSize())
{

fprintf (stderr, "input dim doesn't match
the inputVariable no. of the rule");

exit(l);
}

int outVarDim=rules[0].get_outputSize();
//outputVariable no.in rules

vector< vector<float> > result(outVarDim);

vector<int> varDim (outVarDim) ;

for (int i=0; i<outVarDim; i++)
{

varDim[i] =rules [0] .get_outputVariable (i) .get_setSize () ;
result [i] .changeSize (varDim[i]) ;

} //allocate memory for result

if (b==l)

result=this->fuzzyOutputValue_max (a, c) ;
else

result= this->fuzzyOutputValue_add (a, c) ;

vector<float> tmp(outVarDim);
tmp=this->defuzzify(result,d);

return tmp;

The friend operators << and >> provide mechanisms for input and output,
respectively, of F u z z y R u l e S e t variables. The methods are shown in Listing 8.14
for clarification, By using the operators < < and > >, the fuzzy rule set can be read in
from a rule file or written to a rule file, respectively. These operations will be made
more clear in the discussion of the main () function, shown in Listing 8.15.

Listing 8.14 Definition of operators << and >> in FuzzyRuleSet class.

istream& operator>>(istream& is, FuzzyRuleSet& a)
{

is>>a, ruleSetSize;
if (a.rules !=0)

delete []a,rules;

a. rules =new FuzzyRule [a. ruleSetSize] ;
is>>a, rules [0] ;
vector<int> vecin (a. rules [0] . get_variableSize ()) ;
Vector<int> vecout (a. rules [0] .get_outputSize ()) ;

Fuzzy Rule System Implementation

for (int i=l;i<a.ruleSetSize;i++)
{

a. rules [i] =a. rules [0] ;

is>>vecin;
a. rules [i] . change_inputSetFlag (vecin) ;

is>>vecout;

a. rules [i] . change_outputSetFlag (vecout) ;

a. rules [i] . form_ruleContent () ;
)

return is;

ostream& operator<<(ostream& os, const FuzzyRuleSet& a)
{

assert(a.ruleSetSize !=0);

os<<a, ruleSetSize<<endl;

os<<a [0] ;

for (int i=l;i<a.ruleSetSize;i++)

os<< (a [i] . get_inputSetFlag () l a [i] . get_outputSetFlag ()) ;

return os;

Listing 8.15 Implementation of main ().

void main (int argc, char *argv[])
{

extern void fl (char *) ;

if (argc !=2)
{

fprintf(stderr,"usuage: fl run_file_name\n") ;

exit (1) ;
}

fl(argv[l]);

Next, we discuss the main () and f l () routines. The main () routine does
nothing except call the f l () routine shown in Listing 8.16. In the f l () routine,
first the r e a d _ f l _ r u n f i l e () routine, shown in Listing 8.17, is called to read
in the following parameters: the name of file where the fuzzy rules are stored
(r u l e InName), the name of file where the data patterns to be classified are stored

Listing 8.16 Implementation of f 1 ().

void fl (char *dataFile)
{

read_fl_runfile (dataFile) ;

read_fl_rulefile () ;

write_fl_rules () ;

Chapter Eight~Fuzzy Systems Implementations

ifstream dFile;
dFile, open (dataFileName, ios : : in) ;
if (! dFile)
{

cerr<<"can't open file "<<dataFileName<<" for input"<<endl;
exit (1) ;

}

int indim, outdim; //input dim and output dim
dFile>>indim>>outdim;
vector<float> invec(indim);
vector<int> outvec(outdim);

vector<int> classN(outdim); //store class no. for each output
dFile>>classN;

int outVarDim=ruleSet [0] . get_outputSize () ;
if (outdim !=outVarDim)
{

cout<<"dim of data outputs isn't equal to dim of
output variables in rules"<<endl;

exit (1) ;
}

ofstream rFile;
rFile.open(resultFileName, ios::out);
if (!rFile)
{

cerr<<"can't open file " <<resultFileName<< " for output\n"<<endl;
exit(l);

)

rFi le<<" index\t "<<"Wrong? \t "<< "Target \t "<<"Obtained" <<endl;

int in_order=0;
int misclassify=0;
vector<int> cla (outVarDim) ;
vector<float> tmp (outVarDim) ;

while (dFile>>invec)
{

dFile>>outvec;
in_order++;
rFile<<in_order<<" \t" ;
if (ruleSet. checkRuleSetFired (invec) ==i)
{

tmp=ruleSet, output (invec, ruleEffectFlag, fuzzyFlag, defuzzyFlag) ;

//get output class
for (int idx=0; idx<outVarDim; idx++)

cla[idx]=(int) (tmp[idx]*classN[idx]);

//output data dim equal to outputVariable dim
if (cla !=outvec)
{

rFile<<"wrong\t" ;
misclassify++;

}

Fuzzy Rule System Implementation

else
rFile<<"\t";

rFile<<(outveclcla);
}
else
{

rFile<<"rule set not fired"<<endl;

misclassify++;
}

}

dFile, close () ;

rFile<<"total misclassification is :"<<misclassify<<endl;

rFile, close () ;

Listing 8.17 Implementation of read_fl_runfile ().

static void read_fl_runfile (char *dataFile)
{

int true;

char Msg [NAME_MAX] ;

strcpy (Msg, "edit ") ;

strcat (Msg, dataFile) ;

ifstream runFile;

do
{

runFile, open (dataFile, ios : : in) ;
if (!runFile)
{

cerr<<"can't open file "<<dataFile<<" for input"<<endl;

exit (i) ;
}
runFi le>> rule I nName > >dat aFi leName > > ru i eName > > result Fi i eName;

runFile>> fuz zyFlag>>de fu z zyFlag>>ruleE f fectFlag;

runFile, close () ;

cout <<ruleInName<<endl;

cout <<dat aFileName<<endl;

cout<<ruleName<<endl;

cout <<resultFileName<<endl;

cout<<fuzzyFlag<<" 0 :minimum 1 : average" <<endl;

cout<<defuzzyFlag<<" 0 :maximum 1 :without overlap 2 :with

overlap" <<endl;

cout <<ruleEf fectFlag<<

"i: maximum of output values from each rule 0:add"<<endl;

cout<<"(C)ontinue, (Q)uit, (M)odify runfile ";

char condition;

cin>>condition;

switch (condition)
{

case 'c' : true=0;

Chapter Eight--Fuzzy Systems Implementations

break;

case 'C' : true=0;

break;

case 'q' : exit(1) ;

case 'Q' : exit(1) ;

case 'm' : true=l;

system (Msg) ;

break;

case 'M' : true=l;

system (Msg) ;

break;

default :

true=l;

break;
}

} while (true==l);

(dat aF i 1 eName), the name of file where the verbal descriptions of the fuzzy rules
are written (ruleName), the name of file where the classification results will be
stored (r e s u l t F i l e N a m e) , the choice of reasoning approaches (f u z z y F l a g) ,
the choice of defuzzification approaches (d e f u z z y F l a g) , and the choice of rule
output combination approaches (r u l e E f f e c t F l a g) . The d o - w h i l e loop is for
the user to view and modify the contents of the run file.

Second, the r e a d _ f l _ r u l e f i l e () routine, shown in Listing 8.18, is called
to read in the fuzzy rule set from the rule file (ruleInName) . It is as simple as
iFile>>ruleSet, where iFile is an object of ifstream class and ruleSet
is an object of FuzzyRuleSet class.

Then the w r i t e _ f l _ r u l e s () routine, shown in Listing 8.19, is called to gen-
erate a verbal description of the fuzzy rule set and write the verbal rules to an output
file (ruleName).

Listing 8.18 Implementation of read_fl_rulefile ().

static void read_fl_rulefile (void)
{

// FuzzyRule

ifstream iFile;

iFile, open (ruleInName, ios : : in) ;

if (!iFile)
{

cerr<<"can't open file "<<ruleInName<<" for input"<<endl;

exit (i) ;
}
iFile>>ruleSet ;

iFile, close () ;

Fuzzy Rule System Implementation

Listing 8.19 Implementation of write_fl_rules ().

static void write_fl_rules (void)
{

//output formed rules

ofstream oFile;
oFile, open (ruleName, los : : out) ;

if (!oFile)
{

cerr<<"can't open file "<<ruleName<<" for output"<<endl;

exit (1) ;
}
for (int i=0; i<ruleSet.get_ruleSetSize () ; i++)

oFile<<i<<"th rule: "<<ruleSet[i] .get_ruleContent ()<<endl;

oFile, close () ;

Finally, each input/output pattern pair is read in. The input invec is then
checked to see what can be fired within the rule set by performing
the r u l e S e t , c h e c k R u l e S e t F i r e d (i nvec) routine. If the rule set is fired,
then the output of the fuzzy rules under the input i n v e c is obtained by calling the
ruleSet, output (invec, ruleEffectFlag, fuzzyFlag, defuzzyFlag)

routine. The output values are then converted to the class to which each output
variable belongs. The classification result is finally recorded into an output file
(r e s u l t F i l e N a m e) . This process is repeated until all the input/output pairs in
the data pattern file have been read in and classified.

All the routines discussed are here for clarification. (See Listings 8.15, 8.16, 8.17,
8.18, and 8.19.)

Running the Fuzzy Rule System
The fuzzy rule system implementation is a flexible tool that is capable of solving
a wide variety of classification and diagnostic problems. It utilizes user-defined
triangular and/or nonlinear membership functions. The executable code for the
system is in the file f l . exe, and the specifications of files and other parameters
appear in a run file, f i l e n a m e , run. To run the system, at the system prompt
type f l f i l e n a m e , run, making sure that the run file is in the same directory
as the executable.

To begin to understand how the system functions, we examine the contents of the
run file. We use the Iris dataset, described at the beginning of Chapter 6 (Anderson
1935; Fisher 1936). A typical run file for the Iris dataset example is as follows:

iris.rul

iris.dat

rules.out

Chapter Eight--Fuzzy Systems Implementations

results.out

1

1

0

Two of the files contain input information for the system and must be present
at run time. They are i r i s . r u l and i r i s . da t . Two files are output at the end
of a run, They are r u l e s , ou t and r e s u l t s , out . Following the list of files are
three input parameters: The first specifies how the antecedents of rules are handled,
and the second and third affect how defuzzification is accomplished.

The first input file (the second file in the list) is i r i s . da t , the input data file. A
fuzzy rule system can be developed to classify or diagnose practically any data. The
data file contains values for input variables and associated output variable(s). The
first line of the data file contains the number of input variables (4) and the number
of output variables (1) in the data file followed by the number of classes (3) to
which the data can belong. Any number of input and output variables can be used.
The remaining lines of the data file contain input/output patterns: Inputs followed
by one or more outputs. Each output specifies the classification or diagnosis for
the corresponding inputs. This file is similar to the data files used by the neural
networks discussed earlier in this book except that here only one output variable
specifies the class to which this data pattern belongs. Following are the first four
lines of the fuzzy logic system data file (on the book's web site) for the Iris dataset.
The output variable in this file is 0, 1, or 2, which, depending on the Iris class,
indicates that this data pattern belongs to class 1, 2, or 3, respectively.

413
0.6375 0.4375 0.1750 0.0250 0

0.8750 0.4000 0.5875 0.1750 1

0.7875 0.4125 0.7500 0.3125 2

. . ,

The first file listed in the run file list, i r i s . r u l , called the "rules file," contains
the fuzzy rules and the definitions for the fuzzy membership functions for both
the input and output variables. It is necessary to understand the contents of the
rules file thoroughly in order to use the fuzzy rule system successfully. Conversely,
knowing all about the rules file provides an understanding of how the fuzzy rule
system works. Because of its central importance to the fuzzy rule system, the com-
plete listing of a rules file for classifying the Iris dataset appears as Listing 8.20.

Listing 8.20 Example of a rules file for the fuzzy rule system.

16

4 1

sepalLength 3 0.4 1.0

reverseSigmoid 0.4 0.8

Gaussian 0.4 1.0

Sigmoid 0.6 1.0

sepalWidth 3 0.0 0.6
leftTriangle 0.0 0.3
Triangle 0.15 0.45

rightTriangle 0.3 0.6

petalLength 3 0.0 1.0
leftTriangle 0.0 0.4
Triangle 0.2 0.7
rightTriangle 0.4 1.0

petalWidth 3 0.0 0.4
leftTriangle 0.0 0.2

Triangle 0.i 0.3
rightTriangle 0.2 0.4

output 3 0.0 1.0
reverseSigmoid 0.0 0.4
Gaussian 0.3 0.7
rightTriangle 0.5 1.0

2 I 2 2 i

3 3 3 3 3

i 3 i I i

i I 2 2 3

2 I 3 3 3

i 3 i i i

2 2 3 3 2

3 1 3 3 3

1 3 1 1 1

3 2 3 2 2

2 1 2 2 2

1 2 1 1 1

2 2 3 3 3

3 2 3 3 3

1 1 1 1 1

1 1 2 2 2

Fuzzy Rule System Implementation

The first line in the rules file contains the number of rules listed in the file, in this
case 16. The next line contains the number of input fuzzy variables followed by the
number of output fuzzy variables, in this case 4 and 1, respectively. Note that there
is only one fuzzy output variable, while there are three classifications in the dataset.
Each classification has been mapped to one fuzzy set on the domain of the output
variable.

Next, the fuzzy sets for all input and output variables are defined. In accor-
dance with the second line of the rules file, we define 4 input and 1 output fuzzy
variable. The next line, s e p a l L e n g t h 3 0 . 4 1 .0 , defines the first fuzzy input vari-
able's name as sepalLength, specifies the variable's domain to have three fuzzy sets,
and defines the variable's dynamic range (domain) to be 0.4 to 1.0. The variable
name is chosen by the user, as is the number of fuzzy sets in the variable's domain.

Chapter EightmFuzzy Systems Implementations

The numbers 0 .4 and 1 .0 define the dynamic range of the input variable; they
specify where the leftmost fuzzy membership function assumes a value of I and
the rightmost assumes a value of 1, respectively. They are generally equal to (and
at least related to) the variable's minimum and maximum values, respectively, in
the dataset. Because three fuzzy sets have been specified, the next three lines in the
rules file each define one fuzzy set for the variable sepalLength.

Two main kinds of membership function are available: nonlinear and linear. The
variable s e p a l L e n g t h is represented by the nonlinear fuzzy membership func-
tions r e v e r s e S i g m o i d , G a u s s i a n , and S igmoid (it could also be represented
by linear functions).

The second fuzzy input variable is named s e p a l W i d t h and also has three
fuzzy membership functions specified. Note that sepal width's dynamic range
is from 0.0 to 0.6. This time, the family of linear membership functions is
specified.

From Listing 8.20, we can see that the other two fuzzy input variables,
p e t a l L e n g t h and p e t a l W i d th , use three linear (triangular) membership func-
tions each, defined over their respective dynamic ranges. Depending on the prob-
lem being solved, the number of membership functions defined for each variable
can vary, and all variables do not have to have the same number of functions. For
example, for some particular problem, one input variable might have three fuzzy
membership functions defined over its domain, while another has five, and still
another has seven.

We are now ready to examine the output of our fuzzy rule system. From the
rules file, we see that the output variable is named o u t p u t and is defined by
three fuzzy membership functions over the domain [0,1]. We have thus chosen,
in this case, to represent each of the three output classifications with one fuzzy
membership function (a fuzzy set) over the domain of one output variable. It can
be seen from the definitions of the three fuzzy sets constituting the output that
we can "mix and match" linear and nonlinear fuzzy membership functions. The
membership functions representing classes 1 and 2 are nonlinear (reverse sigmoid
and Gaussian, respectively), while class 3 is represented by a linear membership
function (right triangle).

The next line, 2 1 2 2 1, is the first rule in the fuzzy rule set. Based on the fuzzy
set definitions, we see that the rule states, "If sepal length is medium and sepal
width is low and petal length is medium and petal width is medium, then output
is low (output is class 1 of 3)." Finally, the remaining fuzzy rules are listed. Their
meanings are also clear from the definitions listed above them. In this case, an addi-
tional 15 rules are listed. The maximum absolute value that any rule variable can
assume is the number of fuzzy membership functions defined over that variable's
domain.

Note that there are three occurrences of the same rule: 1 3 1 1 1 (if sepal length
is low and sepal width is high and petal length is low and petal width is low, then

Fuzzy Rule System Implementation

class is low: class 1 of 3). The reason for this is explained later in the discussion of the
Iris dataset application. Also note that there are three sets of rules with "conflicts."
One example is rule 1" 2 1 2 2 1, and rule 11:2 1 2 2 2. These two rules have the
same antecedents but different consequents. For the same conditions, rule 1 says
the output class is low (class 1 of 3), while rule 11 says that it is medium (class 2
of 3). Such conflicts are "legal" in fuzzy rule systems; they are, in fact, not unusual.
Such conflicts, of course, are not permissible in traditional rule systems.

In the case of multiple occurrences of the same rule, all but one can be eliminated.
This is permissible because of the kinds of defuzzification defined with this rule
system. Even with the overlap version of defuzzification selected, overlap within a
membership function is ignored. By eliminating two of the three 1 3 1 1 1 rules,
we are left with 14 rules.

It is acceptable to use a zero (0) at any antecedent location in a rule. A zero
signifies that the corresponding antecedent is ignored. Some situations may call for
writing a rule with a 0 at one or more locations. Another way to use a 0 is illustrated by
the rule set in Listing 8.20. Rules 3, 12, and 15 are i 3 1 1 1, 1 2 1 1 1, and 1 1 1 1 1,
respectively. These three rules can be collapsed into one rule: 1 0 1 1 1. Likewise,
rules 2, 8, and 14 can be collapsed into 3 0 3 3 3. We are now left with only the
10 rules in Listing 8.21.

Listing 8.21 Final minimal rule set for Iris dataset classification.

2 1 2 2 1

3 0 3 3 3

1 0 1 1 1

1 1 2 2 3

2 1 333

2 2 3 3 2

3 2 3 2 2

2 1 222

2 2 3 3 3

1 1 2 2 2

It is also acceptable to use negative integers in rules. Thus, - 2 would mean
"not medium" in this case. Negative numbers can be used for either antecedents
or consequents. Thus, 1 -2 3 2 -1 would represent "If low and not medium and
high and medium, then not low." Care should be exercised when collapsing rules,
however. It might be tempting to collapse 1 1 2 2 2 and 1 1 2 2 3 into 1 1 2 2 -1 , but
this would not give the same results because of the way negatives are defuzzified.
A negative such as - 2 (not 2) is defuzzified as the fuzzy complement: Ux (2) =

1 - ~x (- 2) .

It is possible to have more than one output fuzzy variable. The fuzzy sets for
each output variable, of course, must be defined in the rules file. Each rule must
specify the antecedents and consequents for each input and output variable. So, if

Chapter Eight--Fuzzy Systems Implementations

we have four fuzzy input variables and two fuzzy output variables, a rule might
be 1 2 3 2 0 1. This would mean that we "don't care" about the first of the two
outputs, but the rule fires the fuzzy set corresponding to "1" in the second output.
A rule can fire more than one output simultaneously, but the defuzzification of each
output variable is done independently in this implementation. Rules 1 2 3 2 0 1
and 1 2 3 2 1 0 can thus be collapsed into the single rule 1 2 3 2 1 1.

We now discuss the output files. Two of the filenames in the run file refer to
output files that are written on completion of a program run. The third file listed
in the run file, r u l e s , ou t , is the rule output file, which contains a list of the rules
in words. For example, the fifth rule, which is listed in the rules file as 2 1 3 3 3,
is written out in the rule output file a s if_sepalLength_is_Medium_and_
s epa 1 W i dt h_i s_Low_an d_pe t a i Len gt h_i s_Hi gh_a n d_p e t a 1 W i dt h_

i s_Hi gh_t hen_out put_i s_Hi gh.

It is easier to write the rules using numbers (typographical errors are much less
likely), but it is helpful to have a written listing of the rules so that they can be
checked for accuracy.

The other output file, the results file r e s u l t s , ou t , contains a listing of the
correct classifications for the input patterns in the data file, with a listing of the
classification made by the fuzzy rule system. Errors are identified, and an error total
appears at the end of the list.

Three input parameters follow the list of files in the run file. The first specifies
how the antecedents of rules are handled, and the second and third specify how
defuzzification is to be done.

The first input parameter is the averaging flag. When it is set to 0, the AND
statements in the antecedents are treated as is usual in fuzzy logic systems: The
minimum membership value is output. When the averaging flag is set to 1, the
average of the membership values ANDed together is output. In the case of
the Iris dataset example, the average of the four fuzzy membership values is used.

The second input parameter is the defuzzification parameter. It can take one of
three possible values: 0, 1, or 2. When it is 0, the centroid of the fuzzy membership
function with the highest value is used for the defuzzified output scalar. When it
is 1, the "no overlap" method of defuzzification is used. When it is 2, the over-
lap of different membership functions is included in the centroid calculation (the
overlap within a membership function is not considered). See Chapter 7 for more
information on defuzzification.

The third input parameter is the summation flag. Its value specifies how output
fuzzy membership values are formed prior to defuzzification. In other words, this
flag takes effect before the defuzzification parameter, discussed previously, does. If
the summation flag is set to 1, and a number of rules fire the same output fuzzy
membership function, the maximum value caused by any one rule is selected as
the value to be passed on to the defuzzification step. For example, if a triangular
membership function is fired and the maximum value arising from any single rule

Fuzzy Rule System Implementation

is 0.5, then the triangular function is truncated at the 0.5 level, and the resulting
trapezoidal shape participates in defuzzification.

If the summation flag is set to 0, the sum of all values caused by the rules firing
(up to a maximum summed value of 1) is computed as the value to be passed
to defuzzification. For example, if three rules fire that activate a particular output
fuzzy membership function with the values of 0.3, 0.5, and 0.1, respectively, then
the membership value established for defuzzification is 0.5 if the summation flag is
1 and 0.9 if the flag is set to 0. As another example, if three rules fire, each activating
a certain output fuzzy membership function at the 0.5 level, then its membership
value is set to 0.5 if the flag is set to 1. If the flag is set to 0, the membership value
is set to 1.

It can be seen that this option amounts to something between a "no overlap"
situation and a "full overlap" case (not available in this fuzzy expert system imple-
mentation), where overlap is computed even within a membership function.

Iris Dataset Application
The fuzzy rule system implemented in the book has been used to build a classifier for
the Iris dataset, as can be seen from the run file discussed previously. Several of the
system's special features were used. In this section, we summarize the application.

Among the first issues that must be resolved when developing a fuzzy rule system
for classification are how to formulate the rules and how to define the fuzzy member-
ship functions. Examining the data in the data file reveals that the dynamic ranges of
the four input variables are 0.53 to 0.98, 0.25 to 0.45, 0.13 to 0.82, and 0.01 to 0.31,
respectively. It would have been possible to scale these values so that each range was
[0,1], but it is sometimes desirable to be able to work with data just the way we get
them. Therefore, the data were not scaled, but the domains of the fuzzy membership
functions were adjusted to reflect the dynamic ranges. Thus, the domain of sepal
length was set to [0.4,1.0], sepal width to [0.0,0.6], petal length to [0.0,1.0], and petal
width to [0.0,0.4]. These values are listed in the rules file. Initially, three triangular
membership functions were defined over each input and output variable domain.
Although the domain location and membership type were in some cases adjusted
during system development, the final system configuration comprises three fuzzy
membership functions for each fuzzy input and output variable.

The formulation of rules from raw data can be problematic for any rule system,
fuzzy or crisp. How, then, were the fuzzy rules formulated? It would be possible, at
least theoretically, to form a fuzzy rule from each pattern. Such an approach would
be tedious at best and, with a pattern file of any significant size, infeasible. It was
decided in this case to use an LVQ neural network to cluster the Iris data and to use
the weight vector (centroid) for each cluster to form a fuzzy rule.

Since the number of clusters formed is a user-defined parameter (see the dis-
cussion of LVQ in Chapter 6), the user can specify the number of fuzzy rules for the

Chapter EightmFuzzy Systems Implementations

system. The number of clusters was set to 16, which resulted in the 16 rules listed
in the rules file (refer to Listing 8.20). Recall that three rules in Listing 8.20 are
identical; this reflects three clusters generating identical rules. All three rules were
left in the list for completeness. Having identical rules in the rule set does not affect
the scalar output for any of the defuzzification techniques used in the fuzzy expert
system described here, unless the summation flag is set to 0, which may or may
not affect the results. The duplicate rules should generally be removed to conserve
computing time.

Each cluster center (input) vector was fuzzified using the membership functions,
then (since the averaging flag was set to 1) the average of the four fuzzy membership
values was used for activating the output variable fuzzy set. The summation flag
was set to 0, so that the contributions from all rules that fired were summed (to a
maximum value of 1) to determine the value to be defuzzified for each variable. The
specific output fuzzy set used was, of course, that corresponding to the classification
in the data file for each pattern. The defuzzification parameter was set to 1, resulting
in the "no overlap" method of defuzzification.

Good results were obtained by using nonlinear functions for classes I and 2 and
a triangular function for class 3. The triangular membership function has the effect
of emphasizing class 3 values near the class 2 boundary~a feature that facilitates
the system performance demonstrated.

After the adjustments just described are made, the fuzzy rule system is able
to classify all but 7 of the 150 Iris dataset patterns correctly. This is acceptable
performance for this dataset, matching the performance by some neural network
classifiers. It exceeds the performance of other rule systems known to the authors
except for the system described below that classifies all but 4 patterns correctly.
Other system parameter combinations also gave good results. For example, with
the summation flag set to 0, the same result (7 mistakes) was obtained using only
linear (triangular) membership functions.

The adjustments of fuzzy membership types and locations on the domain axis
were done manually by the authors. An evolutionary algorithm can be employed
instead, and it is discussed in the next section. As the automated system is now
envisioned, the pattern set will be presented to an LVQ neural net or a GA. The LVQ
net or GA will be told how many patterns with how many inputs and outputs are
present, and the maximum number of clusters will be specified. A fuzzy rule system
will either be developed using each cluster centroid from the LVQ to form a fuzzy rule
or will use rules evolved by a GA, after defining fuzzy membership functions over
the domains of the fuzzy input and output variables. Fuzzy membership functions
can also be evolved using evolutionary algorithms. Membership functions can be
evolved much like a neural network.

In summary, all that will need to be specified are the numbers of patterns, inputs
and outputs; the number of clusters; (perhaps) the number ofmembership functions
for each fuzzy variable; and the level of system performance that is acceptable.

Evolving Fuzzy Rule Systems

An LVQ neural network or GA, fuzzy rule system, and evolutionary algorithm will do
the rest. All of it. And by keeping track of which fuzzy rules fired for any decision and
what the contribution of each was, an explanation facility can be provided as well.

The "next step" on the path to a completely automated classification tool is
described in the next section. An implementation comprising a GA preprocessing
(rule and membership function evolution) system and a fuzzy rule system classifier
is described that can evolve a fuzzy rule set of only four rules that classifies the Fisher
Iris dataset with only 4 out of 150 misclassifications. The software for this system
is available on the book's web site.

Evolving Fuzzy Rule Systems

This section discusses the implementation of an evolutionary fuzzy rule system. An
integer version of a genetic algorithm is implemented to evolve the fuzzy rule system.
The links between the two systems presented in this chapter are the representation
and the fitness. By representation, we mean the part of a fuzzy system that is encoded
into the individual of the genetic algorithm; by fitness, we mean how to evaluate each
individual in the population. This evaluation involves decoding each individual into
a fuzzy rule system and then using this system on the problem to be solved to see
how well this fuzzy system works for solving the problem. In our implementation,
both the fuzzy rule set and the fuzzy membership functions can be evolved. The
primary reason we use an integer representation of a genetic algorithm is that we
used integers to represent the fuzzy rules and types of membership functions in the
implementation of our fuzzy rule system in the previous section.

Programming the Evolutionary Fuzzy Rule System
To implement the evolutionary fuzzy rule system, we have to implement both the
fuzzy rule system and an evolutionary algorithm (a genetic algorithm here). The
fuzzy rule system implemented in the previous section will be adopted here. Since
an integer version of the genetic algorithm is used here, we will focus on the imple-
mentation of the genetic algorithm in C++. The genetic operators are quite similar
to those in the binary version of the genetic algorithm discussed in the Chapter 4
except for the mutation operator, which is explained later in this section.

As in evolutionary neural networks, the individual representation of the evolu-
tionary fuzzy rule system serves as the bridge between the genetic algorithm and
the fuzzy rule system to be evolved. On the genetic algorithm side, the individual
represents the parts of the fuzzy system to be designed (adapted). It can theoretically
be any part of, or the entire, fuzzy rule system. On the fuzzy system side, each GA
individual is decoded into a fuzzy rule system. The fuzzy system is then presented
with training patterns (the Iris dataset in our implementation) to be evaluated. The
evaluation is then fed back to the genetic algorithm as the fitness of the individual.

Chapter Eight--Fuzzy Systems Implementations

Populationlnt Array

Individuallnt Template < class Type > class vector

Figure 8.3 Class tree in the implementation of the genetic algorithm.

In the following discussion, we discuss the individual representation first, fol-
lowed by a discussion of the C++ classes defined in the implementation. The new
classes to be defined in this section for the implementation of the GA are shown in
Figure 8.3. The class I n d i v i d u a l I n t is the fundamental class, which defines an
object class of individual integer representation in the genetic algorithm. The class
? o p u l a t i o n I n t defines an object class of population in the genetic algorithm,
which consists of a set of IndividualInt classes.

For our discussion of the individual representation, assume that we are design-
ing a fuzzy system with four input variables and one output variable, and that
each variable has three fuzzy sets representing the linguistic descriptions low,
medium, and h i g h . As in the implementation of the fuzzy rule system, the
three fuzzy sets are represented by the integers 1 to 3. The integer 0 represents
the absence of a fuzzy set. The minus sign, -, encodes the modifier not . There-
fore, a fuzzy rule can be completely encoded by five integers. For example, the
rule if input_l is not low, input_2 is not medium, and input_4

is high, then output is high can be encoded as -i -2 0 3 3. If the

rule set contains 20 rules, then an integer string of length 100 (5 × 2 0) can
represent the rule set completely. (We may not use all 20 rules. That is dealt with
later.)

A membership function as explained before is completely determined by three
values: the s t a r t _ p o i n t xz, the e n d _ p o i n t x2, and its function type value. In
the implementation of our fuzzy rule system, a total of six types of function (defined
in the preceding section) are defined to be possible candidates for the membership
functions. As discussed previously, each is represented by an integer from 1 to 6.
In order to have a homogeneous chromosome, integers are chosen to represent
the s t a r t _ p o i n t x~ and the e n d _ p o i n t x2 instead of real values. Assume for
the variable x that its dynamic range is [a , b] and that it has n fuzzy sets. If the
fuzzy membership functions are distributed over the range with halfway overlap, as
shown in Figure 8.4, then the center point c~ (i = l , . . . , n) ofthe ith membership
function is located at

ci = a + i* step i = 1 , . . . , n, where step =
b - a

n + l

Evolving Fuzzy Rule Systems

Figure 8.4 Three overlapping membership functions.

; of the ith membership function to vary We constrain the start_point xz
of the ith membership function onlybetween ci-~ and ci , and the e n d _ p o i n t x 2

can vary only between ci and ci+~. Assume an integer s (s = 0 , . . . , 10) is
i and i i and i used to "tune" x~ x2; then x~ x 2 can be calculated from the integer s

using the following formula:

xli -- i *S tep -- step 2~i-0*(10+Sil) -[--a

x2i _ i * S tep -b step 2 (10+si2) -~- a i = 1 , . . - , n

For an unknown fuzzy system, we generally have little or no idea how many
rules should be included in the rule set before the system is designed. A maxi-
mum acceptable number can be guessed and/or given, however. Within the max-
imum number constraint, the number of fuzzy rules in the rule set can also be
evolved. Assume for our example system that the maximum acceptable number
is 2 0; then if both fuzzy rule set and membership functions (shape and type) are
to be evolved, the total length (in integers) of the chromosome representing the
system is

1 + 5 * (3 *(2 + i))+ 5 * 20 = 1 46

and the system can be represented as

Sl S 2 S 3 S4 S14 S15 SI6 SI7 S46 S47

S48 S49 S50 S51 S142 S143 S144 S145 S146

Chapter EightmFuzzy Systems Implementations

where s~ represents the number of rules varying between 1 and 20, s2 and s3
represent the start point and end point for the first fuzzy set of the first input
variable and can vary between 0 and 1 0, s4 represents the membership function
type for the first fuzzy set of the first input variable and can vary between 1 and
6, s5 to s46 encode the remaining fuzzy membership functions (start point, end
point, type), s47 to ss~ represent the first fuzzy rule, and s~42 to s~46 represent the
last possible rule. Since s~ specifies how many possible rules are encoded in the
chromosome, only the first s~ rules are used to form the rule set, but every rule
may or may not be feasible. Therefore, each possible rule is checked to see whether it
represents a feasible rule or not. A rule without a nonzero antecedent or consequent
part is not a feasible rule, and it will not be included in the rule set.

For example, assume we have a rule encoded as 12 3 2 0. This has no nonzero
consequent part, so it will not be included in the rule set as a rule, and the number
of feasible rules will be s~ - l . If all s~ possible rules are infeasible (this mostly
happens at the beginning of the GA run), then this chromosome contains no
feasible rules, doesn't form a usable fuzzy system, and is assigned a very small
(around 0 . 0 0 0 1) positive random value as its fitness value. If the fuzzy rule set
contains feasible fuzzy rules, the individual is decoded into a fuzzy rule system,
which is then presented with the testing patterns to obtain the fitness for this
individual.

The class a r r a y is defined to handle a two-dimensional array. The class a r r ay
is shown in Listing 8.22. It has three private elements: the number of rows
(i n t row), the number of columns (i n t c o l) , and a float pointer to the array
(float* arr).

The public constructors provide ways to declare a r r a y - t y p e variables. For
example, a r r a y a 1 declares an empty a r r a y variable a 1; a r r a y a 2 (~., 3)

Listing 8.22 Definition of class a r r a y .

class array
{

private:
int row;
int col;
float* arr;

public:
array():row(O),col(O),arr(O) {}
array(int a, int b);
array(const array& a);
~array(){delete []arr;}

array& operator =(const array&a);
array& operator =(const float& a);
array& operator =(const vector<float>& a);
float* operator [] (int i) const;

Evolving Fuzzy Rule Systems

int len() const {return row; }

int wid() const {return col; }

float* poi() const {return arr; }

vector<int> max_index() const;

float sum() const;

array noise(const float& a, const float& b) const;

array square() const;

array t() const;

array map (float (*f) (float)) const;

//arithmetic operation

array& operator += (const array& a);

array& operator-= (const array& a);

array& operator *= (const array& a);

array& operator *=(const float& a);

friend array operator * (const float& a, const array& b);

friend array operator * (const array& a, const float& b);

friend array operator * (const array& a, const array& b);

friend array operator % (const array& a, const array& b);

friend array operator + (const array& a, const array& b);

friend array operator - (const array& a, const array& b) ;

friend array operator - (const float& a, const array& b) ;

friend array operator - (const array& a, const float& b);

friend istream& operator >> (istream& is,array& a);

friend ostream& operator << (ostream& os,const array& a);

declares an a r r a y variable a2 with 2 rows and 3 columns and all elements
(2 x 3 = 6) initialized to be zeros; a r r a y s3 (s2) declares an a r r a y variable
s3 , which is a copy of a r r a y variable s2.

The public member functions l e n () , w i d () , and p o i () provide an interface
to obtain the private data members row, c o l and a r t , respectively, from outside
of the a r r ay class.

The public member function m a x _ i n d e x () returns the index of the element
that has the maximum value among all a r r a y elements. The member func-
tion sum () returns the summation of all element values. The member function
n o i s e (a , b) returns an array with each of its elements having a random value
with the range [b, b+a]. The member function s q u a r e () returns a new a r r a y
with each new element equal to the square of its corresponding old element. The
member function t () returns a new a r r a y that is a transposition of the orig-
inal a r r a y . The member function map (f l o a t (* f) (f l o a t)) returns a new
a r r a y with each element equal to the return value of function f (x) , where x is
the corresponding element in the original a r r ay.

The public operator = (c o n s t array& a) returns a new a r r a y that is a
copy of the original one. The public o p e r a t o r = (c o n s t f l o a t & a) returns
a new a r r a y , each element of which equals f l o a t value a. The public

Chapter EightmFuzzy Systems Implementations

operator = (const vector<float>& a) converts (vector<float> a)

into an array variable with one column and the number of rows equal to the

length of the vector a.
The public operators + = , - = , * = , + , - , *, and % provide operations for

the array variables. For example, assume a (r , c) represents an a r r a y variable
a with row = r and c o l = c. Then we can have a r r a y operations such as
a 1 (2 , 3) += a 2 (2 , 3) ; a 1 (2 , 3) *= a 2 (3 , 2) ; a 1 (2 , 3) = a 2 (2 , 3) +
s3 (2 , 3) ; and a l (2, 3) = a 4 (2 , 4) * a 5 (4 , 3) .

The friend operators < < and > > provide methods for input and output, respec-
tively, of an array variable.

The class I n d i v i d u a l I n t is shown in Listing 8.23. This class is defined for the
individual ofthe integer version ofthe genetic algorithm. All the data variables related

Listing 8.23 Definition of class IndividualInt.

class IndividualInt
{
private:

int length; //length of the individual
int* ptr; //pointer to the individual
float m_rate; //mutation rate

public:

IndividualInt():length(0),ptr(0),m_rate(0) {}
IndividualInt(int a, float b);
IndividualInt(int a, int* b, float c);
IndividualInt(vector<int> a, float b);
IndividualInt(const IndividualInt& a);

~IndividualInt() {delete []ptr; }

//member function
int get_length() const {return length; }
float get_mrate() const {return m_rate; }

IndividualInt& change_mrate (const float& a);
IndividualInt& change_length (const int& a);

IndividualInt& initialize (const int& a, const int& b);
IndividualInt& initialize_range(const IndividualInt& a);
IndividualInt& initialize_range_RM(const IndividualInt& a);
IndividualInt& initialize_range_RMT (const IndividualInt& a);

FuzzyRuleSet formRuleSet(const FuzzyRule& a) const;
FuzzyRuleSet formRuleSet_RM(const FuzzyRule& a, const

IndividualInt& b) const;
FuzzyRuleSet formRuleSet_RMT(const FuzzyRule& a, const

IndividualInt& b) const;
float fitness(const FuzzyRule& a, const array& b, const

vector<int>& cn, const int&c, const int& d, const int&e) const;
float fitness_RM(const FuzzyRule& a, const array& b, const

vector<int>& cn, const int&c, const int& d, const int& e, const
IndividualInt& f) const;

float fitness_RMT(const FuzzyRule& a, const array& b, const
vector<int>& cn, const int&c, const int& d, const int& e, const
IndividualInt& f) const;

Evolving Fuzzy Rule Systems

IndividualInt& mutate_one(const IndividualInt& a);
IndividualInt& mutate_one_RM(const IndividualInt& a);

IndividualInt& mutate_one_RMT(const IndividualInt& a);

friend void crossoverOP (IndividualInt& a, IndividualInt& b) ;

friend void crossoverTP (IndividualInt& a, IndividualInt& b) ;

friend void crossoverUniform(IndividualInt& a, IndividualInt& b) ;

//operators

int& operator [] (int i) const;

IndividualInt& operator =(const IndividualInt& a);

//I/O operators

friend istream& operator >> (istream& is, IndividualInt& a);

friend ostream& operator <<(ostream& os,const IndividualInt& a);

to the individuals and all the functions performed on the individuals are bound
here and defined in the class I n d i v i d u a l I n t .

The class I n d i v i d u a l I n t has three private data members. The data member
i e n g t h (i n t) records the length of the individual. The integer pointer p t r points
to the individual. The data member m _ r a t e (g l o a t) records the mutation rate
for the individual. Other parameters can be put here, for example, the crossover
rate, but we prefer to put the crossover rate at the population level since it involves
two individuals instead of one, as is the case for mutation.

Public constructors provide ways to declare an Individuallnt variable.
For example, I n d i v i d u a l I n t i l declares an empty I n d i v i d u a l I n t
variable i l ; I n d i v i d u a l I n t i2 (4, 0 .1) declares an I n d i v i d u a l I n t vari-
able i2 with a length of 4 and the r e _ r a t e of 0 .1 ; and I n d i v i d u a l I n t i3 (i2)
declares an I n d i v i d u a l I n t variable i3 that is a copy of I n d i v i d u a l I n t vari-
able i2 . Assume v l is a class v e c t o r < f l o a t > variable with 5 elements; then
I n d i v i d u a l I n t i4 (v l , 0 .05) declares an I n d i v i d u a l I n t variable i4 that
has a l e n g t h of 5, with 5 elements copied from the variable v l and r e _ r a t e of
0 . 0 5 .

The public operator [] provides a way to access an element. The public
o p e r a t o r - provides a way to copy one I n d i v i d u a l I n t variable to another.

The public member functions g e t l e n g t h ()and g e t _ m r a t e () provide
ways to obtain l e n g t h and m _ r a t e from outside the I n d i v i d u a l I n t vari-
able. The public member functions c h a n g e l e n g t h () and c h a n g e _ m r a t e ()
provide ways to change the l e n g t h and m _ r a t e from outside the
I n d i v i d u a l I n t variable.

As mentioned previously, the implementation can be used to evolve the fuzzy
rule set and fuzzy membership functions. In the following discussion, if a function's
name has the extension RM, it means that both the rule set and the membership
function's shape are evolved. If its name has extension P ~ T , it means that the rule

Chapter Eight--Fuzzy Systems Implementations

set together with the membership functions' shape and type are evolved; if its name
does not has these extensions, it means that only the rule set is evolved.

The public member function i n i t i a l i ze () initializes each individual
uniformly, randomly for all its elements. The member functions i n i t i a l i z e _
range (), initialize_range_RM (), and initialize_range_RMT () ini-

tialize the individuals according to an IndividualInt variable range. Each

element in the individual may have a different range. For example, if one variable
has five fuzzy sets, then its corresponding elements in the individual representa-
tion have the integer range { 0, 1, 2, 3, 4, 5 } ; if another variable has three
fuzzy sets, then the integer range will be { 0, 1, 2, 3 }. For the function types,
since six functions are implemented in the fuzzy rule system, the integer range
for the function type element has the integer range { 1, 2, 3, 4, 5, 6 }. The
IndividualInt variable range is built to record the dynamic integer ranges
for each element. This is extremely useful for initialization of the individuals and
the mutation operation since an element can't have an integer value out of its
range. For example, if an element for function type has a value of 8, then the cor-
responding fuzzy system will issue a error since it can't find the right membership
function to obtain a membership value.

The public member functions f o r m R u l e S e t (), formRuleSet_RM (), and
formRuleSet_RMT () return a fuzzy rule system by constructing the fuzzy rule
system from the individual.

The public member functions m u t a t e _ o n e (), muta te_one_RM (), and
mutate_one_RMT ()perform mutation on the individual. Each element is ran-
domly chosen to undergo mutation according to the mutation rate (re_rate) . If
this element is selected for mutation, its integer value is increased or decreased
by one randomly. If the mutated value is out of range, it is wrapped around. For
example, for an element representing a fuzzy variable with 5 fuzzy sets, if its cur-
rent value is 5, then increasing by one means its mutated value will be - 5 (the no t
modifier is implemented here). For an element representing a function type, if its
current value is 1, decreasing by one means the mutated value will be 6 (remember
that the function type can't be 0).

The public functions fitness (), fitness_RM (), and fitness_RMT ()
provide ways to evaluate the individual. Each first decodes the individual into a
fuzzy rule system, then runs the fuzzy system to get the fitness value.

The crossoverOP (), crossoverTP (), and crossoverUniform ()

friend functions perform one-point, two-point, and uniform crossover operations,
respectively.

The friend operators < < and > > provide methods for input and output, respec-
tively, of I n d i v i d u a l I n t variables.

The class P o pu 1 a t i on I n t is shown in Listing 8.24. It is defined for the popula-
tion of the integer version of the genetic algorithm. It has five private data

Evolving Fuzzy Rule Systems

Listing 8.24 Definition of class PopulationInt.

class PopulationInt
{

private:
int length; //population size
int width; //individual length
IndividualInt* ptr; //pointer to the individual
float c_rate; //crossover rate

float m_rate; //mutation rate

public:
Populationlnt () :length (0) ,width (0) ,ptr (0) , c_rate (0) ,m_rate (0) { }

PopulationInt (int a, int b) ;
PopulationInt (int a, int b, float c, float d) ;

PopulationInt (const PopulationInt& a) ;

//member function
int get_length() const {return length; }
int get_width() const {return width; }
float get_crate() const {return c_rate; }
float get_mrate() const {return m_rate; }

PopulationInt& change_crate(const float& a)
{assert(a>=0&&a<=l); c_rate=a; return *this; }

PopulationInt& change_mrate(const float& a);
PopulationInt& initialize_range(const IndividualInt& a);

//a: rule range, for evolving rule set only
PopulationInt& initialize_range_RM(const IndividualInt& a);

//a: rule range, for evolving rule set and tuning membership
functions

PopulationInt& initialize_range_RMT(const IndividualInt& a);
//a: rule range, for evolving rule set and tuning membership

functions
PopulationInt& mutate_one(const IndividualInt& a, const int& b);

//a: rule range b: best fitness index
//for rule set only

PopulationInt& mutate_one_RM(const IndividualInt& a, const int& b);
//a: rule range b: best fitness index
//for rule set and membership functions

PopulationInt& mutate_one_RMT(const IndividualInt& a, const int& b);
//a: rule range b: best fitness index
//for rule set and membership functions and type

PopulationInt& crossover(const int& a, const int& b);

//a: crossover flag

//0:uniform l:one point 2" two point b: best individual index

PopulationInt& selection(const vector<float>& a, const int& b,
const int& c);

//a" fitness vector b: best individ, index c: shift flag

(I: yes, 0" no)

vector<float> fitness (const FuzzyRule& a, const array& b, const
vector<int>& cn,

const int& c, const int& d, const int&e) const;

//a:base rule, b:input array c:ruleEffectFlag
//d'fuzzyFlag e:defuzzyFlag cn:class no. for output
//for evolving rule set only

vector<float> fitness_RM(const FuzzyRule& a, const array& b,

Chapter EightuFuzzy Systems Implementations

const vector<int>& cn,

const int& c, const int& d, const int& e, const IndividualInt& f)
const;

//a:base rule, b:input array c:ruleEffectFlag

//d:fuzzyFlag e:defuzzyFlag cn:class no. for output
//f : range individual

//for evolving rule set and membership functions

vector<float> fitness_RMT (const FuzzyRule& a, const array& b,

const vector<int>& cn, const int& c, const int& d, const int& e,
const IndividualInt& f) const;

//a:base rule, b:input array c:ruleEffectFlag
//d:fuzzyFlag e:defuzzyFlag cn:class no. for output
//f : range individual

//for evolving rule set and membership functions

//operators

IndividualInt& operator [] (int i) const

{assert(i>=0&&i<length); return ptr[i]; }

//I/O operators

friend ostream& operator<< (ostream& os, const PopulationInt& a);
friend istream& operator>> (istream& is,PopulationInt& a);

members: the population size (int length), the length of the individual
(i n t w i d t h), the population-level crossover rate (f i o a t c_ r a t e), the population-
level mutation rate (m_rate) , and the pointer to the individuals
(I n d i v i d u a l I n t * p t r) . The purpose of defining the mutation rate in both
class I n d i v i d u a l I n t and class P o p u l a t i o n I n t is to have the capability to
implement a genetic algorithm with one unique mutation rate for the whole pop-
ulation, or to give each individual its own mutation rate.

The public constructors provide ways to declare the P o p u l a t i o n I n t type
variable. For example, P o p u l a t i o n I n t p l declares an empty P o p u l a t i o n I n t
variable p l ; P o p u l a t i o n I n t p2 (20, 30) declares a P o p u l a t i o n I n t vari-
able p2 with population size 20 and individual length 30; P o p u l a t i o n I n t
p3 (20, 30, 0 . 7 , 0 .1) declares a P o p u l a t i o n I n t variable p3 with popula-
tion size 20, individual length 30, crossover rate 0 .7 , and mutation rate 0 .1 .
P o p u l a t i o n I n t p4 (p3) declares a P o p u l a t i o n I n t variable p4 that is a copy
of P o p u l a t i o n I n t variable p3.

The public member functions g e t _ l e n g t h () , g e t _ w i d t h () , g e t _
c r a t e (), and g e t _ m r a t e () provide ways to access the private data mem-
bers from outside the P o p u l a t i o n I n t variable. The public member functions
c h a n g e _ c r a t e () and c h a n g e _ m r a t e () provide ways to change the crossover
rate and mutation rate from outside the P o p u l a t i o n I n t variable.

The public member functions i n i t i a l i z e _ r a n g e () , i n i t i a l i z e _
range_RM (), and i n i t i a l i z e _ r a n g e _ R M T ()provide ways to initialize the
population by calling its individuals' initialization routines accordingly.

Evolving Fuzzy Rule Systems

The public member functions m u t a t e _ o n e (), muta te_one_RN (), and
mutate_one_RMT ()provide ways to perform mutation over the population by
calling each individual's mutation routine accordingly.

The public member function c r o s s o v e r (c o n s t int& c o _ t y p e , c o n s t
int& b e s t _ i n d e x) performs a crossover operation on the population accord-
ing to the crossover rate. The best individual with index b e s t _ i n d e x will not
undergo the crossover operation. The type of crossover operation is based on the
crossover operation type c o _ t y p e (one-point, two-point or uniform crossover).
The crossover operation is similar to that in the binary GA implementation dis-
cussed in Chapter 4. The public member s e l e c t i o n () performs selection on the
population and is similar to that in the binary GA implementation discussed in
Chapter 4.

The public functions f i t n e s s (), f i t n e s s _ R M (), and f i tness_RMT ()
return fitness vectors of all individuals by calling their corresponding individual's
fitness routine. The public o p e r a t o r [] provides a way to access its element
(I n d i v i d u a l I n t) .

The friend operators < < and > > provide methods for input and output, respec-
tively, of the P o p u l a t i o n I n t variable.

We now examine the main () and ga () routines. The main () routine does
nothing except implement the choice of system you want to run--the fuzzy rule sys-
tem or the evolving fuzzy rule system. The main () routine is shown in
Listing 8.25 for clearness. It firsts reads in the run files for both the fuzzy rule
system and the genetic algorithm and then provides you with an option. The fuzzy
rule system will be run if you input "c" or "C." The genetic algorithm will be run
if you input "g" or "G."

L i s t i n g 8.25 The m a i n () routine.

void main (int argc, char *argv [])
{

char gaName [80] , fileName [80] ;

char Msg[80] ;

char condition;

int true=l;

ifstream runFile ;

runFile.open(argv[l],ios: :in) ;

if (!runFile)
{

cerr<<"can't open file "<<argv[l]<<" for input"<<endl;

exit (1) ;
}

runFi I e > >gaName > > f iName;

runFile.close() ;

do
{

Chapter Eight--Fuzzy Systems Implementations

clrscr () ;

cout<<"G: generating rules"<<endl;

cout<<"C: classification"<<endl;

cout<<"other Keys: quit"<<endl;

cout<<"your choice? ";

cin>>condition;

switch (condition)

case ' g' :

case ' G' :

ga (gaName) ;

break;

case ' c' :

case ' C' :

fl (flName) ;

break;

default :

true=0;
}

} while (true==l) ;

The fuzzy rule system is used to test the fuzzy system designed by the genetic
algorithm. It is the same as the one previously discussed in the section on the
implementation of the fuzzy rule system. If you choose to run the genetic algorithm,
it calls the ga (g a _ r u n _ f i l e _ n a m e) routine. The ga () routine is the core part
of the implementation of the evolutionary fuzzy rule system. The g a () routine is
shown in Listing 8.26. First, several variables are defined at the file level in which
the g a () routine is defined.

FuzzyRule baseRule;

vector<int> rangeint;

PopulationInt popu;

vector<float> fitvec;

int inLen, outLen;

array arrayPat;

vector<int> classN;

The FuzzyRule variable baseRule is defined to store the rule specification~
that is, the format of a fuzzy rule in the fuzzy rule system to be evolved.
The v e c t o r < i n t > variable r a n g e i n t stores the vector of range values for
each element in the individual representation. The P o p u l a t i o n I n t variable
popu stores the population of the genetic algorithm. The v e c t o r < f l o a t > vari-
able f i t v e c records the fitness values of the individuals. The i n t variables
inLen , outLen store the numbers of input and output dimensions, respec-
tively. The a r r a y variable a r r a y P a t stores the training/testing patterns. The
v e c t o r < i n t > variable c l a s s N stores the number of classes for each output
variable.

Evolving Fuzzy Rule Systems

Listing 8.26 Definition of the g a () routine.

void ga (char *dataFile)
{

read_ga_runfile (dataFile) ;
read_fuz zy_base_rule () ;
read_ga_training_patterns () ;
form_range_vector () ;
IndividualInt range (rangeint, O) ;
int tmplen = get_population_length () ;
update_popu (p_size, tmplen, c_rate, m_rate) ;

popu_initialize (range) ;

fitvec, changeSize (p_size) ;

int bestfit ;
for (int idx = O; idx < generation; idx++)
{

calculate_fitness (range) ;
bestfit=fitvec, maximum_index () ;

if (fitvec[bestfit]>criterion)

break;

if (idx != (generation-I))
{ //not the last generation

popu.selection(fitvec,bestfit, shift); //l:sfite
popu. crossover (flag_c, bestfit) ;
popu_mutate (range, bestfit) ;

}
}
write_ga_fuzzy_rules(idx, range, bestfit) ;

The q a () routine first reads in parameters from the input files and initializes all
the file level variables to prepare for running the GA. The r e a d _ q a _ r u n f i l e ()
reads in the parameters from the GA run file. The r e a d _ f u z z y _ b a s e _ r u l e ()
routine reads in the variable b a s e R u l e from the base rule file specified in the run
file. The r e a d _ q a _ t r a i n i n q _ p a t t e r n () routine reads in the training patterns
from the pattern data file specified in the run file. The f o r m _ r a n g e _ v e c t o r ()
routine forms the variable r a n q e i n ¢ , which is used to declare the
IndividualInt variable range. The get_population_length () routine
is called to calculate the length of the population depending on what elements of
the fuzzy rule system are to be evolved. The variable popu is rescaled by calling the
u p d a t e _ p o p u () routine. The rescaled variable popu is then initialized by call-
ing popu. i n i t i a l i z e () followed by rescaling the variable f i t v e c by calling
fitvec, changeSize ().

In each generation, the GA first calculates individual fitnesses by calling the
c a l c u l a t e _ f i t n e s s () routine; then the selection, crossover, and mutation
operations are performed in sequence by calling popu. s e l e c t i o n (), popu.
c r o s s o v e r (), and p o p u _ m u t a t e (), respectively. This process is repeated until

Chapter Eight--Fuzzy Systems Implementations

either the termination criterion has been met (f i t v e c [b e s t f i t] > c r i t e r i o n ,

where be s t f i t is the index of the individual with the best fitness value obtained by
calling f i t vec .max imum__index ()) or the maximum number of generations,
specified in the GA run file, has been reached.

Finally, the fuzzy rule system decoded from the best individual is written to
the output rule f i le specified in the GA run file by calling the
w r i t e ga f u z z y r u l e s () routine.

Running the Evolutionary Fuzzy Rule System
To run the program, within the appropriate subdirectory, enter

flga flga.run

The main run file f i ga . run contains only two items: the name of the GA run file
and the name of the fuzzy rule system run file. An example of the contents of the
main run file is

ga.run
fl.run

As indicated by the listing of two additional run files within the main run file,
the evolutionary fuzzy rule system is run in two stages. The first stage, using a GA,
generates (evolves) the rules (and perhaps the membership functions) to be used by
the fuzzy rule system. The second, using the fuzzy rule system, classifies the patterns
in a pattern file using the fuzzy rules (and perhaps the membership functions) stored
in a rules file.

When the f lga. exe program is run, you are given the choice of generating
(evolving) rules, classifying patterns, or modifying the run file. If you choose to
modify the run file by typing m, the DOS text editor is called, allowing you to make
changes in the main run file.

If you choose to generate (evolve) a rule set by typing g, a set of rules will be
evolved using the contents of the GA run file ga . run. An example of this run file
appears in Listing 8.27.

Listing 8.27 Example of run file for rule generation (evolution).

iris.dat

base.rul
result_4.rul

1

2
0.75

0.01

0
300

50
20
I0

150
0.965
1
1
1

Evolving Fuzzy Rule Systems

The first entry in this run file is the GA input data file, in this case i r i s. dat.
The GA data file is in a format similar to that used previously for the fuzzy rule
system. The first two lines are

413
.6375 .437s .~Tso .0250 o

The first line in the GA input data file specifies the number of inputs, outputs, and
classes. The second line is the first pattern in the file with its output classification.
These two lines are followed by the remaining patterns in the pattern file with their
classifications.

The second file in the GA run file is the rule specification file, in this case
base. rul. A typical rule specification file for evolving rules to classify the Iris
dataset appears in Listing 8.28.

The first line in the rule specification file defines the number of fuzzy input vari-
ables (4) and fuzzy output variable(s) (1). Then the domain and fuzzy sets for each

Listing 8.28 Example of a rule specification file for evolving rules.

41

sepalLength 3 0.4 1.0
leftTriangle 0.4 0.8
Triangle 0.5 0.9
rightTriangle 0.6 1.0

sepalWidth 3 0.0 0.6

leftTriangle 0.0 0.3

Triangle 0.15 0.45

rightTriangle 0.3 0.6

petalLength 3 0.0 1.0

leftTriangle 0.0 0.4

Triangle 0.2 0.7

rightTriangle 0.4 1.0

petalWidth 3 0.0 0.4

leftTriangle 0.0 0.2
Triangle 0.I 0.3
rightTriangle 0.2 0.4

Chapter EightmFuzzy Systems Implementations

output 3 0.0 1.0
leftTriangle 0.0 0.4
Triangle 0.3 0.7
rightTriangle 0.5 1.0

iiiii

fuzzy variable are defined, in the same way described in the description of the fuzzy
rule system implementation. The final line in the file comprises a "template," or
example, for a rule. In this case, with four inputs and one output, any five digits
can appear, such as0 0 0 0 0 o r l 2 3 2 1.

The third file in the GA run file is the output rule file, in this case
r e s u l t _ 4 , r u l . This file is the main product of running the rule generation
(evolution) stage of the evolutionary fuzzy rule system. A listing of r e s u l t _ 4 , r u l
appears as Listing 8.29, which is the result of an actual rule generation run for evolv-
ing a rule set only.

Listing 8.29 Example of an output rule file from rule generation (evolution) stage.

4

4 1

sepalLength 3 0.4 1.0
leftTriangle 0.4 0.8

Triangle 0.5 0.9
rightTriangle 0.6 1.0

sepalWidth 3 0.0 0.6
leftTriangle 0.0 0.3
Triangle 0.15 0.45
rightTriangle 0.3 0.6

petalLength 3 0.0 1.0
leftTriangle 0.0 0.4
Triangle 0.2 0.7

rightTriangle 0.4 1.0

petalWidth 3 0.0 0.4
leftTriangle 0.0 0.2

Triangle 0.I 0.3

rightTriangle 0.2 0.4

output 3 0.0 1.0
leftTriangle 0.0 0.4

Triangle 0.3 0.7
rightTriangle 0.5 1.0

1 0 -i -I -i
-2 -i -I -I -2
-3-2 2 0 2
303-3-3

generation: 42

fitness=0.973333

Evolving Fuzzy Rule Systems

The first line in the file contains the number 4, which indicates that the
system found a rule set comprising just four rules that classifies the Iris dataset.
We will see how well the evolved rules work when we run the classification stage
of the evolutionary fuzzy rule system. The next line (4 1) confirms that four input
fuzzy variables and one output were used. The domain and fuzzy sets for each
variable are then listed, and they are the same as in the rule specification file since
only the fuzzy rule set is specified to be evolved here (this is explained later).

Next, the rules are listed. Note that negative integers appear. The evolved rules
can contain integers, positive or negative, with the maximum absolute value equal
to the number of fuzzy sets specified for each variable. Also note that the only
rule relating to (firing) classification number 1 has a negative consequent (-1).
This is also true for classification number 3. This is "legal" because of the way
defuzzification is done: The fuzzy complement of the fuzzy value for consequent
1 is defuzzified when this rule is fired. The last items in the output rule file in
Listing 8.29 are the generation at which the rule list was evolved and the fitness
value. We see that in this case the rule set listed in the file evolved in the 42nd
generation. The fitness value indicates that only 4 errors were made out of the 150
training patterns.

Going back to the GA run file (Listing 8.27), we see a list of parameter values
after the name of the GA adaptation rule file. The first value (1) is the value of the
fitness shift flag. When set to 1, all fitness values are shifted so that the minimum
value is 0.1; the min_value to max_value fitness range is preserved. The next
value (2) specifies that two-point crossover be used. The next two values (. 7 5 and
• 01) are the crossover and mutation rates, respectively.

The next value (0) specifies which part of the fuzzy rule system is to be evolved.
If it is 0, only the fuzzy rule set is evolved; if it is 1, the fuzzy rule set plus the
membership function's s t a r t _ p o i n t s and e n d _ p o i n t s are evolved while the
membership function's types are fixed; if it is 2, the membership function's types
also undergo evolution.

The next value (3 0 0) is the maximum number of generations to be allowed,
while the population size is set at 50. Next, the maximum allowable number of
rules is specified (2 0), followed by number of divisions (10) for each membership
function's start point and end point. The number of divisions defines the range
for the membership function's start point and end points. Next is the number of
patterns in the input data file to use for rule generation (150). Next, the accept-
able fitness value to terminate the run (. 9 6 5) appears. Note that achievement of
this fitness value for the Iris dataset requires that no more than 5 errors be made
for 150 patterns. All of the parameters (except for the maximum number of rules
allowed and the number of divisions) are discussed in detail in the GA section of
Chapter 4.

The last three parameters in the GA run file are related to the fuzzy rule system.
The first (1) is the value of the averaging flag. When the averaging flag is set to 1,

Chapter Eight--Fuzzy Systems Implementations

the average of the membership values ANDed together is output. The second (1) is
the defuzzification parameter. When it is 1, the "no overlap" method of defuzzifi-
cation is used. Third is the summation flag (1). Its value specifies how output fuzzy
membership values are formed prior to defuzzification. When the summation flag
is set to 1, the maximum value caused by any one rule firing is the value passed
to defuzzification. These parameters are discussed in detail in the discussion of the
fuzzy rule system implementation.

The rule generation stage of the evolutionary fuzzy expert system is now com-
plete. You are next given the opportunity to run the classification stage by typing e.
If you choose to classify a pattern set according to a rule set previously generated,
the contents of the FL run file f l . run will be used. An example of this run file
appears in Listing 8.30.

Listing 8.30 Example of a fuzzy logic run file for the evolutionary fuzzy expert system.

result.rul

iris.dat

iris.out

result_4.out

1

1

1

Four file names and three parameters appear in this run file. The first two files
contain input necessary to run the classification stage, and the last two comprise
the output. The first file listed is the rule file, which will be used by the fuzzy rule
system to classify the patterns. The contents of this file, the output rule file from
the GA stage, are discussed above. The second file listed is the fuzzy logic input
data file. It is identical in format and contents to the GA input data file, described
above.

The third file listed is the rule output file, which contains a list of the rules
in words, in this case i r i s . ou t . Since the rule set produced by the rule gen-
eration stage was listed only in numbers in r e s u l t , r u l , it is helpful to have
this listing, which can be more easily understood. The fourth file is the output file,
r e s u l t , o u t . It contains a listing of the correct classifications for the input pat-
terns in the data file, with a listing of the classification made by the fuzzy expert
system. Errors are identified, and an error total appears at the end of the list.

The results file result_4, out, by using the fuzzy rule system shown in List-
ing 8.29, contains the listing for the Iris dataset, showing that the evolutionary fuzzy
rule system made only 4 errors out of 150 patterns classified. This is a very good
result, given that only four rules were needed! Two of the errors were misclassifica-
tions, and two, for patterns 84 and 135, state r u l e s e t n o t f i r e d . This indicates
that for those two input patterns, none of the rules was fired.

Exercises

The three parameters listed at the end of the file are the averaging flag, the
defuzzification parameter, and the summation flag. When the averaging flag is set
to 1, the average of the input membership values ANDed together is output. When
the defuzzification parameter is 1, the "no overlap" method of defuzzification is
used. When the summation flag is set to 1, the maximum value caused by any one
rule firing is the value passed to defuzzification. These three parameters are the
same as those used in the rule generation stage.

The evolutionary fuzzy rule system is a powerful tool for evolving rules and
developing a fuzzy rule system for classification and/or diagnosis. You should now
be able to use the software at the book's web site to solve real-world applications.
We encourage you to experiment with the membership functions, and so on, to
gain a deeper understanding of the potentials for the software.

Summary

In this chapter, we look at implementation issues for fuzzy rule systems, including
fuzzy rule representation, the evolutionary design of a fuzzy rule system, and the
programming language to be used. We then discuss two fuzzy system implementa-
tions: a fuzzy rule system and an evolutionary fuzzy rule system. The code for these
implementations is on the web site for the book. The source code is distributed as
shareware, with conditions as discussed on the web site.

In the next chapter, we discuss implementations of computational intelligence
systems. By using both an evolutionary algorithm and fuzzy logic, the evolutionary
fuzzy rule system of this chapter is a kind of computational intelligence system, so
it provides a bridge to the subject matter of the next chapter.

Exercises

1. For a two-input, two-output fuzzy system, assume each variable has three fuzzy
sets and encode the following rule in a string of bits: If I n p u t _ l is Medium
and I n p u t _ 2 is High, then O u t p u t _ l is High and Ou tpu t_2 is Low.

2. Define an enumeration data type for the membership functions used in the
implementation, and illustrate what other changes should be made accordingly.

3. Define an enumeration data type for the methods to calculate the activation
strength of the i f part for each rule, and specify the corresponding changes.

4. Redefine the FuzzyMember class so that it can be used to represent more general
forms of membership functions such as an asymmetrical triangular function.

5. Run the evolutionary fuzzy rule system software on the Iris data using three
membership functions for each input variable. Use all 150 patterns to develop

Chapter Eight~Fuzzy Systems Implementations

the system. Evolve only the rule system. Set the acceptable performance to 0.949,
which allows six errors out of the 150-pattern Iris dataset.

6. Define five membership functions for each input variable and repeat exercise 3.
Describe the differences in the results.

7. Repeat exercise 5, evolving both the rule set and the start and end points of each
membership function.

8. Repeat exercise 5, evolving everything: the rule set, the start and end points of
each membership function, and the membership function types.

9. Repeat exercises 5 and 6, but use only 100 patterns to develop the fuzzy rules;
then test (classify) all 150 patterns. Describe the differences in the results.

chapter
e

n i n e
Computational Intelligence
Implementations

Chapter 2 discussed the basic concepts
of computational intelligence. In subse-
quent chapters we presented the three con-
stituent methodologies of computational
intelligence with implementations for each.
We introduced combinations of the meth-
ods in the preceding chapters, such as the
evolutionary fuzzy rule system in Chapter 8,
that are examples of computational intelli-
gence.

This chapter discusses some of the
issues related to implementations of com-
putational intelligence. We discuss issues
related to fuzzy evolutionary fuzzy rule
system implementations. We present an
additional implementation of computa-
tional intelligence: a fuzzy evolutionary
fuzzy rule system. We provide detailed
descriptions of the system implementation.
(The executable code and source code are

available at the book's web site.) We then
look at the big picture and consider how
we go about choosing the best tool(s) for a
practical problem. We look at the strengths
and weaknesses of each methodology and
discuss some practical considerations.
Finally, we examine a sample application
of computational intelligence for data min-
ing. This example shows how the various
methodologies of computational intelli-
gence can be combined, and even inter-
twined.

Similarly to previous chapters on imple-
mentation (Chapters 4, 6, and 8), we have
included code listings such as class defini-
tions and operator definitions. If you are
not interested in the details of program-
ming, you may want to skim these listings,
noting what is included and what is accom-
plished by the code in each listing, m

373

Chapter NineBComputational Intelligence Implementations

Implementation Issues

Computational intelligence has three core components: artificial neural networks,
evolutionary computation algorithms, and fuzzy logic systems. Combinations of
these three components and/or other components comprise a computational intel-
ligence system. For example, a back-propagation neural network combined with a
global search algorithm such as a genetic algorithm is a computational intelligence
system. The neural network is first adapted by the genetic algorithm to find a near-
optimum global solution, which can then be used as a starting point for the back-
propagation learning algorithm to fine-tune the solution.

Several implementations discussed in previous chapters are examples of compu-
tational intelligence systems. The evolutionary back-propagation neural network in
Chapter 6 is the combination of a back-propagation neural network and the particle
swarm optimization algorithm. The evolutionary fuzzy rule system in Chapter 8
is a combination of a fuzzy rule system and a genetic algorithm. The main issue
in implementing computational intelligence is how to combine core components
to solve problems efficiently and effectively. In this chapter, we illustrate common
issues related to implementing computational intelligence systems with an example
of an implementation of a fuzzy evolutionary fuzzy rule system.

The fuzzy evolutionary fuzzy rule system is developed based on the evolutionary
fuzzy rule system discussed in Chapter 8. We use an additional fuzzy system in the
evolutionary fuzzy rule system to adapt the parameters of the genetic algorithm
while the GA is evolving the fuzzy system for problem solving.

The relationships between the genetic algorithm and the fuzzy rule system in the
evolutionary fuzzy rule system are shown in Figure 9.1. The individual representa-
tion of the genetic algorithm represents the fuzzy rule system to be evolved, which
is decoded into a fuzzy rule system for evaluation. The decoded system performs on
the training patterns to measure the system's performance, which is then fed back to

Figure 9.1

Rule Set
Membership
Functions (shape,

range, etc.)
Fuzzy Operations

Fuzzification
Defuzzification

Fuzzy System

Phenotype

Performance

Representation
(genotype)

Genetic Operators
Selection
Crossover
Mutation

Fitness
Initialization

Genetic Algorithm

Relationships between the genetic algorithm and the fuzzy system in the
evolutionary fuzzy rule system.

Implementation Issues

the genetic algorithm to determine the fitness of the individual. These relationships
are described and discussed in Chapter 8. In this section, we focus on using a fuzzy
rule system to adjust the parameters of the genetic algorithm.

Adaptation of Genetic Algorithms
The genetic algorithm in the evolutionary fuzzy rule system as discussed in
Chapter 8 is a static genetic algorithm; that is, its parameters are fixed during the
course of running the GA. The performance of a genetic algorithm depends on the
relationship between exploration and exploitation, that is, the selection of its param-
eters. For example, the crossover operation facilitates exploration (global search)
and the mutation operation facilitates exploitation (local search). A global search is
generally favored at the beginning of the search process, and a local search is favored
at the end. A simple and straightforward approach is to use crossover with a relatively
large crossover rate and mutation with a relatively small mutation rate at the begin-
ning of the search process. The crossover (mutation) rate is then linearly decreased
(increased) over the course of the search process. This strategy can frequently result
in getting caught in local optima. Ideally, the crossover and mutation rate should be
nonlinearly, dynamically adjusted to avoid local optima while retaining the ability
to fine-tune the near-global optimum resolution.

The adjustment (adaptation) of a genetic algorithm can occur on four levels:
environment, population, individual, and component (Shi 2000). In environment-
level adaptation, the environment itself is changed over the course of the search
process, and the fitness function, which measures how well an individual fits into
the environment, is adapted to reflect the altered environment.

Most adaptation is performed by adjusting parameters at the population level.
For example, if a particular crossover (mutation) rate is used over the entire popu-
lation, then this crossover (mutation) rate is a candidate to undergo adaptation. In
some implementations each individual has its own mutation rate, so the adaptation
of the mutation rate is performed at the individual level. In Back (1992), the adapta-
tion is performed at the component (element) level. Each element in each individual
is associated with a mutation rate that is encoded into the individual representation
to undergo evolution.

Fuzzy Adaptation
Little is known about the operation (search) process of genetic algorithms, which is
highly nonlinear and complicated. It is very difficult, if not impossible, to mathemat-
ically model this process so that the parameters of genetic algorithms can be dynam-
ically set to obtain an optimal search process. Fortunately, genetic algorithms have
been extensively studied and reported in the literature. In addition, a lot of experi-
ence has been accumulated and some linguistic understanding of the relationships

Chapter Nine--Computational Intelligence Implementations

between the search process and the GA parameters is available. This understanding
and experience make fuzzy systems good candidates for dynamically setting the
parameters of genetic algorithms.

The main idea is to design a fuzzy rule system with its inputs based on the per-
formance measurements of the search process and its outputs being the parameters
of the genetic algorithms. The fuzzy rule system adjusts the parameters of the gene-
tic algorithm (output) based on the current performance measurements of the
genetic algorithm. The relationships between the fuzzy rule system and the genetic
algorithm are shown in Figure 9.2. The fuzzy rule system obtains input (the per-
formance measurements) from the genetic algorithm and feeds back output (new
parameter values) to the genetic algorithm.

The output from the fuzzy system can be parameters being adapted or changes to
the parameters being adapted. The parameters normally include the crossover and
mutation rates, but other parameters of genetic algorithms are also sometimes used.
The adaptation is usually conducted at the population level because ofthe significant
increase in computation cost at the individual level or component level.

The input to the fuzzy rule system is based on the performance measurements,
which can reflect the parameters of the genetic algorithm directly or indirectly. Some
common measurements are the measurement of the population diversity, the vari-
ance of the fitness of all of the individuals, the best performance in the current gen-
eration, and the measurement of premature convergence.

When should fuzzy adaptation be used? When a fuzzy rule system is used to adapt
the parameters of the genetic algorithm, the genetic algorithm, generally speaking,
can have better performance. Does this mean we should always use a fuzzy rule sys-
tem (or other adaptive approaches) to adjust parameters of the genetic algorithm?
Not necessarily. When a genetic algorithm used to search for a solution that is time
critical and/or the computation cost of the evaluation of individuals is at the same
magnitude as the computation cost of the fuzzy rule system, it is better not to use

Representation
(genotype)

Genetic Operators
Selection
Crossover
Mutation

Fitness
Initialization

Genetic Algorithm

Measurement

Parameters

Input Variables

Output Variables

Rule Set
Fuzzy Operations

Fuzzy System

Figure 9.2 Relationship between the fuzzy system and the genetic algorithm in fuzzy
adaption.

Implementation Issues

a fuzzy rule system to adjust the parameters of a genetic algorithm. Fixed parameters
or a simple and fast parameter adjustment approach should be adopted instead.
When the computation cost of the evaluation of individuals is much higher than
that of a fuzzy rule system, however, we suggest that you develop a fuzzy rule sys-
tem or other adaptive approach to dynamically adjust the parameters of the genetic
algorithm.

Knowledge Elicitation
Fuzzy rules such as those listed in the next section flow from heuristics developed
from the authors' experience with genetic algorithm implementations. For example,
our experience with genetic algorithms indicates that when the fitness is low, such as
occurs at the beginning of the run, lower mutation rates and higher crossover rates
are productive. Conversely, if the fitness has not changed for a long time and the
variance of the fitness values is low (a condition that often occurs near the end of a
run), then a higher mutation rate and lower crossover rate are usually helpful.

This leads us to a general subject related to traditional expert system development
known as knowledge acquisition and its most important area: knowledge elicitation.
The term is usually used to describe the process of extracting knowledge from human
experts for use in traditional AI-based expert systems. A detailed treatment of
knowledge elicitation, or knowledge acquisition, is beyond the scope of this book.
The reader is referred to sources such as Brachman and Levesque (2004).

Without going into details, it is accurate to characterize knowledge elicitation
as difficult, time-consuming, complex, and expensive. It involves finding one or
more experts with the required domain knowledge who are willing and able to share
their relevant knowledge (and who are willing to do this for the amount of money
you have in your budget). It is a complex and iterative process of interviews and
knowledge model development.

By this point in the book, it should be clear that the ability to evolve major por-
tions of fuzzy expert systems, such as fuzzy rule sets and fuzzy membership func-
tions, generally makes knowledge elicitation in the traditional sense unnecessary.
It is necessary only to identify those input parameters that appear to be important
in the determination of the system output(s). Although some system knowledge
may be needed to do this, it can be done with little or no involvement of a domain
expert.

We do not contend that knowledge elicitation is never needed. Sometimes,
as is the case in the formulation of the fuzzy rules in the next section, it can
facilitate improved system performance. Much of the time, however, computational
intelligence applications can be developed without it (or with only a small amount
of it), resulting in cost savings and significantly accelerating successful system
implementation.

Chapter Nine--Computational Intelligence Implementations

Fuzzy Evolutionary Fuzzy Rule System Implementation

This section discusses the implementation of a fuzzy evolutionary fuzzy rule system,
which is similar to the implementation of the evolutionary fuzzy rule system dis-
cussed in Chapter 8. The main difference with the previous system is that a pre-
designed fuzzy rule system is added to the system to dynamically tune the crossover
and mutation rates of the genetic algorithm over the course of running the genetic
algorithm. The purpose is to achieve a better balanced global and local search ability
and a more effective search process.

The source code for the implementation is written in C++ and is being dis-
tributed as shareware. You are welcome to use it for classroom or personal learning
experiences in conjunction with the textbook at no cost. If you use it, either as is
or with modification, for a project outside of your classroom (or learning on your
own), please send us payment in accordance with the shareware payment instruc-
tions on the web site for the book.

Programming the Fuzzy Evolutionary Fuzzy Rule System
The g a () routine contains the only difference between the implementation of the
fuzzy evolutionary fuzzy rule system and that of the evolutionary fuzzy rule system
discussed in Chapter 8. The new ga () routine is shown in Listing 9.1, in which the
differences are in bold type for clarity.

Listing9.1 The ga () routine in the fuz~ evolutionary fuzz7 rule system implementation.

void ga(char *dataFile)
{

read_ga_runfile (dataFile) ;

read_adapt_rule () ;
vector<float> vecin_m (adaptRuleSet [0] . get_variableSize ()) ;
vector<float> vecout_m (adaptRuleSet [0]. get_outputSize ()) ;

read_fuzzy_base_rule () ;
read_ga_training_patterns () ;
form_range_vector () ;
IndividualInt range(rangeint,O);
int tmplen = get_population_length();
update_popu (p_size, tmplen, c_rate, m_rate) ;
popu_initialize (range) ;
fitvec, changeSize (p_size) ;
float prebest=O. I;
float nu=O. O;
float var;
float mrate--m_rate;
float crate=c_rate;

int bestfit;
for (int idx=O;i<generation;i++)

Fuzzy Evolutionary Fuzzy Rule System Implementation

calculate_fitness (range) ;
bestfit=fitvec.maximum_index () ;
var=variance (fitvec, aver) ;
if (fitvec[bestfit]>criterion)

break;

if (idx != (generation-i))

{ //not the last generation

popu. selection (fitvec, bestfit, shift) ;
if (m_flag==l)
{ //change mutate/crossover rate

if (fitvec [bestfit] =--prebest)
nu +=i. 0;

else
nu=0.0;

vecin_m [0] =fitvec [best fit] ;
vecin_m [1] =nu;
vecin_m [2] =var;
vecout_m = adaptRuleSet, output (vecin_m, 0, 1, 1) ;
mrate=vecout_m [0] ;
crate=vecout_m [1] ;
prebest=fitvec [bestfit] ;
popu. change_mrate (mrate) ;
popu. change_crate (crate) ;

}

popu. crossover (flag_c, bestfit) ;
popu_mutate (range, bestfit) ;

}
}

write_ga_fuzzy_rules (idx, range, bestfit) ;

In addition to the file-level variables declared in the evolutionary fuzzy rule sys-
tem implementation, a new file-level Fuz z y R u l e S e t variable, a d a p t R u l e S e t ,
is defined to store the fuzzy rule system that is used to adapt the crossover and
mutation rates. The r e a d _ a d a p t _ r u l e () routine is called to read in the
F u z z y R u l e S e t variable a d a p t R u l e S e t . One example of the adaptive fuzzy
rule system is shown in Listing 9.2. It has three input variables, two output variables,

Listing 9.2 A fuzzy rule system for genetic algorithm adaptation.

8
3 2

Fitness 3 0.0 1.0

leftTriangle 0.0 0.7

Triangle 0.5 0.9

rightTriangle 0.7 1.0

Number 3020

leftTriangle 0 6
Triangle 3 9

Chapter Nine--Computational Intelligence Implementations

rightTriangle 6 12

Variance 3 0.0 0.2
leftTriangle 0.0 0.12

Triangle 0.i 0.14

rightTriangle 0.12 0.2

Mrate 3 0.005 0.i
leftTriangle 0.005 0.015
Triangle 0.01 0.02
rightTriangle 0.015 0.I

Crate 3 0.4 0.9
leftTriangle 0.48 0.65
Triangle 0.55 0.75
rightTriangle 0.65 0.83

1 0 0 1 3
2 1 0 1 3
2 2 0 2 2
0 3 2 3 1
3 1 0 1 3
3 2 0 2 2
0 3 1 3 1
0 3 3 1 3

and eight fuzzy rules. The three input variables are the best fitness of the current
generation, the number of generations that the best fitness has not improved, and
the variance of all the individuals' fitnesses in the current generation. The two output
variables are the new mutation and crossover rates. The linguistic descriptions of
these eight rules follow.

m If F i t n e s s is Low, then Mr a t e is Low and C r a t e is High.

[] If F £ t n e s s is Medium and Number is Low, then Mr a t e is Low and

C r a t e is High.

[] If F i t n e s s is Medium and Number is Medium, then Mr a t e is Medium
and C r a t e is Medium.

m I fNumber is High and V a r i a n c e is Medium, then M r a t e is High and

C r a t e is Low.

m If F i t n e s s is High and Number is Low, then Mr a t e is Low and C r a t e

is High.

[] If F i t n e s s is High and Number is Medium, then M r a t e is Medium and

C r a t e is Medium.

m I fNumber is High and V a r i a n c e is Low, then M r a t e is High and

C r a t e is Low.

m I fNumber is High and V a r i a n c e is High, then M r a t e is Low and

C r a t e is Low.

Fuzzy Evolutionary Fuzzy Rule System Implementation

Two vector<float> variables, vectin_m and vectout_m, are declared
to store the input and output variables of the fuzzy rule system, respectively. Five
f I oa t - type variables are declared to store the best fitness ofthe previous generation
(p r e b e s t) , the number of generations that the best fitness has not improved (nu),
the variance of the fitnesses (var) , the new mutation rate (m r a t e) , and the new
crossover rate (c r a t e).

The mutation and crossover rates are adjusted before calling p o p u .
c r o s s o v e r () and p o p u . m u t a t e () to perform crossover and mutation
operations. The r e _ f l a g is first checked to see whether it is TRUE or FALSE. The
r e _ f l a g is read in from the run file (see next section). When r e _ f l a g is TRUE, the
crossover and mutation rates are dynamically adjusted by applying the fuzzy rule
system. When r e _ f l a g is FALSE, the fuzzy evolutionary fuzzy rule system is the
same as the evolutionary fuzzy rule system discussed in Chapter 8.

When m_f I a g is TRUE, p r e b e s t is compared with the best fitness in the
current generation. If they are equal, the variable n u is increased by 1; other-
wise, n u is set to 0. Then the best fitness, n u and v a r are fed into the fuzzy
rule system, and the output values of the fuzzy rule system are assigned as
the new mutation and crossover rates. The p o p u . c h a n g e _ m r a t e () and
p o p u . c h a n g e _ c r a t e () are called to change the population's mutation and
crossover rates, respectively.

Running the Fuzzy Evolutionary Fuzzy Rule System
To run the program, at the DOS prompt within the appropriate subdirectory, enter

flgafs flgafs.run

The main run file f l g a f s . r u n contains only two items: the names of the GA run
file and the fuzzy rule system run file. An example of the contents of the main run
file is

ga. run

fl.run

The f l . r u n file is the same as that in the evolutionary fuzzy rule system,
and the g a . r u n file is almost the same as that in the evolutionary fuzzy rule
system except that two lines have been added. For illustration, the new g a . r u n
file is shown in Listing 9.3. The fourth line contains a file name, g a _ a d a p t , r u l ,
from which the fuzzy rule system for adapting GA parameters is to be read. The
contents of the g a _ a d a p t , r u l file provided with this software are shown in
Listing 9.2. The ninth line in Listing 9.3 contains an integer number, 1. It is a flag
that tells whether the fuzzy adaptation is to be used or not, as explained in the last
section (m _ f l a g) . The other contents of the g a . r u n file are described in detail in
Chapter 8.

Chapter NinemComputational Intelligence Implementations

Listing 9.3 Example of a run file for rule generation (evolution).

iris.dat

base.rul

result.rul

ga_adapt.rul

1

2

0.75

0.01

1

2

I000

50

20

i0

i00

0.99

1

1

1

Choosing the Best Tools

The main concepts discussed in this book (evolutionary computation, neural net-
works, and fuzzy logic) can be used individually or in combination to solve a wide
array of problems. We have given you only the basic information on each concept
and only a few examples ofhow to combine them into powerful computational intel-
ligence tools. More information exists in other references, as do more examples of
computational intelligence. And we are sure that our readers will develop many more
exciting implementations and applications.

At this point, we believe it is helpful to step back and look at the big picture.
What are the strengths and weaknesses of various approaches that might influence
your choice of computational intelligence tool(s) for a particular problem? What
practical issues associated with the problem environment might influence your
choices?

Strengths and Weaknesses
We have discussed strengths and weaknesses of various tools throughout the book.
Here we summarize some of the most general concepts.

First, consider the individual concepts, or methodologies, and how to choose
one. All else being equal, in what cases would we choose to use a neural network

Choosing the Best Tools

versus a fuzzy system for a diagnostic system, for example? One important factor
is the quantity of (presumably high-quality) data available. If a copious amount of
data that permeates the problem space is provided, we would be inclined to train
or evolve a neural network. If only a relatively small dataset is available, or the data
don't cover the problem space to well, it may be better to develop or evolve a fuzzy
rule-based system.

A fuzzy system may also be indicated if a significant portion of our data is
linguistic or imprecise. Fuzzy sets allow us to quantify uncertainty.

Another factor that can influence our choice of approach is data representation.
For example, if we have an existing dataset for an optimization system we are devel-
oping, and the data are in binary format, a genetic algorithm may be a reasonable
approach. We developed one logistics planning system for which we wanted to apply
particle swarm optimization, but we couldn't figure out how to represent the data
so that we could use PSO effectively. The problem lent itself to a genetic algorithm
representation, so we used a GA.

What we've said so far primarily applies to choosing an individual methodol-
ogy. But this book is mainly about computational intelligence. So what about those
hybrid (computational intelligence) tools that allow us to exploit the strengths of the
individual tools to solve problems that are intractable (or at least very difficult) for
any individual approach?

As we stated at the beginning of the book, our view is that computational intel-
ligence is built on a foundation of evolutionary computation. We may choose an
evolutionary computation tool such as particle swarm optimization for an applica-
tion and use it essentially by itself. But when we include a neural network or fuzzy
logic, there is almost always an evolutionary computation component. When we use
a neural network, we usually evolve the network weights and sometimes the network
structure. When we use fuzzy logic, we usually evolve the rules and sometimes the
membership functions.

Whenever feasible, we compare two or more approaches and choose the one that
gives us the best performance. Although it is true that we have played significant roles
with Jim Kennedy in developing particle swarm optimization, we try never to bias
our viewpoint in favor of PSO or any other approach. The best solution to a problem
usually depends on the problem.

Modeling and Optimization
Many applications, such as system identification, can be handled as black-box sys-
tems: A group of inputs is sent into the box and responses are expected as results.
In order to solve such a problem, two main steps need to be taken. First, we need to
establish a model based on the knowledge we have to map the inputs to the outputs;
this is modeling. Second, we need to adapt the model to tune the outputs' response
to the inputs; this is optimization.

Chapter NinemComputational Intelligence Implementations

There are many traditional methods to model various simple or complex, linear
or nonlinear, continuous or discrete systems. A variety of parameter estimation tech-
niques have been developed and discussed in the literature. Computational intelli-
gence tools can be applied to both steps to facilitate the problem-solving process.
Artificial neural networks (ANNs) and fuzzy systems are particularly suitable in the
modeling process, and evolutionary algorithms are often used in the optimization
process.

Fuzzy systems and ANNs provide alternative solutions to model and identify
systems. In traditional methods, accurate models must be provided to identify a
system. Furthermore, it is hard to estimate the parameters if the system is highly
nonlinear. However, for many complex problems, such as chemical reactions and
biomedical applications, it is nearly impossible to specify an accurate link between
the inputs and the outputs. Computational intelligence tools may be the only tools
currently available.

Fuzzy systems and ANNs have advantages and disadvantages. ANNs are suitable
for problems with large-scale and well-distributed patterns; fuzzy systems work bet-
ter when the patterns are not as large or have an uneven distribution. Incomplete and
imprecise domain knowledge can also be integrated into fuzzy systems, but ANNs
do not need any domain knowledge.

Artificial neural networks are fast and simple to implement if sufficient datasets
are provided. However, it's hard to explain the meaning of neural networks and
extract domain knowledge from the network structure and weights. On the other
hand, fuzzy systems consist of a set of fuzzy rules obtained through domain experts
or from raw data by using an automatic rule generation method such as an evolu-
tionary algorithm and an artificial neural network. These fuzzy rules generated from
raw data represent domain knowledge. These automatic rule generation methods
can be particularly useful approaches for data mining or knowledge discovery.

Evolutionary algorithms (EAs) are optimization techniques. They can be used
not only in evolving neural networks or fuzzy systems but also in optimizing param-
eter sets. The advantages are that they do not need any domain knowledge to do
the optimization, and they can handle nonlinear, nondifferentiable, noncontinu-
ous, and large complex systems well. The trade-off is that EAs aren't guaranteed to
obtain the best (optimal) solution, only a sufficient one.

Practical Issues

In an ideal world, you would be able to choose the computational tool for your prob-
lem with total objectivity by selecting the tool most likely to give you the best solu-
tion. We do not, however, live in an ideal world. Every project has time, resource,
and budget constraints.

It is very unlikely that you will have the luxury of developing the best tool possible
(assuming you think you know what that is). In most cases, you will develop what we

Applying Computational Intelligence to Data Mining

call sufficient solutions. Recall that earlier in the book we defined a sufficient solution
as one that is good enough, fast enough, and cheap enough.

There will even be times when your customer practically dictates how you should
solve the problem. As an example, one of the authors worked on a project to develop
a diagnostic system for an automotive electrical system application. There was a very
large amount of data, and a neural network-based system seemed to be the most
promising approach. The sponsor, however, insisted that the diagnostic system be
rule-based, in part so that the explanation facility (see Chapter 11) would be an
inherent part of the system. We thus were persuaded to use a fuzzy rule-based sys-
tem, even though a neural network would probably have performed a little better.
On the other side of that coin, in an application for another commercial sponsor,
we had a fair amount of data but were leaning toward evolving a fuzzy rule-based
system, minimizing the number of rules as part of our fitness function. In this case,
the sponsor persuaded us to adapt a neural network because of the relatively lower
cost of implementing the trained network weight matrix on the custom chip being
developed for the system. The overall system manufacturing cost thus drove our
development approach.

If we develop a sufficient solution using good engineering practices and our cus-
tomer is happy, we've done our job!

Applying Computational intelligence to Data Mining

This section presents an example of applying computational intelligence method-
ologies to data mining. The example illustrates how the various methodologies of
computational intelligence can be combined and even intertwined.

Data mining is the process of using computational algorithms to process large
databases to find useful patterns and relationships. Traditional computational tools
include clustering, classification, and rule mining. Data mining is also commonly
referred to as knowledge discovery in databases (KDD). A comprehensive treatment
of data mining is beyond the scope of this book. You are referred to books focused
on data mining such as Han and Kamber (2006).

Software that simply rearranges data in a database isn't doing data mining. Data
mining is used to find previously unrecognized patterns or relationships among the
data that are useful. Depending on the application, the object of data mining may
include reducing cost, improving performance, and predicting behavior or trends.
An example of data mining is the detailed analysis of sales data by a large discount
store chain such as Wal-Mart to discover geographical patterns in customers' buying
habits.

In the remainder of this section, we outline one approach using multiple
computational intelligence methodologies for a data mining system that deals with
real-time analysis of a large stream of textual data.

Chapter NinemComputational Intelligence Implementations

An Example Data Mining System
In working with a huge amount of streaming textual data, the example system
described here could discover and display related entities and patterns as they
appear over time. It could establish associations across textual reports from multiple
sources. Therefore, in addition to "mining" clusters, the proposed system could
discover linked activity networks over time, then display the data to analysts using
state-of-the-art visualization techniques.

The fitness of the system can be dynamic and knowledge driven, and cluster
membership could imply fitness relations within hyperplanes that adapt with time.
The example system could discover and follow the faint trails of data that lead to
meaningful spatio-temporal clusters.

The system we have designed incorporates the three main constituent method-
ologies of computational intelligence: evolutionary computation, neural networks,
and fuzzy logic. At the core of the system are clustering and classification models,
such as neural networks, that use both supervised and unsupervised algorithms.
These models can be evolved using particle swarm optimization (PSO), which is
capable of handling multimodal, multiple-constraint, nonlinear problems in
complex and changing environments.

Wrapped around the system's core is a fuzzy logic shell. The fuzzy rules, member-
ship function shapes, and fuzzy set locations in the problem domain can be evolved
using evolutionary computation techniques such as genetic algorithms and PSO.
This fuzzy shell handles user preferences and rules at the macro level. The system
is thus capable of adapting to individual users over time. Figure 9.3 illustrates the
components of the system.

Figure 9.3 Diagram of the computational intelligence data mining system.

Summary (~. ~
As indicated on the system output, it is important to provide users with an

"explanation facility" for this system and to indicate the confidence level of the
outputs. The hybrid nature and the complexity of the system make traditional expla-
nation facilities impossible. However, recently developed techniques using evolu-
tionary computation described in this book can be used to develop such a facility.
This facility is also very important in that it would be usable as a prediction system
to identify and predict new (previously unseen) combinations of parameters and
events that might be expected to be indicators of interest.

Summary

In this chapter, we discuss common implementation issues for fuzzy evolutionary
fuzzy rule systems. We describe the implementation of the fuzzy evolutionary fuzzy
rule system. In the system, a genetic algorithm is used to design the fuzzy rule system
for solving problems, and another fuzzy rule system is employed to adapt the genetic
algorithm. The relationships among them are shown in Figure 9.4. "How much
fuzzification is enough?" It would be conceivable to evolve everything we fuzzify and
to fuzzify everything we evolve, ad infinitum. The optimal extent (depth) of evolu-
tion and fuzzification is almost certainly problem-specific and is highly dependent
on what computation cost we can afford. Next, we look at some issues related to
picking the best tool(s) for a particular job. We discuss both individual methodolo-
gies and computational intelligence approaches. Finally, we examine an example of
the computational intelligence approach to data mining.

In the next chapter we examine methods to measure how well our systems per-
form. The performance metrics described in the chapter can be used in applications
both inside and outside the computational intelligence field.

Rule Set
Membership
Functions (shape,
range, etc.)

Fuzzy Operations
Fuzzification
Defuzzification

Fuzzy System

-- I Phenotype I

I Performance I ,-

Representation
(genotype)

Genetic Operators
Selection
C rossover
Mutation

Fitness
Initialization

Genetic Algorithm

I Measurement I ~-

-, I Parameters I
" I

Input Variables

Output Variables

Rule Set
Fuzzy Operations

Fuzzy System

Figure 9.4 Relationships among fuzzy systems and genetic algorithms in the fuzzy
evolutionary fuzzy rule system.

Chapter Nine--Computational Intelligence Implementations

E x e r c i s e s ...

1. List two parameters that can be adapted to improve a GA's performance at the
levels of environment, population, individual, and component.

2. Compare the strengths and weaknesses of the four levels of adaptation of genetic
algorithms: environment, population, individual, and component.

3. Briefly describe how to use a fuzzy system to adapt the parameters you listed in
Exercise 1.

4. If you are asked to use a fuzzy system to adapt the PSO in the implementation of
the evolutionary neural network discussed in Chapter 6, what will be the input
and output of the fuzzy system?

5. Run both the evolutionary fuzzy rule system (m_f l aq = 0) and the fuzzy
evolutionary fuzzy rule system (m_f laq - 1), and compare the results.

6. Modify the fuzzy rule system in Listing 9.2, and run the software again to see
whether you can obtain better results.

7. How generally applicable is the system diagram of Figure 9.3 to other applications
such as analysis of large video data streams? Identify another application area,
and draw a diagram analogous to Figure 9.3 for that application.

chapter

Performance Metrics

The first nine chapters of this book
focused on computational intelligence con-
cepts, paradigms, and implementations. We
showed you how to design, develop, and
test your systems. But how, exactly, do you
measure how well your system is working?

Measuring how well a system is per-
forming is relatively straightforward some-
times. We simply specify the percentage of
correct answers in a test or operational sit-
uation and compare that with the speci-
fication that was established beforehand.
Another common approach is to measure a
system's performance with respect to some
specified tolerance. The situation is seldom
this simple, however, when we must mea-
sure the performance of computational
intelligence implementations and compare
different system configurations.

In this chapter, we examine some issues
related to measuring how well a computa-
tional intelligence implementation is doing.
Unfortunately, this subject has not been

discussed extensively in the literature, so
in some cases we adapted performance
measurement techniques that have been
applied in related areas.

We first discuss general issues that cut
across performance metrics. These issues
include the selection of gold standards; par-
titioning patterns for training, testing, and
validation; cross validation; the use and
interpretation of fitness functions; and the
use of statistical tools.

The performance measures that are
discussed include the relatively simple
measure of the percent correct, aver-
age sumsquared error, absolute error,
normalized error, evolutionary algo-
rithm effectiveness, the Mann-Whitney U
statistic, receiver operating characteristic
(ROC) curve measurements, measurements
based on ROC curve parameters (recall,
precision, sensitivity, specificity, etc.),
confusion matrices, cost functions, and
the chi-square goodness-of-fit metric.

389

Chapter TenmPerformance Metrics

The measure chosen depends on the type of system and on other, somewhat
more loosely defined parameters, such as the level of technical sophistication of
the system's end user. []

General Issues

In this section, we discuss a number of general issues related to measuring the per-
formance of computational intelligence implementations. We call them "general"
because these issues arise for more than just a single specific performance metric. We
present issues that relate only to a single performance metric in the section where
that metric is discussed.

Examples of general issues are specifying the sizes and numbers of iterations
for training datasets, and the selection of test datasets, for neural networks. Other
examples are the selection of the "gold standards" against which performance is
measured, and the role the decision threshold level of a processing element in a neu-
ral network can play in determining system performance. Additional issues include
fitness and fitness functions and the use of parametric and nonparametric statis-
tics. These are issues that must be addressed regardless of whether the performance
metric is percent correct or some other metric such as normalized error.

We first examine the issues of selecting gold standards, selecting test sets, and
, ,

selecting training sets for those implementations, such as neural networks, that
require them.

Selecting Gold Standards
At least two issues are associated with the selection of gold standards, for both train-
ing sets and testing sets. The first is the classification itself, and the second is the
selection of a representative pattern set. A third issue to be addressed, which encom-
passes the first two, is selecting the person(s) or process used to designate the gold
standards.

Relative to the first issue, in a classification problem it is sometimes straightfor-
ward to specify the classification of the items, or patterns, in the training and testing
sets. For example, if the computational intelligence implementation is being used to
classify printed versions of individual letters of the alphabet, such as A, B, and C,
there should be no disagreement about which letter is which. On the other hand,
some classification tasks can be more difficult. For example, in the classification of
biopotential waveforms, such as electrocardiograms and electroencephalograms, the
interpretation of waveforms can be a matter of opinion among experts. For exam-
ple, in the case of a neural network system to detect epileptiform spikes described in
Eberhart and Dobbins (1990), and summarized as a case study in Chapter 12 of this
book, the average overlap in identification of individual spike waveforms was only

General Issues

about 60 percent between any two of the six neurologists who evaluated the data
records.

It is therefore important to obtain agreement beforehand on the classification
process and the classifications themselves, and to state both clearly when presenting
any performance measurement results. In this step, it is extremely important to get
the active participation of the end users of the system (such as the neurologists in
the case just mentioned).

Given that classifications can be made and agreed to, the next job is usually
the selection of the "representative examples" for the training and testing sets, if
required. This is an area in which much development work is currently being done.
It is possible to state guidelines, but few hard rules exist.

The examples selected for the training and testing sets, in addition to being
agreed to by the experts as representatives of the class, must be appropriately
distributed over the class being represented. That is, the examples should not all
be ideal, or textbook, examples of the pattern class, with pattern vectors "right down
the middle" of the classification. Rather, they should include patterns that, though
clearly belonging to the identified class, are somewhat borderline, having attributes
that place them near a decision hypersurface with another class or classes. This is
particularly important for cases, such as biopotential waveform analysis, in which
human perception is involved and opinions, though generally in agreement, may
vary from expert to expert. Kohonen (1988, 1989) and Rumelhart and McClelland
(1986) have discussed and demonstrated the need for using training/testing patterns
near decision boundaries. Their work provides an excellent resource for more
information on this aspect of pattern selection.

The selection of the person(s) or process used to identify the gold standard
training and testing cases is very important. Too often, engineers and program-
mers working on a project take it upon themselves to do this identification. This
should be avoided. It is important to involve the end users of the system in this
process. Although the engineers and programmers can provide the end users with
information regarding the technical constraints within which the system must oper-
ate, it should be left to the users, as much as possible, to provide the case data
selection, or at least the process for the selection. This is particularly important in
areas such as biomedical engineering: Medicine must drive engineering, not the
other way around.

Involving users in the selection of the gold standard data does not relieve the
engineer or programmer of all responsibility for this data. The quality of the data,
including potential problems such as noisy data and missing data elements and how
those will be handled, must be worked out and agreed to by all interested parties.

Partitioning the Patterns for Training, Testing, and Validation
It is generally not acceptable to test a computational intelligence implementation
with the same set of patterns used to train it. A portion of the patterns is used for

Chapter TenmPerformance Metrics

training, and the remainder, often chosen randomly, is used for testing. Taking this
one step further, a project sponsor may withhold a portion of the datasets to be used
for testing after the system is proclaimed to meet specifications. These datasets are
sometimes referred to as validation datasets. So some datasets have been divided
into three portions~training, testing, and validation. This idea of testing a system
on data it has not previously seen is the basis for cross validation, discussed later,
although cross validation involves more than just dividing patterns into training
and testing portions.

Furthermore, it is frequently a good idea to rotate training and testing cases
through all available cases. That is, a given set of cases can be selected for train-
ing one time and a different set another time. Likewise, different cases can be used
for testing at different times. It is desirable to examine the performance of a compu-
tational intelligence implementation with these changes, if possible. This approach
begins to look something like cross validation.

When training some neural networks, especially back-propagation networks, it
is often a good idea to select a training set with about the same number of patterns
for each classification. That is, if the network has three output processing elements
(PEs), each of which becomes active for a particular pattern classification, it is prob-
ably a good idea to have a training pattern set with about one-third of the patterns
from each classification. This is, for some people, counterintuitive.

A more intuitive argument is that the numerical distribution of patterns should
reflect the probability distribution of the classes. For example, if we are training
a neural network implementation with two output PEs and if one of the classes
appears in the real world 20 percent of the time, then it would make sense to some
people to draw 20 percent of the training cases from this class (and 80 percent from
the other class).

Better network performance often results, however, if, in the case just described,
approximately 50 percent of the training patterns are selected from each class,
regardless of the probability distribution. In fact, the authors have seen cases in
which allocating the percentage of classes of training patterns according to prob-
ability distributions has resulted in a failure to train the network.

Cross Validation

Cross validation is a method that allows us to estimate how well a system will per-
form on data it has not seen previously (during training). It thus predicts how well
the system can generalize.

Cross validation starts by partitioning a dataset into subsets for training, test-
ing, and perhaps validation. Just holding out a subset for testing, by itself, does not
comprise cross validation since none of the data are "crossed over" (described later).
There are two main types of cross validation, although the second is just a special
case of the first: k-fold cross validation and leave-one-out cross validation.

General Issues

For k-fold cross validation, the dataset is partitioned into k subsets. In an iterative
process, one of the k subsets is used for testing and the remaining k - 1 subsets are
used for training. This is repeated k times until all k subsets have been used once
for testing. The results from the k iterations can then be averaged or combined in
some other way to provide an error estimate. The variance of the result decreases as
k increases.

Leave-one-out cross validation takes k-fold cross validation to the limit by itera-
tively using a single pattern as the test set. Thus, k is the total number of patterns in
the dataset, and each pattern is used exactly once as the test set. Leave-one-out cross
validation is computationally intensive for large datasets.

How k is chosen is more of an art than a science, and it depends on the nature of
the problem. In the authors' experience, if the total number of patterns is less than
1 O0 or so, leave-one-out cross validation is probably worth the effort. In very large
datasets comprising thousands of patterns, a value of k between 10 and 100 is a good
place to start.

Note that the cross validation process is applicable across a variety of perfor-
mance metrics. It can be applied, for example, to neural networks using a percent
correct metric as well as to fuzzy controllers using an absolute error metric.

Fitness and Fitness Functions

The fitness of a solution is a numeric value that provides an indication of how well
the solution meets the objective(s) of the problem. The concept of fitness is central
to evolutionary computation (EC) methodology (discussed in Chapters 3 and 4).

The concept of fitness is applied over a broad spectrum of EC problems. At one
end of the spectrum are benchmark problems such as the Rastrigin function for
which an equation exists and the location of the global optimum is known. Fitness in
such cases is a function of the error with respect to the global optimum. The highest
fitness is known and is often zero. A solution that is closer to the global optimum
has a smaller error and a higher fitness than a solution farther away.

At the other end of the spectrum are problems for which the global optimum
is unknown. It may not even be known whether or not a global optimum exists,
and, if it does, whether there are multiple global optima. Most examples of this type
of problem are NP-hard and the fitness score is a function of the system output(s).
Furthermore, the fitness score may be a weighted function of output parameters.
An example is a logistics scheduling problem, where the numbers and types of items
delivered, the time windows of the deliveries, and priority scores may all be weighted
and incorporated into fitness values.

Note that use of the concept of fitness should not be limited to EC implemen-
tations. If percent correct is being used to measure the fitness of a neural network
output, then percent correct measurements over a number of cases may be con-
sidered as fitness values (higher is better). If a fuzzy logic control system output

Chapter TenmPerformance Metrics

is measured over a number of cases, the output error measurements (number of
degrees deviation from a thermostat setting, for example) may be treated as fitness
values (lower is better).

Recall the three spaces of adaptation discussed in Chapter 2: input parameter
space, system output space, and fitness space. System output space is the space
defined by the dynamic range(s) of the output variable(s). The fitness space is the
space we use to define the "goodness" of the solutions in the output space. We often
scale fitness to values between 0 and 1, with either 0 or 1 being the optimal value,
depending on whether we are minimizing or maximizing. Thus, system output
and fitness generally do not coincide.

Furthermore, the numerical value of fitness rarely has meaning. We nearly always
use fitness values to rank solutions. A system configuration with a fitness value of
0.980 is rarely exactly twice as good as a system configuration with a fitness value of
0.490. We simply have a rank-ordered list of how good a solution is relative to other
solutions.

It is common practice to vary parameters such as crossover rate in a GA and
attempt to see what value produces a better system. We may, for example, run the
GA ten times with one crossover rate and ten times with another crossover rate. Due
to the stochastic nature ofthe algorithm, we may very well get a different fitness value
each time, although it is possible that a few may be identical due to the precision of
our computer.

How do we determine which system configuration is better? If all of the fitness
values for one crossover rate are better than those for another crossover rate, the
situation is clear: Use the system configuration that consistently produces the bet-
ter fitness values. However, the situation is seldom so simple. Especially in the later
stages of system development, when we are fine-tuning parameters to maximize sys-
tem performance, we may have situations that are hard to analyze and interpret.

Parametric and Nonparametric Statistics
For analysis and interpretation, we turn to the field of statistics. We need to be very
careful how we use statistics, however. In this section we summarize this approach
and provide the justification for using nonparametric (also sometimes referred to
as "distribution-free") statistics tools rather than those of parametric statistics. The
discussion in this section ignores many issues and details related to the field of statis-
tics. We encourage you to refer to a text on probability and statistics to fill in the gaps.
An excellent book written for engineers and scientists is Ross (2004).

Performance metrics measure how well (or poorly) your system is performing.
What the performance metrics do not tell you is whether differences in system per-
formance as reflected in fitness values are statistically significant. Inferential statistics
tools can be used to assess statistical significance. However, we must be very cautious
about which tools we use.

Percent Correct

You have probably taken a statistics course (or have studied it on your own)
during your educational process. It is likely that you studied parametric statistics
tools (such as the Student's t-test and the analysis of variance) almost exclusively.
For results to be valid using parametric statistics tools, however, the underlying dis-
tribution of data must be normal, or exponential, or of some other specified form.

The datasets we deal with in computational intelligence, such as lists of fitnesses,
usually do not conform to any particular type of distribution. They may be anything.
Most of the time they are just lists of real numbers.

This is where nonparametric statistics come in. They do not assume that the
data are in any particular parametric form. Any nonparametric tool can thus be
applied without regard to the data distribution form. We discuss two nonparametric
statistics tools in this chapter: the Mann-Whitney U test and the chi-square test. The
Mann-Whitney U test provides a powerful tool for analyzing the performance of
evolutionary algorithms. It is both useful and easy to use. The chi-square test can
be applied to the analysis of structured sequences or patterns by systems adapted to
examples. An example is a system that simulates some process, such as a biological
process, that can be described statistically.

To learn more about nonparametric statistics, we suggest you refer to the book
that most people consider the foundation book in the field, Siegel (1956). This book
is both comprehensive and easy to read.

Now that we've covered general issues related to performance metrics, we will
discuss some specific examples. They are not discussed in any particular order.

Percent Correct

Because it is, at least on the face of it, the simplest, we describe first the measurement
of computational intelligence system performance by determining the percent cor-
rect obtained in a particular situation. This is simply the percentage of all answers
that were judged to be correct according to some gold standard. A value for percent
correct is obtained for training, testing, and validation. It should be noted that, for
some applications, the concept of percent correct is not particularly useful, such as
in the composition of music and in the simulation of a system; other measures, or
metrics, are then used.

Once one has made the selection of training/testing patterns, the selection of
representative samples, and the selection by expert end users of the process to be
used in designating the gold standards, the calculation of percent correct is relatively
straightforward. There is still, however, the issue of how to interpret the different
values of percent correct obtained for the testing and training sets. (We discuss the
issue of interpreting error values for training and testing elsewhere in this book, but
we emphasize here that it is important to use different sets of cases (patterns) for
training and testing.)

Chapter TenmPerformance Metrics

Note that neural network implementations often establish ranges within which
answers are considered correct. For example, if the output can vary from 0 to 1, then
any output in the range 0.8 to 1.0 might be considered as a 1 and any output in the
range of 0.0-0.2 might be taken as a 0. In a more extreme case, anything above 0.5
may be considered a 1 and anything <= 0.5 a 0. Manipulating the percent correct
metric like this introduces subjectivity, but makes it more useful in a practical sense,
since we are almost never able to train a network to exactly the target values (and if
we did, it would be seriously overtrained and unable to generalize).

Percent correct has limitations as a performanc~ metric, as is illustrated by the
following example. Suppose that out of a group of 100 stocks, a computational intel-
ligence tool accurately predicted 90 percent of the time last month which stocks
would outperform the Dow Jones average on a percentage basis. Stocks that did
less well than the Dow Jones average were predicted with 60 percent accuracy. This
month, only 85 percent of the stocks outperforming the Dow Jones average were
accurately predicted and only 55 percent of the stocks that did less well than the
Dow Jones average were accurately predicted. Overall ability to predict, however,
improved.

To see how this is possible, suppose that half of the stocks last month were in each
of the two categories. The overall performance was thus (90 * 0.50) + (60 * 0.50)
- 7 5 percent correct. Further suppose that this month 70 percent of the stocks
outperformed the Dow Jones average. The performance was thus (85 * 0.70)+
(55 * 0 . 30) - 76 percent correct. Overall predictive accuracy therefore increased,
even though the predictive accuracy on the individual metrics decreased. Part of
this seeming contradiction results because the proportions of instances of the cat-
egories (i.e., those that outperformed the Dow Jones average) were unequal in the
two months.

The example shows that percent correct can be misleading if it is the only method
of evaluating performance. In the example, we might have chosen a computational
intelligence system trained on the second set of data over one trained on the first
set, even though the two systems may have been identical. The following sections
describe performance metrics that can be used in place of, or in addition to, percent
correct.

Average Sum-squared Error

As is discussed in Chapter 6, the goal of neural network adaptation when using
the back-propagation algorithm is to minimize the average sum-squared error. The
average sum-squared error is obtained by computing the difference between the
output value that an output PE is supposed to have for a pattern k, called bkj, and
the value the PE actually has as a result of the feedforward calculations, called Zkj.
This difference is squared, and then the sum of the squares is taken over all output

Average Sum-squared Error

PEs. Finally, the calculation is repeated for each pattern in the testing or training
set, as applicable. The grand total sum over all PEs and all patterns, multiplied by
0.5, is the total error Et, as given in equation 10.1.

05 Z Z (b -z jt 2 (10.1)
k j

The total error is then divided by the number of patterns to yield the average sum-
squared error.

There are a few things relative to average sum-squared error that are worth con-
sidering. They relate to being able to compare results. First, the original definition of
average sum-squared error made by Rumelhart and McClelland (1986) includes the
multiplier 0.5, as discussed in Chapter 6. Many implementations ignore this factor
of 0.5 (it reduces calculation time to eliminate it), but it is important to be aware of
how the error term is calculated in your neural network implementation and in any
one with which results are being compared.

Second, the error term is summed over all output PEs. This is also the way it
is defined by Rumelhart and McClelland (1986). A potential problem is that if you
happen to be using various network configurations with different numbers of output
PEs, the average sum-squared error may not accurately reflect the performance of
the network.

It is possible, for example, to train a network with one output PE to a given
error, then find that the error increases when essentially the same net with several
output PEs is trained. The performance of the network as measured by percent
correct may have increased at the same time as the average sum-squared error (per
pattern) increased. It is therefore important to keep in mind that average sum-
squared error, as it was originally defined, means that it is averaged by dividing
by the number of patterns in the training or test set, not that it is averaged on
a per-PE basis. It will probably be desirable, for many applications, to compute
the error per PE by dividing the average sum-squared error (per pattern) by the
number of output PEs. This metric is called the average per PE sum-squared error.

Because the average per PE sum-squared error is often used in conjunction with
the neural network back-propagation algorithm, when used as a performance metric
it is frequently used with a back-propagation implementation. There is no reason,
however, why it can't be used with other CI paradigm implementations, such as
learning vector quantization and fuzzy expert systems, as long as the correct values
of the outputs are known.

It should be cautioned that the average sum-squared error measure (whether per
pattern or per PE and per pattern) may not adequately measure the network perfor-
mance in some instances. For example, depending on the threshold value selected in
a back-propagation model, the average sum-squared error may not accurately reflect
the performance of the neural network implementation.

Chapter Ten--Performance Metrics

The threshold value is the number, between 0 and 1 for a sigmoid activation
function in a back-propagation implementation, above which an output PE is
considered to be on and below which it is off. The most common value selected
for the threshold is 0.5, but a different value, such as 0.7 or 0.8, may be more
appropriate for some applications.

Following are two cases for which the values of the average (per pattern) sum-
squared error are somewhat misleading. Assume that there is only one output PE
(so the error is also a per PE error), ten patterns in the set, and a threshold value of
0.5. Also assume that for five of the patterns the output PE should be on and for the
other five it should be off.

If the values of the output PE for the on patterns are always 0.6 and always 0.4
for the off patterns (the error is always 0.4), then, with the threshold value of 0.5,
the network is classifying all ten patterns correctly and is thus performing perfectly,
based on percent correct. The average per pattern (and per PE) sum-squared error
is [10(0.16)]/10, or 0.16.

Now consider a case in which the output PE has a value of 0.9 for all on patterns
and 0.1 for all offpatterns except two, for which it has a value of 0.6. Thus it is getting
eight of the ten patterns correct, so it is 80 percent correct, which is less than the
previous case. The average sum-squared error, however, is [8(0.01) + 2(0.36)]/10
= 0.08, only one-half of the value in the previous example in which the network
exhibited perfect performance.

For cases in which the threshold is a value such as 0.5, it may be more appro-
priate to calculate the average sum-squared error based on values (or a single value)
other than 0 and 1. With a threshold of 0.5, for example, it may be more meaningful
to calculate an error value only for those PEs that are on the incorrect side of the
threshold and to use the threshold as the desired value.

In the first of these two examples, then, this threshold-based average sum-
squared error is 0, whereas in the second case it is [2(0.01)]/10, or 0.002. This
method of error calculation seems to provide a more realistic picture of the network
performance in these examples.

Absolute Error

For many people, average sum-squared error has little meaning at an intuitive level.
Seldom, if ever, are errors measured and then squared to help a human understand
a system's performance.

A more intuitive error measure is the absolute error. One metric incorporating
the absolute error that is often used is mean absolute error, defined in equation 10.2
on a per PE per pattern basis, where rn is the number of patterns and q is the num-
ber of output PEs. Another metric using absolute error is the m a x i m u m absolute

error, which is just the maximum value of absolute error for any single pattern in

Normalized Error

the test set. As can be seen, absolute error is analogous to sum-squared error, with
the absolute value of the error replacing the sum-squared term.

1 m q

Ema = mq E E I bkJ--YkJ l
k - l j - 1

(10.2)

Normalized Error

A problem with the average per PE sum-squared error is that it is corrupted by the
target variances of the output PEs. It is therefore desirable to have some error metric
that is independent of these variances.

For those of you who are not statisticians and, like the authors, have forgotten
most of what little statistics you ever knew, a brief discussion of variance may be
helpful. For more information, refer to a book on statistics, such as the ones by
Armitage and Berry (1987) and Ross (2004).

Variance is the average of the squared deviations from the mean. It is often
referred to as the mean square. Two slightly different versions of variance exist:
the population variance and the sample variance. Although there is sometimes
disagreement about which should be used in descriptive statistics, the authors have
chosen to work with the population variance. In practical applications of neural
network tools, there is very little difference between them.

The population (target) variance for a single output PE zj is represented as a 2,

and the equation for the target variance is given in equation 10.3, where/~j is the
population (target) mean, or the average of a given output PE's target values for all
of the patterns, and m is the number of patterns. The standard deviation, by the way,
is just the square root of the variance, or the root mean square (rms); therefore, the
standard (target) deviation for a single output PE is represented as aj.

m

(bkj - /~j) 2
2 k--1 3) a = (10.
J m

An error measure that removes the effects of target variance and yields an error
value between 0 and i for all networks regardless of configuration was developed by
Pineda (1988). This error measure involves the calculation of a quantity defined in
equation 10.4 that Pineda calls Emean, which is the sum of squared deviations of the
target values about the target mean. Note that for a given training pattern dataset or
test pattern dataset, Emean remains constant.

Chapter Ten--Performance Metrics

Emean = 0.5 ~ ~ (bkj-/~j)2
k j

(10.4)

Now, the normalized error, En, (see equation 10.5) is defined as the total e r r o r Et
(defined in equation 10.1) divided by Emean (defined in equation 10.4).

Et (10.5) En = Emean

As Pineda explains, En is particularly useful for back-propagation neural net-
works because regardless of network topology or the particular application, a back-
propagation network learns relatively easily the pattern represented by the average
target values of the output PEs. This is sort of a "worst case," in which the network
is "guessing" the correct output to be the average target value and results in a value
of En = 1. As the patterns are learned, the normalized error value moves toward 0.
The speed of movement depends on the network architecture and the application.

A word of caution is appropriate here. Think about what would happen if you
had an output PE in your network that never changed value. Every target value
would be equal to the mean value ~j, and Emean would be 0, making the normalized
error "artificially" larger. This situation isn't as farfetched as it may seem. On more
than one occasion, the authors have trained a network with several output PEs using
only a partial training set (i.e., one that didn't contain one or more of the output
classifications). For the missing classifications, of course, the corresponding output
PE values were 0. We suggest that you remove PEs that don't change value.

One way to look at the normalized error is that it reflects the proportion of the
output variance that is due to error rather than the architecture (including the initial
random weight values) of the network itself. Overall, it is believed that this error
measure may be, in many cases, the most useful one for back-propagation neural
network implementations.

Evolutionary Algorithm Effectiveness Metrics

Two metrics for the effectiveness of genetic algorithms (GAs) were described by
De Jong (1975). These metrics, however, are appropriate for any evolutionary comp-
utation implementation that "evolves" a population of solutions. De Jong named
these metrics off-line performance and on-line performance.

When an evolutionary computation system (or any other optimizer) is being
run off-line, many system configurations can be evaluated (the fitness calculated)
and the best configuration selected. For on-line work, however, configurations must

Mann-Whitney U Test +@
be evaluated in real time, and therefore the usual goal is to develop an acceptable
solution as soon as possible.

The on-line performance, which measures the ongoing performance of a system

configuration, is defined in equation 10.6, where fs(g) is the average population fit-
ness for a system configuration s during generation g, and G is the number (index)
of the latest generation.

G
ponline 1 (10.6)

g=l

The off-line performance measures convergence of the algorithm and is defined
in equation 10.7, where ~ (g) is the best fitness of any population member in gen-
eration g for system configuration s. Off-line (convergence) performance is thus the
average of the best fitness values from each generation up to the present.

G
pomine 1

= ~ E ~ s (g) (10.7)
g=l

Mann-Whitney U Test

The Mann-Whitney U test is a useful and easy-to-use tool for analyzing the perfor-
mance of evolutionary algorithms. It is reported to have been developed indepen-
dently by Mann and Whitney (1947) and by Wilcoxon (1945). It is thus variously
referred to as the Mann-Whitney-Wilcoxon test or the Wilcoxon rank-sum text.

The test evaluates whether the medians of two samples of data are the same.
The null hypothesis is that the medians are equal, and the two samples have the
same distribution (Siegel 1956). The samples must comprise ordinal or continuous
measurements so that it is possible to say which of two measurements is greater.

The number of measurements in each of the two samples, nl and n2, need not
be the same. Also, results with significance at the 0.05 level (and sometimes even at
the 0.01 level) can often be obtained with values of nl and n2 of 10 or fewer, thus
making the test easier to use than tools that require more measurements in order to
achieve useful significance levels.

In this section, we describe how to calculate U when n l and n2 are each less than
20. With larger values for nl and n2, Mann and Whitney (1947) demonstrated that
the sampling distribution of U approaches a normal distribution. It is unlikely that
you will need to calculate U for large values of n l and n2, but if you do, please refer
to a text describing the Mann-Whitney U test such as Siegel (1956).

Chapter Ten--Performance Metrics

We will illustrate the calculation and interpretation of U two ways. The first
method is quick and direct and should provide you with an understanding of the
U statistic. The second uses a formula and will probably be your method of choice
when using a computer. (Most statistical packages for PCs include the Mann-
Whitney U test.)

We consider two samples of best fitness values obtained when running an evo-
lutionary algorithm with two configurations. Assume that we are running a min-
imization problem, with an optimum of 0.0. One or more algorithm parameters
are different for each of the two runs. (Perhaps we have changed the crossover and
mutation rates for a GA or altered the inertia weight for a swarm.) We call the con-
figurations, and the samples reflecting those configurations, A and B, where B is our
"baseline" configuration. Say that we make five runs with configuration A and obtain
best fitness values of 0.079, 0.062, 0.073, 0.047, and 0.085. With configuration B our
best fitness values are 0.102, 0.069, 0.055, and 0.049. The values for nl and n2 are
thus 5 and 4, respectively.

First, we arrange these measurements in the order of fitness, keeping track of
which belong to A and which to B:

0.047 0.049 0.055 0.062 0.069 0.073 0.079 0.085 0.102

A B B A B A A A B

We now have a list ranked by fitness, with better fitness values to the left in the table.
The simple and direct method of calculating U is to count the number of A entries
that are better than (to the left of) each of the B entries. We thereby obtain a value
o f U o f l + 1 + 2 + 5 = 9 .

You can also calculate the number of B entries that are better than each of the
A entries and obtain an answer of 0 + 2 + 3 + 3 + 3 - 11. Let's call this result U'.
The statistic U is the smaller of these two possible calculations. If you are not sure
whether you've done it the right way, it is helpful to know that U and U' are related
as follows: U = nl n2 - U' Remember, always choose the smaller of the two.

To calculate U using a formula, we first arrange the measurements as before.
Recall that in the preceding table the ranks go from 1 to 9 as you go from left to
right. We first add up all of the ranks for one of the samples. For A, this sum of ranks
is 1 + 4 + 6 + 7 + 8 = 26. Since this sum of ranks is associated with nl, we call it R1.
The total sum of all ranks is N (N + 1) / 2, where N = n l + n2, so we can calculate
the sum of ranks for B as 45 - 26 = 19, which we call R2. (You can also calculate it
as we did for A: For B, the sum of ranks is 2 + 3 + 5 + 9 - 19.)

We then calculate U as the smaller of the values obtained as in equations 10.8
and 10.9.

nl (hi + 1)
U = nln2 + - R 1 (10.8)

2

Mann-Whitney U Test

or, alternatively,

n2 (n2 + 1)
U = nln2 + - R 2 (10.9)

2

Using equation 10.8, we obtain a value for U of 20 + 1 5 - 26 = 9. Using
equation 10.9, we calculate U as 20 + 10 - 19 = 11. These are the same values
we obtained by the direct method. We assign the lesser value of 9 to U.

We now determine whether or not the null hypothesis is rejected at some signif-
icance level by referring to a table of critical values of U for the combination of nl
and n2. In Table 10.1, if a calculated U for a pair of samples of sizes nl and n2 is less
than or equal to the value given in the table, then the null hypothesis may be rejected
at a significance level of 0.05 for a one-tailed test. (This test is usually configured so
that the region of rejection is one-tailed and comprises all values of U sufficiently
small that the probability of their occurrence under the null hypothesis is less than
or equal to the significance level.)

In the case we just calculated, the entry in the table for nl of 5 and n2 of 4 is
2, so the null hypothesis is not rejected. That means that we cannot say that one
configuration produces fitness values that are significantly higher than the other.

Table 10.1 Critical Values of the Mann-Whitney U
for Small Values of nl and n2

i~ ' :" " ~ : " ~ * : - ' t ~ ~ " ' ':: '~..Iz =' : " ~' ~'::" ~':':':~ ;".~'*" ~-*" .~." '".:~:~":" ::~::"~{ '::':":~::*~"~i '1 ' ~ '~y::~::::":ii~::".~:~'~ ' i i ' ~ :< '~ :~ '-~;'~::.':~~.~::"~""~ ":~":.~:~{~ ~:i~.~ '~::~ ' ~:'.~:"#;~:::~ i~;,~: i =':': ":'~i"~!~:#.~:~:"~i:i.~'~{i::i~=:#~..

3 0 0 1 2 2 3 4 4

4 0 1 2 3 4 5 6 7

5 1 2 4 5 6 8 9 11

6 2 3 5 7 8 10 12 14

7 2 4 6 8 11 13 15 17

8 3 5 8 10 13 15 18 20

9 4 6 9 12 15 18 21 24

10 4 7 11 14 17 20 24 27

Chapter Ten--Performance Metrics

In our test case, even though one of the runs using configuration A had the highest
fitness of the nine runs, we cannot say that configuration A is significantly better
than our baseline configuration B to a significance level of 0.05.

Now, let's test another configuration of the EC tool. Let's call this configuration
C. As before, we make five runs using configuration C and compare the fitness values
with the four baseline cases using configuration B. Ignoring the specific fitness values
for purposes of this illustration (since the rank is all that matters), we obtain:

IclclclcIBIBIclBIBr
Using the simple and direct method of calculating U, we count the number of C

entries that are better than (to the left of) each of the B entries. We thereby obtain a
value of U of 4 ÷ 4 + 5 + 5 - 18. Counting the number of B entries that are better
than each C entry, we obtain an answer of 0 + 0 + 0 + 0 + 2 = 2. Therefore, U
has the lesser value of 2. The same answer can be obtained using equations 10.8 and
10.9. In this case, since the value of U is less than or equal to the value in Table 10.1,
we can say that our new configuration C is statistically better than our baseline con-
figuration B, and the null hypothesis is rejected at the 0.05 level.

Note that Table 10.1 is only a partial table of critical values of the Mann-Whitney
U and is valid only for one-tailed tests at the significance level of 0.05. Tables that are
valid for values of nl and n2 up to 20, for other significance levels and for two-tailed
tests are available in statistics texts and on the Internet by searching for "Mann-
Whitney U test." Remember to refer to a statistics text such as Siegel (1956) if you
want to use n l or n2 of more than 20, at which point the sampling distribution of U
is rapidly approaching the normal distribution.

The Mann-Whitney U test is a powerful tool for evaluating EC implementations.
It is, of course, also applicable to the analyses of neural network, fuzzy system, and
computational intelligence systems using a wide variety of fitness measures such as
percent correct and normalized error.

Receiver Operating Characteristic Curves

Another way to measure the performance of a computational intelligence system
is with receiver operating characteristic (ROC) curves. For some generalized appli-
cations, these curves are called relative operating characteristic curves. The use of
these curves dates back to the 1940s for both electronic communications systems
and the field of psychology. More recently, the use of ROC curves has been described
as useful for measuring the performance of diagnostic systems, including those that
use expert systems and neural networks (Adlassnig and Scheithauer 1989; Centor
and Keightley 1989; Green and Swets 1966; Hanley and McNeil 1983; McClish 1987;
Meistrell and Spackman 1989; Swets 1964, 1988).

Receiver Operating Characteristic Curves

ROC curves provide a means to quantify the accuracy of an automated
diagnostic or classification system by comparing the decisions or classifications of
the system, such as one that contains a neural network implementation, with a "gold
standard." ROC curves are particularly valuable tools when they are used with neu-
ral network and other computational intelligence systems because the results are not
sensitive to the probability distribution of training or testing cases (patterns) or to
decision bias.

The curves can be generated and compared qualitatively with little regard for
their statistical attributes. The use and interpretation of these statistical attributes
have, however, become increasingly popular. For example, the calculation of (and
understanding the meaning of) the area under the ROC curve has become a com-
mon way of evaluating system performance.

An ROC curve is generated for, and reflects, the system's performance for one
given result such as a particular diagnosis or classification. It indicates how well the
system did, compared with a gold standard, in making a given diagnosis or a given
decision. The ROC curve thus represents the performance of one output PE in a
neural network application or one diagnosis or classification in a fuzzy expert sys-
tem. The discussion that follows focuses on the use of a one-PE curve, but the use
for multiple-output PE cases is reviewed in the literature (Hanley and McNeil 1983;
McClish 1987).

For a given decision, indicated, for example, by a given output PE in a neural
network implementation, four possible alternatives exist. These are illustrated in
Table 10.2, which shows the contingency matrix used in the definition and com-
putation of ROC curves.

The first alternative is a true positive decision (TP), in which the positive
diagnosis of the system coincides with a positive diagnosis according to the gold
standard. For example, the system may have identified a tumor that was also
identified by an oncologist. The second is a false positive decision (FP), in which
the system made a positive diagnosis that was not included in the gold standard;
this would mean that the system identified a tissue mass as a tumor, but the
oncologist did not. The third possibility is a false negative decision (FN), in which
the gold standard made a positive diagnosis that was not made by the system. This

Table 10.2 Contingency Matrix Used in ROC Curve Definition

Positive

Negative

Gold
Standard
Diagnosis

System
Diagnosis

Positive

TP
(true positive)

EP
(false positive)

Negative

TN
(false negative)

TN
(true negative)

Chapter Ten--Performance Metrics

is analogous to the oncologist identifying a tissue mass as a tumor when the system
failed to do so. The fourth possibility is a true negative decision (TN), in which
both the gold standard and the system indicate the absence of a positive diagnosis
(neither the oncologist nor the system identified the tissue mass as a tumor).

The ROC curve makes use of two ratios involving these four possible decisions.
The first ratio is TP/(TP + FN), which is generally called the true positive ratio; it
is also called, for some applications, the sensitivity. The second ratio is FP/(FP +
TN), generally called the false positive ratio. Because the ratio TN/(FP + TN), gen-
erally called the true negative ratio, is also called the specificity, it follows that the
false positive ratio is the same thing as (1 - specificity). Sensitivity and specificity
are discussed in more detail later.

The ROC curve is a plot of the true positive ratio versus the false positive ratio.
When applied to the performance of neural network implementations, the curve
is usually obtained by plotting points for various values of the PE threshold, then
connecting the points with either line segments or a smooth curve. A typical way
to proceed is to plot points for a number of PE threshold values, for example, 0.1,
0 . 2 , . . . , 0.9. To plot the points for the true positive ratio versus false positive ratio,
each of the four possible decisions in the contingency matrix must be calculated for
each chosen value of the PE threshold.

Another way to plot the ROC curve is to use actual output PE values obtained for
a training or test set. A given output PE is typically trained to respond with either a 1
or a 0, depending on the input pattern. When the set of patterns is actually presented
to the network, whether it is the last iteration for the training dataset or the one and
only iteration for the test set, the PE typically responds with outputs close to but not
equal to 1 or 0 for most patterns. A few patterns may result in values scattered in
between.

The process is to use the output values, rather than the fixed values, of the PE
threshold as the "break points" for calculating the ROC curve. Again, the values for
each ofthe four possible decisions must be calculated for each value ofthe output PE.

Figure 10.1 illustrates a hypothetical case involving two configurations of a neu-
ral network implementation that result in the two ROC curves shown. The curve
representing the configuration of NN2 reflects better overall system performance
than that of NN 1. The dotted line drawn along the major diagonal where the true
positive and false positive ratios are equal represents the situation in which no
discrimination exists. In other words, a system can achieve this performance solely
by chance. When the curve follows the left vertical and upper horizontal axes, the
system is discriminating perfectly. In this case, for all values of the false positive
ratio, the true positive ratio is one.

From this brief discussion, it is evident that the ROC curve has two attributes:
It always lies above the major diagonal, and it is always monotonically increasing in
value from left to right. This discussion also implies that a single-value performance
measure of a system might be obtained by measuring the area under the ROC

1.0

True
Positive 0.5
Ratio

0.0

Figure 10.1 Examples of ROC curves.

Receiver Operating Characteristic Curves

sssss ts t SSSSSSS

s s s s s s s s

0.0 0.5 1.0
False Positive Ratio

curve. This is, in fact, the preferred measure of system performance using the ROC
curve.

Note that the total area of the graph is one square unit, and the area under
the ROC curve is just the proportion of the entire graph lying beneath the curve.
Also note that the area under the curve is always between 0.5, the area under the
diagonal when no discrimination exists, and 1.0, the area corresponding to perfect
performance.

There are two main ways to calculate the area under the ROC curve. One is to
generate a smooth curve through the points and calculate the area under it. An easier
way is to connect the points with straight-line segments and calculate the area under
it using the trapezoidal rule. The trapezoidal rule simply means taking the average of
two adjacent values of the true positive ratio (y-axis values) and multiplying by the
corresponding false positive ratio interval along the x-axis, then adding all of these
individual segment areas together to obtain the total area.

It should be obvious that an ROC curve requires some minimum number of
points if a reasonably smooth curve is to be plotted or if the area under a curve
constructed of straight-line segments between adjacent points is to have meaning.
Generally speaking, an absolute minimum of 5 points should be used to construct a
smooth curve, and 9 or 10 will give a reasonably fine-grained structure from which
to calculate an area from straight-line segments.

The information represented by an ROC curve can be used in a number of ways.
For example, the shape of the curve can indicate the sensitivity of the system per-
formance to the threshold value. As another example, the shape of and area under
the ROC curve may reflect changes in network parameters (such as eta and alpha
in a back-propagation network) or adaptation regimens (such as the number of
training epochs) more sensitively than other performance measures such as percent
correct.

Chapter Ten--Performance Metrics

Caution should be observed when interpreting ROC curves. For example, it is
possible for two ROC curves with the same area to intersect (one will have higher
values on the left side ofthe plot, the other on the right). One will thus exhibit better
performance with respect to false positives, the other with respect to false negatives.
Depending on the relative importance (or cost) associated with each of these error
types, one or the other curve will represent the more desirable system.

Also, it is important that a sufficient number of cases be analyzed so that the true
positive and false positive ratios represent system performance over the range of
operating environments. This means at least a couple of things. First, enough cases
should be used so that the ratios at each value of threshold chosen to plot the curve
are valid. Second, the developer may want to obtain data from the system at points
not necessarily of interest otherwise (in the case of a neural network, for example,
threshold values near 0.5).

Networks typically are trained to values of 1 and 0. In a well-performing net-
work with just one or two output PEs, then, not many, if any, cases will be available
that result in output activation values around 0.5. Techniques involving network
inversion, or evolutionary, computation tools (described Chapter 9), can be used to
obtain such cases. In systems with numerous output classes or diagnoses, it is more
likely that cases resulting in activation values around 0.5 for most of the output PEs
will exist.

Other parameters and measurements associated with the ROC curve might prove
useful in some applications. The standard error, for example, can help in assessing
the reliability of the calculation of the area. The discussion of these items is beyond
the scope of this book, but a number of references are available that will assist in
further pursuit of the subject (Hanley and McNeil 1982, 1983; McClish 1987;
Meistrell and Spackman 1989).

Note that ROC curves and their associated contingency matrices do not take into
account the prior probabilities of the event and nonevent (or class and nonclass) rep-
resented by the output PE. Prior probabilities do, however, enter into the calculations
for the confusion matrix, discussed later.

Recall and Precision

Several ways of looking at the performance of a neural network or other computa-
tional intelligence system use the four possible decisions defined in the contingency
table (refer to Table 10.1) and in the definition of ROC curves. One way is the use of
metrics that have been familiar in the fields of expert systems and databases: recall
and precision (Saito and Nakano 1988; Stanfill and Kahle 1986).

Recall is the number of positive diagnoses correctly made by the system divided
by the total number of positive diagnoses made by the gold standard. Recall is some-
times called the probability of detection. This is defined in the discussion on ROC

Other ROC-related Measures

curves as the true positive ratio and provides an indication of the relative number of
false negatives.

Precision is the number of positive diagnoses correctly made by the system
divided by the total number of positive diagnoses made by the system. In the
parlance of Table 10.1, this is TP/(TP + FP), and it provides an indication of the
magnitude of false positives.

Recall and precision are just another way of looking at the four quantities in the
contingency matrix; they "cut" the data in a different way than the sensitivity and
specificity parameters do. Which metric is most appropriate depends heavily on
the application and end users. Eberhart and Dobbins (1990) found that recall and
precision were a metric of choice when developing an epileptiform spike detection
system for use by neurologists (summarized in Chapter 12). In that application,
the number of true negatives had relatively little meaning, and the precision metric
provided more meaningful information than specificity.

Other ROC-related Measures

In this section, we summarize four performance metrics derived from the contin-
gency table (Table 10.1) that can often be more informative for characterizing
network performance than percent correct and that are easy to compute.

Sensitivity, or the probability of detection [TP/(TP + FN)], is the likelihood that an
event will be detected, given that it is present. It is likely to be especially impor-
tant when it is critical that an event be detected. For example, the detection of
AIDS is important because its consequences are severe.

Specificity, or the true negative rate [TN/(TN + FP)], is the likelihood that the
absence of an event will be detected, given that it is absent. For example, the
absence of a "blip" on a radar screen is likely to be an important event: perhaps
a downed airplane.

Positive predictive value, [TP/(TP + FP)], is the likelihood that a signal of an event
is associated with the event, given that a signal occurred. This is an especially
important statistic when it is imperative that a signal be attended to. For exam-
ple, neurology staff always pay attention to a signal spike in an EEG, especially if
the spike has a high probability of being associated with the corresponding
signal of interest.

False alarm rate, or the probability offalse alarm [FP/(FP + TN)] = [1 - specificity],
is the likelihood that a signal is detected (falsely), given that a nontarget event
occurred. It is easy to see where the name came from.

Accuracy, [(TP + TN)/(TN + FP + FN + TP)], indicates the probability of a correct
classification. It is the estimate of percent correct for a system.

Chapter TenmPerformance Metrics

Other ROC-related measures are especially useful when dealing with
"unbalanced data." For example, there may be very few cases of a rare disease in a
large database of medical symptoms and diagnoses. It is still important to achieve a
high accuracy on the diagnosis of this rare disease. Another example is correctly pre-
dicting loan defaults. Two metrics used for unbalanced data in situations such as this
are the geometric mean (G-mean) developed by Kubat (1998) and the
F-measure developed by Lewis and Gale (1994). They are defined in equations 10.10,
10.11, and 10.12, where PD is probability of detection, PR is precision, and SP is
specificity.

G-mean1 = sqrt (PD *PR)

G-mean2 = sqrt (PD * SP)

F-measure = [(~ + 1) *PR*PD]/(/~2*PR + PD)

(10.10)

(10.11)

(10.12)

In the calculation of F-measure,/3 can be any nonnegative value, and it manip-
ulates the weights assigned to PD and PR. If/~ is 1, which is a typical case, equal
weights result. The relative weights of PD and PR are problem-specific and should
be determined on a case-by-case basis.

Each of the ROC-related statistics described here can be computed at each
output location in a multiple-output neural network or other computational intel-
ligence system. If the outputs are mutually exclusive, the criterion for correctness
is based on the winning PE having the largest value, not on its merely being
above 0.5. If the output PEs are not mutually exclusive, then a criterion of 0.5 can
be used.

Examples of the former, with mutually exclusive categories, might be mammal,
fish, or bird. In such a case, only one can be considered correct. An example of cat-
egorizations that are not mutually exclusive are output PEs that indicate the pres-
ence of properties: warm-bloodedness, breathes air, and so on. Assuming in both
cases that the input vector is a list of primitive features for an animal, the latter
case clearly could contain instances of multiple correct categories (many animals are
cold-blooded and breathe air).

Confusion Matrices

An ROC curve (calculated from a contingency matrix) is useful when examining the
performance of a single output PE, or any other computational intelligence system
with one output. An analogous performance metric that is useful when a system has
multiple output classes represented by multiple PEs is the confusion matrix.

Confusion Matrices

For a system comprising n classes, an n x n matrix is constructed. The rows,
designated by the subscript i, reflect the "gold standard" classification. The
columns, designated by the subscript j, reflect the classifications as made by the
computational intelligence system (which could be a neural network with multiple
outputs). The entry in each position of the matrix represents the total count (total
number of instances, each represented by a pattern) of the situation that occurred
in the test set represented by that position.

The positions along the main diagonal of the matrix are those instances that were
correctly classified; for example, S33 is the number of instances of the third class that
were correctly classified. The positions off the diagonal represent errors: sij (i ~ j) is
the number of instances of the class i that were misclassified as belonging to class j.

Sometimes a column is added onto the right side of the matrix that represents
instances that could not be classified according to system decision criteria. For the
remainder of this discussion, however, it is assumed that an n x n matrix is used.

There are several ways to use information in a confusion matrix. In any case,
the matrix is prepared by first performing calculations row by row (one "gold
standard" class at a time). The first step in interpreting the matrix is to calculate
each "class confusion" by dividing each matrix entry by the total count of instances
in its row (gold standard class). The numbers in each row now add to 1.0. Note that
the contingency matrix used to calculate the ROC curve is just a class confusion
matrix with n - 2.

The resulting class confusion matrix can now be used to calculate an average per-
cent correct for the system by adding all of the entries on the main diagonal of the
matrix and dividing the result by the number of classes. Note that this may not be a
"true" percent correct unless all classes have the same prior probabilities, but it can
be a useful measure, particularly if no more information is available.

In order to further use the matrix for calculating cost information, it is neces-
sary to know the prior probability of each class. Each element in the class confusion
matrix is then multiplied by the prior probability for the class represented by the
row where the element is located. Each value in the matrix represents a probability
of occurrence: The sum of all matrix values is now 1.0.

The last step in interpreting the confusion matrix is to multiply each element in
the matrix by its cost. It is often assumed that correct classifications (on the main
diagonal) have associated costs of 0. It is necessary to know the cost of each type of
misclassification accurately in order to make the best use of a confusion matrix. It
is sufficient for many purposes if the cost ratios among all of the misclassifications
are known. The total cost is then calculated by summing all of the individual costs.
Note that subjective measures of cost, such as pain incurred because of a mistaken
medical diagnosis, are not acceptable for inputs to the confusion matrix. The results
are very sensitive to both prior probabilities and costs.

Let's work through an example of a confusion matrix. We'll assume that we have
a medical diagnostic system with three possible diagnoses: A, B, and C. We have

Chapter Ten--Performance Metrics

trained a back-propagation neural network with 50 cases of each diagnosis. (We
often use about the same number of each output class, diagnosis in this case, to train
a network, as discussed in the first part of this chapter.) We know from an extensive
database of case histories that the prior probabilities of the three classes are 0.60,
0.30, and 0.10, respectively.

We next use 50 cases of each diagnosis (that were not used in training) to test the
system. It may or may not be realistic to expect that we will have 50 test cases for each
diagnosis. (Keep in mind that the probability of diagnosis C is only 10 percent. Ifwe
need 50 cases of C for training and 50 for testing, that implies that we have about
1,000 cases from which to draw data. If, for example, we have only about 800 cases,
we could end up with only about 30 cases of C for testing.) The results are depicted
in Table 10.3, where the gold standards are represented by the rows. Then the class
confusion matrix is formed by dividing each entry by the total number of instances
in its row as in Table 10.4.

We now multiply each element in Table 10.4 by the prior probability for each
class, resulting in the final confusion matrix of Table 10.5. Each element in the matrix
is now the probability for each application of the diagnosis tool of that outcome.

Before we go on to calculate costs (and inject some reality into this example),
let's look at what we have so far. We have a diagnostic system that performs with an
accuracy of 82.8 percent (the sum of the main diagonal values). On the surface, it
appears that we are doing pretty well with respect to the third diagnosis, C.

Table 10.3 Test Results for Medical Diagnostic Example

A

A 40 8
Gold

Standard B 6 42
Diagnoses

C 1 1

CI System
Diagnoses

B C

2

48

Table 10.4 Class Confusion Matrix for Medical Diagnostic Example

A
Gold

Standard B
Diagnoses

C

CI System
Diagnoses

A B C

0.80 0.16 0.04

0.12 0.84 0.04

0.02 0.02 0.96

Confusion Matrices

Table 10.5 Final Confusion Matrix for Medical Diagnostic Example

Cl System
Diagnoses

A B C

A 0 .480 0 . 0 9 6 0.024
Gold

Standard B 0 .036 0 . 2 5 2 0.012
Diagnoses

C 0 .002 0 . 0 0 2 0.096

However, now is when we inject reality. The medical diagnosis represented
by A is a condition that can be cured by an over-the-counter drug available at
any drugstore that costs, say, $10. Medical diagnosis B is a more serious medical
problem that requires aggressive treatment with a prescription antibiotic that costs,
say, $100. Condition C is a very serious condition that requires hospitalization
and surgery, with a total cost of $5,000. And, by the way, if condition C is not
diagnosed right now, the patient has only a 20-percent chance of survival. Although
it is impossible to assign a dollar value to a human life, let's say that the average
insurance policy of these patients is $100,000, and use that value, crass as it may
appear. That means that each misdiagnosed condition C will result in an average
cost of $80,000 (80 percent chance of death times $100,000 life insurance policy).
We ignore the millions of dollars for which the hospital or clinic may be sued by
a malpractice attorney.

We stated previously that it is often assumed that correct classifications have zero
cost, but it should also be apparent by now that the costs of the correct diagnoses in
this example are not zero; they are $10, $100, and $5,000 for A, B, and C, respectively.
A diagnosis of A as B will cost $100 (misdiagnosis) plus $10 (eventually a correct
diagnosis). Our cost of a diagnosis of B as A will be $10 (incorrect diagnosis) plus
$100 (eventually a correct diagnosis). Likewise, a misdiagnosis of B as C is assumed
to cost $5,000 (misdiagnosis) plus $100 (correct diagnosis) plus a very angry patient
(no cost assigned). And so on. Our final cost matrix is in Table 10.6.

Table 10.6 Final Cost Matrix for Example Problem

A 4.80
Gold

Standard B 3.96
Diagnoses

C 160.02

CI System
Diagnoses

B

10.56

C

120.24

25.20 61.20

160.20 480.00

Chapter TenmPerformance Metrics

The figures in Table 10.6 tell us that the average estimated cost of each application
of the diagnostic system is $1,026.18. There are two main ways to reduce this average
estimated cost. The first is to reduce the costs for the treatments of the three con-
ditions. We probably have little or no control over those costs, however. The most
obvious way to reduce costs is to lower the costs of missed diagnoses, and the most
obvious place to start is with the misdiagnoses of condition C.

The cost calculations from confusion matrices can be used in a variety of ways
to fine-tune a computational intelligence system. For example, a system can first
be trained and tested using whatever methodologies are appropriate. For example,
a neural network-based diagnostic system is trained for the best performance on
the test set. Then, the threshold levels of the output PEs, or membership functions
of fuzzy sets, or whatever, can be adjusted by calculating the costs associated with a
variety of choices, choosing the combination that produces the lowest system cost. If
there is only one, or only a few PEs or membership functions, simple iterative proce-
dures can be used. If there are numerous outputs or functions, an evolutionary com-
putation tool can be used to find the best (lowest cost) combination. If appropriate
cost information is not available, the system can still be tuned so as to minimize the
off-diagonal numbers, the sum of which represents the percent incorrect.

Chi-square Test

At least one of the preceding performance metrics will probably be useful whenever
the supposed results are known. For example, in a pattern classification situation, if
the "gold-plated" classification is known in each case, it's relatively easy to tell how
well the system is doing its job. Depending on the specific application, the percent
correct, recall and precision, or some other measure can be calculated. What should
be done, however, if the "right" answers are unknown? This situation isn't as far-
fetched as it might seem at first glance.

An example is one of the main areas of application of neural networks described
in Chapter 1. The fourth area described is different from the other four in that no
classification is involved. Instead, it involves the generation of structured sequences
or patterns from a network trained to examples. The composition of music, based
on training to a given music style, is an example of this area. Another example is
the simulation of some process, such as a biological process, that can be described
statistically. In this general class of applications, the expected specific result of each
case may not be known, but an idea probably exists of what the statistical distribution
of results should look like. A useful measurement tool we can use in many such cases
is the chi-square test.

The chi-square test examines the frequency distribution of all of the categories
(or answers or classifications) that it is possible to obtain from a particular network
system. That is, it looks at how often each category is expected to occur versus

how often it actually occurs. The expected frequency of occurrence for a particular
category is defined as E, and the actual (observed) frequency of occurrence for that
category as O. Categories may be on a nominal, ordinal, or interval scale, but they
must be mutually exclusive and collectively exhaustive (Roscoe 1969).

The activation values of output PEs don't directly enter into the chi-square test.
Only the frequencies of occurrence of the output classes do. Of course, the chosen
threshold value plays a role in the selection of the winning output pattern, so the
output values play an indirect role. The values themselves, however, don't enter into
the chi-square calculation.

The chi-square test is used to determine whether a given set of output categories,
when compared with an expected distribution, has a variance from probability or a
predefined expectation greater than would be expected by chance alone. It should be
noted that the chi-square test assumes normally distributed data. If the data are not
normally distributed, performance may not be acceptable. Equation 10.13 presents
the chi-square calculation, where n is the number of categories.

1l
2 (Oi- Ei) 2

Z = E Ei
i=1

(10.13)

The calculation and interpretation of the chi-square test are now outlined. For a
detailed explanation, refer to any reputable book on statistics such as Armitage and
Berry (1987), Moore (2001), and Ross (2004).

Remember that the focus is on the frequency distribution of the output patterns.
If there are four output PEs in a neural network application, and the PE with the
largest activation (output) indicates the output classification ("winner take all"),
then n = 4, and the calculation is relatively straightforward.

Assume that in any test set of 50 patterns, the expected frequency distribution of
classifications is 5, 10, 15, and 20, respectively, for PEs 1 to 4. Suppose that for one
50-pattern test set, the frequency distribution obtained is 6, 10, 14, and 20 for PEs
1 to 4, respectively. Then chi-square for this first test set, as calculated by equation
10.13, is 0.267. Suppose that for a second test set, a distribution of 2, 15, 8, and 25
for PEs 1 to 4, respectively, is obtained. Chi-square for this second test set, calculated
by equation 10.13, is 8.82.

Now that values have been calculated, a determination must be made as to
how many degrees of freedom the system has, which corresponds to the number
of frequency distribution values required to uniquely determine the entire set of
values, given that the total number of tests is known. In the example case, if the
frequencies of occurrence are known for any three of the four output PEs, we can
calculate the fourth, given that the total number is known. Thus, there are three
degrees of freedom. (In general, if there are n output PEs, each representing exactly
one possible classification, then we can say that there are n - 1 degrees of freedom.

Chapter Ten--Performance Metrics

Or, if there are m classifications in a fuzzy expert system, there are m - 1 degrees
of freedom.)

The next step is to refer to chi-square distribution tables that you can find in a
statistics textbook or a collection of statistical tables. Along the row corresponding
to three degrees of freedom, under the probability of 0.950 is the value 0.352; under
the probability of 0.050 is the value 7.81. The results for the two test sets can now be
interpreted.

For the first test set, the hypothesis of no difference (sometimes called the null
hypothesis) between the expected and obtained distributions is sustained at the 0.95
level. Stated another way, no significant difference between the two distributions
exists with a probability exceeding 95 percent. (It is more than 95 percent probable
that the differences are due solely to chance.)

For the second test set, the null hypothesis is rejected at the 0.05 level. In other
words, there is a greater difference between the two distributions than would have
been expected by chance, with a probability of less than 5 percent that the difference
was due to chance.

Another way to interpret the results is by using a spreadsheet application such
as Microsoft Excel. To find the probability that the null hypothesis is sustained
or rejected, use the Excel command = C H I D I S T (2 '2 , d f) , where x 2 is the cal-
culated chi-square value and df is the degrees of freedom. In our example, enter-
ing =CHIDIST (0. 267 , 3) yields an answer of 0.966, and entering =CHIDIST
(8 . 9 2 , 3) yields an answer of 0.030. Using the spreadsheet software thus gives us

more precise answers. We now can say that for the first test set the null hypothesis
is sustained at the 0.966 level, and in the second test set the null hypothesis is
rejected at the 0.030 level.

We can use another command in Excel to generate the chi-square values given a
probability p and the degrees of freedom dr. The command is =CHIINV (p, df) .
So, for example, ifwe enter-CHIINV (0 . 9 5 , 3) , we obtain the value 0.352, the
value we saw in the chi-square table. You can thus build your own chi-square table
for particular ranges ofp and dfthat are of interest to you.

Now that the chi-square test and its use have been reviewed, a few comments
are appropriate. First, note that the chi-square test measures the performance of the
entire system at once, that is, all of the output PEs in the case of a neural network
implementation. Remember that the ROC curve is designed to analyze one output
PE at a time. The other side of that coin, however, is that it is necessary (for chi-
square) to determine exactly how many output combinations are possible.

For example, in a music composition situation, it could be that there are
20 output PEs: 14 that represent note values such as C and F# and 6 that represent
duration times such as quarter notes and half notes. In this case, there would be up
to 14 x 6 = 84 possible combinations. In the expected distribution, there may be
fewer than 84 if some combinations don't occur. It will be necessary to decide how
to handle these combinations with zero expected frequencies, if they are obtained,

Exercises

because it would be necessary to divide by 0 if the chi-square test were strictly
applied. It is also difficult to find chi-square tables with more than about 30 or 40
degrees of freedom.

In general, a good guideline is that you should use the chi-square test only when
20 percent or fewer of the expected counts are < 5 and all individual expected counts
are at least 1 (Moore 2001).

It should be obvious that, when using a computational intelligence system for
modeling or simulation, the goal is for the chi-square test to yield the smallest value
feasible. In other words, the goal is for the differences between the modeled and the
modeling systems' outputs to be so small that they are attributed to chance.

It would not be surprising if new learning algorithms were developed for neural
networks that replaced the back-propagation algorithm for modeling and simula-
tion applications. These algorithms could be based on minimizing of chi-square
values for the network as a whole rather than minimizing error values summed
over individual PEs. For other computational intelligence tools that use a single,
overall performance figure as a training (or testing) metric, such as simulators
based on fuzzy logic or a prediction system based on a reinforcement learning
neural network, the chi-square test could be the metric of choice.

Summary

In this chapter, we look at a variety of ways to measure the performance of a com-
putational intelligence system, ranging from cases where we can assign specific costs
to missed classifications and know the prior probabilities of each class (confusion
matrixes) to cases where we don't have any training data and only a general idea
of what to expect from a system (chi-square goodness of fit). In the next chapter
we consider ways to analyze and explain a system's behavior, including explanation
facilities that show the user what the system is doing.

Exercises

1. We have developed a diagnostic system with three possible diagnoses, Q, R, and S,
that are equally probable (0.333 each). Assume that the costs associated with the
three diagnoses are x, 2x, and 5x, respectively, and that the raw cost matrix com-
prises the base costs on the diagonal and the sum of the row and column values
for off-diagonal values, as illustrated in Table 10.7. (For example, Q misdiagnosed
as S costs x + 5x, and so on.) Actually, the cost of condition S is 10x, but we are
reimbursed 50 percent of the cost by Medicare, so our cost is 5x, and Table 10.7 is
valid. Assume that, despite the cost differences in diagnosing the conditions,
each diagnosis represents a relatively mild problem and none is more health-
threatening than any other; that is, none is more serious than a common cold.

Chapter TenmPerformance Metrics

Table 10.7 Raw Cost Matrix for Exercise 10.1

Q
Gold

Standard R
Diagnoses

S

CI System
Diagnoses

Q R S

x 3x 6x

3x 2x 7x

6x 7x 5x

Table 10,8 System I Results for Exercise 10.1

Q

Q 36
Gold

Standard R 2
Diagnoses

S 3

CI System I
Diagnoses

R

37 1

2 35

Table 10,9 System II Results for Exercise 10.1

Q
Gold

Standard R
Diagnoses

S

CI System II
Diagnoses

Q R S

30 10 0

8 37 0

1 0 39

Further assume that we have trained two computational intelligence diagnos-
tic systems, I and II, and the results are evaluated using the 40 cases of each dia-
gnosis we have for testing with the results, as shown in Tables 10.8 and 10.9.

How many patients are misdiagnosed in each case? Purely based on cost,
which of the two systems should be used? Assuming x is $20, what are the estima-
ted cost savings in 1,000 cases?

Now assume that the federal government announces that it will stop reim-
bursing us for S, so that our cost for correctly diagnosing S suddenly doubles to
10x. (Off-diagonal costs must be adjusted accordingly as well.) From a cost per-
spective, which diagnostic system should we use now? Why? Comment on this
method of selecting the diagnostic system.

Exercises

2. For a pattern set we are using to train a neural network, one-half of the target
values are 1 and one-half are 0. Calculate Emean. What happens to Emeanif targets of
0.9 and 0.1 are used instead of 1 and 0, respectively?

3. Train a neural network on the Iris dataset using the back-propagation imple-
mentation (see Chapter 6). Plot an ROC curve for each of the three output PEs,
using at least 10 values for the threshold value. Discuss your results.

4. Given the following set of targets and outputs, calculate the average sum-squared
error and the normalized error.

Target Output

1 .90

1 .87

1 .79

1 .89

1 .88

0 .12

0 .11

0 .21

0 .13

0 .10

Repeat your calculations, assuming that thetargets were 0.9 and 0.1 instead of
1 and 0, respectively, and the outputs were the same.

5. We are developing a simulation of the game of baseball. We want to measure how
well our system simulates the margin of victory. In general, we like the margin
of victory to be 1, 2, or 3 runs. A 4-run game isn't too bad, but games with mar-
gins of 5 or more runs are okay once in a while but aren't very interesting. So, after
consulting baseball statistics to see what the margin of victory was in American
and National League playoff games, we decide that we'd like the distribution of
the margin of victory of games played by our system to be as shown on the "Ideal"
row in the following table. We develop two versions of the simulator and play
100 games with each system. The margins of victory from our simulations are
shown on the lines for System 1 and System 2.

Margin of victory 1 2 3 4 >=5

Ideal number of games 25 30 20 15 10

System l number of games 28 29 21 14 8

System 2 number of games 24 27 21 17 11

Chapter Ten--Performance Metrics

Use the chi-square metric to analyze the two systems. At what level does each
of them sustain the null hypothesis? Which one would you choose? Why? Is
there a problem with using chi-square for this analysis? If so, what is it?

6. Use k-fold cross validation to analyze the Iris dataset. Using 3-fold and 10-fold
approaches, partition the dataset into 3 and 10 subsets, respectively. What results
for training and testing are obtained with each approach? What significant
differences do you see? For this dataset, what maximum value of k would you
recommend? Why?

7. Use PSO to evolve the weights for different configurations of neural networks that
classify the Iris dataset. Use the Mann-Whitney U test to evaluate the configura-
tions. Find two configurations for which the null hypothesis is not rejected and
two for which it is rejected at the 0.05 level. Limit the values of nl and n2 to 10 or
less so that you can use Table 10.1, but justif-y your choices of nl and n2. Hint: You
may want to make the network perform terribly on purpose in order to make it
easier to reject the null hypothesis.

chapter
e e v e n

ly" d pl " Ana an. Ex anatlon

The previous chapter discussed perfor-
mance metrics: ways to measure how well
a system performs. This chapter presents
analysis and explanation tools that can be
used to explain how computational intelli-
gence systems do what they do. Only a few
are discussed; it is beyond the scope of this
book to deal with the subject in detail.

We first discuss sensitivity analysis.
We describe a few practical and useful
approaches that assess relative significance
of system inputs. Next we discuss Hinton
diagrams, used with neural networks to
analyze patterns of connection weights.

Then we discuss explanation facili-
ties. We review the explanation facility's
differences and similarities in requirements
for symbolic and numeric systems; then we
discuss neural networks, fuzzy systems, and
evolutionary computation tools for expla-
nation facilities with a focus on evolution-
ary computation tools.

Applications of evolutionary compu-
tation paradigms are playing increasingly
important roles in explanation facilities.
Until now, these applications have been
primarily in the area of artificial neural
network diagnostic systems. This section
explores the application of evolutionary
computation to explanation facilities, both
in numeric-based systems such as arti-
ficial neural networks and in symbolic-
based applications such as expert systems.
We will suggest ways in which more tra-
ditional approaches used in knowledge-
based systems can be combined with
evolutionary computation tools to pro-
duce improved explanation facilities for
hybrid and computational intelligence
systems.

In the last section of this chapter, we
present a software implementation of an
analysis and explanation tool: an evolution-
ary computation explanation facility tool.

421

J

Chapter ElevenmAnalysis and Explanation

This implementation appears on the book's web site and is distributed as
shareware in accordance with the information on the web site.

Techniques have been developed to extract rules from neural networks
(e.g., Craven 1993). We do not cover these techniques in this book. Instead,
we focus on directly evolving fuzzy expert systems, as discussed in Chapters 7,
8, and 9. m

Sensitivity Analysis

Various definitions of sensitivity exist. In the previous chapter, which focuses on
performance metrics, sensitivity is defined within the context of the ROC curve as
true positive divided by true positive plus false negative [TP/(TP + FN)], which is
also called the true positive ratio.

In this chapter, which deals with analyzing how computational intelligence
systems work, sensitivity analysis provides one method for evaluating the relative
importance of system inputs. A basic premise is that the significance of an input
can be evaluated by measuring the effect it has on the output(s).

This information can be applied in a couple of main ways. One is during the
development of the system, when it is important to know which inputs are impor-
tant and should be retained and which are redundant or insignificant and should
be removed. An example of this approach is the system developed to predict the
bioactivities of molecules based on a set of descriptive features by Embrechts and
colleagues (2002). Another is used after the system is developed, when sensitivity
analysis of a system model or simulator can tell us what parameters are most signif-
icantly contributing to an output we want to minimize (such as cost) or maximize
(such as profit). For example, see Guo and Uhrig (1992), who used sensitivity analy-
sis to identify significant parameters relative to the thermal performance of a nuclear
power plant.

There are a variety ofways to measure sensitivity. Many of them involve clamping
or otherwise controlling one input at a time while looking at the effects on the output
values or system error. Many pitfalls exist in using these techniques. A few, however,
can be useful when used in the correct way. We first describe one approach, called
relation factors.

Relation Factors

Relation factors reflect the strength of the relationships between individual inputs
and individual outputs of a computational intelligence system. They are discussed
in detail in the context of a neural network diagnostic system by Saito and Nakano
(1988), but they are also applicable to other system configurations. They could prob-
ably also be called "causal factors." Relation factors can sometimes represent infor-
mation similar to rules in expert systems. Two kinds of relation factor used to analyze

Sensitivity Analysis

system performance are described in this section. We refer to them as relation factor
one and relation factor two.

Relation factor one is the effect of a given system input on a given output when
all other inputs are constrained to be constant, usually 0. For example, for a back-
propagation neural network, the effect is calculated by subtracting the value of a
given output PE with all other inputs set to a constant value, say, 0, from its value
with the one specified input set to 1. For a fuzzy system, the input to be tested is
varied between the minimum and maximum of its dynamic range, while all other
inputs are set to the minimum values of their dynamic ranges. With i inputs and
o outputs, there are a total of i times o relation factors one. In some systems, it may be
valid to clamp the "other" inputs to the midpoint of the input range rather than to 0.
This would, for instance, clamp the other inputs to 0.5 in the case of a standard back-
propagation neural network, and to the input value corresponding to the maximum
value of the middle membership function for an expert system. (If the membership
function is trapezoidal, the input value corresponding to the middle value of the
maximum membership can be used.)

Relation factor two takes into account the fact that the effect of a given input
on a given output differs with varying input value combinations (input patterns).
Relation factor two measures the average effect of a given input on a given output
over a set of input patterns.

For the set of patterns, relation factor two is calculated as follows. First, calculate
the change in an output's value when a given input is switched over its entire range
while all other inputs hold the value defined by the first input pattern. Examples
are to switch from 0 to 1 for a neural network input, or from the minimum to
the maximum value of the dynamic range for a fuzzy system. For the same input,
repeat the calculation for each pattern in the pattern set. Then add all of the changes
together and divide by the number of patterns. This yields a value for relation factor
two for a given input-output pair. Now repeat the process for each remaining
input. Then repeat the process for each output. Again, there are i times o relation
factors two.

An example of using relation factors can occur when working with a partial set
of inputs, and it is desired that the system be somewhat "intelligent" about what
input it requests next. For example, for working with a medical diagnostic system to
distinguish between two illnesses, a variation of the relation factor method can be
used to decide which medical symptom to enter next.

Just present the partial set of symptoms obtained thus far to the system and
switch each of the remaining inputs, one by one, over its range (0 to 1 for a neu-
ral network, or over the input's dynamic range for a fuzzy system, for example).
The input that causes the largest differential to occur between the two diagnoses can
correspond to the symptom entered next into the system.

Next we review a sensitivity analysis and network-pruning process developed by
Zurada and colleagues (1994), which we call the Zurada sensitivity analysis.

Chapter Eleven--Analysis and Explanation

Zurada Sensitivity Analysis
Before we review the analysis process, let's recall some of the terminology related to
neural networks that we introduced in Chapter 5. Remember that input patterns are
denoted Ak = (akl, ak2, ..., akn); k = 1, 2, ..., m, and the output (target) patterns as
Bk = (bkl, bk2, ..., bkp); k = 1, 2, ..., m. Note that the subscript k refers to a pattern,
there are m input patterns, and there are p outputs. The input layer of PEs is denoted
Fx = (Xl, x2, ..., Xn), where each xi receives input from the corresponding input pat-
tern component aki, and i = 1, 2, ..., n. Also remember that the trained output of an
Fz PE for one pattern k is Zkj.

For any training pattern k, Zurada and colleagues (1994) define the sensitivity
Sj(/k) 0~kj of a trained output Zkj with respect to an input aki as -'- O--~k~" Thus, a sensitivity

matrix S(k) is associated with each complete training pattern k, and we must calcu-
late the sensitivity matrix for each input of the m patterns. Once that has been done,
Zurada and colleagues define three sensitivity measures over the complete training
pattern set.

The mean square average sensitivity matrix Savg is defined as

k = l
S j i , avg " - "--

m

The absolute value average sensitivity matrix Sabs is defined as

(11.1)

S j i , abs - -

m S!.k)

k = l

m

The m a x i m u m sensitivity matrix Smax is defined as

(11.2)

Sji.max = max f (~~s:k)) (11.3)
k = l m jz

Note that the inputs and outputs must be scaled to the same range for valid com-
parisons to be made.

This method is computationally intensive, requiring that a sensitivity matrix be
calculated for each pattern. There are ways to implement the "spirit" of the Zurada
process using fewer calculations. One such method that the authors find useful is
described by Embrechts and colleagues (2002). To implement this method, first
select the median (or calculate the mean) value for each input parameter over the

Sensitivity Analysis

pattern set. Next hold all input values at their medians (means) except one. Now
measure the output(s) while varying the selected input over its dynamic range.
Although it would be ideal to vary the selected input continuously, the output can be
measured for a number of discrete values. Embrechts and colleagues measured the
output for 13 discrete values of the input. You may select a number other than 13,
based on your problem.

An input parameter's sensitivity with respect to an output is the maximum minus
the minimum for that output over the discrete values of the input. We now have an
estimated sensitivity for each input-output pair. Let's call this estimated sensitivity
Sji, e. Following a process analogous to equations 11.1 through 11.3, we can calculate
a sensitivity for each input Si,e in one of three ways.

The mean square average estimated sensitivity Si, ear is defined as

Si, eav

[Sji, e] 2
j = l

(11.4)

The absolute value average estimated sensitivity Si,eab is defined as

Si, eab =

P I Sji, e
j = l

(11.5)

The maximum estimated sensitivity Si,emx is defined as

Siemx = max {Sji,e }
' j = l p

(11.6)

Once the sensitivity is calculated for each input, the list of sensitivities can be
rank-ordered. The rank-ordered information can be used in a couple of ways. First,
and simplest, is to delete the input with the lowest sensitivity and try to train the
network again. If you get sufficiently good test results (and they may even be a little
better), then you know that you can remove that input parameter.

A more scientific way to proceed is to use an additional random variable as an
additional input when training the network. Then any input with sensitivity less
that that for the input representing the random variable can safely be removed,
usually one at a time starting with the variable with lowest sensitivity. (Also, of
course, remove the random variable input.) Using successive training/testing iter-
ations to remove these inputs with lowest sensitivities is described as "strip mining"
by Embrechts and colleagues (2002).

Chapter Eleven~Analysis and Explanation

The following list summarizes the process of sensitivity analysis and pruning of
inputs we have just described.

1. Train the neural network on the training set with one additional input
representing a random variable.

2. Calculate all input-output sensitivity estimates using the clamping and
discrete values method outlined here, followed by equation 11.4, 11.5,
or 11.6.

3. Remove the random input.

4. Remove the input with the lowest sensitivity.

5. Retrain/retest the network with the pruned input set.

6. As long as results are acceptable, repeat steps 4 and 5 until all inputs with
sensitivities lower than the random input are removed.

Removing inputs with little or no relevance to the performance of the system can
improve system performance, both in terms of accuracy and in terms of ability to
generalize.

The same general approach can be adapted for fuzzy systems. The number of
discrete values should be chosen so that the fuzzy membership functions are prop-
erly activated, and remember to scale the inputs and outputs to the same range.

Evolutionary Computation Sensitivity Analysis
Evolutionary computation has been applied to many areas. Sensitivity analysis
related to the applications of evolutionary computation is sometimes focused on
the problem and/or solution domain, which is beyond of the scope of this book.
In this section, we briefly discuss sensitivity analysis focused on the evolutionary
computation method itself.

The parameters of evolutionary algorithms play an important role in their search
capability. The sensitivity of an evolutionary algorithm with respect to its parameters
is critical to its performance and, therefore, its successful applications. Using this
approach, we consider the parameters of an evolutionary algorithm as the input
values to the sensitivity analysis, and its performance values as the output values. The
sensitivity analysis approaches discussed in previous sections such as relation factors
one and two can be used here. For most evolutionary algorithms, the output values
can include parameters such as fitness value, convergence rate, and the maximum
generation required to reach a good enough solution.

The input values may be different for different algorithms. For example, for
genetic algorithms, the input values can be mutation rate, crossover rate, popula-
tion size, and so on. For particle swarm optimization algorithms, the input values
can be inertia weight w, the cognitive and social coefficients Cl and c2, and so on.

Hinton Diagrams

A straightforward way to conduct the sensitivity analysis on the input-output pair
is through experiments (Beielstein et al. 2002). The experimental results can be
plotted for graphical visualization. We hope this will provide insights into how the
algorithm's parameters can be tuned for best overall performance.

Hinton Diagrams

Extreme care must be taken when interpreting the values of weights in a neural
network. Just because a weight is large doesn't mean that the processing element
(PE) on the input side of it is particularly important. A high input-to-hidden weight
doesn't necessarily make that input PE any more important than others; perhaps
the magnitude of that input is always very small or the effect always gets canceled
out in some way. Likewise, a small weight doesn't always denote an insignificant
input; perhaps the value gets augmented from other inputs. For example, suppose a
network system is designed to predict a person's ability to play basketball. Suppose
that among the inputs are height and athletic ability. Neither alone is nearly as
important an indicator as the two together.

It is still sometimes worthwhile to examine the weight matrices in a neural net-
work system. Since networks typically have a large number of connections, it can be
difficult to display these in a meaningful and useful way.

Perhaps the most obvious way is to display an array of numbers representing the
weights. This can be done by examining on-screen or printing out the weights file for
a network. This is usually not a very useful technique, however (though we have to
make do with it if nothing better is available), because humans are not particularly
good at working with lots of numbers or perceiving patterns and trends in data.

A better way to represent network weight matrices is with graphics. A method
developed by Geoffrey Hinton, called a Hinton diagram (McClelland and Rumelhart
1986; Rumelhart and McClelland 1986), graphically shows the magnitudes of con-
nection weights to or from a neural network layer. One method of implementation
uses blue rectangles (or squares) to represent positive weights and red to depict neg-
ative weights. The size of the rectangle (or square) is proportional to the magnitude
of a weight.

Figure 11.1 shows a Hinton diagram with lightly shaded rectangles denoting
positive weights; dark ones are negative. This figure displays the weights for a feed-
forward neural network with one hidden layer and with nine input, four hidden,
and two output PEs. In the figure, input-to-hidden weights are shown at the top
and hidden-to-output are at the bottom. A bias weight is the leftmost value in each
row. The top row of the top block of weights depicts the magnitude of weights from
the input PEs (bias first) to the first hidden PE. The second from the top row of
the top block depicts weight magnitudes from the input PEs to the second hidden
PE, and so on. Likewise, the top row of the bottom weight block depicts weights

Chapter Eleven~Analysis and Explanation

W W W

/ m

m m
C-1 D

m
~iiiiiiiiiii~!i!iiii!iii!iii!i~!i

I I

w

i-1

m

m

m
m

m

!~!ii!ii!ii!i~iiiiiiiii!i~iliiii!~iiiiiiiiii!i!iii!ii!

• m l]

Figure 11.1 Hinton diagram for a 9-4-2 feedforward neural network.

from the hidden PEs (bias first) to the first output PE. This diagram represents the
weights of one of the networks developed to detect electroencephalogram spikes,
as described in one of the case studies in Chapter 12 on this book's web site.

There are several variations of this scheme. Activation values as well as weights
can be displayed, for example. Different geometric representations can be used to
display multiple layers and their interconnections. For large networks, it may be
possible to display only a part of a layer at a time.

The Hinton diagram can be displayed continually as the network runs and
can be refreshed each iteration. This may not be a good idea in a production
system, however, because the display may take significant processing time away
from the network. Also, it is not very useful if the network is iterating rapidly
because changes may happen too fast for a human observer to follow. In that case,
it may be better to display the weights once every fixed number of iterations or
to suspend the network while the "frozen" state is examined. Another option is to
have no real-time display but to examine the state after the network has finished
training.

The authors sometimes use diagrams such as that in Figure 11.1 to provide guid-
ance for "pruning" trained networks. For example, in the figure, nearly identical
weight patterns from hidden to outputs indicate that fewer than four hidden PEs
are required. Indeed, the network represented by the figure works just as well with
three.

Computational Intelligence Tools for Explanation Facilities

Computational intelligence Tools for Explanation Facilities

End users have traditionally wanted, and in some cases demanded, to know how
experts arrive at conclusions or recommendations. When computer systems are
involved, users tend toward the "demand" end of the spectrum. Computer system
utilities designed to make classification and/or diagnostic decisions or recommenda-
tions understandable to users, often by citing reasons why these decisions or
recommendations were made, are frequently called explanation facilities.

Explanation facilities must perform similar functions regardless of the compu-
tational paradigm(s) at the heart of the system. The user seldom knows, and rarely
cares, whether the system is using a knowledge base, a neural network, a Bayesian
classifier, another paradigm, or some combination of paradigms. They just want to
know how the classification or recommendation was derived, and they want to be
provided this information in a way that is understandable and helpful.

In this section, we briefly review the design and implementation of explanation
facilities. We assume that you are familiar with explanation facilities implemented
for expert systems; we describe the implementation of facilities for neural network-
based systems in somewhat more detail. We also describe two evolutionary compu-
tation tools that can be used to build explanation facility components. We explore
explanation facility requirements of hybrid systems and computational intelligence
systems and discuss various approaches.

Explanation Facility Requirements
Explanation is a complex form of interaction, or communication, between and/or
among humans. It is a communication skill related to humans' ability to reason. It
is not well understood.

Requirements, or specifications, for explanation facilities vary somewhat accord-
ing to the application and with the situation. To illustrate this, consider the following
definitions. Webster's Ninth New Collegiate Dictionary (1991) states that "explana-
tion" means "the act or process of explaining" or "something that explains." The
same source offers three definitions of "explain": "1 a: to make known; b" to make
plain or understandable; 2" to give the reason for or cause of; 3" to show the logical
development or relationships of."

The computational system itself usually fulfills definition la by "making known"
the classification or diagnosis. One or more of the other three definitions (lb, 2,
and 3) are generally relevant to explanation facility attributes. Interaction with the
explanation facility may be initiated by the user or by the computer system, or per-
haps a mixture of both depending on the situation.

Why use an explanation facility? The most commonly stated answer is that it
can, upon demand, provide reasons why the system arrived at a particular con-
clusion. The explanation facility can thus provide justification for classification or

Chapter Eleven~Analysis and Explanation

W W W

/ m

m m
C-1 D

m
~iiiiiiiiiii~!i!iiii!iii!iii!i~!i

I I

w

i-1

m

m

m
m

m

!~!ii!ii!ii!i~iiiiiiiii!i~iliiii!~iiiiiiiiii!i!iii!ii!

• m l]

Figure 11.1 Hinton diagram for a 9-4-2 feedforward neural network.

from the hidden PEs (bias first) to the first output PE. This diagram represents the
weights of one of the networks developed to detect electroencephalogram spikes,
as described in one of the case studies in Chapter 12 on this book's web site.

There are several variations of this scheme. Activation values as well as weights
can be displayed, for example. Different geometric representations can be used to
display multiple layers and their interconnections. For large networks, it may be
possible to display only a part of a layer at a time.

The Hinton diagram can be displayed continually as the network runs and
can be refreshed each iteration. This may not be a good idea in a production
system, however, because the display may take significant processing time away
from the network. Also, it is not very useful if the network is iterating rapidly
because changes may happen too fast for a human observer to follow. In that case,
it may be better to display the weights once every fixed number of iterations or
to suspend the network while the "frozen" state is examined. Another option is to
have no real-time display but to examine the state after the network has finished
training.

The authors sometimes use diagrams such as that in Figure 11.1 to provide guid-
ance for "pruning" trained networks. For example, in the figure, nearly identical
weight patterns from hidden to outputs indicate that fewer than four hidden PEs
are required. Indeed, the network represented by the figure works just as well with
three.

Computational Intelligence Tools for Explanation Facilities

choose the classification closest to the "quintessential" examples with which we are
familiar.

Furthermore, starting with a (possibly incomplete) set of inputs, which may be
a mixture of binary and analog values, the typical explanation facility for a back-
ward chaining expert system does not provide details on the decision hypersurface
location. For instance, it doesn't specify which inputs would need to change, and by
what amount, in order to change the classification in a certain way. This is, however,
the way humans often relate to classification: A physician often thinks about the way
in which signs and symptoms would have to change to arrive at a specific (different)
diagnosis.

Neural Network Explanation
Some neural network explanation facilities provide the "best" examples of the vari-
ous classes. They also can provide information on the location of the decision hyper-
surface, providing information on what input to request next or how much to change
certain inputs to arrive at a different decision.

For neural network systems, the "best" examples of the various classes are
known as codebook vectors, or quintessential examples, for each classification or
diagnosis. The term codebook vector refers to an input pattern that generates a
maximum or nearly maximum activation value for a given output processing ele-
ment (classification) of a neural network. These codebook vectors can be retrieved
from examples stored or can be generated on-line if, for example, the user is look-
ing for a codebook vector within a specified Euclidean distance in hyperspace of
the input pattern. Information is also available regarding the decision hypersur-
face (sometimes called the differential diagnosis), which is the hypersurface that
defines the boundary between any two classifications. For example, the distance to
the decision hypersurface can be provided with either a complete or a partial set
of inputs present. In this way, the user can determine which inputs would need to
be changed, and by how much, for the classification or diagnosis to change in a
specified way.

Explanation facilities have also been developed for hybrid systems. An example
is the neural network expert system called MACIE, which stands for a MAtrix Con-
trolled Inference Engine. Stephen Gallant developed the original version of MACIE
in the mid-1980s and used the term "matrix controlled" because neural networks
were somewhat out ofvogue at the time (Gallant 1993). When asked why it requests a
certain value, MACIE gives explanations relative to the goal variable with the highest
likelihood, listing the effect (positive or negative) on intermediate variables. MACIE
evolved into a commercial product that was released in the early 1990s.

The situation with respect to neural networks is complicated by the fact that
explanation facilities are more readily applied to some neural network paradigms
than to others. For example, neural networks using radial basis functions or other

Chapter Eleven--Analysis and Explanation

mathematically related paradigms are considered by some to be more amenable to
explanation facility implementation (than, say, multilayer perceptrons) because of
their nearest-neighbor attributes (Simpson and Brotherton 1995).

Many explanation facilities for neural networks have shortcomings as well. When
a loan application is denied because of the recommendation of a neural network-
based system, for example, it may not be sufficient to cite examples of codebook
vectors or distances to decision hypersurfaces. The user may demand to know the
rules, or guidelines, that were violated and led to the denial of credit.

Fuzzy Expert System Explanation
For fuzzy expert systems, the explanation facility can list all rules that contributed to
the classification or recommendation, ranked according to the significance of their
contribution. Depending on the extent to which the solution is supported by the
fuzzy rules, a degree of certainty can be assigned to the solution. The facility c a n

also indicate where in the domain of the solution variable (low, medium, etc.) the
solution is located (Cox 1994).

Building explanation facilities for forward chaining or fuzzy expert systems is
particularly difficult because of their parallel nature. Many rules (fuzzy rules, in the
case of fuzzy expert systems), acting in parallel, often combine to contribute to the
result. Unlike backward chaining expert systems, then, it is not possible to explain
a specific system action by tracing a crisp sequence of rules. In fact, the explanation
facility portion of a fuzzy expert system may contain some of the most complex code
in the system (Cox 1994).

Evolutionary Computation Tools for Explanation
Evolutionary computation consists of machine learning optimization and classifi-
cation paradigms that are roughly based on evolution mechanisms such as bio-
logical genetics and natural selection. Previously in this book, we examined five
main areas of the evolutionary computation field: genetic algorithms, evolutionary
programming, genetic programming, particle swarm optimization, and evolution
strategies.

Genetic programming evolves and obtains a mathematical formula or logical
function from the input and output datasets. The solutions that are evolved them-
selves provide explanations of how the results can be obtained through the for-
mula or function from the input data. Therefore, unlike the other evolutionary algo-
rithms, a genetic programming system can, to some extent, provide solutions with
some explanation capability.

In the remainder of this section, we focus on the design and search capability
of evolutionary algorithms to develop explanation facilities that are not part of any
explanation capability the systems themselves can provide. We thus focus on using

Computational Intelligence Tools for Explanation Facilities

the other four areas of evolutionary computation: genetic algorithms, particle swarm
optimization, evolutionary programming, and evolution strategies. For a discussion
of all five evolutionary computation areas, refer to Chapter 3.

To illustrate the use of evolutionary computation tools in developing compo-
nents of an explanation facility for a neural network, consider one of the network's
output processing elements. Higher values of this output processing element (close
to 1) indicate the existence of some classification, condition, or decision C, and lower

m

activation values (close to 0) represent C.
To obtain codebook vectors for C, the trained neural network is used as the fit-

ness function for the evolutionary computation tool. The fitness value returned by
the evolutionary computation tool's evaluation function (in this case, the feedfor-
ward neural network calculation) is equal to the processing element activation value
for C. Thus, the evolutionary computation tool is maximizingthe processing element
activation, or finding input patterns with very high output values. For networks with
more than one output, a high fitness means that high values for the class C PE must
be accompanied by values near 0 for all other output class PEs.

Codebook vectors for C are obtained by minimizing the processing element
activation (finding input patterns that result in an output close to 0). The deci-
sion hypersurface is explored by fixing the processing element output value at the
value that represents the boundary between two classes (often 0.5) and using the
evolutionary computation tool to find input patterns that minimize the difference
between the processing element output and the class boundary value. Different
regions of the decision hypersurface can be explored in a number of ways, for
instance by varying the random number seed used by the evolutionary computa-
tion tool.

Components of neural network explanation facilities have been developed using
genetic algorithms. Results are reported in Eberhart and Dobbins (1991) and Eber-
hart (1992). When a genetic algorithm (GA) or other evolutionary computation tool
is used, the decision hypersurface can be explored, and additional codebook vectors
obtained, by using rank-ordering when assigning fitness values, in addition to vary-
ing the random number seed. Rank ordering causes fitness values to be distributed
uniformly over a defined interval, such as 0 to 1, instead of being allowed to cluster
near the top of the range, as often happens otherwise.

It has been demonstrated that other evolutionary computation tools can be used
in building explanation facilities. A particle swarm optimizer has been shown to
produce results similar to the genetic algorithm (Kennedy and Eberhart 1995).

Evolutionary computation tools can also be used to build explanation facility
components for fuzzy expert systems, in a manner analogous to the method used
for neural networks. In this case, the fitness value to be maximized is the closeness
to a specific membership value for an output parameter of the fuzzy expert system.
The expert system itself serves as the fitness function.

Chapter Eleven--Analysis and Explanation

As we have pointed out throughout this book, the component paradigm tools of a
computational intelligence system often become inseparable and indistinguishable.
In other words, for the user, each tool loses its individual identity. This makes the
design and implementation of an explanation facility significantly more complex.

As we stated at the beginning of this section, the user seldom knows, and rarely
cares, what paradigms are being used in a diagnostic or classification tool. It is there-
fore important that the explanation facility be useful and consistent across compu-
tational modules. Some of this consistency can be implemented via an intelligent
user interface design. Much of it, however, must be provided for in the basic design
of the system.

Consider, for example, the diagnostic system depicted in Figure 11.2. This could
be, for example, a medical diagnostic system with three main modules: perhaps one
for abdominal disorders, one for chest pain, and one for ocular complaints. The
user must be able to query the explanation facility and receive information that is
useful and understandable, regardless of the situation. And the "look and feel" of
the system should be as consistent as feasible.

If the user is making a diagnosis that uses Module 1, the explanation facility may
retrieve codebook vectors that were generated using an evolutionary algorithm, then
use the output of the module to trigger a rule-based explanation. If the differential
diagnosis (distance to the decision hypersurface) is requested, the explanation facil-
ity can invoke an evolutionary algorithm to calculate what input symptoms must
change, and by how much. These altered inputs can also be used to generate a neu-
ral net output that triggers a rule-based explanation using the shell.

A particle swarm optimizer might be used to generate codebook vectors and
decision hypersurface information for Module 3, which uses fuzzy logic. The fuzzy
outputs of the fuzzy logic diagnostic system would be defuzzified and used as inputs
for the shell.

Input Symptoms

Diagnostic Module 1
(neural network)

Diagnostic Module '2
(backward chaining

expert system)

Diagnostic Module 3
(fuzzy logic

expert system)

Rule-based Expert System Shell

Figure 11.2 Modular medical diagnostic system.

Output Diagnosis

Computational Intelligence Tools for Explanation Facilities

For either Module 1 or Module 3, the previously described analysis tools known
as relation factors can be invoked to provide information on the sensitivity of the
diagnosis to each individual input. For example, with the remainder of the inputs
held at values representing the current input pattern, each input can individually be
varied over its range (from 0 to 1, for example) while looking at the effect on the
output. This technique can be used to determine which input could have the most
significant impact on the diagnosis; it can also be used to select the next question to
be asked.

For Module 2, which uses a conventional backward chaining expert system, a
standard rule-based explanation could be incorporated. In addition, however, it may
be desirable to include a sensitivity measure based on relation factors. This mea-
sure could be implemented with a genetic algorithm or particle swarm optimizer.
Because outputs are typically not responsive to continuous changes in inputs, how-
ever, some limitations on the resolution of relation factors exist. Since outputs are
discontinuous, small changes in inputs may result in large output class differences.

An Example Neural Network Explanation Facility
A rudimentary example of an explanation facility for a neural network using particle
swarm optimization is available on this book's web site. The filename for the appli-
cation is nnexp , exe. The source code is written in C and compiled using Borland
C++ Version 4.5. The source code is being distributed as shareware. You are wel-
come to use it for classroom or personal learning experiences in conjunction with
the textbook at no cost, as discussed on the book's web site.

Using the Iris dataset as an example, we will step through the use of this expla-
nation facility software. You can use it with any back-propagation neural network
weight file obtained from the back-propagation neural network software provided
with this book.

You need to specify the names of the run files. As in the evolutionary neural
network implementation in Chapter 6, two run files (for example, b p . r u n and
p s o . run) are specified for the BP net and the PSO, respectively. To run the imple-
mentation from within the directory containing n n e x p . e x e , b p . r u n , and
p s o . run, at the system prompt type: nnexp bp. run p s o . r u n .

The file p s o . run is the same as that in the evolutionary neural network imple-
mentation in Chapter 6 except that the evaluation function type value is 18 instead
of 17 (line 5) and the optimization type is minimization (0) instead of maximiza-
tion (1) (line 4). See Chapter 6 for explanations of the other inputs. Listed here are
the contents o f p s o , run:

i

0

i

0

18

Chapter Eleven--Analysis and Explanation

1

1

0.0

1.0

0.5

1.0

I000

30

0.9

0

Within the back-propagation run file (bp. run), you specify the name of the
neural network weight file along with the number of layers, the number of hidden
PEs in each hidden layer, and the number of inputs and outputs for the network. In
our example, the name of the weight file is i r i s . wt s and the network has three
layers (one hidden layer), four hidden PEs in the hidden layer, and four inputs and
three outputs.

You next need to tell the program what you're looking for. For example, if you are
looking for "quintessential" examples of output class 1 of 3, then you might specify
1 0 0 as the target. However, since numbers 1 and 0 are saturation values of the
activation function, we specify the target values as 0 .9 0 .1 0 .1 instead of 1 0 0
in the run file. (If you want to explore the decision hypersurface between classes 1
and 2, you specify 0 .5 0 .5 0 .1 as the target.) Next you specify the sum-squared
error you are willing to accept for the best particle. The maximum number of itera-
tions for the PSO to run if that error is not achieved is specified in the file p s o. run.
In our example, we choose 0 .011 and 1000 (see p s o . run), respectively. Finally,
specify the name of the output file; in our case we chose i r i s e x p , out .

Listed here are the contents of bp . run:

iris .wts

3

4

4

3

0.9 0.i 0.I

0.011

irisexp, out

The program uses particle swarm optimization to "reverse-engineer" the neural net-
work, finding the best examples it can of the target. The application uses a standard
particle swarm with 30 particles, including an inertia weight (see Chapters 3 and 4).

In this case, the format of the output file is i n p u t 1 i n p u t 2 i n p u t 3
i n p u t 4 t a r g e t v a l u e s (0 . 9 0 . 1 0 . 1) e r r o r . Since there are 30 parti-
cles, there are 30 lines of output. You are most interested in those lines that have the
smallest value for the error. In the example case, if the input error criterion is met,
there will be at least one line with an error value less than 0 .011 . Depending on
your problem, you may be interested only in the best particle, but you will probably

be interested in all of them with sufficiently low error values, say, less than 0 .013
or 0 .015 in our example case.

In one of our runs, we obtained the following line of output representing the
lowest error:

0.186070 0.373782 0.297252 0.154958 0.900000 0.i00000 0.I00000

0.010015

What does the output tell us? In this case, it says that a quintessential example
(codebook vector)for classification 1 is (0 .186070 , 0 . 3 7 3 7 8 2 , 0 . 2 9 7 2 5 2 ,
0 .154 958). Othervectorsnearlyasgoodare (0 . 3 4 5 6 8 3 , 0 . 0 9 8 6 1 6 , 0 .17 9630,
0 .081630 , a n d 0 . 3 4 1 4 3 1 , 0 . 685645 , 0 . 3 9 4 6 6 0 , 0 .132066) .Recal l that
each of these inputs represents, one of the four attributes of an iris flower: sepal
length, sepal width, petal length, and petal width. Also recall that we are classifying
each pattern as belonging to one of the three species of iris flower: Iris sectosa, Iris
versicolor, and Iris virginica. Remember that we normalized the raw measurement
data for presentation to the neural network. If we convert the numbers in the
codebook vector back to raw measurements in centimeters, the four numbers we
obtain are the dimensions of the sepal length, sepal width, petal length, and petal
width for a "quintessential" example of an Iris sectosa flower.

Now, if we use 0 .5 0 .5 0 .1 instead of 0 .9 0 .1 0 .1 as our target, we'll get
examples of input patterns that are very near the decision hypersurface (the differen-
tial diagnosis) for the dataset, in this case, the decision hypersurface between classes
1 and 2. The output provides examples of patterns that cannot be classified as either
class 1 or class 2 (Iris sectosa or Iris versicolor) by our system or, presumably, by an
expert.

Summary

Sensitivity analyses are important for determining how various inputs contribute
to the output(s) of a system. They can be used during the system design phase
to prune inputs that are irrelevant to the system output(s). We present different
approaches to sensitivity analysis, including an approach featuring relation factors
and a sensitivity analysis methodology described by Zurada and colleagues. Expla-
nation facilities are relatively common for traditional expert systems. Recently, using
evolutionary computation tools such as genetic algorithms and particle swarm opti-
mization, explanation facilities have been constructed for neural network systems.
Hybrid diagnostic and classification systems incorporating a number of paradigms
require explanation facilities that are useful, understandable, and consistent. These

Chapter Eleven~Analysis and Explanation

explanation facilities can be developed using a hybrid of rule-based and evolutionary
computation tools. We provide an example of an explanation facility for a neural
network, using the Iris dataset as an example. In the next (and last) chapter, which
is on the book's web site, we tie together the concepts, paradigms, and implemen-
tations we've examined so far in the book into illustrative case studies.

Exercises

1. Run the example software to obtain codebook vectors for each class of iris flower
in the Iris dataset. Discuss your results.

2. Run the example software to explore the decision hypersurface between each pair
of classes. Discuss your results.

3. Specify a method for calculating relation factor one for a fuzzy rule-based system.

4. Assume that you are implementing in the C language the method discussed in this
chapter for calculating the Zurada sensitivity two for an m-input, n-output
system. Draw the flowchart for your implementation.

5. Design and run experiments using PSO to plot relationships between the PSO's
parameter (or input) values and its performance (or output) values.

6. Propose an alternative way to display the information contained in a Hinton
diagram.

7. Using the Zurada sensitivity process, calculate the mean square average estimated
sensitivity Si,eav for each input of the Iris dataset. What do these sensitivities tell
you?

8. Specify several possible codebook vectors for fuzzy expert systems.

Bibliography

Ackley, D., G. Hinton, and T. Sejnowski. 1985• A learning algorithm for Boltzmann
machines. Cognitive Science, 9:147-169.

Adlassnig, K. P., and W. Scheithauer. 1989. Performance evaluation of medical expert
systems using ROC curves. Computers and Biomedical Research, 22:297-313.

Ahalt, S., A. Krishnamurthy, P. Chen, and D. Melton. 1990. Competitive learning algorithms
for vector quantization. Neural Networks, 3:277-290.

Allman, W. E 1989. Inside the Neural Network Revolution. New York: Bantam Books.
Amari, S.-I. 1967. A theory of adaptive pattern classifiers. IEEE Transactions on Electronic

Computers, EC16:299-307.
• 1971. Characteristics of randomly connected threshold-elements networks and

network systems. Proceedings of the IEEE, 59(1):35-47.
• 1972. Learning patterns and pattern sequences by self-organizing nets of threshold

elements. IEEE Transactions on Computers, C21:1197-1206.
• 1977. Neural theory of association and concept formation. Biological Cybernetics,

26:175-185.
• 1983. Field theory of self-organizing neural nets. IEEE Transactions on Systems,

Man and Cybernetics, SMC-13:741-748.
Amari, S.-I., and M. Takeuchi. 1978. Mathematical theory on formation of category detect-

ing nerve cells. Biological Cybernetics, 29:127-136.
Anderberg, M. R. 1973. Cluster Analysis for Applications. New York: Academic Press.
Anderson, E. 1935. The IRISes of the Gaspe peninsula. Bulletin of the American IRIS Society,

59:2-5.
Anderson, J. A. 1972. A simple neural network generating on interactive memory. Mathe-

matical Biosciences, 14:197-220.
Anderson, J. A., and E. Rosenfeld, Eds. 1988. Neurocomputing: Foundations of Research.

Cambridge, MA: MIT Press.
Anderson, J. A., A. Pellionisz, and E. Rosenfeld, Eds. 1990. Neurocomputing 2: Directions for

Research. Cambridge, MA: MIT Press.
Anderson, J. A., J. Silverstein, S. Ritz, and R. Jones. 1977. Distinctive features, categorical

perception, and probability learning: Some applications of a neural model. Psychological
Review, 84:413-451.

Armitage, P., and G. Berry. 1987. Statistical Methods in Medical Research, 2nd ed. Oxford,
UK: Blackwell Scientific Publications.

Ashby, W. R. 1945. The physical origin of adaptation by trial and error. Journal of General
Psychology, 32:24.

439

Bibliography

Ashby, W. R. 1947. Principles of the self-organizing dynamic system, lournal of General
Psychology, 37:125.

Axelrod, R. 1980. Effective choice in the Prisoner's Dilemma. Journal of Conflict Resolution,
24:3-25.

~ . 1984. The Evolution of Cooperation. New York: Basic Books.
B/ick, T. 1992. Self-adaptation in genetic algorithms. In F.]. Varela and P. Bourgine, Eds.

Proceedings of the First European Conference on Artificial Life. Cambridge, MA: MIT Press,
263-271.

~ . 1995. Generalized convergence models for tournament and (mu, lambda) selec-
tion. Proceedings of the Sixth International Conference on Genetic Algorithms. San Fran-
cisco: Morgan Kaufmann, 2-7.

B/ick, T., and H.-P. Schwefel. 1993. An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation, 1 (1):1-23.

Bagley,]. D. 1967. The behavior of adaptive systems which employ genetic and correlation
algorithms. Ph.D. Dissertation, The University of Michigan, Ann Arbor, MI.

Baker,]. A. 1987. Reducing bias and inefficiency in the selection algorithm. Proceedings of
the Second International Conference on Genetic Algorithms: Genetic Algorithms and Their
Applications. Hillsdale, N]: Lawrence Erlbaum Associates.

Barto, A. 1984. Simulation experiments with goal-seeking adaptive elements. Tech-
nical Report AFWAL-TR-84-1022, Air Force Wright Aeronautical Laboratory, Wright
Patterson AFB, OH.

~ . 1985. Learning by statistical cooperation of self-interested neuron-like computing
units. Human Neurobiology, 4:229-256.

Beielstein, T., K. E. Parsopoulos, and M. N. Vrahatis. 2002. Tuning PSO parameters through
sensitivity analysis. Technical Report of the Collaborative Research Center 531, Compu-
tational Intelligence CI-124/02, University of Dortmund.

Bellman, R. 1957. Dynamic Programming. Princeton, N]: Princeton University Press.
Bellman, R. E., and L. A. Zadeh. 1970. Decision-making in a fuzzy environment. Manage-

ment Science, 17:141-164.
Bentley, P.]., and D. W. Corne, Eds. 2002. Creative Evolutionary Systems. San Francisco:

Morgan Kaufmann.
Bezdek,]. C. 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. New York:

Plenum Press.
~ . 1992. On the relationship between neural networks, pattern recognition and intel-

ligence. International Journal of Approximate Reasoning, 6(2):85-107.
~ . 1994. What is computational intelligence? In Computational Intelligence: Imitating

Life,]. Zurada, R. Marks, and C. Robinson, Eds. Piscataway, N]: IEEE Press, 1-12.
~ . 1998. Computational intelligence definednby everyone! In O. Kaynak, L. A. Zadeh,

B. Tfirk~en, and I.]. Rudas, Eds. Computational Intelligence: Soft Computing and Fuzzy-
Neuro Integration with Applications. Berlin: Springer-Verlag, 10-37.

Bezdek,]. C., and]. Harris 1978. Fuzzy partitions and relations: an axiomatic basis for clus-
tering. Fuzzy Sets and Systems, 1:112-127.

Bezdek,]. C., and S. K. Pal. 1992. Fuzzy Models for Pattern Recognition: Methods that Search
for Structure in Data. Piscataway, N]: IEEE Press, 413-414.

Black, M. 1937. Vagueness: an exercise in logical analysis. Philosophy of Science, 4:427-455.

Bibliography ~ . :, ~ ~

Bonabeau, E., M. Dorigo, and G. Theraulaz. 1999. Swarm Intelligence. New York: Oxford
University Press.

Brachman, R.]., and H.]. Levesque. 2004. Knowledge Representation and Reasoning, San
Francisco: Morgan Kaufmann.

Bremmermann, H.]. 1968. Numerical optimization procedures derived from biological
evolution processes. In Cybernetic Problems in Bionics, H. L. Oestreicher and D. R. Moore,
Eds. New York: Gordon and Breach, 597-616.

Bruns, R. 1993. Direct chromosome representation and advanced genetic operators for
production scheduling. Proceedings 5th International Conference on Genetic Algorithms.
San Mateo, CA: Morgan Kaufmann.

Bryson, A. E., and Y.-C. Ho 1975. Applied Optimal Control. New York: John Wiley.
Carpenter, G. A., and S. A. Grossberg. 1987a. A massively parallel architecture for a self-

organizing neural pattern recognition machine. Computer Vision, Graphics, and Image
Understanding, 37:54-115.

• 1987b. ART2: self-organization of stable category recognition codes for analog
input patterns. Applied Optics, 26(23):4919-4930.

Caudell, T. E 1990. Parametric connectivity: feasibility of learning in constrained weight
space. Proceedings of the IEEE International Joint Conference on Neural Networks. Hills-
dale, N]: Lawrence Erlbaum, I:667-675.

Caudill, M. 1988. Neural networks primer: Part IV. AI Expert, 3(8):61-67.
~ . 1989. Neural network primer: Part VIII. AI Expert, 4(8):61-67.
~ . 1989a. Naturally Intelligent Systems. Cambridge, MA: MIT Press.
Centor, R. M., and G. E. Keightley. 1989. Receiver operating characteristics (ROC) curve

area analysis using the ROC analyzer. Proceedings of the Thirteenth Annual Symposium on
Computer Applications in Medical Care, 222-226.

Clerc, M. 1999. The swarm and the queen: towards a deterministic and adaptive parti-
cle swarm optimization. Proceedings of the 1999 Congress on Evolutionary Computation,
Washington, DC. Piscataway, N]: IEEE Service Center, 1951-1957.

Cowan,]. D., and D. H. Sharp. 1988. Neural nets and artificial intelligence. Daedalus, 117(1):
85-121.

Cox, E. 1994. The Fuzzy Systems Handbook. Boston: Academic Press, 130-158, 278-281.
Craven, M. W., and]. W. Shavlik. 1993. Learning symbolic rules using artificial neural

networks. Proceedings of the Tenth International Conference on Machine Learning,
73-80.

Davis, L., Ed. 1991. Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.
De long, K. A. 1975. An analysis of the behavior of a class of genetic adaptive systems. Ph.D.

Dissertation, The University of Michigan, Ann Arbor, MI.
DeLuca, A., and S. Termini. 1972. A definition of nonprobabilistic entropy in the setting of

fuzzy sets theory. Information and Control, (20):301-312.
DeSieno, D. 1988. Adding a conscience to competitive learning. Proceedings of the Interna-

tional Conference on Neural Networks. Piscataway, N]: IEEE Service Center, 1:117-124.
Dimopoulos, C., and A. M. S. Zalzala. 2000. Recent developments in evolutionary com-

putation for manufacturing optimization: problems, solutions and comparisons. IEEE
Transactions on Evolutionary Computation, 4(2):93-113.

Bibliography

Dubois, D., and H. Prade. 1980. Fuzzy Sets and Systems: Theory and Applications. New York:
Academic Press.

Dyson, G. B. 1997. Darwin among the Machines. Reading, MA: Perseus Books.
Ebanks, B. R. 1983. On measures of fuzziness and their representations. Journal of Math.

Analysis and Applications, (94):24--37.
Eberhart, R. C. 1990. Standardization of neural network terminology. IEEE Transactions on

Neural Networks, 1:244-245.
~ . 1992. The role of genetic algorithms in neural network query-based learning and

explanation facilities. In L. D. Whitley and J. D. Schaffer, Eds. COGANN-92: International
Workshop on Combinations of Genetic Algorithms and Neural Networks. Los Alamitos, CA:
IEEE Computer Society Press, 169-183.

Eberhart, R. C., and R. W. Dobbins, Eds. 1990. Neural Network PC Tools: A Practical Guide.
San Diego: Academic Press.

~ . 1991. Designing neural network explanation facilities using genetic algorithms.
Proceedings of the IEEE International]oint Conference on Neural Networks. Piscataway,
NJ: IEEE Service Center, 1758-1763.

Eberhart, R. C., R. W. Dobbins, and W. R. S. Webber. 1989. CaseNet: A neural network tool
for EEG waveform classification. Proceedings of the IEEE Symposium on Computer Based
Medical Systems, Minneapolis, MN. Piscataway, NJ: IEEE Service Center.

Eberhart, R. C., and J. Kennedy. 1995. A new optimizer using particle swarm theory. Pro-
ceedings of the Sixth International Symposium on Micro Machine and Human Science,
Nagoya, Japan. Piscataway, NJ: IEEE Service Center, 39-43.

Eberhart, R. C., and Y. Shi. 1998. Evolving artificial neural networks. Proceedings of the 1998
International Conference on Neural Networks and Brain, Beijing, P.R.C., PL5-PL13.

~ . 2001. Tracking and optimizing dynamic systems with particle swarms. Proceedings
of the Congress on Evolutionary Computation 2001, Seoul, Korea. Piscataway, NJ: IEEE
Service Center.

Eberhart, R. C., P. K. Simpson, and R. W. Dobbins. 1996. Computational Intelligence PC
Tools. Boston: Academic Press.

Elliot, D., Ed. 1987. Handbook of Digital Signal Processing. San Diego: Academic Press.
Embrechts, M. J., F. Arciniegas, M. Ozdemir, M. Momma, C. M. Breneman, L. Lockwood,

K. P. Bennett, and R. H. Kewley. 2002. Stripmining for molecules. Proceedings of
the IEEE World Congress on Computational Intelligence. Piscataway, NJ: IEEE Service
Center.

Fang, H. L., D. Corne, and P. Ross. 1996. A genetic algorithm for job-shop problems with
various schedule quality criteria. In Evolutionary Computation AISB Workshop, Selected
Papers, T. C. Fogarty, Ed. Berlin, Germany: Springer-Verlag, 39-49.

Farley, B. G. 1960. Self-organizing models for learned perception. In M. C. Yovits and
S. Cameron, Eds. Self-Organizing Systems: Proceedings of an Interdisciplinary Conference,
5 and 6 May, 1959. Oxford, UK: Pergamon Press, 7-30.

Farley, B. G., and W. A. Clark. 1954. Simulation of self-organizing systems by digital com-
puter. Transactions of IRE, PGIT-4:76-84.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7:179-188.

Bibliography (~ 4 ~

Fogel, D. B. 1990. A brief history of simulated evolution. Technical report, ORINCON
Corporation, San Diego.

~ . 1991. System Identification Through Simulated Evolution: A Machine Learning
Approach to Modeling. Needham Heights, MA: Ginn Press.

~ . 1995. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence.
Piscataway, NJ: IEEE Press.

~ . 2000. What is evolutionary computation? IEEE Spectrum, 37(2).
Fogel, L. J. 1994. Evolutionary programming in perspective: the top-down view. In

J. M. Zurada, R. J. Marks II, and C. J. Robinson, Eds. Computational Intelligence: Imi-
tating Life. Piscataway, NJ: IEEE Press, 135-146.

Fogel, L. J., A. J. Owens, and M. J. Walsh. 1966. Artificial Intelligence through Simulated
Evolution. New York: John Wiley.

Fraser, A. S. 1957. Simulation of genetic systems by automatic digital computers. Australian
Journal of Biological Science, 10:484-499.

• 1960. Simulation of genetic systems by automatic digital computers: 5-linkage,
dominance and epistasis. In O. Kempthorne, Ed. Biometrical Genetics. New York:
Macmillan, 70-83.

• 1962. Simulation of genetic systems. Journal of Theoretical Biology, 2:329-346.
Friedberg, R. M. 1958. A learning machine: Part I. IBM]ournal of Research and Development,

2:2-13.
Friedberg, R. M., B. Dunham, and J. H. North. 1959. A learning machine: Part II. 1BM

Journal of Research and Development, 3:282-287.
Fukunuga, K. 1986. Statistical pattern classification. In T. Young and K. Fu, Eds. Handbook

of Pattern Recognition and linage Processing. San Diego: Academic Press, 3-32.
Fukushima, K. 1980. Neocognitron: a self-organizing neural network model for a mech-

anism of pattern recognition unaffected by shift in position. Biological Cybernetics,
36:193-202.

• 1986. A neural network model for selective attention in visual pattern recognition.
Biological Cybernetics, 55:5-15.

Fukushima, K., and S. Miyake. 1982. Neocognitron: a new algorithm for pattern recognition
tolerant of deformations and shifts in position. Pattern Recognition, 15:455--469.

Fukushima, K., S. Miyake, and T. Ito. 1983. Neocognitron: a neural network model for a
mechanism of visual pattern recognition. IEEE Transactions on Systems, Man and Cyber-
netics, SMC-13:826-834.

Gallant, S. J. 1993. Neural Network Learning and Expert Systems. Cambridge, MA: MIT
Press.

Gates, W. 1995. The Road Ahead. New York: Viking Penguin.
Goddard, D., Ed. 1970. A Buddhist Bible. Boston: Beacon Press.
Goldberg, D. E. 1983. Computer-aided gas pipeline operation using genetic algorithms and

rule learning (doctoral dissertation, University of Michigan). Dissertation Abstracts Inter-
national, 44(10), 3174B.

• 1987. Computer-aided pipeline operation using genetic algorithms and rule learn-
ing. Part I: Genetic algorithms in pipeline optimization. Engineering with Computers,
3:35-45.

Bibliography

• 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading,
MA: Addison-Wesley.

Gray, F. 1953. Pulse code communication. United States Patent Number 2,632,058,
March 17.

Gray, R. 1984. Vector quantization. IEEE ASSP Magazine, 1 (2):4-29.
Green, D. M., and J. A. Swets. 1966. Signal Detection Theory and Psychophysics. New York:

Wiley.
Grefenstette, J. J. 1984a. GENESIS: A system for using genetic search procedures. Proceedings

of the 1984 Conference on Intelligent Systems and Machines, 161-165.
• 1984b. A user's guide to GENESIS. Technical Report CS-84-11, Computer Science

Dept., Vanderbilt University, Nashville.
., Ed. 1985. Proceedings of an International Conference on Genetic Algorithms and

Their Applications. Hillsdale, NJ: Lawrence Erlbaum Associates.
Grossberg, S. A. 1970. Neural pattern discrimination. Journal of Theoretical Biology, 27:

291-337.
.1973. Contour enhancement, short term memory, and constancies in reverberating

neural networks. Studies in Applied Mathematics, 52(3):213-257.
• 1982. Studies of Mind and Brain. Dordrecht, Holland: Reidel Press.
• 1988. Neural Networks and Natural Intelligence. Cambridge, MA: MIT Press.

Guo, Z., and R. E. Uhrig. 1992. Sensitivity analysis and applications to nuclear power plant.
Proceedings of the 1992 IEEE International Joint Conference on Neural Networks. Piscat-
away, NJ: IEEE Service Center, 2:453-458.

Haldane, J. B. S. 1990. The Causes of Evolution. Princeton, NJ: Princeton University Press.
Han, J., and M. Kamber. 2006. Data Mining: Concepts and Techniques. San Francisco:

Morgan Kaufmann.
Hancock, P. J. B. 1992. Genetic algorithms and permutation problems: a comparison of

recombination operators for neural net structure specification. In L. D. Whitley and
J. D. Schaffer, Eds. COGANN-92: International Workshop on Combinations of Genetic
Algorithms and Neural Networks. Los Alamitos, CA: IEEE Computer Society Press,
108-122.

Hanley, J. A., and B. J. McNeil. 1982. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143:29-36.

~ . 1983. A method of comparing the areas under receiving operating characteristic
curves derived from the same cases. Radiology, 148:839-843.

Harmon, P., and B. Sawyer. 1990. Creating Expert Systems for Business and Industry.
New York: John Wiley.

Haupt, R., and S. Haupt. 1998. Practical Genetic Algorithms. New York: John Wiley.
Hebb, D. O. 1949. The Organization of Behavior. New York: John Wiley.
Hecht-Nielsen, R. 1990. Neurocomputing. Reading, MA: Addison-Wesley.
Herrera, F., M. Lozano, and J. L. Verdegay. 1995. The use of fuzzy connectives to design

real-coded genetic algorithms. Mathware & Soft Computing, 1 (3):239-251.
Hertz, J., et al. 1990. Introduction to the Theory of Neural Computation. Reading, MA:

Addison-Wesley.

Bibliography (~ , ,,~...45~

Hirota, K. 1995. History of industrial applications of fuzzy logic in Japan. In J. Yen,
R. Langari, and L. Zadeh, Eds. Industrial Applications of Fuzzy Logic and Intelligent Sys-
tems, Piscataway, NJ: IEEE Press.

Holland, J. H. 1962. Outline for a logical theory of adaptive systems. Journal of the Associa-
tion for Computing Machinery, 3:297-314.

~ . 1992 (orig. ed. 1975). Adaptation in Natural and Artificial Systems. Cambridge,
MA: MIT Press.

Holland, J. H., and J. S. Reitman. 1978. Cognitive systems based on adaptive algorithms. In
D. A. Waterman and E Hayers-Roth, Eds. Pattern-Directed Inference Systems. New York:
Academic Press.

Hopfield, J. J. 1982. Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences, 79:2554-2558.

~ . 1984. Neurons with graded response have collective computational proper-
ties like those of two-state neurons. Proceedings of the National Academy of Sciences,
81:3088-3092.

Hornick, K., M. Stinchcombe, and H. White. 1989. Multilayer feedforward neural networks
are universal approximators. Neural Networks, II:359-366.

Hwang, W. R., and W. E. Thompson. 1994. Design of intelligent fuzzy logic controllers
using genetic algorithms. Proceedings of the 1994 IEEE International Conference on Fuzzy
Systems. Piscataway, NJ: IEEE Press, 1383-1388.

IEEE Neural Networks Council. 1995. Glossary of fuzzy logic terms (working draft). Pis-
cataway, NJ: IEEE Standing Committee on Standards.

~ . 1996. Glossary of evolutionary computation terms (working draft). Piscataway, NJ:
IEEE Standing Committee on Standards.

Ishibuchi, H., K. Nozaki, N. Yamamoto, and H. Tanaka. 1995. Selecting fuzzy if-then rules
for classification problems using genetic algorithms. IEEE Transactions on Fuzzy
Systems, 3.

James, W. 1890. Psychology (Briefer Course). New York: Holt.
Kandel, E. R., J. H. Schwartz, and T. M. Jessell. 2000. Principles of Neural Science, 4th ed.

New York: McGraw-Hill.
Karr, C. L. 1991a. Genetic algorithms for fuzzy controllers. AI Expert, 6(2):26-33.
~ . 1991 b. Applying genetics to fuzzy logic. AI Expert, 6(3):38-43.
Karr, C. L., and E. J. Gentry. 1993. Fuzzy control of pH using genetic algorithms. IEEE

Transactions on Fuzzy Systems, 1 (1):46-53.
Kauffman, S. A. 1993. The Origins of Order. New York: Oxford University Press.
~ . 1995. At Home in the Universe. New York: Oxford University Press.
Kecman, V. 2001. Learning and Soft Computing. Cambridge, MA: MIT Press.
Kennedy, J. 1998. Thinking is social: experiments with the adaptive culture model. Journal

of Conflict Resolution, 42:56-76.
Kennedy, J., and R. C. Eberhart. 1995. Particle swarm optimization. Proceedings of the IEEE

International Conference on Neural Networks, Perth, Australia. Piscataway, NJ: IEEE Ser-
vice Center, IV:1942-1948.

Bibliography

• 1999. The particle swarm: social adaptation in information processing systems.
In D. Corne, M. Dorigo, and F. Glover, Eds. New Ideas in Optimization. London:
McGraw-Hill.

Kennedy,]., R. C. Eberhart, and Y. Shi. 2001. Swarm Intelligence. San Francisco: Morgan
Kaufmann.

Kennedy,]. F. 1973. Boolean algebra and computer switching. Radio-Electronics, 44(7):
23-25, 68.

Kitano, H. 1990. Designing neural network using genetic algorithm with graph generation
system. Complex Systems, 4:461-476.

Kleyn, P. A. 1963. Conceptual design of self-organizing machines. In J. E. Garvey, Ed.
Self-Organizing Systems 1963. ACR-96, Office of Naval Research, Washington, DC: U.S.
Government Printing Office, 52-64.

Klir, G. J., and T. A. Folger. 1988. Fuzzy Sets, Uncertainty, and Information. Englewood Cliffs,
N]: Prentice Hall.

Klir, G.], and B. Yuan. 1995. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Upper
Saddle River, NJ: Prentice Hall.

Kohonen, T. 1972. Correlation matrix memories. IEEE Transactions on Computers, C21(4):
353-359.

~ . 1982a. A simple paradigm for the self-organized formation of structured feature
maps. In Competition and Cooperation in Neural Nets (Lecture Notes in Biomathematics),
45, Berlin: Springer-Verlag.

~ . 1982b. Self-organized formation of topologically correct feature maps. Biological
Cybernetics, 43:59-69.

~ . 1986. Learning vector quantization for pattern recognition. Technical Report No.
TKK-F-A601, Helsinki University of Technology, Finland.

~ . 1988. Self-Organization and Associative Memory, 2nd ed. Berlin: Springer-Verlag.
~ . 1989. Tutorial: Self-organizing feature maps. IEEE International Joint Conf-

erence on Neural Networks, Washington, DC. Piscataway, N]: IEEE Service Center.
Kosko, B. 1986. Fuzzy entropy and conditioning. Information Science, 40:165-174.
~ . 1988. Bidirectional associative memories. IEEE Transactions on Systems, Man and

Cybernetics, SMC-18:42-60.
~ . 1993. Fuzzy Thinking: The New Science of Fuzzy Logic. New York: Hyperion.
Koza, J. R. 1992. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. Cambridge, MA: MIT Press.
Koza, J. R., and J. P. Rice. 1991. Genetic generation of both the weights and architecture for a

neural network. IEEE International Joint Conference on Neural Networks. Piscataway, NJ:
IEEE Press, II:397-404.

Koza, J. R. and M. A. Keane. 1990. Cart centering and broom balancing by genetically breed-
ing populations of control strategy programs. Proceedings of the International
Joint Conference on Neural Networks. Hillsdale, NJ: Lawrence Erlbaum Associates,
198-201.

Kubat, M., R. C. Holte, and S. Matwin. 1998. Machine learning for the detection of oil spills
in satellite radar images, Machine Learning, 30(2-3): 195-215.

LatanG B. 1981. The psychology of social impact. American Psychologist, 36:343-356.

Bibliography Q ~ . @

Lee, D. G., Jr. 1989. Preliminary results of applying neural networks to ship image recog-
nition. Proceedings of the International Joint Conference on Neural Networks. Piscataway,
NJ: IEEE Service Center, II:576.

Lee, S., and R. Kil. 1989. Bidirectional continuous associator based on Gaussian potential
function network. Proceedings of the International Joint Conference on Neural Networks.
Piscataway, NJ: IEEE Service Center, 1:45-54.

Lewis, D., and W. Gale. 1994. A sequential algorithm for training text classifiers. Annual
ACM Conference on Research and Development in Information Retrieval, the 17th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval. New York: Springer-Verlag, 3-12.

Levy, S. 1992. Artificial Life. New York: Random House.
Liepins, G. E., and W. D. Potter. 1991. A genetic algorithm approach to multiple-fault diag-

nosis. In L. Davis, Ed. Handbook of Genetic Algorithms. New York: Van Nostrand Rein-
hold.

Linde, Y., A. Buzo, and R. M. Gray. 1980. An algorithm for vector quantizer design. IEEE
Transactions on Communications, 28(1):84-95.

Lucas, P., and L. van der Gaag. 1991. Principles of Expert Systems. Wokingham, UK: Addison-
Wesley.

Lukasiewicz, J. 1963. Elements of Mathematical Logic. [Original title: Elementy logiki matem-
atycznej.] New York: Macmillan.

Mamdani, E., and S. Assilian. 1975. An experiment in linguistic synthesis with a fuzzy logic
controller. International Journal of Man-Machine Studies, 7(1):1-13.

Mange, E. A., and A. P. Mange. 1998. Basic Human Genetics. Sunderland, MA: Sinauer Asso-
ciates.

Mann, H. B., and D. R. Whitney. 1947. On a test of whether one of 2 random variables is
stochastically larger than the other. Annals of Mathematical Statistics, 18:50-60.

Maren, A., C. Harston, and R. Pap. 1990. Handbook of Neural Computing Applications. San
Diego: Academic Press.

Marks, R. 1993. Intelligence: computational versus artificial. IEEE Transactions on Neural
Networks, 4(5):737-739.

Martin, J., and S. Oxman. 1988. Building Expert Systems. Englewood Cliffs, NJ: Prentice
Hall.

Masters, T. 1993. Practical Neural Network Recipes in C++. San Diego: Academic Press.
McClelland, J. L., and D. E. Rumelhart. 1986. Parallel Distributed Processing: Explorations in

the Microstructure of Cognition, Vol. 2: Psychological and Biological Models. Cambridge,
MA: MIT Press.

• 1988. Explorations in Parallel Distributed Processing: A Handbook of Models, Pro-
grams, and Exercises. Cambridge, MA: MIT Press.

McClish, D. K. 1987. Comparing the areas under more than two independent ROC curves.
Medical Decision Making, 7:149-155.

McCulloch, W. C., and W. Pitts. 1943. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:115-133.

McKee, J. K. 2000. The Riddled Chain: Change, Coincidence, and Chaos in Human Evolution.
Piscataway, NJ: Rutgers University Press.

McNeill, D., and P. Freiberger. 1993. Fuzzy Logic. New York: Simon and Schuster.

Bibliography

McNeill, F. M., and E. Thro. 1994. Fuzzy Logic: A PracticalApproach. Boston: Academic Press.
Mead, C. 1989. Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley.
Meistrell, M. L., and K. A. Spackman. 1989. Evaluation of neural network performance

by receiver operating characteristic analysis: examples from the biotechnology domain.
Proceedings of the Thirteenth Annual Symposium on Computer Applications in Medical
Care, 295-301.

Michalewicz, Z., and M. Michalewicz. 1995. Pro-life versus pro-choice strategies in evolu-
tionary computation techniques. In M. Palaniswami, Y. Attikiouzel, R. Marks, D. Fogel,
and T. Fukuda, Eds. Computational Intelligence: A Dynamic System Perspective. Piscat-
away, NJ: IEEE Press, 137-151.

Michalewicz, Z., J. D. Schaffer, H.-P. Schwefel, D. B. Fogel, and H. Kitano, Eds. 1994.
Proceedings of the First IEEE Conference on Evolutionary Computation. Piscataway, NJ:
IEEE Service Center.

Michalewicz, Z., and Schoenauer, M. 1996. Evolutionary algorithms for constrained param-
eter optimization problems. Evolutionary Computation, 1 (4):1-32.

Minsky, M. 1961. Steps toward AI. Proceedings of the IRE, 49:5-30.
Minsky, M., and S. Papert. 1969. Perceptrons. Cambridge, MA: MIT Press.
Mish, F. C., Ed. 2001. Merriam-Webster's Collegiate Dictionary. Springfield, MA: G. & C.

Merriam Co.
Mitchell, M. 1996. An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press.
Montana, D. J. 1991. Automated parameter tuning for interpretation of synthetic images.

In L. Davis, Ed. Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.
Montana, D. J., and L. Davis. 1989. Training feedforward neural networks using genetic

algorithms. Proceedings of the Eleventh Annual Joint Conference on Artificial Intelligence.
San Mateo: Morgan Kaufmann, 762-767.

Newell, A., and D. S. Moore. 2001. Statistics: Concepts and Controversies. New York: Free-
man, 475.

Newell, A., and H. A. Simon. 1956. The logic theory machine: a complete information pro-
cessing system. Transactions on Information Theory (Institute of Radio Engineers),
IT-2:61-79.

Nilsson, N. J. 1998. Artificial Intelligence: A New Synthesis. San Francisco: Morgan
Kaufmann.

Pal, N. R., and J. C. Bezdek. 1994. Measuring fuzzy uncertainty. IEEE Transactions on Fuzzy
Systems, 2(2):107-118.

Pal, N. R., and S. K. Pal. 1989. Object-background segmentation using new definitions of
entropy. IEEE Proceedings, 136(2):284-295.

Pao, Y. 1989. Adaptive Pattern Recognition and Neural Networks. Reading, MA: Addison-
Wesley.

Parker, D. 1982. Learning logic. Invention report 581-64, Department of Electrical Engi-
neering, Stanford University, Stanford.

Pedrycz, W. 1998. Computational Intelligence: An Introduction. Boca Raton, FL: CRC Press.
Perry, T. S. 1995. Lotfi A. Zadeh. IEEE Spectrum, 32(6):32-35.
Pineda, F. J. 1988. Dynamics and architecture for neural computation. Journal of Comple-

xity, 4:216-245.

Bibliography (~ , , , ~

Pinedo, M. 1995. Scheduling: Theory, Algorithms and Systems. Englewood Cliffs, NJ:
Prentice-Hall.

Principe, J. C, N. R. Euliano, and W. C. Lefebvre. 2000. Neural and Adaptive Systems: Fun-
damentals Through Simulations. New York: John Wiley.

Rechenberg, I. 1965. Cybernetic solution path of an experimental problem. Royal Aircraft
Establishment, library translation 1122, Farnborough, Hants, U.K.

~ . 1973. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biol-
ogischen Evolution. Stuttgart, Germany: Frommann-Holzboog Verlag.

~ . 1994. Evolution strategy. In J. Zurada, R. Marks, II, and C. Robinson, Eds. Com-
putational Intelligencemlmitating Life. Piscataway, NJ: IEEE Press, 147-159.

Reed, R. 1993. Pruning algorithmsma survey. IEEE Transactions on Neural Networks,
4:740-747.

Reed, R., R. J. Marks II, and S. Oh. 1995. Similarities of error regularization, sigmoid gain
scaling, target smoothing, and training with jitter. IEEE Transactions on Neural Networks,
6:529-538.

Robbins, H., and S. Monro. 1951. A stochastic approximation method. Annals of Mathe-
matical Statistics, 22:400-407.

Robinson, A., M. Niranjan, and F. Fallside. 1988. Generalizing the nodes of the error propa-
gation network. Cambridge University Engineering Department Technical Report
CUED/F-INENG/TR.25, Cambridge, U.K.

Roscoe, J. T. 1969. Fundamental Research Statistics. New York: Holt, Rinehart, and Winston,
190-191.

Rosenblatt, F. 1958. The perceptron: a probabilistic model for information storage and orga-
nization in the brain. Psychological Review, 65:386-408.

• 1962. Principles of Neurodynamics. Washington, DC: Spartan Books.
• 1964. A model for experiential storage in neural networks. In J. T. Tou and

R. H. Wilcox, Eds. Computer and Information Sciences: Collected Papers in Learning, Adap-
tation and Control in Information Systems. Washington, DC: Spartan Books.

Ross, S. M. 2004. Introduction to Probability and Statistics for Engineers and Scientists. San
Diego: Elsevier/Academic Press.

Ross, T. J. 1995. Fuzzy Logic with EngineeringApplications. New York: McGraw-Hill, 134-146.
Ruck, D., S. Rogers, M. Kabrisky, P. Maybeck, and M. Oxley. 1992. Comparative analysis

of backpropagation and the extended Kalman filter for training multilayer perceptrons.
IEEE Transactions on Pattern Analysis Machine Intelligence, 14(6):686-691.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. Learning representations by back-
propagating errors. Nature, 323(9):533-536.

Rumelhart, D. E., and J. L. McClelland. 1986. Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, Vol. 1: Foundations. Cambridge, MA: MIT Press.

Ruspini, E. H. 1969. A new approach to clustering. Information and Control 15(1):22-3'2.
~ . 1973. New experimental results in fuzzy clustering. Information Sciences

6:273-284.
Saito, K., and R. Nakano. 1988. Medical diagnostic expert system based on PDP

model. Proceedings IEEE International Conference on Neural Networks. San Diego,
I:255-262.

Bibliography

Schaffer, J. D. 1984. Some experiments in machine learning using vector evaluated genetic
algorithms. Unpublished doctoral dissertation, Vanderbilt University, Nashville.

Schaffer, J. D., R. A. Caruana, and L. J. Eshelman. 1990. Using genetic search to exploit the
emergent behavior of neural networks. In S. Forrest, Ed. Emergent Computation. Ams-
terdam: North Holland, 1990, 244-248.

Schaffer, J. D., L. D. Whifley, and L. J. Eshelman. 1992. Combinations of genetic algorithms
and neural networks: a survey of the state of the art. In L. D. Whifley and]. D. Schaffer,
Eds. COGANN-92: International Workshop on Combinations of Genetic Algorithms and
Neural Networks. Los Alamitos, CA: IEEE Computer Society Press, 1-37.

Schwefel, H.-P. 1965. Kybernetische Evolution als Strategie der experimentellen Forschung
in der Stromungstechnik. Diploma thesis, Technical University of Berlin, Germany.

~ . 1994. On the evolution of evolutionary computation. In J. M. Zurada, R.]. Marks
II, and C. J. Robinson, Eds. Computational Intelligence: Imitating Life. Piscataway, NJ:
IEEE Press.

Shi, Y. 2000. Fuzzy adaptive evolutionary computation: a review. Proceedings of the Fourth
World Multiconference on Systemics, Cybernetics and Informatics, Orlando, July 23-26.

Shi, ¥., and R. C. Eberhart. 1998a. Parameter selection in particle swarm optimization. In
Evolutionary Programming VII: Proceedings EP98. New York: Springer-Verlag, 591-600.

~ . 1998b. A modified particle swarm optimizer. Proceedings of the IEEE International
Conference on Evolutionary Computation, 69-73. Piscataway, NJ: IEEE Press.

~ . 2000. Experimental study of particle swarm optimization. Proceedings SCI2000
Conference, Orlando.

Shi, ¥., R. C. Eberhart, and Y. Chen. 1999. Implementation of evolutionary fuzzy system.
IEEE Transactions on Fuzzy Systems, Piscataway, NJ: IEEE Press.

Shi, Y., and Krohling, R. A. 2002. Co-evolutionary particle swarm optimization to solve
min-max problems. Proceedings of the 2002 Congress on Evolutionary Computation, Hon-
olulu, HI, Piscataway, NJ: IEEE Press.

Siegel, S. 1956. Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill.
Simpson, P. K. 1990. Artificial Neural Systems: Foundations, Paradigms, Applications and

Implementations. Elmsford, NY: Pergamon Press.
Simpson, P. K., and T. Brotherton. 1995. Fuzzy neural network machine prognosis. Proceed-

ings of Aerosense '95: Applications of Fuzzy Logic Technology II, SPIE-The International
Society for Optical Engineering, Bellingham, WA, 2493:21-27.

Singhal, S., and L. Wu. 1989. Training multi-layer perceptrons with the extended Kalman
algorithm. In D. Touretzky, Ed. Advances in Neural Information Processing Systems. San
Mateo, CA: Kaufmann Publishing.

Smith, S. E 1980. A learning system based on genetic adaptive algorithms. Unpublished
doctoral dissertation, University of Pittsburgh, Pittsburgh.

Specht, D. F. 1967. Vectorcardiographic diagnosis using the polynomial discriminant
method of pattern recognition. IEEE Transactions on Biomedical Engineering, BME-14
(2):90-95.

~ . 1967a. Generation of polynomial discriminant functions for pattern recognition.
IEEE Transactions. on Electronic Computers, EC-16(3):308-319.

~ . 1988. Probabilistic neural networks for classification, mapping or associative mem-
ory. Proceedings of the IEEE International Conference on Neural Networks, 1:525-532.

Bibliography (~ , , , 4 ~

~ . 1990. Probabilistic neural networks. Neural Networks, 3(1):109-118.
Spiegel, M. 1975. Schaum's Outline of Theory and Problems of Probability and Statistics.

New York: McGraw-Hill.
Stanfill, C., and B. Kahle. 1986. Parallel free-text search on the connection machine system.

CACM, 29(12):1229-1239.
Stork, D. G., S. Walker, M. Burns, and B. Jackson. 1990. Preadaptation in neural circuits.

Proceedings of the International Joint Conference on Neural Networks. Hillsdale, N]:
Lawrence Erlbaum Associates, I:202-205.

Stubbs, D. 1988. Neurocomputers. M. D. Computing, 5(3):14-24.
Sugeno, M. 1985. Industrial Applications of Fuzzy Control. New York: North-Holland.
Sugeno, M., and G. T. Kang. 1986. Fuzzy modeling and control of multilayer incinerator.

Fuzzy Sets and Systems, 18:329-346.
Sutton, R., and A. Barto. 1981. Toward a modern theory of adaptive networks: expectation

and prediction. Psychology Review, 88:135-171.
Swets,]. A., Ed. 1964. Signal Detection and Recognition by Human Observers. New York:

John Wiley.
• 1988. Measuring the accuracy of diagnostic systems. Science, 240:1285-1293.

Syswerda, G. 1989. Uniform crossover in genetic algorithms. In]. D. Schaffer, Ed. Proceed-
ings of the Third International Conference on Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann.

• 1991. Schedule optimization using genetic algorithms. In Handbook of Genetic
Algorithms, L. Davis, Ed., New York: Van Nostrand Reinhold.

Syswerda, G., and]. Palmucci. 1991. The application of genetic algorithms to resource
scheduling. Proceedings Fourth International Conference on Genetic Algorithms. San Mateo,
CA: Morgan Kaufmann.

Szu, H. 1986. Fast simulated annealing. In]. Denker, Ed. AIP Conference Proceedings 151:
Neural Networks for Computing. New York: American Institute of Physics, 420-425.

Tahk, M.]., and Sun, B.-C. 2000. Coevolutionary augmented Lagrangian methods for con-
strained optimization. IEEE Transactions on Evolutionary Computation, (4)2:114-124.

Takagi, T., and M. Sugeno. 1985. Fuzzy identification of systems and its applications to
modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(1):
116-132.

Terano, T., K. Asai, and M. Sugeno. 1989. Applied Fuzzy Systems. Cambridge, MA: AP Pro-
fessional, 71-85.

Thrift, P. 1991. Fuzzy logic synthesis with genetic algorithms. Proceedings of the International
Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann, 509-513.

Turing, A. M. 1937. On computable numbers, with an application to the Entscheidungs-
problem. Proceedings of the London Mathematical Society (serv. 2), 42:230-265; correction
43:544-546.

Von Altrock, C. 1997. Fuzzy Logic and NeuroFuzzy Applications in Business and Finance.
Upper Saddle River, N]: Prentice Hall PTR.

Von der Malsberg, C. 1973. Self-organization of orientation sensitive cells in the striate cor-
tex. Kybernetik, 14:85-100.

Webber, W. R. S. 1988.]HH EMU spike viewer manual. Baltimore: The Johns Hopkins
Hospital Department of Neurology.

Bibliography

Webber, W. R. S., B. Litt, K. Wilson, and R. E Lesser, Eds. 1994. Practical detection of
epileptiform discharges in the EEG using an artificial neural network: a comparison of
raw and parameterized data. Electroencephalography and Clinical Neurophysiology, 91:
194-204.

Wee, W. G. 1967. On generalizations of adaptive algorithms and application of the fuzzy sets
concept to pattern classification. Ph.D. dissertation, Purdue University, West Lafayette, IN.

Wee, W. G., and K. S. Fu. 1969. A formulation of fuzzy automata and its application as a
model of learning systems. IEEE Transactions on Systems, Science. and Cybernetics,
SSC-5:215-223.

Werbos, E 1974. Beyond regression. Ph.D. dissertation, Harvard University, Cambridge,
MA.

White, H. 1989. Learning in neural networks: A statistical perspective. Neural Computation,
1:425-464.

White, H. 1990. Neural network learning and statistics. AI Expert, Fall issue.
Whitley, D. 1989. Applying genetic algorithms to neural network learning. Proceedings of

the Seventh Conference of the Society of Artificial Intelligence and Simulation of Behavior.
Sussex, England: Pitman Publishing, 137-144.

Whitley, D., S. Dominic, and R. Das. 1991. Genetic reinforcement learning with multilayer
neural networks. In R. K. Belew and L. B. Booker, Eds. Proceedings of the Fourth Interna-
tional Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann, 562-569.

Widrow, B., and M. E. Hoff. 1960. Adaptive switching circuits. 1960 IRE WESCON Conven-
tion Record: Part 4, Computers: Man-Machine Systems, Los Angeles, 96-104.

Widrow, B., and R. Winter. 1988. Neural nets for adaptive filtering and adaptive pattern
recognition. IEEE Computer Magazine, March:25-39.

Widrow, B.,]. R. Glover, Jr.,]. M. McCool,]. Kaunitz, C. S. Williams, R. H. Hearn,
]. R. Zeidler, E. Dong, Jr., and R. C. Goodlin. 1975. Adaptive noise cancelling: principles
and applications. Proceedings oflEEE, 63(12): 1692-1716.

Wilcoxon, E 1945. Individual comparisons by ranking methods. Biometrics Bulletin,
1:80-83.

Winston, E H. 1984. Artificial Intelligence. Reading, MA: Addison-Wesley.
Wolfram, S. 1994. Cellular Automata and Complexity. Reading, MA: Addison-Wesley.
Yager, R. R., and D. E Filev. 1994. Essentials of Fuzzy Modeling and Control. New York: John

Wiley.
Yao, X. 1995. Evolutionary artificial neural networks. In A. Kent and]. G. Williams, Eds.

Encyclopedia of Computer Science and Technology. New York: Marcel Dekker.
Young, T., and K. Fu, Eds. 1986. Handbook of Pattern Recognition and Image Processing. San

Diego: Academic Press.
Yovits, M. C., and S. Cameron, Eds. 1960. Self-Organizing Systems. New York: Pergamon

Press.
Zadeh, L. A. 1965. Fuzzy sets. Information and Control, 8:338-353.

.1972. A fuzzy-set-theoretic interpretation of linguistic hedges. Journal of Cybernet-
ics, 2(2):4-34.

.1975. The concept of a linguistic variable and its application to approximate rea-
soning, Parts 1 and 2. Information Sciences, 8:199-249, 301-357.

• 1994. Soft computing and fuzzy logic. IEEE Software (November):48-56.

Bibliography (~ , , . ~ ~

.1998. Roles of soft computing and fuzzy logic in the conception, design and deploy-
ment of information/intelligent systems. In O. Kaynak, L. A. Zadeh, B. Tiirk~en, and
I. J. Rudas, Eds. Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration
with Applications. Berlin: Springer-Verlag, 10-37.

Zimmerman, H.-J., and P. Zysno. 1980. Latent connections in human decision making.
Fuzzy Sets and Systems, 4:37-51.

~ . 1983. Decision analysis and evaluations by hierarchical aggregation of information.
Fuzzy Sets and Systems, 10:243-266.

Zurada, J. M., A. Malinowski, and I. Cloete. 1994. Sensitivity analysis for minimization of
input dimension for feedforward neural networks. Proceedings of the IEEE International
Symposium on Circuits and Systems, London.

Index

A

Absolute error, performance metrics,
398-399

Absolute value average sensitivity, Zurada
sensitivity analysis, 424

Accuracy, receiver operating characteristic
curve, 409

Activation functions, processing elements,
172-176

Adaline, definition, 152
Adaptation

challenges, 18-20
computational intelligence, 30-34
definition, 3, 18
fuzzy adaptation, 3 7 5 - 3 7 7

genetic algorithm, 375
learning comparison, 19-20, 97
neural network, 168, 179-188
offline versus online, 20
population versus individual adaptation,

98-99
spaces

fitness space, 26
input parameter space, 25
system output space, 25

static versus dynamic adaptation, 99-100
types

comparison, 24-25
reinforcement adaptation, 22-23
supervised adaptation, 20-21
unsupervised adaptation, 23-24

Adaptive polynomial threshold element, 153
Adaptive resonance theory (ART)

development, 154
network models, 156

Adjusted fitness, genetic programming, 85
Allele, definition, 8
Amari, Shun-Ichi, 156-157
ANN, see Artificial neural network
Approximate reasoning

containment, 285
equality of fuzzy sets, 284--285
overview, 275
paradoxes in fuzzy logic, 283-284

Architecture, neural networks, 199
Aristotle, 270
Arity, function, 82
ART, see Adaptive resonance theory
Artificial intelligence, definition, 3
Artificial neural network (ANN)

adaptation
attributes of algorithms, 187-188
competitive adaptation, 182-183
Hebbian adaptation, 181-182
multilayer error correction adaptation,

183-187
terminology, 180-181

applications
classification, 12, 165
clustering or compression, 12
content addressable memory or

associative memory, 12
control systems, 13, 166
noise removal, 166
optimization, 166
sequence or pattern generation,

12-13, 166
simulation, 166

biological neural network comparison,
5-6

computational intelligence comparison,
190

455

Index

Artificial neural network (ANN) (continued)
connection weights, 170-171
definition, 2
denormalization of output data, 195
Eccles' law, 5
explanation facilities, 431-432,

435-437
hard computing, 35-36
historical perspective

age of Camelot, 147-153
age of computational intelligence, 165
age of Neoconnectionism, 164-165
Dark Age, 153-159
naming, 146-147
overview of periods, 146
Renaissance, 159-154

implementation
back-propagation network

BP_Main_Loop () routine,
223-224

enumeration data type, 218-220
initialization and normalization,

199-202
ma i n () routine, 222-223
running, 233-234
state handling routines, 224-233
structure data type, 221-222

learning vector quantizer neural
network

enumeration data type, 235-237
LVQ_Main_Loop () routine,

240-241
main () routine, 239-240
running, 249-250
state handling routines, 241-249
structure data type, 237-239

error back-propagation for supervised
adaptation, 206-210

evolution of topology
evolutionary adaptation, 212-215
particle swarm optimization,

216-217
evolutionary back-propagation net-

work
BP_Ge t_P SO_D imens i on

routine, 263
evaluate_function routine,

263-264
main () routine, 262-263

running, 264-265
feedforward calculations

back-propagation networks,
203-205

learning vector quantizing
networks, 206

learning vector quantizing network
initialization and normalization,

202-203
supervised adaptation algorithm,

211-212
unsupervised adaptation

calculations, 210-211
self-organizing feature map neural

network, 250-262
topology considerations, 199

input and output patterns,
169-170

neurons, 4-5
preprocessing

data preparation, 192-195
overview, 190-191
test dataset selection, 191-192
training dataset selection, 191
validation dataset selection, 192

processing element, see Processing
element

activation functions, 172-176
input computation, 172
qualities, 171

speed, 6
structure and features, 166-168
terminology, 168-169
topology

multilayer networks, 178-179
terminology, 176
two-layer networks, 176-178

Assilian, Sedrak, 272
Asynchronous updating, processing

element, 162
Autoassociative network, 168
Autocatalysis, definition, 28-29
Average sum-squared error, performance

metrics, 396-398
Averaging flag, Mamdani-type fuzzy rule

implementation, 350
Axelrod's culture model, 46

Index

Back-propagation, definition, 3
Back-propagation neural network

evolutionary back-propagation network
implementation

BP_Get_P SO_D imens i on routine,
263

evaluate_function routine,
263-264

main () routine, 262-263

running, 264-265

feedforward calculations, 203-205

implementation
BP_Main_Loop () routine, 223-224
enumeration data type, 218-220
ma in () routine, 222-223
running, 233-234
state handling routines, 224-233
structure data type, 221-222

initialization and normalization,
199-202

Bayes classification, 189
Bezdek, James, 273
Black, Max, 271
B P_BAC K_P ROP AGAT I ON_H I D DEN S

state handling routine, 228
BP_BACK_PROPAGAT I ON_OUTPUT state

handling routine, 227-228
BP BATC H TEMP WEIGH T STEP CHANGE

state handling routine, 228-230
BP_FEEDFORWARD_H I DDEN state

handling routine, 226
BP_FEEDFORWARD_INPUT state handling

routine, 225-226
BP_FEEDFORWARD_OUTP UT state

handling routine, 226-227
BP_GET_PATTERN state handling

routine, 225
BP_Get_P SO_D imens i o n routine, 263
BP_Main_Loop () routine, 223-224
BP_NEXT_GENERAT I ON state handling

routine, 232-233
BP_NEXT_PATTERN state handling

routine1230-231
BP_WE I GHT_CHANGE state handling

routine, 231-232

Cell populations, processing elements, 155
Center-of-maximum, defuzzification,

296-297
c h e c k R u l e A c t i v e () routine, 334
Chi-square test, performance metrics,

414-417
Chromosome

biological versus artifcial
composition, 8
length, 8
reproduction, 8-9

definition, 7
patterns, 7

CI, s e e Computational intelligence
Clerc's constriction method, 90-91
Clipped center of gravity, defuzzification, 295
Closure, genetic programming, 82
Codebook vector, 431
Competing conventions problem, neural

network evolution, 216
Competitive adaptation, neural networks,

182-183
Complexity, intelligence, 32
Computational intelligence (CI)

adaptation and self-organization, 30-34
data mining, 385-387
definition, 3
generalization, 34-35
historical views, 29-30
implementation

fuzzy adaptation, 375-377
fuzzy evolutionary fuzzy rule system

fuzzy rule linguistic descriptions,
380-381

ga () routine, 378-379
overview, 378
running, 381

genetic algorithm adaptation, 375
knowledge elicitation, 377
overview, 374-375

myths, 10-11
neural network comparison, 190
soft computing, 35-36
tool selection

modeling and optimization,
383-384

practical issues, 384-385

Index

Computational Intelligence (cont inued)

strengths and weaknesses
comparisons, 382-383

Concept forming networks, 156
Confusion matrix, performance metrics,

410-414
Connectionism, definition, 149
Conscience, adding to neural networks,

248-249
Constructive algorithm, network topology

evolution, 212
Constriction factor, particle swarm

optimization, 90-91
Correlation, pattern recognition, 189
Crossover

definition, 3
enumeration data type for crossover

operators, 100-101
function pointers for crossover handlers,

101-102
genetic algorithm, 62-63, 65-66
genetic programming, 86

Crossover index, 101
Crossover rate, genetic algorithm, 54-56
Cross validation, performance metrics,

392-393

Darwin, Charles, 28
Data mining

CI implementation, 386-387
overview, 385

Data types, see Enumeration data type;
Structure data type

Davis, Lawrence, 43
Defuzzification, 290, 294-297, 350-351
defuzzify () routine, 339
De Jong, K. A., 42-43
Delta rule, 181
Denormalization, neural network output

data, 195
Destructive algorithm, network topology

evolution, 212
Discrete recombination, evolution strategies,

7 7 - 7 8

Dynamic programming, 22

Eberhart, Russ, 47, 92
EC, see Evolutionary computation
Eccles' law, 5
Electroencephalogram (EEG), waveform

classification, 13
Elitist strategy, genetic algorithm, 62
Entropy, fuzziness measure, 298-301
Enumeration data type

back-propagation neural network,
218-220

crossover operators, 100-101
genetic algorithm, 104-107
learning vector quantizer neural

network, 235-237
particle swarm optimization,

118-119
self-organizing feature map neural

network, 256-257
Error checking, source code, 102-103
ES, see Evolution strategies
Evaluat e_Funct ion_Type, particle

swarm optimization, 131
evaluate_functions () routine

evolutionary back-propagation network,
263-264

particle swarm optimization, 132-133
Evolution

Darwinism, 28
neo-Darwinian view, 28

Evolutionary adaptation
evolution of network topology,

212-215
neural networks, 212-215

Evolutionary back-propagation network
BP_Get_P SO_D imens i on routine,

263
evaluate_function routine,

263-264
ma in () routine, 262-263
running, 264-265

Evolutionary computation (EC)
applications

classification, 13-14
optimization, 13

chromosomes and biological
computation, 7-9

definition, 2-3

explanation tools, 432-434
genes and alleles, 8
historical perspective

evolution strategies, 44-45
evolutionary programming, 44
genetic algorithms, 40-44
genetic programming, 45
particle swarm optimization,

45-47
paradigms

attributes, 48-49
implementation, 49-50

sensitivity analysis, 426-427
unification of fields, 47

Evolutionary programming
definition, 3
finite state machine evolution for

prediction, 69-74
function optimization, 74-75
historical perspective, 44
implementation, 69
overview, 68-69, 75

Evolution strategies (ES)
evolution of evolution, 75-76
evolution window, 77
historical perspective, 44-45
implementation, 80
mutation control, 76
overview, 75-78, 80-81
recombination, 77-78
selection, 78-80

Explanation facility
definition, 429
evolutionary computation tools for

explanation, 432-434
fuzzy expert system explanation,

432
neural network explanation, 431-432,

435-437
requirements, 429-431

False alarm rate, receiver operating
characteristic curve, 409

Feedback neural network, 176
Feedback pattern matching neural

network, 177

Index

Feedforward neural network, 176, 204
Feedforward pattern matching neural

network, 177
Finite state machine (FSM)

evolution for prediction, 69-74
flowchart versus finite state machine, 100

Fitness
genetic programming, 85-86
performance metrics, 393-394

Fitness shift flag, evolutionary design of fuzzy
rule system with GAs, 369

Fitness space, adaptation, 26
Floating point variables, 201
Flowchart, FSM versus flowchart, 100
F-measure, receiver operating characteristic

curve, 410
Fogel, David, 29
Fogel, Larry J., 44, 71
f 1 () routine, Mamdani-type fuzzy rule,

341-343
Fu, King Sun, 273
Fukushima, Kunihiko, 158
Function pointers, crossover handlers,

101-102
Function space, adaptation, 25
Fuzzification, 290-293
Fuzziness, definition, 2
Fuzzy controller

applications, 301-302
fuzzy rule base, 302-303
implementation

Mamdani-type fuzzy controller
action interface, 307-309
fuzzy membership functions for

each input variable, 304-305
input linguistic variables and

numerical ranges, 303
operation, 310
output linguistic variables and

numerical ranges, 304
rule base construction, 306-307

Takagi-Sugeno-Kang Method fuzzy
controller, 310-313

Fuzzy evolutionary fuzzy rule system
fuzzy rule linguistic descriptions,

380-381
ga () routine, 378-379

Index

Fuzzy evolutionary fuzzy rule system
(continued)

overview, 378
running, 381

Fuzzy logic, see also Mamdani-type fuzzy
rule; Takagi-Sugeno-Kang Method

adaptation, 375-377
applications

control systems, 14
expert systems, 14

approximate reasoning
containment, 285
equality of fuzzy sets, 284-285
overview, 275
paradoxes in fuzzy logic, 283-284

behavioral motivations, 9
definition, 2
evolutionary design of fuzzy rule system

with GAs
C++ advantages, 320
class definitions

class array, 356-357
class IndividualInt, 358-359,

361-362
class tree, 354

ga () routine, 365-366
ma in () routine, 363-364
membership functions, 354-355
overview, 317-320, 353-354
public member functions, 360,

362-363
running, 366-371

expert system explanation, 432
fuzziness measures, 297-301
fuzziness overview, 275-276
fuzzy rules

firing in parallel, 293
overview, 290

historical perspective, 270-275
myths, 11
probability versus fuzziness, 276-277
relations and operators

compensatory operators, 288-289
complement, 285-286, 288
containment, 285, 288
intersection, 286-288
union, 287-288

Fuzzy set
AND, 286-287

definition, 2, 275
equality and approximate reasoning,

284-285
NOT, 285-286
OR, 287-288
theory

linguistic hedges, 282-283
linguistic variables, 281-282
membership functions, 279-281
set theory, 277-279

Fuz zyOutput () routine, 335
fuzzyOutputValue_max () routine,

338-339

GA, see Genetic algorithm
g a _ c r o s s o v e r () routine, 113-114
g a _ e v a l u a t e () routine, 109-110
Gain, neural networks, 152
Gallant, Stephen, 431
Gamma operator, fuzzy logic, 289
g a _ m u t a t i o n () routine, 115-116
g a () routine, evolutionary design of fuzzy

rule system with Gaussian activation
function, PEs, 175-176

genetic algorithm, 365-366
fuzzy evolutionary fuzzy rule system,

378-379
g a _ s e l e c t i o n () routine, 110
Gene, definition, 8
Generalization, computational intelligence,

34-35
Generation gap, genetic algorithm, 61
Genetic algorithm (GA)

adaptation, 375
definition, 3
fuzzy rule system evolutionary design

C++ advantages, 320
class definitions

class array, 356-357
class I n d i v i d u a l I n t , 358-359,

361-362
class tree, 354

g a () routine, 365-366
main () routine, 363-364

Index

membership functions, 354-355
overview, 317-320, 353-354
public member functions, 360,

362-363
running, 366-371

historical perspective, 40-44
implementation

binary tournament selection operator,
112-113

enumeration data type, 104-107
flowchart, 104
functions used, 96, 104
g a _ c r o s s o v e r () routine,

113-114
g a _ e v a l u a t e () routine, 109-110
ga__mutat ion () routine, 115-116
g a _ s e l e c t i o n () routine, 110
homogeneous versus heterogeneous

representation, 97-98
main () routine, 107-108
running, 116-118
structure data type, 104-107

operations, 56-64
overview, 51-52
sample problem, 52-56
schemata, 63-67
schema theorem, 64, 66-67

Genetic programming (GP)
definition, 3
genetic algorithm comparison, 81
historical perspective, 45
implementation, 81-86
ramped half-and-half method, 84-85

Genotype, definition, 52
Geometric mean, receiver operating

characteristic curve, 410
Global best, particle swarm optimization,

89
Goldberg, David E., 43
GP, see Genetic programming
Gradient descent, 152
Gray coding, genetic algorithm, 57-58
Grefenstette, John, 43
Griewank function, dynamic range and error

criterion, 96
Grossberg, Stephen, 154-156

Hard-limiting function, processing
element, 161

Hebb, Donald O., 149-150
Hebbian adaptation, neural networks,

181-182
Hebbian network, 149-150
Heteroassociative network, 168
Hinton, Geoffrey, 427
Hoff, Marcian, 151-153
Holland, John H., 41-43, 45, 64
Holmblad, L. P., 274
Hopfeld, John, 159-163

Inertia weight
particle swarm optimization,

8 9 - 9 1

P SO_UP DATE_INERT IA_WE I GHT

state handler routine, 138
Input parameter space, adaptation, 25
Intelligence, definition, 2
Interlayer weights, neural networks, 176
Intermediate recombination, evolution

strategies, 78
Intralayer weights, neural networks, 176
Inversion, genetic algorithm, 63
Isomorphism problem, neural network

evolution, 216

]ames, Willam, 146-147

Kalman filter, 188
Karplus, Walter, 29
Kauffman, Stuart, 28-29
Kennedy's adaptive culture model, 46
Kennedy, Jim, 46-47, 92
Knowledge discovery in database, see Data

mining
Knowledge

definition, 19

Index

Knowledge (continued)

elicitation, 377

Kohonen network, see Learning vector
quantizer neural network

Kohonen, Teuvo, 157-158, 164, 203
Koza, John, 45, 85

Latan6's dynamic social impact
theory, 46

Latent addition, definition, 148
Law of sufficiency, 19
Learning vector quantizer (LVQ) neural

network
adaptation

supervised adaptation algorithm,
211-212

unsupervised adaptation calculations,
24, 210-211

implementation
enumeration data type, 235-237
LVQ_Main_Loop () routine,

240-241
main () routine, 239-240
running, 249-250
state handling routines, 241-249
structure data type, 237-239

initialization and normalization,
202-203

Learning
adaptation comparison, 19-20, 97
definition, 19

Least mean squares algorithm, 152
Linear activation function, processing

elements, 173
Linear combination, input

computation, 172
Linear regression, 188-189
Locus, definition, 8
Lukasiewicz, Jan, 270
LVQ_FEEDFORWARD_INP UT state

handling routine, 243
LVQ_FEEDFORWARD_OUTP UT state

handling routine, 243-244
LVQ GET PATTERN state handling

routine, 242

LVQ__Eain_Loop () routine,
240-241

LVQ neural network, see Learning vector
quantizer neural network

LVQ NEXT I TERAT I ON state handling
routine, 246-247

LVQ NEXT PATTERN state handling
routine, 245-246

LVQ_UP DATE_CONS C I ENCE_FAC TOR

state handling routine, 247-249
LVQ_WE I GHT_NORMAL I ZAT I ON state

handling routine, 242-243
LVQ_WE I GHT_STEP_CHANGE state

handling routine, 245
LVQ_WINNING_NEURON state handling

routine, 244-245
ma in () routine

back-propagation neural network,
222-223

evolutionary back-propagation network,
262-263

evolutionary design of fuzzy rule system
with GAs, 363-364

genetic algorithm, 107-108
learning vector quantizer neural

network, 239-240
Mamdani-type fuzzy rule, 341
particle swarm optimization,

122-123

M

Mamdani-type fuzzy rule
fuzzy controller

action interface, 307-309
fuzzy membership functions for each

input variable, 304-305
input linguistic variables and

numerical ranges, 303
operation, 310
output linguistic variables and

numerical ranges, 304
rule-based construction, 306-307

implementation
C++ advantages, 320
checkRuleActive () routine,

334

Index

class definitions
class Fuz zyMember, 324-325
class Fuz zyRule, 331-335
class FuzzyRuleSet, 335-339
class Fuz zyVariable, 329-330
class Mystring, 322-324
class tree, 321
class vector, 320-322

d e f u z z i f y () routine, 339
f l () routine, 341-343
Fuz z y O u t p u t () routine, 335
fuz zyOutputValue__max ()

routine, 338-339
fuzzy rule representation, 316-317
Iris dataset application, 351-353
ma i n () routine, 341
m e m b e r F u n c t i o n () routine,

326-327
membership functions, 325-326
public overloaded operators,

328-329
r e a d _ f l _ r u n f i l e () routine,

343-345
running, 345-351

overview, 290
Mann-Whitney U test, performance metrics,

401-404
Marks, Robert, 29
Matrix Controlled Interface Engine

(MACIE), 431
Max-membership, defuzzification, 296
Maximum estimated sensitivity, Zurada

sensitivity analysis, 425
Maximum sensitivity, Zurada sensitivity

analysis, 424
Maximum velocity (Vmax), particle swarm

optimization, 88-89
McCarthy,]ohn, 41
McCulloch-Pitts neuron, 148
Mean operator, fuzzy logic, 289
Mean square average estimated sensitivity,

Zurada sensitivity analysis, 425
Mean square average sensitivity, Zurada

sensitivity analysis, 424
Mean square, performance

metrics, 399
Mean-max membership, defuzzification,

296-297

Mean-variance connections, input
computation, 172

memberFunction () routine,
Mamdani-type fuzzy rule,
326-327

Memory, allocation and handling,
102-103

Mendel, Gregor Johann, 28
Minsky, Marvin, 153-154
Multilayer error correction adaptation,

neural networks, 183-187
Mutation, definition, 3

Neighborhood, self-organizing feature map
neural network, 250

Neighborhood best, particle swarm
optimization, 89

Neural network, s ee Artificial neural
network

Neuron, artificial neural network, 4-5
Noise, neural networks

removal application, 195
addition to training data, 196

Nonlinear regression, 189
Normalization, neural network data,

193-194
Normalized error, performance metrics,

399-400
Normalized fitness

genetic algorithm, 53
genetic programming, 85

Off-line performance, 400
On-line adaptation, 181
On-line performance, 400
Optimization

definition 11
function optimization with evolutionary

programming, 74-75
myths, 11

Index

Optimization (continued)

performance metrics, see Performance
metrics

Ostergaard, J.-J., 274
Output rule file, evolutionary design of fuzzy

rule system with GAs, 368
Overselection, genetic programming, 86

Papert, Seymour, 153-154
Parabolic function, dynamic range, and error

criterion, 96
Particle swarm optimization (PSO)

applications, 91-92
constriction factor, 90-91
definition, 3
evolution of network topology,

216-217
historical perspective, 45-47, 87
implementation

benchmark problems, 126-128
co-evolutionary algorithms, 125-126,

128-131
enumeration data type, 118-119
e v a l u a t e _ f u n c t i o n s () routine,

132-133
Evaluate_Function_Type, 131
functions used, 96
main () routine, 122-123
principles, 88, 118
P SODONE state handler routine,

139-140
P S O _ e v a l u a t e () routine,

124-125
P SO_GOAL_REACH_JUDGE state

handler routine, 137
PSO_Hain_Loop () routine, 123,

129
P SO_NEXT_GENERAT I ON state

handler routine, 137-138

pso_state_handler, 131-132

PSO_State_Type for multi-PSOs,
128-132

P SO_UPDATE_GLOBAL_BEST state

handler routine, 134-135

P SO_UPDATE_INERT I A....WE I GHT
state handler routine, 138

P s o u P DATE_LOCAL BES T state
handler routine, 133-134

P SO_UP DATE_NEXT_P SO state
handler routine, 139

PSO UPDATE_PBES T EACH_CYCLE
state handler routine, 138-139

P SO_UP DATE_POS I T I ON state
handler routine, 136-137

P SO_UPDATE_VELOC I TY state
handler routine, 135-136

running, 140-142
state handler routine overview,

123-124
structure data type, 119-121

inertial weight, 89-91
maximum velocity, 88-89
neighborhood, 89
neural network evolution, 216-217
overview, 87-88
resources, 92

Pattern classification neural network, 178
PE, see Processing element
Percent correct, performance metrics,

395-396
Perceptron, definition, 150
Performance metrics

absolute error, 398-399
average sum-squared error,

396-398
chi-square test, 414--417
confusion matrix, 410-414
cross validation, 392-393
evolutionary algorithm effectiveness,

400-401
fitness, 393-394
gold standard selection, 390-391
Mann-Whitney U test, 401-404
normalized error, 399-400
pattern partitioning for training, testing,

and validation, 391-392
percent correct, 395-396
receiver operating characteristic curves

accuracy, 409
applications, 404-405
area under curve calculation, 407
contingency matrix in definition,

405-406

Index

false alarm rate, 409
F-measure, 410
geometric mean, 410
interpretation, 408
neural network analysis, 406-407
positive predictive value, 409
precision, 409
recall, 408-409
sensitivity, 409
specificity, 409

statistics, 394-395
Permutation problem, neural network

evolution, 216
Phenotype, definition, 52
Positive predictive value, receiver operating

characteristic curve, 409
Precision, receiver operating characteristic

curve, 409
Problem space, adaptation, 25
Processing element (PE)

activation functions, 172-176
cell populations, 155
definition, 2
input computation, 172
neural networks, 148-149, 158, 161-163,

171-176
qualities, 171
quantity, 6
types, 6

Processing element slab, 250-251
PSO, see Particle swarm optimization
P SO_DONE state handler routine, 139-140
PSO_evaluate () routine, 124-125
P SO_GOAL_REACH_JUDGE state handler

routine, 137
PSO_Main_Loop () routine, 123, 129
P SO_NEXT_GENERAT I ON state handler

routine, 137-138
p s o _ s t a t e _ h a n d l e r , 131-132
P S O _ S t a t e _ T y p e , multi-PSOs, 128-132
P SO UP DATE_GLOBAL_BE S T state

handler routine, 134-135
P SO_UPDATE_INERT IA_WE I GHT state

handler routine, 138
P SO_UPDATE_LOCAL_BEST state handler

routine, 133-134
P so_uP DATE_NEXT_P SO state handler

routine, 139

P SO_UPDATE_PBEST_EACH_CYCLE
state handler routine, 138-139

P SOUP DATE_P OS I T I ON state handler
routine, 136-137

PSO_UPDATE__VELOCITY state handler
routine, 135-136

Radial basis function, 190
Ramp activation function, processing

elements, 174-175
Ramped half-and-half method, genetic

programming, 84--85
Rastrigrin function, dynamic range and error

criterion, 96
read_fl_runfile () routine,

Mamdani-type fuzzy rule, 343-345
Recall

neural network, 168
receiver operating characteristic curve,

408-409
Receiver operating characteristic (ROC)

curves
accuracy, 409
applications, 404-405
area under curve calculation, 407
contingency matrix in definition,

405-406
false alarm rate, 409
F-measure, 410
geometric mean, 410
interpretation, 408
neural network analysis, 406-407
positive predictive value, 409
precision, 409
recall, 408-409
sensitivity, 409
specificity, 409
true positive ratio, 422

Rechenberg, Ingo, 44-45
Recombination

definition, 3
evolution strategies, 7 7 - 7 8

Reinforcement adaptation, 22-23
Relation factors, sensitivity analysis,

422-423

Index

Representation, homogeneous versus
heterogeneous, 97-98

Results file, Mamdani-type fuzzy rule
implementation, 350

ROC curves, s e e Receiver operating
characteristic curves

Root mean square, performance metrics, 399
Rosenblatt, Frank, 150-151
Rosenbrock function, dynamic range and

error criterion, 96
Rosenfeld, Azriel, 273
Roulette wheel selection

evolution strategies, 79
genetic algorithm, 60-61

Rule output file
evolutionary design of fuzzy rule system

with GAs, 370
Mamdani-type fuzzy rule

implementation, 350
Rule specification file, evolutionary design of

fuzzy rule system with GAs, 367
Ruspini, Enrique, 273

Scaling
genetic algorithm, 59-60
neural network data, 192-193

Schemata, genetic algorithm, 63-67
Schema theorem, 64-67
Schwefel, Hans-Paul, 44-45
Selection, evolution strategies, 78-80
Selection pressure, genetic algorithm, 60
Self-organization

computational intelligence, 30-34
definition, 27
examples, 27-28
historical perspective, 26-27

Self-organizing feature map (SOFM) neural
network

adaptation process, 253
data type definitions, 255-258
initialization, 252-253
neighborhood, 250
processing element slab, 250-251
running, 261
state handling routines, 258-260
training, 255
unsupervised adaptation, 24

weight correction versus distance from
winning PEs, 253-255

Semantics, care, 4
Sensitivity analysis

evolutionary computation sensitivity
analysis, 426-427

explanation facility, s ee Explanation
facility

Hinton diagram, 427-428
overview, 422
relation factors, 422-423
Zurada sensitivity analysis, 424-426

Sensitivity, receiver operating characteristic
curve, 409

Shaffer's F6 function, dynamic range and
error criterion, 96

Sigmoid activation function, processing
elements, 175

Smith, Steve, 43
SOFM neural network, s e e Self-organizing

feature map neural network
SOFM_UPDATE_NE I GHBORHOOD state

handling routine, 259
S©FM_WEI GHT_CHANGE state handling

routine, 259-260
Specht, Donald, 164
Specificity, receiver operating characteristic

curve, 409
Standardized fitness, genetic programming,

85
Statistics, performance metrics, 394-395
Steepest descent, 152
Step activation function, processing

elements, 173-174
Stochastic approximation, 188
Stochastic updating, processing element, 162
Structure data type

back-propagation neural network,
221-222

genetic algorithm, 104-107
learning vector quantizer neural

network, 237-239
particle swarm optimization, 119-121
self-organizing feature map neural

network, 257-258
Structure, definition, 8
Sufficiency, genetic programming, 82
Sugeno, Michio, 274

Summation flag, Mamdani-type fuzzy rule
implementation, 350

Supervised adaptation, 20-21, 180
Synaptic delay, definition, 148
System output space, adaptation, 25

Takagi-Sugeno-Kang (TSK) Method
fuzzy controller, 310-313
overview, 290

Terano, Toshiro, 274
Test dataset, selection for neural networks,

191-192
Topology, neural network, 168,

176-179
Tournament selection, binary tournament

selection operator for GAs,
112-113

Tournament selection
evolution strategies, 79-80

Training dataset, selection for neural
networks, 191

Trapezoidal rule, receiver operating
characteristic curve, 407

True positive ratio, receiver operating
characteristic curve, 422

TSK Method, s ee Takagi-Sugeno-Kang
Method

Index

Uniform crossover, genetic algorithm, 63
Unsupervised adaptation, 23-24, 180

V

Validation dataset, selection for neural
networks, 192

Variance, performance metrics, 399
Vector quantization, 189-190
Vmax, s e e Maximum velocity

Ih/

Wee, Bill, 273
Weiner, Norbert, 41
Widrow, Bernard, 151-153
Widrow-Hoff adaptation algorithm, 153
Widrow-Hoff rule, 181
Winston, Patrick Henry, 276

Z-axis normalization, neural network data,
193-194

Zadeh, Lotfi A., 271-272, 275, 281,286, 288
Zimmerman, Hans, 272-273
Zurada sensitivity analysis, 424--426

About the Authors

Russell C. Eberhart is professor of electrical and computer engineering at the
Purdue School of Engineering and Technology, Indiana University Purdue Univ-
ersity Indianapolis (IUPUI). He is also vice president of Computelligence LLC
in Indianapolis, Indiana. He received his Ph.D. from Kansas State University in
electrical engineering. He is coeditor of a book on neural networks, and coauthor
of Computational Intelligence PC Tools (Academic Press, 1996). Russ is coauthor
of a book with Jim Kennedy and Yuhui Shi entitled Swarm Intelligence (Morgan
Kaufmann/Academic Press, 2001). He was awarded the IEEE Third Millennium
Medal. In 2001, he became a Fellow of the IEEE, and in 2002 he became a Fellow
of the American Institute for Medical and Biological Engineering.

Yuhui Shi is an applied specialist for Electronic Data Systems, Inc. He received
his Ph.D. in electrical engineering in 1992 from Southeast University in China.
He has been actively involved in organizing several IEEE conferences related to
computational intelligence. Yuhui is an associate editor of the IEEE Transactions
on Evolutionary Computation, and an adjunct faculty member of the Department
of Radio Engineering, Southeast University, and the Department of Electrical and
Computer Engineering, Indiana University Purdue University Indianapolis.

